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Let X1,X2, . . . ,Xn be a sequence of independent or locally dependent random variables taking values in
Z+. In this paper, we derive sharp bounds, via a new probabilistic method, for the total variation distance
between the distribution of the sum

∑n
i=1 Xi and an appropriate Poisson or compound Poisson distrib-

ution. These bounds include a factor which depends on the smoothness of the approximating Poisson or
compound Poisson distribution. This “smoothness factor” is of order O(σ−2), according to a heuristic ar-
gument, where σ 2 denotes the variance of the approximating distribution. In this way, we offer sharp error
estimates for a large range of values of the parameters. Finally, specific examples concerning appearances
of rare runs in sequences of Bernoulli trials are presented by way of illustration.

Keywords: compound Poisson approximation; coupling inequality; law of small numbers; locally
dependent random variables; Poisson approximation; rate of convergence; total variation distance;
Zolotarev’s ideal metric of order 2

1. Introduction and overview

Let X1,X2, . . . ,Xn be a sequence of independent or locally dependent random variables which
take values in Z+. If X1,X2, . . . ,Xn rarely differ from zero (that is, P(Xi �= 0) ≈ 0), then it is
well known that the distribution of their sum can be efficiently approximated by an appropriate
Poisson or compound Poisson distribution. This situation appears in a great number of appli-
cations involving locally dependent and rare events, such as risk theory, extreme value theory,
reliability theory, run and scan statistics, graph theory and biomolecular sequence analysis.

The main method used so far for establishing effective Poisson or compound Poisson approx-
imation results in the case of independent or dependent random variables is the much acclaimed
Stein–Chen method (see, for example, Barbour, Holst and Janson (1992), Barbour and Chrys-
saphinou (2001), Barbour and Chen (2005) and the references therein). Another method for
independent random variables is Kerstan’s method (see Roos (2003) and the references therein).

In the recent years, an alternative methodology has been developed in a series of papers con-
cerning compound Poisson approximation for sums or processes of dependent random variables,
employing probabilistic techniques, that is, properties of certain probability metrics, stochastic
orders and coupling techniques (see Boutsikas and Koutras (2000, 2001), Boutsikas and Vagge-
latou (2002), Boutsikas (2006)). In this series of papers, the error estimates are, under analogous
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assumptions, of almost the same nature and the same order as the error estimates developed by
the Stein–Chen method. The main shortcoming of these bounds, though, is that they do not in-
corporate any so-called “magic factor” (however, in the process approximation case treated in
Boutsikas (2006), such a factor cannot be present). This factor, also known as a Stein factor, ap-
pears in approximation error estimates obtained through the Stein–Chen method and decreases
as the parameter of the Poisson distribution increases.

The purpose of this work is to derive sharp error bounds for the total variation distance between
the distribution of the sum of integer-valued random variables and an appropriate Poisson or com-
pound Poisson distribution. Specifically, by assuming that the random variables X1,X2, . . . ,Xn

are locally dependent (in the strict sense of k-dependence), we derive bounds similar in nature to
those obtained by the Stein–Chen method that include a factor analogous to a Stein factor. This
factor is better/smaller than the associated Stein factors, thereby offering (for a large range of the
values of the parameters) sharper bounds than relative ones derived via the Stein–Chen method.
This factor is just the L1-norm, ‖�2f ‖1, of the second difference of the probability distribution
function f of the approximating Poisson or compound Poisson distribution. It decreases as f

becomes smoother, which, in our case, usually happens when the variance of the distribution
corresponding to f increases. Hence, we shall often refer to this factor as the smoothness factor.
The methodology we employ is based on a modification of Lindeberg’s method, along with the
coupling inequality of Lemma 4 and the smoothing inequality (which produces the aforemen-
tioned smoothness factor) of Lemma 1.

It is worth pointing out an undesired effect of our treatment, which is an additional term in
the proposed bounds that does not appear in Stein–Chen bounds. This term becomes large for
a certain range of values of the parameters, but, as we explain in Remark 3 of Section 3, it
can be substantially reduced if we possess a simple and effective upper bound for ‖�2f ‖1.
Nevertheless, this term is generally negligible, especially for small or moderate values of λ,
where λ is the parameter of the approximating Poisson distribution.

It is worth stressing that the error estimates presented in this work have the same optimal
order as other bounds obtained through the Stein–Chen method. In fact, bounds derived using
the latter method contain an additional logλ term or, worse, an eλ term for certain ranges of
the parameters (see Barbour, Chen and Loh (1992), Barbour and Utev (1999), Barbour and Xia
(2000) or Barbour and Chryssaphinou (2001) and the references therein). On the other hand, our
bounds do not include such terms and they incorporate a better and more natural factor which we
conjecture to be optimal.

The paper is organized as follows. In Section 2, we present some already known, as well
as new, auxiliary lemmas which concern probability metrics and coupling techniques. These
lemmas will be used for the derivation of our main results. In Sections 3 and 4, we present our
main results, that is, bounds concerning Poisson and compound Poisson approximation for sums
of independent and k-dependent random variables, respectively. Finally, in Section 5, in order
to illustrate the applicability and effectiveness of our main results, we present a simple example
of an application which concerns the distribution of appearances of rare runs in sequences of
independent and identically distributed (i.i.d.) trials.
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2. Preliminary results

Throughout this paper, the abbreviations c.d.f. and p.d.f. will stand for the cumulative distribution
function and probability density function, respectively. In addition, LX or L(X) will denote
the distribution of a random variable X and the notation X ∼ G will imply that X follows the
distribution G. Moreover, we shall write Po(λ) to denote the Poissson distribution with mean
λ and CP(λ,F ) to denote the compound Poisson distribution with Poisson parameter λ and
compounding distribution F . In other words, CP(λ,F ) is the distribution of the random sum∑N

i=1 Zi , where N ∼ Po(λ) and Zi are i.i.d. random variables with c.d.f. F which are also
independent of N . For two functions f and g, the following standard notation will be used:

f (t) ∼ g(t) as t → t0 if lim
t→t0

f (t)

g(t)
= 1; f (t) = O(g(t)) if

f (t)

g(t)
is bounded.

Moreover, whenever dependence or independence of some random variables is mentioned, it will
be immediately assumed that they are defined on the same probability space. Finally, �x� denotes
the integer part of x and we will assume that

∑b
i=a xi = 0 when a > b.

2.1. Probability metrics and smoothness factors

In order to quantify the quality of a distribution approximation, the total variation distance and
Zolotarev’s ideal metric of order 2 will be used. Since the results of this paper concern discrete
distributions, it suffices to consider only the discrete versions of the aforementioned probability
metrics.

The total variation distance between the distributions LX and LY of two random variables X

and Y is defined by

dTV(LX, LY) := sup
A⊆Z

|P(X ∈ A) − P(Y ∈ A)| = 1

2

∞∑
k=−∞

|P(X = k) − P(Y = k)|,

whereas the total variation distance of order 2 or Zolotarev’s ideal metric of order 2 (Zolotarev
(1983)) is defined by

ζ2(LX, LY) =
∫ ∞

−∞
|E(X − t)+ − E(Y − t)+|dt =

∞∑
k=−∞

∣∣∣∣∣
∞∑

u=k

(
FX(u) − FY (u)

)∣∣∣∣∣,
where, as usual, FX denotes the c.d.f. of the random variable X. Throughout, whenever a
ζ2(LX, LY) distance appears, it will be implicitly assumed that X,Y possess finite first and
second moments and that E(X) = E(Y). For a comprehensive exposition on probability metrics
and their properties, the interested reader may consult Rachev (1991) and the references therein.

Next, we denote by �kf the kth order (backward) difference operator over a function
f : Z → R, that is, �f (i) = f (i) − f (i − 1) and �k = �(�k−1f ), k = 1,2, . . . (�0f = f ).
The smoothness factor mentioned in the Introduction emerges from the following lemma. Anal-
ogous results concerning random variables with a Lebesgue density have been used in the past in
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order to obtain Berry–Esseen-type results (see Senatov (1980), Rachev (1991) and the references
therein).

Lemma 1. If X,Y,Z are integer-valued random variables (with finite first and second moments)
such that E(X) = E(Y) and Z is independent of X,Y , then

dTV
(

L(X + Z), L(Y + Z)
) ≤ 1

2‖�2fZ‖1ζ2(LX, LY),

where fZ is the p.d.f. of Z and ‖�2fZ‖1 := ∑
z∈Z

|�2fZ(z)|.
Proof. For any functions a, b : Z → R and c, d ∈ Z, we have (second-order Abel summation
formula)

d∑
z=c

bz−2�
2az =

d∑
z=c

az�
2bz + bd−1�ad − ad�bd + ac−1�bc−1 − bc−2�ac−1. (1)

Denote by fW the p.d.f. of any discrete random variable W . If, for fixed k, we now choose

az = fZ(z), bz =
z+1∑

i=−∞

(
RX(k − i) − RY (k − i)

)
,

where RX(k − z) = ∑z−1
i=−∞ fX(k − i), and then take c → −∞, d → ∞, identity (1) leads to

∞∑
z=−∞

z−1∑
i=−∞

(
RX(k − i) − RY (k − i)

)
�2fZ(z) =

∞∑
z=−∞

(
fX(k − z) − fY (k − z)

)
fZ(z) (2)

since all quantities bz, az,�az,�bzvanish as z → ∞ or z → −∞. Using (2), we get

dTV
(

L(X + Z), L(Y + Z)
) = 1

2

∞∑
k=−∞

∣∣∣∣∣
∞∑

z=−∞

(
fX(k − z) − fY (k − z)

)
fZ(z)

∣∣∣∣∣
= 1

2

∞∑
k=−∞

∣∣∣∣∣
∞∑

z=−∞
�2fZ(z)

z−1∑
i=−∞

(
RX(k − i) − RY (k − i)

)∣∣∣∣∣
≤ 1

2

∞∑
z=−∞

|�2fZ(z)|
+∞∑

k=−∞

∣∣∣∣∣
z−1∑

i=−∞

(
RX(k − i) − RY (k − i)

)∣∣∣∣∣.
Finally, setting s := k − z + 1 and u := k − i in the second and third summation above yields

dTV
(

L(X + Z), L(Y + Z)
) ≤ 1

2

∞∑
z=−∞

|�2fZ(z)|
∞∑

s=−∞

∣∣∣∣∣
∞∑

u=s

(
RX(u) − RY (u)

)∣∣∣∣∣
= 1

2
‖�2fZ‖1ζ2(X,Y ). �
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If Z = 0 and E(X) = E(Y), then a simple consequence of the above result is the inequality

dTV(LX, LY) ≤ 1
2‖�2f0‖1ζ2(LX, LY) = 2ζ2(LX, LY), (3)

where f0 := fZ when Z = 0. If Z follows a Poisson distribution with parameter λ, then we can
find the explicit value of ‖�2fZ‖1 and its asymptotic behavior. In the sequel, we shall write
fPo(λ) instead of fZ when Z ∼ Po(λ). As we will see below, it is convenient to first find the
L∞-norm, ‖�fPo(λ)‖∞, and then to investigate its relation with the norm ‖�2fPo(λ)‖1.

Lemma 2. If fPo(λ) denotes the probability distribution function of the Poisson distribution with
parameter λ, then

∥∥�fPo(λ)

∥∥∞ = sup
k∈Z+

∣∣fPo(λ)(k) − fPo(λ)(k − 1)
∣∣ = e−λ λkλ

kλ!
(

1 − kλ

λ

)
,

where kλ := �λ − √
λ + 1/4 + 1/2� for all λ > 0. In particular, ‖�fPo(λ)‖∞ = e−λ for λ ≤ 2.

Furthermore,

∥∥�fPo(λ)

∥∥∞ ∼ 1

λ
√

2πe
as λ → ∞.

Proof. It can be easily verified that �fPo(λ)(k) = e−λ λk

k! (1 − k
λ
), k ∈ {0,1,2, . . .}, while

�fPo(λ)(k) = 0 for k < 0, and also that

�2fPo(λ)(k) = e−λ λk

k!
(

1 + k(k − 1)

λ2
− 2

k

λ

)
, k ∈ {0,1,2, . . .},

while �2fPo(λ)(k) = 0 for k < 0. Define h : R+ → R such that h(x) = �2fPo(λ)(x) (that is, the
extension of �2fPo(λ) over R+), where x! now denotes the Gamma function �(1 + x). It is easy
to verify that h is positive when 0 ≤ x ≤ ρ1, negative when ρ1 ≤ x ≤ ρ2 and positive again when
x ≥ ρ2, where ρ1 = ρ1(λ) = λ−√

λ + 1/4 + 1/2 and ρ2 = ρ2(λ) = λ+√
λ + 1/4 + 1/2 are the

two roots of the equation h(x) = 0 (0 < ρ1 < ρ2). Since h is an extension of �2fPo(λ), we deduce
that �2fPo(λ)(k) ≥ 0 when 0 ≤ k ≤ ρ1, �2fPo(λ)(k) ≤ 0 when ρ1 ≤ k ≤ ρ2 and �2fPo(λ)(k) ≥ 0
when k ≥ ρ2. This implies that 0 = �fPo(λ)(−1) ≤ �fPo(λ)(0) ≤ · · · ≤ �fPo(λ)(�ρ1�), while
�fPo(λ)(�ρ1�) ≥ �fPo(λ)(�ρ1� + 1) ≥ · · · ≥ �fPo(λ)(�ρ2�) and �fPo(λ)(�ρ2�) ≤ �fPo(λ)(�ρ2� +
1) ≤ · · ·. Hence, |�fPo(λ)(k)| must be maximized at �ρ1� or �ρ2� (since �fPo(λ)(k) → 0 as k →
∞). In order to verify that it is maximized at kλ = �ρ1(λ)�, we shall prove that g1(λ) > g2(λ)

for all λ > 0 where g1(λ) = λ|�fPo(λ)(�ρ1(λ)�)| and g2(λ) = λ|�fPo(λ)(�ρ2(λ)�)|, that is,

g1(λ) = λe−λ λ�ρ1(λ)�

�ρ1(λ)�!
(

1 − �ρ1(λ)�
λ

)
> g2(λ)

= −λe−λ λ�ρ2(λ)�

�ρ2(λ)�!
(

1 − �ρ2(λ)�
λ

)
, λ > 0.
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For every k ∈ {0,1, . . .}, ε ∈ [0,1), we have �ρ1(k + ε + √
k + ε)� = �k + ε� = k. Therefore,

�ρ1(λ)� = k for every λ ∈ [k + √
k, k + 1 + √

k + 1). Hence, in this interval, the function g1(λ)

is equal to λe−λ λk

k! (1 − k
λ
), differentiable (except at k + √

k) and concave, and g′
1(λ) = 0 at

λ = a(k) = k + 1/2 + √
k + 1/4. Moreover, g1(λ) → g1(k + 1 + √

k + 1) as λ → k + 1 +√
k + 1 and thus g1(λ) is continuous for every λ > 0. Therefore, g1(λ) ≥ g1(k + √

k) for every
λ ∈ [a(k − 1), a(k)], k ∈ {1,2, . . .}. Using the upper bound of Stirling’s approximation (k! ≤
kke−k

√
2πke1/(12k)) and the elementary inequality log(1+x) > x −x2/2+x3/3−x4/4, x > 0,

we get

g1
(
k + √

k
) = e−(k+√

k) (k + √
k)k

k!
√

k ≥ e−√
k−1/(12k)

√
2π

ek log(1+1/
√

k) >
e1/(3

√
k)−1/(3k)

√
2πe

≥ 1√
2πe

for every k ≥ 1. Therefore, g1(λ) > 1√
2πe

for every λ ∈ ⋃
k≥1[a(k − 1), a(k)] = [1,∞).

Similarly, for every k ∈ {1,2, . . .}, ε ∈ [0,1), we have �ρ2(k + ε − √
k + ε)� = �k + ε� = k.

Therefore, �ρ2(λ)� = k for every λ ∈ [k − √
k, k + 1 − √

k + 1). Moreover, in this interval, the

function g2(λ) is equal to λe−λ λk

k! (
k
λ

− 1), differentiable (except at k − √
k) and concave, and

g′
2(λ) = 0 at λ = k + 1/2 − √

k + 1/4 (g2(λ) is also continuous for every λ > 0). Therefore,
g2(λ) ≤ g2(k + 1/2 − √

k + 1/4) for every λ ∈ [k − √
k, k + 1 − √

k + 1], k ∈ {1,2, . . .}. Using
the lower bound of Stirling’s approximation (k! ≥ kke−k

√
2πk) and the elementary inequality

log(1 + x) < x − x2/2, x ∈ (−1,0), we get, for k ≥ 1,

g2
(
k + 1/2 − √

k + 1/4
) ≤

√
k + 1/4 − 1/2√

2πk
e−1/2+√

k+1/4+k log(1+(1/2−√
k+1/4)/k)

<

√
k + 1/4 − 1/2√

k

e(
√

k+1/4−1/2)/2k

√
2πe

<
1√
2πe

.

Therefore, g2(λ) < 1√
2πe

for every λ ≥ 0. Hence, g2(λ) < 1√
2πe

< g1(λ) for every λ ≥ 1. It now

remains to show that g2(λ) < g1(λ) for every 0 < λ < 1. This is easily verified since g1(λ) =
λe−λ for λ < 2, while g2(λ) = e−λλ(1 − λ) for λ ∈ [0,2 − √

2) and g2(λ) = e−λλ2(1 − λ
2 ) for

λ ∈ [2 − √
2,3 − √

3).
Finally, from (1 + y)kλ = ekλ log(1+y) = ekλ(y−y2/2+o(y2)) with y = (λ − kλ)/kλ, we get

ekλ−λ(λ/kλ)
kλ → e−1/2 as λ → ∞.

From this fact and Stirling’s formula, we get, as λ → ∞, that

λ�fPo(λ)(kλ) = λe−λ λkλ

kλ!
(

1 − kλ

λ

)
∼ ekλ−λ

(
λ

kλ

)kλ λ − kλ√
2πkλ

→ 1√
2πe

. �

In the next lemma, we find the explicit value of ‖�2fPo(λ)‖1 and a convenient upper bound in
terms of ‖�fPo(λ)‖∞.
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Lemma 3. If fPo(λ) denotes the p.d.f. of the Poisson distribution with parameter λ, then

∥∥�2fPo(λ)

∥∥
1 =

+∞∑
z=0

∣∣�2fPo(λ)(z)
∣∣ = 2e−λ

(
λkλ−1(λ − kλ)

kλ! − λuλ−1(λ − uλ)

uλ!
)

,

where kλ := �λ − √
λ + 1/4 + 1/2� and uλ := �λ + √

λ + 1/4 + 1/2�. Moreover,

∥∥�2fPo(λ)

∥∥
1 ≤ 4

∥∥�fPo(λ)

∥∥∞ and
∥∥�2fPo(λ)

∥∥
1 ∼ 4

λ
√

2πe
as λ → ∞.

Proof. For convenience, we set kλ := �ρ1� and uλ := �ρ2�, where ρ1 := λ − √
λ + 1/4 + 1/2

and ρ2 := λ + √
λ + 1/4 + 1/2, and g(z) := �fPo(λ)(z). In the proof of Lemma 2, we have

seen that 0 = g(−1) ≤ g(0) ≤ · · · ≤ g(kλ), while g(kλ) ≥ g(kλ + 1) ≥ · · · ≥ g(uλ) and g(uλ) ≤
g(uλ + 1) ≤ · · ·. We then have

∥∥�2fPo(λ)

∥∥
1 =

+∞∑
z=0

|�g(z)| =
kλ∑

z=0

�g(z) −
uλ∑

z=kλ+1

�g(z) +
+∞∑

z=uλ+1

�g(z)

= (
g(kλ) − g(−1)

) − (
g(uλ) − g(kλ)

) + (
0 − g(uλ)

)
= 2

(
g(kλ) − g(uλ)

)
.

From the proof of Lemma 2, we also get that

g(kλ) = �fPo(λ)(kλ) = max
z∈Z+

�fPo(λ)(z) = ∥∥�fPo(λ)

∥∥∞; g(uλ) = min
z∈Z+

�fPo(λ)(z) < 0

and g(kλ) > −g(uλ). Therefore, we obtain that ‖�2fPo(λ)‖1 ≤ 4g(kλ) = 4‖�fPo(λ)‖∞. The last
asymptotic result follows from the fact that �fPo(λ)(uλ) ∼ −λ−1(2πe)−1/2, which can be proven
in exactly the same way as �fPo(λ)(kλ) ∼ λ−1(2πe)−1/2 was proven in Lemma 2. �

A crude but simple upper bound is ‖�2fPo(λ)‖1 ≤ 4 1−e−3λ

3λ
≤ 4(1 ∧ 1

3λ
) for all λ > 0, whereas

‖�fPo(λ)‖∞ ≤ 1/(3λ) for λ ≥ 2.

Remark 1. For distributions other than Poisson, it is not always easy to derive an analytic expres-
sion for ‖�f ‖∞ or ‖�2f ‖1. Nevertheless, it is always feasible to compute the numeric value
of these norms employing numerical or symbolic mathematics software packages (for example,
Mathematica, Maple or MATLAB).

An approximate expression for these norms can be easily derived if we assume that the dis-
tribution corresponding to the p.d.f. f can be approximated by a normal distribution N(μ,σ 2),
for example, due to CLT. In this case, we expect that ‖�f ‖∞ and ‖�2f ‖1 would be close to
‖f (1)

N(μ,σ 2)
‖∞ and ‖f (2)

N(μ,σ 2)
‖1, respectively, where f

(k)

N(μ,σ 2)
denotes the kth order derivative of
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the p.d.f. of N(μ,σ 2). It is not difficult to verify that, for the normal distribution, we have

∥∥f
(1)

N(μ,σ 2)

∥∥∞ = sup
x∈R

∣∣f (1)

N(μ,σ 2)
(x)

∣∣ = 1

σ 2
√

2πe
,

∥∥f
(2)

N(μ,σ 2)

∥∥
1 =

∫ +∞

−∞
∣∣f (2)

N(μ,σ 2)
(x)

∣∣dx = 4
∥∥f

(1)

N(μ,σ 2)

∥∥∞.

Hence, for distributions similar to the normal with variance σ 2, we expect ‖�2f ‖1 to be
nearly equal to 4σ−2(2πe)−1/2. This approximation works for the Poisson distribution (as
seen in Proposition 3 above) since, for large λ, it is close to a normal distribution with
σ 2 = λ. According to the above, concerning the compound Poisson distribution, if CP(λ,F ) ≈
N(λE(W),λE(W 2)) (with W ∼ F ) then we can expect that, for large λ,

∥∥�2fCP(λ,F )

∥∥
1 ≈ 4

λE(W 2)
√

2πe
. (4)

It is worth stressing that (4) is valid provided the compounding distribution F is such that
CP(λ,F ) is approximately normal. There exist counterexamples showing that (4) is not always
valid; see Example 1.3 or 1.4 of Barbour and Utev (1999). Specifically, the CP(λ,F ) described
there cannot be approximated by a normal distribution and, moreover, it can be verified that
the corresponding ‖�2fCP(λ,F )‖1 does not decrease as λ increases. Note that Barbour and Utev
(1999) use these counterexamples to show that, even for independent Xi ’s (with pi = P(Xi �= 0),
λ = 	pi), we cannot always prove that dTV(L(	Xi),CP(λ,F )) = O(λ−1	p2

i ) and sometimes
(depending on F ) the order O(	p2

i ) is optimal. Theorem 9 below implies that this dTV is of
order O(λ−1	p2

i ) whenever F is such that ‖�2fCP(λ,F )‖1 = O(λ−1) (see also Remark 2 in
Section 3).

2.2. Coupling techniques

A coupling of two random vectors X,Y ∈ R
k (to be more exact, of their distributions LX, LY)

is considered to be any random vector (X′,Y′) defined over a probability space (
,F,P ) and
taking values in a measurable space (R2k, B(R2k)) with the same marginal distributions as X,Y,
that is, LX = LX′and LY = LY′. Loosely speaking, a coupling of X,Y is any “definition” of
X,Y in the same probability space. This definition of coupling can be generalized for n random
vectors in an obvious way. A well-known result concerning the dTV is the so-called (basic)
coupling inequality,

dTV(LX, LY) ≤ P(X′ �= Y′),

which is valid for any coupling (X′,Y′) of two random vectors X,Y. It can be proven that we
can always construct a coupling (X′,Y′) of (X,Y) such that dTV(LX, LY) = P(X′ �= Y′) (for
example, see Lindvall (1992), page 18). Such a coupling is called a maximal coupling or γ -
coupling of X,Y. All of the above could be expressed equivalently for probability measures as
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follows: if P1,P2 are two probability measures on (Rk, B(Rk)), then any probability measure P̂

on (R2k, B(R2k)) with P̂ (A × R
k) = P1(A), P̂ (Rk × A) = P2(A) for every A ∈ B(Rk) is called

a coupling of P1,P2. Moreover, it can be proven that there exists a coupling P̂γ of P1,P2, called
a maximal coupling or γ -coupling, such that

dTV(P1,P2) = 1 − P̂γ

({(x,x),x ∈ R
k}). (5)

Obviously, all of the above can be adapted in the obvious way for random vectors taking values
in Z

k and to multivariate distributions over the probability space (Zk,2Z
k
).

The following lemmas will play a crucial role for the establishment of our main results.
The first inequality of the following lemma is Corollary 4 in Boutsikas (2006). The second in-
equality of the following lemma is a direct application of Lemma 3 in Boutsikas (2006) with
(�′

1,�
′
2,

′
1,

′
2) = (Z + X,Z + Y,W + X,W + Y).

Lemma 4. For any random vectors X,Y ∈ R
k and Z,W ∈ R

r defined on the same probability
space, we have that

(a) |dTV(L(Z,X), L(Z,Y)) − dTV(L(W,X), L(W,Y))| ≤ 2P(X �= Y,Z �= W);
(b) |dTV(L(Z + X), L(Z + Y)) − dTV(L(W + X), L(W + Y))| ≤ 2P(X �= Y,Z �= W).

The next inequality follows from the above lemma. It is remarkable that almost the same
inequality can be found in Rachev (1991), page 274, and has been applied to derive Berry–
Esseen-type results. We present an entirely different proof using maximal couplings.

Lemma 5. If the random vectors X,Y ∈ R
kare independent of Z,W ∈ R

r , then∣∣dTV
(

L(Z + X), L(Z + Y)
) − dTV

(
L(W + X), L(W + Y)

)∣∣
≤ 2dTV(LX, LY)dTV(LZ, LW).

Proof. Let (X∗,Y∗) be a maximal coupling of LX, LY and let (Z∗,W∗) be a maximal cou-
pling of LZ, LW. Next, let ((X′,Y′), (Z′,W′)) be an independent coupling of L(X∗,Y∗),
L(Z∗,W∗) (that is, (X′,Y′) is independent of (Z′,W′) and L(X′,Y′) = L(X∗,Y∗), L(Z′,W′) =
L(Z∗,W∗)). Applying Lemma 4, we get∣∣dTV

(
L(Z′ + X′), L(Z′ + Y′)

) − dTV
(

L(W′ + X′), L(W′ + Y′)
)∣∣

≤ 2P(X′ �= Y′,Z′ �= W′) = 2P(X′ �= Y′)P (Z′ �= W′)

= 2P(X∗ �= Y∗)P (Z∗ �= W∗) = 2dTV(LX, LY)dTV(LZ, LW).

The obvious fact that L(Z′ +X′) = L(Z+X), L(Z′ +Y′) = L(Z+Y), L(W′ +X′) = L(W+X)

and L(W′ + Y′) = L(W + Y) completes the proof. �

A direct application of the previous result leads to the following inequality which is valid for
any random variables X,Y ∈ R independent of another random variable W ∈ R. Specifically, if
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we simply set Z = 0 in Lemma 5 and exploit the fact that dTV(L0, LW) = P(W �= 0), we derive

dTV(LX, LY) ≤ 2dTV
(

LX, LY
)
P(W �= 0) + dTV

(
L(X + W), L(Y + W)

)
which, for P(W �= 0) < 1/2, implies that

dTV(LX, LY) ≤ (
1 − 2P(W �= 0)

)−1
dTV

(
L(X + W), L(Y + W)

)
. (6)

The next lemma can be considered as a coupling inequality concerning ζ 2, analogous to
Lemma 4.

Lemma 6. If X,Y,Z,W are real-valued, non-negative random variables defined on the same
probability space with finite second moments and E(X) = E(Y), then

∣∣ζ2
(

L(X + Z), L(Y + Z)
) − ζ2

(
L(X + W), L(Y + W)

)∣∣≤ E|(X − Y)(Z − W)|. (7)

Proof. The distances ζ2 appearing in (7) are well defined since the random variables X + Z,
Y + Z, X + W and Y + W have finite second moments due to Minkowski’s inequality and
E(X + Z) = E(Y + Z), E(X + W) = E(Y + W). Set 1[a≤b] := 1 if a ≤ b and 1[a≤b] := 0
otherwise. As usual, FV denotes the c.d.f. of a random variable V . Recall that, for X,Y ∈ R+
with E(X) = E(Y), we have

ζ2(LX, LY) =
∫ ∞

0
|E(X − s)+ − E(Y − s)+|ds =

∫ ∞

0

∣∣∣∣
∫ ∞

s

(
FX(x) − FY (x)

)
dx

∣∣∣∣ds.

Denoting by d the absolute difference in the left-hand side of (7), we have

d =
∣∣∣∣
∫ ∞

0

∣∣∣∣
∫ ∞

s

(
FX+Z(x) − FY+Z(x)

)
dx

∣∣∣∣ds −
∫ ∞

0

∣∣∣∣
∫ ∞

s

(
FX+W(x) − FY+W(x)

)
dx

∣∣∣∣ds

∣∣∣∣
≤

∫ ∞

0

∣∣∣∣
∣∣∣∣
∫ ∞

s

(
FX+Z(x) − FY+Z(x)

)
dx

∣∣∣∣ −
∣∣∣∣
∫ ∞

s

(
FX+W(x) − FY+W(x)

)
dx

∣∣∣∣
∣∣∣∣ds.

Using the inequality ||a| − |b|| ≤ |a − b|, a, b ∈ R, we get

d ≤
∫ ∞

0

∣∣∣∣
∫ ∞

s

(
FX+Z(x) − FY+Z(x)

)
dx −

∫ ∞

s

(
FX+W(x) − FY+W(x)

)
dx

∣∣∣∣ds

=
∫ ∞

0
|E(Cs)|ds ≤ E

(∫ ∞

0
|Cs |ds

)
,

where

Cs =
∫ ∞

s

(
1[X+Z≤x] − 1[Y+Z≤x]

)
dx −

∫ ∞

s

(
1[X+W≤x] − 1[Y+W≤x]

)
dx.
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Now, if Z ≥ W , it can be verified that Cs ≥ 0 for all s > 0 and, therefore,∫ ∞

0
|Cs |ds =

∫ ∞

0
x
(
1[X+Z≤x] − 1[Y+Z≤x]

)
dx −

∫ ∞

0
x
(
1[X+W≤x] − 1[Y+W≤x]

)
dx

= 1

2

(|(X + Z)2 − (Y + Z)2| − |(X + W)2 − (Y + W)2|)
= 1

2

(|(X − Y)(X + Y + 2Z)| − |(X − Y)(X + Y + 2W)|)
= |X − Y |(Z − W).

On the other hand, if Z ≤ W , then Cs ≤ 0 for all s > 0 and we similarly derive that
∫ ∞

0 |Cs |ds =
|X − Y |(W − Z). Hence,

∫ ∞
0 |Cs |ds = |(X − Y)(W − Z)| and the proof is completed. �

A direct corollary of Lemma 6 is the following result which will be proven useful when dealing
with k-dependent sequences of random variables.

Corollary 7. If the random variables X1,X2, . . . ,Xi ∈ R+ are k-dependent with E(X2
i ) < ∞

and l ≤ i − k + 1, then

ζ2

(
L

i∑
j=l

Xj , L
(

i−1∑
j=l

Xj + X⊥
i

))
≤

i−1∑
j=i−k+1

(
E(XiXj ) + E(Xi)E(Xj )

)
,

where X⊥
i is a random variable independent of all Xj , j = 1,2, . . . , i, with LXi = LX⊥

i .

Proof. Set Xa,b := ∑b
j=a Xj . Applying Lemma 6 with X = Xi,Z = Xl,i−1, Y = X⊥

i ,W =
Xl,i−k , we obtain∣∣ζ2

(
LXl,i , L(Xl,i−1 + X⊥

i )
) − ζ2

(
L(Xl,i−k + Xi), L(Xl,i−k + X⊥

i )
)∣∣

≤ E|(Xi − X⊥
i )(Xl,i−1 − Xl,i−k)| = E|(Xi − X⊥

i )(Xi−k+1,i−1)|

≤
i−1∑

j=i−k+1

(
E(XiXj ) + E(Xi)E(Xj )

)
.

Since Xl,i−k and Xi are independent, Xl,i−k and X⊥
i are independent, and LXi = LX⊥

i , we
conclude that L(Xl,i−k + Xi) = L(Xl,i−k + X⊥

i ) and hence we obtain the desired inequality. �

As will be seen in the next section, Lemmas 1 and 5 are sufficient for proving compound Pois-
son approximation results for sums of independent random variables incorporating a smoothness
factor. In the case of sums of dependent random variables, though, the following, additional,
lemma is needed. The question addressed here is the following: given a random variable X and
a random vector Z, can we construct (on the same probability space as X,Z) another random
variable Y with a given p.d.f. f such that Y is independent of Z and (X,Z), (Y,Z) are maximally
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coupled? In this situation, we could loosely say that we wish to construct a random variable Y

(with a given distribution) that resembles X as far as possible, while remaining independent of Z.
Again, it suffices to restrict our analysis to the discrete case.

Lemma 8. Let X ∈ Z,Z ∈ Z
k be a random variable and a random vector, respectively (defined

on the same probability space) and let f : Z → R+ be some given discrete p.d.f. Denote by U a
random variable independent of X,Z that follows the uniform distribution on (0,1). Then,

(a) there exists a function g : R2+k → R such that the random variable Y = g(U,X,Z) has
p.d.f. f , Y is independent of Z and

dTV(L(X,Z), L(Y,Z)) = P
(
(X,Z) �= (Y,Z)

) = P(X �= Y),

in other words, (X,Z), (Y,Z) are maximally coupled;

(b) there exists a function g′ : R2 → R such that the random variable Y ′ = g′(U,X) has
p.d.f. f and (X,Y ′) are maximally coupled, that is, dTV(LX, LY ′) = P(X �= Y ′).

Proof. (a) Here, we develop a constructive proof. Denote by (
, A,P ) the probability space
on which X,Z,U are defined and let fX|Z(·|z) = fX,Z(·, z)/fZ(z) be the conditional p.d.f. of X

given Z = z. Consider the probability measures P z
1 ,P2 on the measurable space (Z,2Z) gen-

erated by fX|Z(·|z) and f , respectively. According to (5), there exists a maximal coupling of
P z

1 ,P2. Denote by hz : Z2 → R+ the joint p.d.f. corresponding to this maximal coupling. It fol-
lows that

∑
x∈Z

hz(x,y) = f (y),
∑

y∈Z
hz(x,y) = fX|Z(x|z) and

dTV
(

L(X|Z = z),P2
) = dTV(P z

1 ,P2) = 1 −
∑
x∈Z

hz(x,x).

We now construct Y as follows. For every x ∈ Z, z ∈ Z
k , consider the c.d.f.

Hx,z(y) :=
∑

i≤�y�

hz(x, i)

fX|Z(x|z) , y ∈ R,

and set Y(ω) := H−1
X(ω),Z(ω)

(U(ω)), ω ∈ 
, where H−1
x,z (y) denotes the generalized inverse of

Hx,z(y), that is, H−1
x,z (y) = inf{w :Hx,z(w) ≥ y}. The function fX,Y,Z(x, y, z) := hz(x,y)fZ(z)

is a multivariate discrete p.d.f. and it can be verified that Y and (X,Y,Z) have p.d.f. f and fX,Y,Z,
respectively. Indeed,

P(X = x,Y ≤ y,Z = z) = P
(
X = x,H−1

x,z (U) ≤ y,Z = z
)

= Hx,z(y)P (X = x,Z = z)

and thus, for all x, y, z,

P(X = x,Y = y,Z = z) = hz(x,y)

fX|Z(x|z)P (X = x,Z = z)

= hz(x,y)fZ(z) = fX,Y,Z(x, y, z).
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Also, note that, for all x, z,

P(Y = y,Z = z) =
∑
x∈Z

fX,Y,Z(x, y, z) =
∑
x∈Z

hz(x, y)fZ(z) = f (y)fZ(z),

which implies that Y is independent of Z. Furthermore, we derive that, for all z,

P(X �= Y |Z = z) = 1 −
∑
x∈Z

hz(x, x) = dTV
(

L(X|Z = z), LY
)

and, therefore,

P(X �= Y) =
∑
z∈Zk

P (X �= Y |Z = z)fZ(z)

=
∑
z∈Zk

dTV
(

L(X|Z = z), LY
)
fZ(z)

=
∑
z∈Zk

1

2

∑
w∈Z

|P(X = w|Z = z) − P(Y = w)|fZ(z)

= 1

2

∑
z∈Zk

∑
w∈Z

|P(X = w,Z = z) − P(Y = w)fZ(z)|

= dTV(L(X,Z), L(Y,Z)).

(b) This readily follows from part (a) of the lemma by choosing Z = 0. �

3. Compound Poisson approximation for sums of independent
random variables

Let X1,X2, . . . ,Xn be a sequence of independent random variables which take values in Z+.
We are now ready to exploit the results of the previous section (specifically Lemmas 1 and 5) to
derive a simple and, in most cases, sharp upper bound for the total variation distance between the
distribution of the sum

∑n
i=1 Xi and an appropriate compound Poisson distribution. Before we

present this bound, we recall that, (see Boutsikas and Vaggelatou (2002))

ζ2

(
L

n∑
i=1

Xi,CP

(
λ,

1

λ

n∑
i=1

piGi

))
= 1

2

n∑
i=1

E(Xi)
2, (8)

with pi := P(Xi �= 0), λ = ∑n
i=1 pi and Gi(x) = P(Xi ≤ x|Xi �= 0). Naturally, the bound of

the following theorem is useful (that is, it tends to 0) when pi ≈ 0. Hence, the condition pi <

log 2 ≈ 0.693 imposed below does not affect the generality of the result. One could easily modify
the upper bound (making it a little bit more complicated) so as to eliminate this restriction, but
this modification would lead to no practical gain.
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Theorem 9. Let X1,X2, . . . ,Xn be a sequence of independent random variables (with finite
second moments) taking values in Z+ and P(Xi �= 0) =: pi < log 2 (≈ 0.693). Then,

dTV

(
L

n∑
i=1

Xi,CP(λ,F )

)

≤
(

n∑
i=1

p2
i

)2

+ 1

4

∥∥�2fCP(λ,F )

∥∥
1

n∑
i=1

E(Xi)
2

1 − 2(1 − e−pi )
:= UBCP,

where λ = ∑n
i=1 pi , F(x) = ∑n

i=1
pi

λ
Gi(x) and Gi(x) = P(Xi ≤ x|Xi �= 0), x ∈ Z.

Proof. Let N1,N2, . . . ,Nn be independent random variables following the compound Poisson
distribution with parameters (p1,G1), (p2,G2), . . . , (pn,Gn), respectively. We apply the trian-
gle inequality to get the following Lindeberg decomposition of the distance of interest,

dTV

(
L

n∑
i=1

Xi, L
n∑

i=1

Ni

)
≤

n∑
m=1

dTV

(
L

(
m∑

i=1

Xi +
n∑

i=m+1

Ni

)
, L

(
m−1∑
i=1

Xi +
n∑

i=m

Ni

))
. (9)

Furthermore, if we set

Xm := Xm +
n∑

i=m+1

Ni, Ym := Nm +
n∑

i=m+1

Ni, Zm :=
m−1∑
i=1

Xi, Wm :=
m−1∑
i=1

Ni,

then the random variables Xm,Ymare independent of Zm,Wm and a direct application of
Lemma 5 to Xm,Ym,Zm,Wm reveals that

dTV

(
L

(
m−1∑
i=1

Xi + Xm +
n∑

i=m+1

Ni

)
, L

(
m−1∑
i=1

Xi + Nm +
n∑

i=m+1

Ni

))
≤ 2ambm + cm, (10)

where

am := dTV

(
L

(
Xm +

n∑
i=m+1

Ni

)
, L

(
Nm +

n∑
i=m+1

Ni

))
,

bm := dTV

(
L

m−1∑
i=1

Xi, L
m−1∑
i=1

Ni

)
,

cm := dTV

(
L

(
n∑

i=1

Ni − Nm + Xm

)
, L

n∑
i=1

Ni

)
.
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Next, let N⊥
m be a random variable independent of all Ni,Xi with LN⊥

m = LNm. Applying in-
equality (6) with W = N⊥

m , we derive

cm ≤ (
1 − 2(1 − e−pm)

)−1
dTV

(
L

(
n∑

i=1

Ni + Xm

)
, L

(
n∑

i=1

Ni + N⊥
m

))

since P(N⊥
m �= 0) = 1 − e−pm . Furthermore, Lemma 1 yields

cm ≤ 1/2‖�2f	n
i=1Ni

‖1

1 − 2(1 − e−pm)
ζ2(LXm, LN⊥

m ) = ‖�2fCP(λ,F )‖1

4(1 − 2(1 − e−pm))
E(Xm)2, (11)

where we have used (8) to get that ζ2(LXm, LN⊥
m ) = ζ2(LXm,CP(pm,Gm)) = 1

2E(Xm)2. On
the other hand, we can easily bound the quantities am,bm as follows:

am ≤ dTV(LXm, LNm) ≤ p2
m and bm ≤

m−1∑
i=1

dTV(LXi, LNi) =
m−1∑
i=1

p2
i . (12)

Finally, combining (9)–(12), we get

dTV

(
L

n∑
i=1

Xi, L
n∑

i=1

Ni

)
≤

n∑
m=1

(2ambm + cm)

≤
n∑

m=1

(
2p2

m

m−1∑
i=1

p2
i + ‖�2fCP(λ,F )‖1

4(1 − 2(1 − e−pm))
E(Xm)2

)
,

which readily leads to the desired inequality since

n∑
m=1

2ambm ≤
n∑

m=1

2p2
m

m−1∑
i=1

p2
i

=
n∑

m=1

p2
m

m−1∑
i=1

p2
i +

n∑
m=1

p2
m

n∑
i=m+1

p2
i ≤

(
n∑

m=1

p2
m

)2

. �

A straightforward corollary of the above theorem arises when we consider independent
Bernoulli random variables. In this case, the distribution of the sum of the binary sequence
X1,X2, . . . ,Xn is also known as a Poisson binomial or generalized binomial distribution and
the approximating compound Poisson distribution naturally reduces to an ordinary Poisson dis-
tribution.
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Corollary 10. Let X1,X2, . . . ,Xn be a sequence of independent Bernoulli random variables
with P(Xi = 1) = pi < log 2, i = 1,2, . . . , n. Then,

dTV

(
n∑

i=1

Xi,Po(λ)

)
≤

(
n∑

i=1

p2
i

)2

+ 1

4

∥∥�2fPo(λ)

∥∥
1

n∑
i=1

p2
i

1 − 2(1 − e−pi )
:= UBPo,

where λ = ∑n
i=1 pi and ‖�2fPo(λ)‖1 is given in Proposition 3.

Remark 2. If we assume that
∑n

i=1 p2
i → 0 as n → ∞ (implying that maxi pi → 0), the first

term (
∑n

i=1 p2
i )

2 in the upper bound UBPo (Corollary 10) or in UBCP (Theorem 9) tends to 0 at
a faster rate than the second term and, therefore, the order of UBPo and UBCP is the same as the
order of their second term. That is, for UBCP, we have

UBCP ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/4
∥∥�2fCP(λ,F )

∥∥
1

n∑
i=1

E(Xi)
2, for λ fixed,

1

λμ2
√

2πe

n∑
i=1

E(Xi)
2, when λ → ∞,

where μ2 denotes the second moment of the compounding distribution F (see Remark 1 above).
According to Remark 1, the second asymptotic result for UBCP above (when λ → ∞) is valid
when CP(λ,F ) is close to a normal distribution. Therefore, we can say that, for independent
X1, . . . ,Xn ∈ Z+ with E(Xi) = O(pi),

dTV

(
L

(
n∑

i=1

Xi

)
,CP(λ,F )

)
= O

(
1

λ

n∑
i=1

p2
i

)
,

whenever F is such that CP(λ,F ) ≈ N(μ,σ 2) or, more generally, whenever ‖�2fCP(λ,F )‖1 =
O(λ−1). Our approach requires the restriction

∑n
i=1 p2

i → 0 (not only maxi pi → 0),but we
have reasons to believe (see Remark 3 ) that this restriction is superfluous and can be weakened.
This offers a clue to a question raised by Le Cam (1960) (see also Barbour and Utev (1999) and
Roos (2003)) about the form of the compounding distribution F that would permit us to achieve a
compound Poisson approximation error order similar to that obtained for Poisson approximation,
that is, 1

λ

∑n
i=1 p2

i .
We also point out that the upper bound UBPo of Corollary 10 for the Poisson approximation

is similar to the one derived by Deheuvels and Pfeifer (1986), (see also Deheuvels, Pfeifer and
Puri (1989)) who employed an entirely different method. The factor ‖�2fPo(λ)‖1/4 appears in
the bounds of these articles (in an equivalent form, not recognized as being the L1-norm of
�2fPo(λ)/4) and was proven to be optimal (that is, dTV ∼ UBPo; see Deheuvels and Pfeifer
(1986)) under the usual asymptotic assumptions. The same argument is possibly true for the
more general smoothness factor ‖�2fCP(λ,F )‖1/4.

Remark 3. In the proof of Theorem 9, the quantity 2
∑n

m=1 ambm (see relation (12)) was
bounded rather crudely in order to obtain a closed form upper bound. This resulted in a simple-
in-form first term, namely (

∑n
i=1 p2

i )
2, in UBCP. If

∑n
i=1 p2

i → 0, then this term does not have
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a significant effect on UBCP, but if
∑n

i=1 p2
i is not close to 0, then it may result in a very crude

upper bound.

Nevertheless, concerning the Poisson case, if we possessed a simple-in-form upper bound
for ‖�2fPo(λ)‖1, we could obtain a better (smaller) bound for the quantity 2

∑n
m=1 ambm. To

get an idea of how this can be done, we shall treat the simplest case where X1,X2, . . . ,Xn are
i.i.d. (pi = p) Bernoulli random variables. Recall that, in general, 1

4‖�2fPo(λ)‖1 ≤ (1 ∧ 1
3λ

) and,
therefore,

am ≤ 1/2‖�2f	n
i=m+1Ni

‖1ζ2(Xm,Nm) ≤
(

1 ∧ 1

3(n − m)p

)
p2,

bm ≤ 1 − e−(m−1)p

(m − 1)p

m−1∑
i=1

p2
i ≤ p.

Assuming that λ ≥ 1/3 + p and taking into account that
∑n2

i=n1

1
i

< log( n2
n1−1 ), the sum

2
∑n

m=1 ambm is bounded above by

2
n∑

m=1

(
1 ∧ 1

3(n − m)p

)
p3 ≤

�n−1/(3p)�∑
m=1

2p2

3(n − m)
+

n∑
m=�n−1/(3p)�+1

2p3

(13)

≤ 2
p2

3

(
log

3np

1 − 3p
+ 1

)
+ 2p3,

under the assumption p < 1/3. The latter reveals that, when pi = p and λ > 1/3 + p, the term
(
∑n

i=1 p2
i )

2 = λ2p2 in Corollary 10 can be substantially reduced to (13), implying that UBPo ≈
2
3p2(log 3λ + 1) + 1√

2πe
p. The above bound could also be reduced (requiring more complicated

algebraic manipulations) in the case of non-i.i.d. Bernoulli random variables. For a more general
case though, for example, in a compound Poisson approximation, we must first find a suitable
general upper bound for ‖�2fCP(λ,F )‖1 which, at the moment, does not seem an easy task and
is left for future work.

4. Compound Poisson approximation for sums of k-dependent
random variables

In this section, a more general setup is assumed. We are now interested in approximating the dis-
tribution of the sum X1 +· · ·+Xn when the k-dependent Xi ’s are rarely non-zero. Naturally, we
expect that this distribution converges weakly to an appropriate compound Poisson distribution.

Following the same methodological steps as in the proof of Theorem 9, we offer a bound that
includes a smoothness factor analogous to a Stein factor. The appearance of such a factor is per-
haps the first (for sums of dependent random variables) outside the Stein–Chen method. As was
mentioned in the Introduction, the smoothness factor we derive is simpler, seems more natural
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and is better than the corresponding Stein factors. On the other hand, inevitably, an undesired
term analogous to (

∑
p2

i )
2 of Theorem 9 again appears in the upper bounds.

For convenience, we shall focus our approach on a sequence of independent random vari-
ables Z1,Z2, . . . defined over a probability space (
, A,P ) and consider k-dependent random
variables of the form hi(Zi, . . . ,Zi+k−1). This approach is not restrictive since, in almost all
applications, local dependency arises in this setup (for example, runs or scan statistics, patterns,
reliability theory, graph theory problems, moving sums, etcetera). Specifically, let Z1,Z2, . . . be
independent random variables and also let

Xi = hi(Zi, . . . ,Zi+k−1), i = 1,2, . . . , (14)

be a sequence of non-negative, integer-valued random variables, generated by some measurable
functions hi : Rk → Z. The above definition implies that Xi is independent of X1, . . . ,Xi−k

and Xi+k, . . . . Therefore, X1,X2, . . . are “k-dependent” random variables (independent random
variables can be considered as 1-dependent). Naturally, the bound offered tends to 0, provided
that P(Xi �= 0) = pi ≈ 0. Hence, the condition maxi

∑i
j=i−3k+3 pj < log 2 ≈ 0.693 does not

affect the generality of the result. We assume that Xi = 0 for all i < 1.

Theorem 11. Let X1,X2, . . . ,Xn ∈ Z+ be k-dependent random variables (defined as in (14))
with finite second moments. Let N1, . . . ,Nn be independent random variables (also independent
of Zi ) with Ni following the CP(pi,Gi) distribution, where Gi(x) = P(Xi ≤ x|Xi �= 0), x ∈ R

and pi = P(Xi �= 0). Then, for m := maxi

∑i
j=i−3k+3 pj < log 2,

dTV

(
L

n∑
i=1

Xi,CP(λn,Fn)

)

≤ Cn + ‖�2fCP(λn,Fn)‖1

2(1 − 2(1 − e−m))

n∑
i=1

ζ2

(
L

i∑
j=i−2k+2

Xj , L
(

i−1∑
j=i−2k+2

Xj + Ni

))

:= UB′
CP,

where

Cn := 2
n∑

i=1

(
dTV

(
L

i−3k+2∑
j=1

Xj , L
i−3k+2∑

j=1

Nj

)
+

i−2k+1∑
j=i−3k+3

pj

)

×
(

2P
(
(Xi−k+1, . . . ,Xi−1) �= 0,Xi �= 0

) + 2pi

i−1∑
j=i−k+1

pj + p2
i

)

and λn = ∑n
i=1 pi , Fn = ∑n

i=1
pi

λn
Gi .

Proof. In order to simplify notation, set Xa,b := ∑b
i=a Xi , Xa,b := (Xa,Xa+1, . . . ,Xb), Na,b :=∑b

i=a Ni and Za,b := (Za,Za+1, . . . ,Zb). Also, let Ui,U
∗
i , i = 1,2, . . . , n, be independent ran-

dom variables, also independent of Zi,Ni following the uniform distribution on (0,1).
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Fix i ∈ {1,2, . . . , n}. In order to avoid a special treatment for small values of i due to edge
effects and to preserve a unified analysis for all i that takes into account edge effects, we sim-
ply assume that Xj = Nj = Zj = 0 for j ≤ 0. According to Lemma 8(b) (with f being the
p.d.f. of N1,i−3k+2), there exists a random variable N∗

1,i−3k+2 = g1(Ui−3k+2,X1,i−3k+2) such
that LN∗

1,i−3k+2 = LN1,i−3k+2 and (X1,i−3k+2,N
∗
1,i−3k+2) are maximally coupled, that is,

dTV(LX1,i−3k+2, LN∗
1,i−3k+2) = P(X1,i−3k+2 �= N∗

1,i−3k+2).

Moreover, according to Lemma 8(a) (with f now being the p.d.f. of Ni ), there exists a random
variable

N∗
i = g2(U

∗
i ,Xi,Xi−k+1,i−1,Zi−k+1,i−1)

such that LN∗
i = LNi , N∗

i is independent of the vector (Xi−k+1,i−1,Zi−k+1,i−1) and

dTV(L(Xi,Xi−k+1,i−1,Zi−k+1,i−1), L(N∗
i ,Xi−k+1,i−1,Zi−k+1,i−1)) = P(Xi �= N∗

i ). (15)

It is easy to check that, as defined, N∗
i is also independent of X1,i−1. Indeed, if we set Y : =

(Zi−k+1,i−1,Xi−k+1,i−1), for all x,x, we have that

P(N∗
i = x,X1,i−1 = x) =

∑
y

P(N∗
i = x,Y = y,X1,i−1 = x).

We may write X1,i−1 = g(Z1,i−k,Y) for some appropriate function g taking values in Z
i−1.

Hence, the above sum is equal to

∑
y

P
(
g2(U

∗
i ,Xi,Y) = x,Y = y,g(Z1,i−k,y) = x

)

=
∑

y

P
(
g2(U

∗
i ,Xi,Y) = x,Y = y

)
P

(
g(Z1,i−k,y) = x

)

=
∑

y

P(N∗
i = x)P (Y = y)P

(
g(Z1,i−k,y) = x

)

=
∑

y

P(N∗
i = x)P

(
Y = y,g(Z1,i−k,y) = x

)

= P(N∗
i = x)

∑
y

P(Y = y,X1,i−1 = x) = P(N∗
i = x)P (X1,i−1 = y),

which is valid for all x,y and thus N∗
i is independent of X1,i−1.

Now, applying the inequality (see Lemma 4)

dTV
(

L(Z + X), L(Z + Y)
) ≤ 2P(Z �= W,X �= Y) + dTV

(
L(W + X), L(W + Y)

)
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with Z = X1,i−1,X = Xi +Ni+1,n, Y = N∗
i +Ni+1,n,W = N∗

1,i−3k+2 +Xi−2k+2,i−1, we obtain

dTV
(

L(X1,i−1 + Xi + Ni+1,n), L(X1,i−1 + N∗
i + Ni+1,n)

)
≤ 2P(X1,i−1 �= N∗

1,i−3k+2 + Xi−2k+2,i−1,Xi + Ni+1,n �= N∗
i + Ni+1,n)

(16)
+ dTV

(
L(N∗

1,i−3k+2 + Xi−2k+2,i + Ni+1,n),

L(N∗
1,i−3k+2 + Xi−2k+2,i−1 + N∗

i + Ni+1,n)
)
.

Note that LN∗
i = LNi and N∗

i is independent of X1,i−1, also that LN∗
1,i−3k+2 = LN1,i−3k+2 and

N∗
1,i−3k+2 = g1(Ui−3k+2,X1,i−3k+2) is independent of Xi−2k+2,i and N∗

i . Therefore, we have
that

L(X1,i−1 + N∗
i + Ni+1,n) = L(X1,i−1 + Ni + Ni+1,n),

L(N∗
1,i−3k+2 + Xi−2k+2,i + Ni+1,n) = L(N1,i−3k+2 + Xi−2k+2,i + Ni+1,n),

L(N∗
1,i−3k+2 + Xi−2k+2,i−1 + N∗

i + Ni+1,n) = L(N1,i−3k+2 + Xi−2k+2,i−1 + Ni + Ni+1,n).

Using the above relations, inequality (16) is equivalent to

dTV
(

L(X1,i−1 + Xi + Ni+1,n), L(X1,i−1 + Ni + Ni+1,n)
) ≤ 2ai + bi, (17)

where

ai = P(X1,i−2k+1 �= N∗
1,i−3k+2,Xi �= N∗

i ),

bi = dTV
(

L(N1,i−3k+2 + Xi−2k+2,i−1 + Xi + Ni+1,n),

L(N1,i−3k+2 + Xi−2k+2,i−1 + Ni + Ni+1,n)
)
.

The random variables Xi,N
∗
i are independent of X1, . . . ,Xi−2k+1,N

∗
1,i−3k+2 and, hence, it is

easy to see that

ai = P(X1,i−3k+2 + Xi−3k+3,i−2k+1 �= N∗
1,i−3k+2)P (Xi �= N∗

i )

≤ (
P(X1,i−3k+2 �= N∗

1,i−3k+2) + P(Xi−3k+3,i−2k+1 �= 0)
)
P(Xi �= N∗

i ) (18)

≤
(

dTV(LX1,i−3k+2, LN1,i−3k+2) +
i−2k+1∑

j=i−3k+3

pj

)
P(Xi �= N∗

i ).

Using relation (15) above along with L(Zi−k+1,i−1,Xi−k+1,i−1,N
∗
i ) = L(Zi−k+1,i−1,

Xi−k+1,i−1,Ni), we observe that

P(Xi �= N∗
i ) = dTV(L(Zi−k+1,i−1,Xi−k+1,i−1,Xi), L(Zi−k+1,i−1,Xi−k+1,i−1,Ni))

and applying Lemma 4 with X = Xi,Y = Ni,Z = (Zi−k+1,i−1,Xi−k+1,i−1),W =
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(Zi−k+1,i−1,0), we deduce

P(Xi �= N∗
i )

≤ 2P(Xi �= Ni,Xi−k+1,i−1 �= 0) + dTV(L(Zi−k+1,i−1,0,Xi), L(Zi−k+1,i−1,0,Ni))

≤ 2P(Xi �= 0,Xi−k+1,i−1 �= 0)
(19)

+ 2P(Ni �= 0)P (Xi−k+1,i−1 �= 0) + dTV(LXi, LNi)

≤ 2P(Xi �= 0,Xi−k+1,i−1 �= 0) + 2pi

i−1∑
j=i−k+1

pj + p2
i .

Next, we consider a random variable N⊥ with LN⊥
i = LNi , independent of all other random

variables involved in our analysis. Applying the inequality (6) with W = Ni−3k+3,i and assuming
that P(Ni−3k+3,i �= 0) < 1/2 (which is valid since we have assumed that m < log 2), we get

bi = dTV
(

L(N1,i−3k+2 + Xi−2k+2,i−1 + Xi + Ni+1,n),

L(N1,i−3k+2 + Xi−2k+2,i−1 + N⊥
i + Ni+1,n)

)
≤ (

1 − 2P(Ni−3k+3,i �= 0)
)−1

dTV
(

L(N1,n + Xi−2k+2,i ), L(N1,n + Xi−2k+2,i−1 + N⊥
i )

)
.

Finally, using Lemma 1, we derive

bi ≤ 1/2‖�2fCP(λ,F )‖1

1 − 2(1 − e−∑i
j=i−3k+3 pj )

ζ2
(

LXi−2k+2,i , L(Xi−2k+2,i−1 + Ni)
)
. (20)

Combining (17)–(19) with (20), we obtain, for all i = 1,2, . . . , n, the inequality

dTV
(

L(X1,i−1 + Xi + Ni+1,n), L(X1,i−1 + Ni + Ni+1,n)
)

≤ 2

(
dTV(LX1,i−3k+2, LN1,i−3k+2) +

i−2k+1∑
j=i−3k+3

pj

)

×
(

2P(Xi �= 0,Xi−k+1,i−1 �= 0) + 2pi

i−1∑
j=i−k+1

pj + p2
i

)

+ 1/2‖�2fCP(λ,F )‖1

1 − 2(1 − e−m)
ζ2

(
LXi−2k+2,i , L(Xi−2k+2,i−1 + Ni)

)
and the final result follows immediately by virtue of the Lindeberg decomposition (triangle in-
equality)

dTV(LX1,n, LN1,n) ≤
n∑

i=1

dTV
(

L(X1,i−1 + Xi + Ni+1,n), L(X1,i−1 + Ni + Ni+1,n)
)
. �
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Remark 4. The upper bound UB′
CP in Theorem 11 is composed of two terms, the first of which

is the quantity Cn, which is analogous to the term (	p2
i )

2 appearing in Theorem 9 that concerns
the independent summands case. As it was for (	p2

i )
2, the term Cn tends to 0 faster than the

second term of UB′
CP, under certain asymptotic conditions. Therefore, under these conditions,

the order of UB′
CP coincides with the order of the second term.

Remark 5. If X1,X2, . . . ,Xn are k-dependent Bernoulli random variables then, similarly to
Corollary 10, Theorem 11 implies a Poisson approximation result. Specifically, Theorem 11 can
now be written with Po(pi) in place of CP(pi,Gi) and Po(λn) in place of CP(λn,Fn). Conse-
quently, the norm ‖�2fPo(λn)‖1 will appear instead of ‖�2fCP(λn,Fn)‖1.

The upper bound UB′
CP in Theorem 11 may seem difficult to apply in its present form. For

this reason, we present the following corollary which provides two slightly worse, but more
easily computable, upper bounds. The bound (a) is valid without any assumption on the form of
dependence among the Xi ’s. The bound (b) is smaller than (a), but is valid only when the Xi ’s
exhibit a certain weak form of positive/negative dependence. We recall that two random variables
Y1, Y2 are called positively quadrant dependent (PQD) if

P(Y1 ≥ x1, Y2 ≥ x2) ≥ P(Y1 ≥ x1)P (Y2 ≥ x2) for all x1, x2 (21)

and negatively quadrant dependent (NQD) if (21) holds, but with the inequality sign reversed.
Manifestly, if X1,X2, . . . ,Xn are associated (resp., negatively associated), then the random vari-
ables Xj + X2 + · · · + Xi−1 and Xi are PQD (resp., NQD) for every 1 ≤ j < i ≤ n. Therefore,
part (b) of the next corollary remains valid under the stronger condition of association or negative
association of Xi ’s.

Corollary 12. (a) Let X1,X2, . . . ,Xn ∈ Z+ be k-dependent random variables (defined as in
(14)) with finite second moments. Then, for m := maxi

∑i
j=i−3k+3 pj < log 2, pi = P(Xi �= 0),

dTV

(
L

n∑
i=1

Xi,CP(λn,Fn)

)

≤ Cn + ‖�2fCP(λn,Fn)‖1

2(1 − 2(1 − e−m))

n∑
i=1

(
i−1∑

j=i−k+1

(
E(XiXj ) + E(Xi)E(Xj )

) + 1

2
E(Xi)

2

)

:= UB′′
CP,

where

Cn := 2
n∑

i=1

(
2

i−3k+2∑
j=1

(
j−1∑

t=j−k+1

(
P(XtXj �= 0) + ptpj

) + 1

2
p2

j

)
+

i−2k+1∑
j=i−3k+3

pj

)

×
(

2
i−1∑

j=i−k+1

(
P(Xj �= 0,Xi �= 0) + pipj

) + p2
i

)

and λn = ∑n
i=1 pi, Fn = ∑n

i=1
pi

λn
Gi,Gi(x) = P(Xi ≤ x|Xi �= 0), x ∈ R (Xi = 0 for all i < 1).
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(b) If, in addition, the random variables Xj + · · · + Xi−1 and Xi are PQD or NQD for every
1 ≤ j < i ≤ n, then the bound UB′′

CP in (a) is valid with |Cov(Xi,Xj )| in place of E(XiXj ) +
E(Xi)E(Xj ) and

j−1∑
t=j−k+1

|Cov(Xj ,Xt )| + 1

2
E(Xj )

2 in place of
j−1∑

t=j−k+1

(
P(XtXj �= 0) + ptpj

) + 1

2
p2

j .

Proof. (a) This follows readily from Theorem 11 by applying Corollary 7 above, Corollary 7 in
Boutsikas (2006) and the fact that

ζ2

(
L

(
i−1∑
j=l

Xj + X⊥
i

)
, L

(
i−1∑
j=l

Xj + Ni

))
≤ ζ2(LX⊥

i , LNi) = 1

2
E(Xi)

2

(Ni ∼ CP(pi,Gi)),which is a consequence of the regularity property of ζ 2 combined with equal-
ity (8).

(b) This is again a direct consequence of Theorem 11. Set W = ∑i−1
j=i−2k+2 Xj and let X⊥

i

be a random variable independent of all other random variables involved in our analysis with
LXi = LX⊥

i . Assume that Xj + · · · + Xi−1 and Xi are PQD for all j < i. Thus, W and Xi are
PQD and hence W + Xi is larger than W + X⊥

i with respect to the convex order (see Section 3.3
in Boutsikas and Vaggelatou (2002)). Therefore,

ζ2
(

L(W + Xi), L(W + X⊥
i )

) = 1

2

(
Var(W + Xi) − Var(W + X⊥

i )
) =

i−1∑
j=i−k+1

Cov(Xi,Xj ).

Since W is independent of X⊥
i ,Ni , the regularity property of ζ 2 and equality (8) guarantee that

ζ2
(

L(W + X⊥
i ), L(W + Ni)

) ≤ ζ2(LX⊥
i , LNi) = 1

2E(Xi)
2.

Hence, using the triangle inequality and the above two equalities, we deduce that

ζ2
(

L(W + Xi), L(W + Ni)
) ≤

i−1∑
j=i−k+1

Cov(Xi,Xj ) + 1

2
E(Xi)

2.

Furthermore, from (3) and Theorem 7 in Boutsikas and Vaggelatou (2002), we get that

dTV

(
L

i−3k+2∑
j=1

Xj ,CP(λi−3k+2,Fi−3k+2)

)

≤ 2ζ2

(
L

i−3k+2∑
j=1

Xj ,CP(λi−3k+2,Fi−3k+2)

)

= 2
i−3k+2∑

t=2

t−1∑
j=t−k+1

Cov(Xj ,Xt ) +
i−3k+2∑

j=1

E(Xj )
2.
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Similar reasoning proves the NQD random variables case (in place of all Cov(Xj ,Xt ), we
now get −Cov(Xj ,Xt ) > 0). �

5. Illustrating applications

The purpose of this section is to illustrate the applicability and effectiveness of the results pre-
sented in the previous sections. These results are applicable to a wide variety of problems involv-
ing locally dependent random variables that rarely differ from zero (for example, in risk theory,
extreme value theory, reliability theory, run and scan statistics, graph theory and biomolecular
sequence analysis). The approximation method described in this paper, as with almost all other
methods used for Poisson approximation in the past, requires the computation of only the first-
and second-order moments of the variables involved. From this fact, it is understood that the
bounds presented can be applied almost directly to many of the problems where other Poisson
approximation methods have been elaborated in the past, for example, the Stein–Chen method.
The main benefit of the present method is the smoothness factor that substantially improves the
approximation error bound in many cases, while the main disadvantage is the additional term Cn.
Therefore, the conclusion here is that we usually obtain improved bounds for moderate or small
values of λ.

5.1. The number of overlapping runs of length k in i.i.d. trials

Let {Zi}i∈Z be a sequence of i.i.d. binary trials with outcomes 0 (failure) and 1 (suc-
cess), and where P(Zi = 1) = p = 1 − q . We are interested in approximating the distrib-
ution of the number of (rare) overlapping success runs of length k within trials 1,2, . . . , n.
This problem has been studied in various ways by many authors in the past; see, for ex-
ample, Barbour, Holst and Janson (1992), Balakrishnan and Koutras (2002) and the refer-
ences therein. We shall first derive a Poisson and then a compound Poisson approxima-
tion.

(a) Poisson approximation. If we assume that p → 0 and n → ∞, then the occurrences of suc-
cess runs are rare and asymptotically independent, and a Poisson approximation seems suitable.
We use the binary random variables

Xi = ZiZi+1 · · ·Zi+k−1, i = 1,2, . . . , n − k + 1.

Obviously, the random variable
∑n−k+1

i=1 Xi counts the total number of appearances of overlap-
ping success runs with length k which appear within the first n trials. The random variables
X1,X2, . . . ,Xn−k+1 are k-dependent, can be written as in (14) and are associated as coor-
dinatewise non-decreasing functions of independent random variables. Thus, they satisfy the
dependence condition required by Corollary 12(b). A direct application of this corollary for
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m = (3k − 2)pk < log 2 yields

dTV

(
L

n−k+1∑
i=1

Xi,Po(λ)

)
≤ Cn−k+1 + 1/2‖�2fPo(λ)‖1

1 − 2(1 − e−m)

×
(

n−k+1∑
i=2

i−1∑
j=max{1,i−k+1}

(pi−j+k − p2k) + n − k + 1

2
p2k

)

≤ Cn−k+1 + λp‖�2fPo(λ)‖1

2q(1 − 2(1 − e−m))

(
1 −

(
k − 2 + 1

q

)
qpk−1

)
,

where pi = P(Xi = 1) = pk,λ = (n − k + 1)pk and

Cn−k+1 = 2
n−k+1∑

i=1

(
2

i−3k+2∑
t=2

t−1∑
j=max{1,t−k+1}

(pt−j+k − p2k) +
i−3k+2∑

j=1

p2k + (k − 1)pk

)

×
(

2
i−1∑

j=max{1,i−k+1}
pi−j+k + (2k − 1)p2k

)

≤ 4
λ2p2

q

(
1 − pk−1 − q

(
k − 3

2

)
pk−1 + q(k − 1)pk−1

λ

)

×
(

1 − pk−1 + q

(
k − 1

2

)
pk−1

)
.

Therefore, for m = (3k − 2)pk < log 2,

dTV

(
L

n−k+1∑
i=1

Xi,Po(λ)

)

≤ UBn,p := 4
λ2p2

q

(
1 + qkpk−1

λ

)
(1 + qkpk−1) + λp‖�2fPo(λ)‖1

2q(1 − 2(1 − e−m))
.

In addition, if n → ∞,p → 0 (k > 1 fixed), then

UBn,p ∼

⎧⎪⎪⎨
⎪⎪⎩

λ‖�2fPo(λ)‖1

2q
p, when λ is fixed,

2

q
√

2πe
p, when λ → ∞ and pλ2 → 0,

where ‖�2fPo(λ)‖1(which is less than 4(1∧ 1
3λ

)) is given in Proposition 3. For the same distance,
a bound obtained by the Stein–Chen method (see, for example, Barbour, Holst and Janson (1992),
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page 163) is nearly equal to 2p/q , which, provided that pλ2 ≈ 0 and for moderate or large values
of λ, is nearly four times larger than UBn,p (

√
2πe ≈ 4.1327). For λ ≈ 1, it is nearly three times

larger.
(b) Compound Poisson approximation. The bound described in (a) cannot help when we as-

sume that n → ∞, k → ∞ and p is fixed. Under these conditions, the occurrences of success
runs are again rare, but they are no longer asymptotically independent. This happens because if a
success run occurs (starts) at trial i (that is, Zi = · · · = Zi+k−1 = 1), then, with probability p, we
shall also observe an overlapping success run starting at position i + 1, and so forth. Thus, when
a success run is observed at some trial, it is likely that a number of success runs will follow at
the next trials. This “cluster” of adjacent success runs is usually called a “clump”. So, now that
n → ∞ and k → ∞, we expect that the occurrences of clumps are rare and asymptotically in-
dependent, while each clump consists of an asymptotically geometrically distributed number of
overlapping success runs. Obviously, this situation readily calls for a compound Poisson approx-
imation result. To achieve this, let Y1, Y2, . . . , Yn−k+1 represent the sizes of the clumps started
at trials 1,2, . . . , n − k + 1, respectively. If Yi = 0, then we obviously mean that no clump has
started at position i. This well-known technique is called “declumping”. More formally, set

Yi := (1 − Zi−1)

n−i−k+1∑
r=0

i+k+r−1∏
j=i

Zj , i = 2,3, . . . , n − k + 1, and

Y1 :=
n−k∑
r=0

k+r∏
j=1

Zj

to be the size of a clump starting at position i (that is, the number of adjacent overlapping success
runs until trial n). Clearly,

∑n−k+1
i=1 Yi is equal to

∑n−k+1
i=1 Xi , the total number of overlapping

success runs within trials 1,2, . . . , n. In this case, it is computationally more convenient to use
the stationary, locally dependent random variables

Y ′
i := (1 − Zi−1)

k−1∑
r=0

i+k+r−1∏
j=i

Zj , i = 1,2, . . . , n − k + 1,

which represent the truncated sizes of clumps (their sizes cannot be greater than k) starting
at positions 1,2, . . . , n − k + 1. In order to obtain stationarity, we have also allowed the last
clumps to extend further than trial n. When k, n increase so that the expected number of runs
(n− k +1)pkremains bounded, the processes Y = (Yi),Y′ = (Y ′

i ) rarely differ. This is expressed
by the following inequality (see Boutsikas (2006), page 511):

dTV(L(Y), L(Y′)) ≤ P(Y �= Y′) ≤ (n − 2k + 1)qp2k + 2pk+1. (22)

We can now use Corollary 12(a) to establish an upper bound for dTV(L(
∑

Y ′
i ),CP). We verify

that the random variables Y ′
1, Y

′
2, . . . , Y

′
n−k+1 ∈ Z+ can be written as in (14) and that they are also

2k-dependent. Obviously, pi = P(Y ′
i �= 0) = qpk . For m = (6k − 2)qpk < log 2, Corollary 12(a)
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yields the inequality

dTV

(
L

n−k+1∑
i=1

Y ′
i ,CP(λ,Fk)

)
≤ Cn−k+1 + ‖�2fCP(λ,Fk)‖1

2(1 − 2(1 − e−m))

×
n−k+1∑

i=1

(
i−1∑

j=i−2k+1

(
E(Y ′

i Y
′
j ) + E(Y ′

i )E(Y ′
j )

) + 1

2
E(Y ′

i )
2

)

(we assume that Y ′
i = 0 for i < 1) with

Cn−k+1 ≤ 2
n−k+1∑

i=1

(
2

i−6k+2∑
j=2

j−1∑
t=j−2k+1

(
P(Y ′

t Y
′
j �= 0) + (qpk)2) +

i−6k+2∑
j=1

(qpk)2 + 2kqpk

)

×
(

2
i−1∑

j=i−2k+1

P(Y ′
j �= 0, Y ′

i �= 0) + 4k(qpk)2

)

and λ = (n − k + 1)qpk , Fk(x) = P(Y ′
i ≤ x|Y ′

i �= 0), x ∈ R. Notice that, for i ≥ 2k, P(Y ′
i �=

0, Y ′
j �= 0) is now equal to q2p2k for j = i − 2k + 1, . . . , i − k − 1, while it vanishes when

j = i − k, . . . , i − 1. Moreover, E(Y ′
i ) = q	k−1

r=0pk+r = pk(1 − pk), i = 1,2, . . . , n − k + 1,
whereas (i ≥ 2k)

E(Y ′
jY

′
i ) = E

(
(1 − Zj−1)

(
j+k−1∏

l=j

Zl +
j+k∏
l=j

Zl + · · · +
i−2∏
l=j

Zl

)
Y ′

i

)

= qpk 1 − pi−j−k

1 − p
E(Y ′

i ) = p2k(1 − pi−j−k)(1 − pk), i − 2k + 1 ≤ j ≤ i − k − 1

and E(Y ′
j Y

′
i ) = 0 for i − k ≤ j ≤ i − 1. So, for i ≥ 2k, we get

i−1∑
j=i−2k+1

(
E(Y ′

i Y
′
j ) + E(Y ′

i )E(Y ′
j )

)

= p2k(1 − pk)

((
k − 1 − p

1 − pk−1

1 − p

)
+ (2k − 1)(1 − pk)

)
≤ p2k(3k − 2)

and, thus, for m = (6k − 2)qpk < log 2,

dTV

(
L

n−k+1∑
i=1

Y ′
i ,CP(λ,Fk)

)
(23)

≤ UBn,k :=
(

1 + 2

3λ

)
(6λkqpk)2 + 1/4‖�2fCP(λ,Fk)‖1

1 − 2(1 − e−m)

λ

q
(6k − 3)pk,
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where λ = (n − k + 1)qpk and, for x = 1,2, . . . , k − 1,

Fk(x) = P(Y ′
i ≤ x|Y ′

i �= 0) = P

(
1 +

i+k∏
j=i+k

Zj + · · · +
i+2k−2∏
j=i+k

Zj ≤ x

)
= 1 − px

is the geometric distribution truncated at k (Fk(k) = 1). It can be verified that for large λ,
CP(λ,Fk) ≈ N(λE(W),λE(W 2)) with W ∼ Fk and, according to Remark 1, we expect that

∥∥�2fCP(λ,Fk)

∥∥
1 ∼ 4

λE(W 2)
√

2πe
as λ → ∞.

In order to illustrate the above asymptotic relation, we present below a table with the exact
value of the norm ‖�2fCP(λ,Fk)‖1 and its approximation 4/(λE(W 2)

√
2πe) for several values

of λ,p (see Table 1). We assume that k → ∞, that is, Fk is the ordinary geometric distribution
and thus E(W) = 1/q , V (W) = p/q2 and E(W 2) = (1 + p)/q2.

As expected, the above approximation is satisfactory for moderate and large values of λ.
Moreover, we observe that it becomes better when p decreases. Assuming that n, k → ∞ with
p ∈ (0,1) fixed, the compound Poisson approximation error bound in (23) is of order

UBn,k ∼

⎧⎪⎪⎨
⎪⎪⎩

1

4

∥∥�2fCP(λ,Fk)

∥∥
1

λ

q
6kpk, when λ = (n − k + 1)qpk is fixed,

6q

(1 + p)
√

2πe
kpk, when λ → ∞, such that λ2kpk → 0.

For almost the same distance as in (23), the Stein–Chen method offers a bound UBCS such that

UBCS ∼ log+(λq(1 − 2p))

q2(1 − 2p)
6kpk when p ≤ 1

3
or UBCS ∼ 6q

1 − 5p
kpk when p ≤ 1

5

(see, for example, Barbour and Chryssaphinou (2001)). Note that for values of p > 1/3, the
Stein–Chen method yields bounds of order O(kpk + e−akλ) or O(λkpk). The UBn,k is smaller
provided that λ2kpk ≈ 0 and is of order O(kpk) for all values of p.

It is worth mentioning that here, instead of Corollary 12(a), we could employ Corollary 12(b)
to obtain a bound even better than UBn,k . Specifically, it can be proven that for every 1 ≤ j <

Table 1.

λ = 1 λ = 5 λ = 10 λ = 100

norm approx. norm approx. norm approx. norm approx.

p = 0.2 0.97120 0.516204 0.115414 0.103241 0.054341 0.051620 0.005189 0.005162
p = 0.5 1.10364 0.161314 0.040737 0.032263 0.017866 0.016131 0.001628 0.001613
p = 0.8 1.32437 0.021509 0.019508 0.004302 0.002474 0.002151 0.000218 0.000215
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i ≤ n, the random variables Y ′
j + · · ·+Y ′

i−1 and Y ′
i are NQD. Hence, we can use Corollary 12(b)

and, following an exact parallel to the above procedure, we derive the improved bound

UB′
n,k := 12

(
1 + 1

kq
+ 2q2

λ

)
(λkpk)2 + 1/2‖�2fCP(λ,F )‖1

1 − 2(1 − e−m)

(
1 + 1 + p

2kq

)
λ

q
kpk,

which, asymptotically, is about three times smaller than UBn,k .
Finally, we can approximate

∑n−k+1
i=1 Yi = ∑n−k+1

i=1 Xi , the total number of overlapping suc-
cess runs within trials 1,2, . . . , n, by CP(λ,G), where G denotes the ordinary geometric distri-
bution with parameter p. In this case, CP(λ,G) is also known as the Pólya–Aeppli distribution
with parameters λ,p and will be denoted by PA(λ,p). Using the triangle inequality, the distance
dTV(L

∑n−k+1
i=1 Xi,PA(λ,p)) is bounded above by

dTV

(
L

n−k+1∑
i=1

Yi, L
n−k+1∑

i=1

Y ′
i

)
+ dTV

(
L

n−k+1∑
i=1

Y ′
i ,CP(λ,Fk)

)
+ dTV(CP(λ,Fk),PA(λ,p)).

The first dTV is bounded by (22), the second bounded by (23), whereas for the third, we have
(Wi,Ui are independent random variables with Wi ∼ Fk and Ui ∼ G)

dTV(CP(λ,Fk),PA(λ,p)) = dTV

(
N∑

i=1

Wi,

N∑
i=1

Ui

)
≤ λdTV(W1,U1) = λpk.
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