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Measurement error data or errors-in-variable data have been collected in many studies. Natural criterion
functions are often unavailable for general functional measurement error models due to the lack of infor-
mation on the distribution of the unobservable covariates. Typically, the parameter estimation is via solving
estimating equations. In addition, the construction of such estimating equations routinely requires solving
integral equations, hence the computation is often much more intensive compared with ordinary regression
models. Because of these difficulties, traditional best subset variable selection procedures are not applica-
ble, and in the measurement error model context, variable selection remains an unsolved issue. In this paper,
we develop a framework for variable selection in measurement error models via penalized estimating equa-
tions. We first propose a class of selection procedures for general parametric measurement error models and
for general semi-parametric measurement error models, and study the asymptotic properties of the proposed
procedures. Then, under certain regularity conditions and with a properly chosen regularization parameter,
we demonstrate that the proposed procedure performs as well as an oracle procedure. We assess the finite
sample performance via Monte Carlo simulation studies and illustrate the proposed methodology through
the empirical analysis of a familiar data set.

Keywords: errors in variables; estimating equations; measurement error models; non-concave penalty
function; SCAD; semi-parametric methods

1. Introduction

In the regression analysis, some covariates often can only be measured imprecisely or indirectly,
thus resulting in measurement error models, also known as errors-in-variable models in the litera-
ture. Various statistical procedures have been developed for statistical inference in measurement
error models (Carroll, Ruppert, Stefanski and Crainiceanu (2006)). The study on linear mea-
surement error models dates back to Bickel and Ritov (1987), where an efficient estimator is
provided. Stefanski and Carroll (1987) constructed consistent estimators for generalized linear
measurement error models. Recently, Tsiatis and Ma (2004) extended the model framework to
an arbitrary parametric regression setting. Liang, Härdle and Carroll (1999) proposed partially
linear measurement error models. Ma and Carroll (2006) studied generalized partially linear mea-
surement error models. Further active research development has been established recently in the
nonparametric measurement error area; see, for example, Delaigle and Hall (2007) and Delaigle
and Meister (2007). The goal of this paper is to develop a class of variable selection procedures
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for general measurement error models. We would emphasize here that the scope of the paper is
not limited to generalized linear models.

This study was motivated by examining the effects of systolic blood pressure (SBP), a covari-
ate with error, and the effects of three other covariates – respectively, serum cholesterol, age,
and smoking status – on the probability of the occurrence of heart disease. In our initial analy-
sis, we include interactions between SBP and covariates and interactions among covariates and
quadratic terms of covariates to reduce modeling bias. It is found in our preliminary analysis that
some interactions and quadratic terms are not significant and should be excluded to achieve a
parsimonious model. To select significant variables in further analysis, we realized that the tradi-
tional Akaike information criterion (AIC) and Bayesian information criterion (BIC) criteria are
not well defined for the model we consider in Section 4.4. Recently, a class of variable selection
procedures for partially linear measurement error models via using penalized least squares and
penalized quantile regression were proposed in Liang and Li (2009). However, their procedures
are not applicable to cases beyond partially linear models, such as partially linear logistic regres-
sion models, and therefore the procedures in Liang and Li (2009) cannot be applied for the model
in Section 4.4 either. In fact, variable selection for general parametric or semi-parametric mea-
surement error models is challenging. One major difficulty is the lack of a likelihood function
in these models, due to the difficulty in obtaining the distribution of the error-prone covariates.
For example, using Y to denote the response variable, X to denote the unobservable covariate,
and W to denote an observed surrogate of X, the likelihood of a single observation (w,y) is
then

∫
pY |X(y|x,β)pW |X(w|x)pX(x)dx. In order to calculate this likelihood, one will need to

estimate pX , yielding a deconvolution problem that is known to have a very slow rate (Carroll
and Hall (1988), Fan (1991)) and is typically avoided in parametric measurement error models.
Although a reasonable criterion function can be used in place of the likelihood, the difficulty
persists in that, except for very special models such as in linear or partially linear cases, even a
sensible criterion function is unavailable. In other models such as the ones that arise in survival
analysis, the lack of a likelihood function also causes a problem. To perform variable selection in
these models, rather complicated methods have been proposed where for each potential model,
one needs to fit the model, derive the asymptotic properties of the estimator, form some arti-
ficial criterion function based on the asymptotic properties of the estimators, and finally add a
penalty to perform the procedure. The procedure is complicated and unnatural. This motivates
us to develop some simple variable selection procedures for measurement error models when a
reasonable criterion function is unavailable. Although a few variable selection procedures ex-
ist for linear or partially linear measurement error models (Liang and Li (2009)), to the best of
our knowledge, variable selection for general parametric or semi-parametric measurement error
models has never been systematically studied in the literature. This paper intends to fill this gap
by developing a class of variable selection procedures for both parametric and semi-parametric
measurement error models. In addition, the method proposed here is applicable to the more gen-
eral situation where the likelihood or a natural criterion is not available, and the estimation is
performed through solving a set of estimating equations.

The variable selection procedure we propose is indeed a penalized estimating equation method
that can be applied for both parametric and semi-parametric measurement error models. In addi-
tion, the penalized estimating equation method is applicable to any set of consistent estimating
equations. Note that here the measurement error model we consider is completely general and
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not limited to generalized linear models. Variable selection and feature selection are very active
research topics in the current literature. Candès and Tao (2007) and Fan and Lv (2008) have stud-
ied variable selection for linear models when the sample size is much smaller than the dimension
of the regression parameter space. Their results are inspiring, but only valid for linear models
with very strong assumptions on the design matrix or the distribution of covariates. Thus, in this
paper we follow Fan and Peng (2004) and consider the statistical setting in which the number
of regression coefficients diverges to infinity at a certain rate as the sample size tends to infinity.
We systematically study the asymptotic properties of the proposed estimator. It is worth pointing
out that theoretic results in this paper provide explicit results on the asymptotic properties when
the dimension of regression coefficients increases as the sample size increases. This advances
the results in current literature, where estimation and inference are studied only for fixed finite-
dimensional parameters for measurement error models. In our asymptotic analysis, we show that
with a proper choice of the regularization parameters and the penalty function, our estimator
possesses the oracle property, which roughly means that the estimate is as good as when the true
model is known (Fan and Li (2001)). We also demonstrate that the oracle property holds in a
simpler form for the more familiar setting where the true number of regression coefficients is
fixed.

In addition, we address issues of practical implementation of the proposed methodology. It is
desirable to have an automatic, data-driven method to select the regularization parameters. To
this end, we propose generalized cross-validation (GCV)-type and BIC-type tuning parameter
selectors for the proposed penalized estimating equation method. Monte Carlo simulation studies
are conducted to assess finite sample performance in terms of model complexity and model error.
From our simulation studies, both tuning parameter selectors result in sparse models, while the
BIC-type tuning parameter selector outperforms the GCV-type tuning parameter selectors.

The rest of the paper is organized as follows. In Section 2, we propose a new class of variable
selection procedures for parametric measurement error models and study asymptotic properties
of the proposed procedures. We develop a new variable selection procedure for semi-parametric
measurement error models in Section 3. Implementation issues and numerical examples are pre-
sented in Section 4, where we describe data-driven automatic tuning parameter selection methods
(Section 4.1), define the concept of approximate model error to evaluate the selected model (Sec-
tion 4.2), carry out a simulation study to assess the finite sample performance of the proposed
procedures (Section 4.3), and illustrate our method in an example (Section 4.4). Technical details
are collected in the Appendix.

2. Parametric measurement error models

A general parametric measurement error model has two parts, written as

pY |X,Z(Y |X,Z,β) and pW |X,Z(W |X,Z, ξ). (2.1)

Here, the main model is pY |X,Z(Y |X,Z,β), which denotes the conditional probability den-
sity function (p.d.f.) of the response variable Y on the covariates measured with error X

and the covariates measured without error Z. Note that here the conditional distribution of
Y on the covariates is completely general, hence it includes many familiar regression fami-
lies. For example, the linear model with normal error Y = Xβ + e, the logistic model Pr(Y =
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1|X) = exp(β0 + Xβ1)/{1 + exp(β0 + Xβ1)}, or the Poisson model pY |X(Y |X) = exp{−(β0 +
XTβ1)}(β0 + XTβ1)

Y /Y ! are all special forms of the model we consider. The error model is
denoted pW |X,Z(W |X,Z, ξ), where W is an observable surrogate of X. The parameter β is a
d-dimensional regression coefficient, ξ is a finite-dimensional parameter, and our main interest
is in selecting the relevant subset of covariates in X and Z and estimating the subsequent para-
meters contained in β . Typically, ξ is a nuisance parameter and its estimation usually requires
multiple observations or instrumental variables. As routinely done in the literature, we assume
that the model is identifiable. Furthermore, for simplicity, we assume in the main context of this
paper that the error model pW |X,Z(W |X,Z) is completely known and hence ξ is suppressed.
The extension to the unknown ξ case is rather straightforward and is discussed in Section 5.
The observed data is of the form {(Wi,Zi, Yi), i = 1, . . . , n}.

Denote S∗
β as the purported score function. That is,

S∗
β(W,Z,Y ) = ∂ log

∫
pW |X,Z(W |X,Z)pY |X,Z(Y |X,Z)p∗

X|Z(X|Z)dμ(X)

∂β
,

where p∗
X|Z(X|Z) is a conditional p.d.f. that one posits, which can be either equal or not equal

to the true p.d.f. pX|Z(X|Z). Let the function a(X,Z) satisfy

E[E∗{a(X,Z)|W,Z,Y }|X,Z] = E{S∗
β(W,Z,Y )|X,Z},

where E∗ indicates that the expectation is calculated using the posited p∗
X|Z(X|Z). Note that

here and in the sequel a model p∗
X|Z(X|Z) has to be proposed in order to actually construct the

estimator. Define

S∗
eff (W,Z,Y ) = S∗

β(W,Z,Y ) − E∗{a(X,Z)|W,Z,Y }.
To select significant variables and estimate the corresponding parameters simultaneously, we
propose the penalized estimating equations for model (2.1) as

n∑
i=1

S∗
eff (Wi,Zi, Yi, β) − nṗλ(β) = 0, (2.2)

where ṗλ(β) = {p′
λ(β1), . . . , p

′
λ(βd)}T and p′

λ(·) is the first-order derivative of a penalty func-
tion pλ(·). Solving for β̂ from (2.2) gives the estimate of β . In practice, we may allow different
coefficients to have penalty functions with different regularization parameters. For example, we
may want to keep some variables in the model without penalizing their coefficients. For ease
of presentation, we assume that the penalty functions and the regularization parameters are the
same for all coefficients in this paper.

The penalties in the classic variable selection criteria, such as AIC and BIC, cannot be applied
to the penalized estimating equations. Following the study on the choice of the penalty functions
in Fan and Li (2001), we use the smoothly clipped absolute deviance (SCAD) penalty, whose
first-order derivative is defined as

p′
λ(γ ) = λ

{
I (|γ | ≤ λ) + (aλ − |γ |)+

(a − 1)λ
I (|γ | > λ)

}
sign(γ ) (2.3)
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for any scalar γ , where sign(·) is the sign function, that is, sign(γ ) = −1, 0 and 1 when γ < 0,
= 0 and > 0, respectively. Here, a > 2 is a constant, and a choice of a = 3.7 is appropriate from
a Bayesian point of view. A property of (2.2) is that with a proper choice of penalty functions,
such as the SCAD penalty, the resulting estimate contains some exact zero coefficients. This is
equivalent to excluding the corresponding variables from the final selected model, thus variable
selection is achieved at the same time as parameter estimation.

Concerns about model bias often prompt us to build models that contain many variables, es-
pecially when the sample size becomes large. A reasonable way to capture such a tendency is to
consider the situation where the dimension of the parameter β increases along with the sample
size n. We therefore study the asymptotic properties of the penalized estimating equation esti-
mator under the setting in which both the dimension of the true non-zero components of β and
the total length of β tend to infinity as n goes to infinity. Denote β0 = (β10, . . . , βd0)

T as the true
value of β . Let

an = max{|p′
λn

(|βj0|)| :βj0 �= 0} and bn = max{|p′′
λn

(|βj0|)| :βj0 �= 0}, (2.4)

where we write λ as λn to emphasize its dependence on the sample size n.

Theorem 1. Suppose that condition (P1) in the Appendix holds. Under regularity conditions
(A1)–(A3) in the Appendix, and if d4

nn−1 → 0, λn → 0 when n → ∞, then with probability
tending to one, there exists a root of (2.2), denoted β̂ , such that ‖β̂ − β0‖ = Op{√dn(n

−1/2 +
an)}, where we write d as dn to emphasize its dependence on the sample size n.

The proof of Theorem 1 is given in the Appendix. Theorem 1 demonstrates that the con-
vergence rate depends on the penalty function and the regularization parameter λn through an.
From Theorem 1, it requires an = O(1/

√
n) to achieve root (n/dn) convergence rate. For the

L1 penalty, an = λn. Thus, the root (n/dn) convergence rate requires that λn = O(1/
√

n), while
an = 0 as λn → 0 for the SCAD penalty. Thus, the resulting estimate with the SCAD penalty is
root (n/dn) consistent.

To present the oracle property of the resulting estimate, we first introduce some notation.
Without loss of generality, we assume β0 = (βT

I0, β
T
II0)

T, and in the true model any element in
βI0 is not equal to 0 while βII0 ≡ 0. Denote the dimension of βI as d1. Furthermore, denote

b = {p′
λn

(β10), . . . , p
′
λn

(βd10)}T and � = diag{p′′
λn

(β10), . . . , p
′′
λn

(βd10)}, (2.5)

and the first d1 components of S∗
eff (W,Z,Y,β) as S∗

eff ,I (β). In the following theorem, we use the
same formulation as that in Cai, Fan, Li and Zhou (2005).

Theorem 2. Suppose that condition (P1) holds. Under regularity conditions (A1)–(A3), assume
λn → 0 and d5

n/n → 0 when n → ∞. If

lim inf
n→∞ lim inf

γ→0+
√

n/dnp
′
λn

(γ ) → ∞, (2.6)

then with probability tending to one, any root n consistent solution β̂n = (β̂T
I , β̂T

II)
T of (2.2) must

satisfy that:
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(i) β̂II = 0,
(ii) for any d1 × 1 vector v, s.t. vTv = 1,

√
nvT[E{S∗

eff ,I (βI0)S
∗T
eff ,I (βI0)}]−1/2

{
E

∂S∗
eff ,I (βI0)

∂βT
I

− �

}

×
[
β̂I − βI0 −

{
E

∂S∗
eff ,I (βI0)

∂βT
I

− �

}−1

b

]
D−→ N(0,1),

where the notation
D−→ stands for convergence in distribution.

The proof of Theorem 2 is given in the Appendix. For some penalty functions, including the
SCAD penalty, b and � are zero when λn is sufficiently small, hence the results in Theorem 2
imply that the proposed procedure has the celebrated oracle property: that is, β̂II = 0, and for any
d1 × 1 vector v, s.t. vTv = 1,

√
nvT[E{S∗

eff ,I (βI0)S
∗T
eff ,I (βI0)}]−1/2E

{
∂S∗

eff ,I (βI0)

∂βT
I

}
(β̂I − βI0)

D−→ N(0,1). (2.7)

Theorems 1 and 2 imply that for fixed and finite d , ‖β̂ − β0‖ = Op(n−1/2 + an) and with
probability tending to one, any root n convergence solution β̂ = (β̂T

I , β̂T
II)

T of (2.2) must satisfy
that β̂II = 0 and

√
n

[
β̂I − βI0 −

{
E

∂S∗
eff ,I (βI0)

∂βT
I

− �

}−1

b

]
D−→ N

[
0,

{
E

∂S∗
eff ,I (βI0)

∂βT
I

− �

}−1

E{S∗
eff ,I (βI0)S

∗T
eff ,I (βI0)}

×
{
E

∂S∗
eff ,I (βI0)

∂βT
I

− �

}−T]
,

where the notation M−T denotes (M−1)T for a matrix M . These results are still valid under much
weaker conditions. See an elaborated version of this paper, Ma and Li (2007), for details.

For SCAD penalty and for fixed and finite d , (2.7) becomes
√

n(β̂I − βI0) → N{0,E(∂S∗
eff ,I /∂β

T
I )−1E(S∗

eff ,I S
∗T
eff ,I )E(S∗

eff ,I /∂β
T
I )−T}

in distribution. In other words, with probability tending to 1, the penalized estimator performs in
the same manner as the locally efficient estimator under the correct model.

3. Semi-parametric measurement error models

To motivate the problems considered in this section, we start with some commonly used semi-
parametric regression models for which the proposed procedure in this section can be directly
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applied. Consider first the error-free regression cases, and let Y be the response and Z and S

be the covariates. Throughout this paper, we consider univariate Z only. Consider the partially
linear model defined as follows:

Y = θ(Z) + STβ + ε. (3.1)

The partially linear model keeps the flexibility of the nonparametric model for the baseline func-
tion while maintaining the explanatory power of parametric models. Therefore, it has received a
lot of attention in the literature. See, for example, Härdle, Liang and Gao (2000) and references
therein. Various extensions of the partially linear model have been proposed in the literature. Li
and Nie (2007, 2008) proposed the partially nonlinear models

Y = θ(Z) + f (S;β) + ε, (3.2)

where f (S;β) is a specific, known function that may be nonlinear in β . See Li and Nie (2007,
2008) for some interesting examples. Li and Liang (2008) and Lam and Fan (2008) studied the
generalized varying coefficient partially linear model

g{E(Y |Z,S)} = ST
1 β + ST

2 θ(Z), (3.3)

where g(·) is a link function and (S1, S2,Z) are covariates. Model (3.3) includes most commonly
used semi-parametric models, such as the partially linear models (3.1), the generalized partially
linear models (Severini and Staniswalis (1994)), and semi-varying coefficient partially linear
models (Fan and Huang (2005)).

In the presence of covariates measured with error, one may extend the aforementioned semi-
parametric regression models for measurement error data. As in the last section, let X be the
covariate vector measured with error. Among these semi-parametric models with error, the par-
tially linear measurement error model

Y = θ(Z) + XTβ1 + STβ2 + ε (3.4)

has been studied in Liang, Härdle and Carroll (1999). Liang and Li (2009) proposed a class of
variable selection for model (3.4) using penalized least squares and penalized quantile regression.
Our procedure in this section, however, is directly applicable for both the generalized varying
coefficient partially linear measurement error model

g{E(Y |X,Z,S)} = XTβ1 + ST
1 β2 + ST

2 θ(Z), (3.5)

where S = (ST
1 , ST

2 )T, and the partially nonlinear measurement error model

Y = θ(Z) + f (X,S;β) + ε, (3.6)

when an error distribution is assumed. It is worth noting that model (3.6) includes the following
model as a special case

Y = XTβ1 + STβ2 + (XZ)Tβ3 + θ(Z) + ε, (3.7)
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where (XZ) consists of all interaction terms between X and Z, but model (3.4) does not. Thus,
the variable selection procedures proposed in Liang and Li (2009) are not directly applicable for
model (3.7).

In summary, in this section, we consider a general semi-parametric error model that includes
models (3.4)–(3.6) as its special cases. Specifically, the semi-parametric measurement error
model we consider here also has two parts:

pY |X,Z,S{Y |X,Z,S,β, θ(Z)} and pW |X,Z,S(W |X,Z,S). (3.8)

The major difference from its parametric counterpart is that the main model contains unknown
functions θ(Z). It is easy to check that models (3.4)–(3.6) are special cases of model (3.8). Note
that a simpler version of this model is considered in Ma and Carroll (2006), where the dimension
of β is assumed to be fixed and the dimension of θ is assumed to be one.

Throughout this paper, we assume that the model is identifiable. We propose the penalized
estimating equation for the semi-parametric model:

n∑
i=1

L(Wi,Zi, Si, Yi, β, θ̂i) − nṗλ(β) = 0, (3.9)

where ṗλ(β) has the same form as in (2.3). However, the computation of L is more involved.
Denote the dimension of θ(Z) as m, a fixed and finite integer. If we replace θ(Z) with a sin-
gle unknown m-dimensional parameter α and append α to β , we obtain from (3.8) a para-
metric measurement error model with parameters (βT, αT)T. For this parametric model, we
can compute the corresponding S∗

eff as done in the last section. Specifically, we will have
S∗

eff (W,Z,S,Y ) = S∗
β,α(W,Z,S,Y ) − E∗{a(X,Z,S)|W,Z,S,Y }, where a(X,Z,S) satisfies

E[E∗{a(X,Z,S)|W,Z,S,Y }|X,Z,S] = E{S∗
β,α(W,Z,S,Y )|X,Z,S}. Note that S∗

eff has the
same dimension as the dimension of β plus m. We write the last m components of S∗

eff as

�(X,Z,S,Y,β,α) and the rest as L(X,Z,S,Y,β,α). We now solve for θ̂i , i = 1, . . . , n, from

n∑
i=1

Kh(zi − z1)�(wi, zi, si , yi;β, θ1) = 0,

... (3.10)
n∑

i=1

Kh(zi − zn)�(wi, zi, si , yi;β, θn) = 0,

where Kh(z) = h−1K(z/h), K is a smooth symmetric kernel function with compact support
that satisfies

∫
K(t)t2 dt = 1, and h is a bandwidth. Note that θ1, . . . , θn are all m-dimensional

parameters. Inserting the θ̂i ’s into L in (3.9), we obtain a complete description of the estimator.
Note that θ̂i depends on β , so a more precise notation for θ̂i is θ̂i (β). Solving equation (3.9)
yields a penalized estimating equation estimate. Theorem 3 below gives its convergence rate.



282 Y. Ma and R. Li

Theorem 3. Suppose that condition (P1) holds. Under regularity conditions (B1)–(B4) in the
Appendix, and if d4

nn−1 → 0, λn → 0 when n → ∞, then with probability tending to one, there
exists a root of (3.9), denoted β̂ , such that ‖β̂ − β0‖ = Op{√dn(n

−1/2 + an)}.

The proof of Theorem 3 is given in the Appendix. Theorem 3 indicates that to achieve root
(n/dn) convergence rate (or root n convergence rate for finite and fixed d), λn and the penalty
function must be chosen such that an = Op(n−1/2).

Let LI be the first d1 components of L, LIβI
the partial derivative of LI with respect to βI ,

LIθ the partial derivative of LI with respect to θ , �θ the partial derivative of � with respect
to θ , and �βI

the partial derivative of � with respect to βI . Also define �(Z) = E(�θ |Z),
UI (Z) = E(LIθ |Z)�−1(Z) and θβI

(Z) = −�−1(Z)E(�βI
|Z). Further defining

A = E[LIβI
{W,Z,S,Y,β0, θ0(Z)} + LIθ {W,Z,S,Y,β0, θ0(Z)}θβI

(Z,β0)],
B = cov[LI {W,Z,S,Y,β0, θ0(Z)} − UI (Z)�{W,Z,S,Y,β0, θ0(Z)}],

we obtain the following results.

Theorem 4. Suppose that condition (P1) holds. Under regularity conditions (B1)–(B4), if
λn → 0, d5

nn−1 → 0, and (2.6) holds, then with probability tending to one, any root n consistent
estimator β̂n = (β̂T

I , β̂T
II)

T obtained in (3.9) must satisfy that

(i) β̂II = 0,
(ii) for any d1 × 1 vector v such that vTv = 1,√

n/dnv
TB−1/2(A − �){β̂I − βI0 − (A − �)−1b} D−→ N(0,1).

The proof of Theorem 4 is given in the Appendix. Theorem 4 implies that for fixed and finite d ,
the convergence rate of the resulting estimate is n−1/2 + an. It also implies that any root n con-
sistent solution β̂ = (β̂T

I , β̂T
II)

T of (3.9) must satisfy β̂II = 0, and β̂I has the following asymptotic
normality:

√
n{β̂I − βI0 − (A − �)−1b} D−→ N{0, (A − �)−1B(A − �)−T}.

See the earlier version of this work, Ma and Li (2007), for details.

4. Numerical studies and application

In this section, we provide implementation details such as tuning parameter selection and model
error approximation. Issues related to the numerical procedure to solve (2.2) and (3.9), the choice
of kernel and bandwidth in the semi-parametric model, and the treatment of multiple roots have
been addressed in Ma and Carroll (2006) and are not further discussed here. We assess the finite
sample performance of the proposed procedure by Monte Carlo simulation and illustrate the
proposed methodology by an empirical analysis of the Framingham heart study data. In our
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simulation, we concentrate on the performance of the proposed procedure for a quadratic logistic
measurement error model and a partially linear logistic measurement error model in terms of
model complexity and model error.

4.1. Tuning parameter selection

An MM algorithm (Hunter and Li (2005)) and a local linear approximation (LLA) algorithm
(Zou and Li (2008)) have been proposed for penalized likelihood with non-concave penalty.
However, both the minorize–maximize (MM) algorithm and the LLA algorithm are difficult to
implement for the measurement error models we consider. Thus, we employ the local quadratic
approximation (LQA) algorithm (Fan and Li (2001)) to solve the penalized estimating equations.
Specifically, in implementing the Newton–Raphson algorithm to solve the penalized estimating
equations, we locally approximate the first-order derivative of the penalty function by a linear
function, following the idea of the LQA. Specifically, suppose that at the kth step of the iteration,
we obtain the value β(k). Then, for β

(k)
j not very close to zero,

p′
λ(βj ) = p′

λ(|βj |) sign(βj ) ≈ p′
λ(|β(k)

j |)
|β(k)

j |
βj .

Otherwise, we set β
(k+1)
j = 0, and exclude the corresponding covariate from the model. This

approximation is updated in every step of the Newton–Raphson algorithm iteration. In practice,
we set the initial value of β to be the unpenalized estimating equation estimate. It can be shown
that when the algorithm converges, the solution will satisfy the penalized estimating equations.
Following Theorems 2 and 4, we can further approximate the estimation variance of the resulting
estimator. That is

ĉov(β̂) = 1

n
(E − �λ)

−1F(E − �λ)
−T,

where �λ is a diagonal matrix with elements equal to p′
λ(|β̂j |)/|β̂j | for non-vanishing β̂j , a

linear approximation of � defined in (2.5). We use E to denote the sample approximation of
E ∂S∗

eff ,I (W,Z,Y,βI )/∂βI evaluated at β̂ for the parametric model (2.1) and the sample ap-
proximation of the matrix A evaluated at β̂ for the semi-parametric model (3.8). Similarly, we
use F to denote the sample approximation of cov(S∗

eff ,I ) evaluated at β̂ for the parametric model

and the sample approximation of the matrix B evaluated at β̂ for the semi-parametric model,
respectively. The consistency of the proposed sandwich formula can be shown by using similar
techniques as in Fan and Peng (2004). The accuracy of this sandwich formula will be tested in
our simulation studies.

It is desirable to have automatic, data-driven methods to select the tuning parameter λ. Here
we will consider two tuning parameter selectors, the GCV and BIC. To define the GCV and BIC
statistics, we need to define the degrees of freedom and goodness-of-fit measure for the final
selected model. Similar to the nonconcave penalized likelihood approach, we may define the
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effective number of parameters or degrees of freedom to be

df λ = trace{I (I + �λ)
−1},

where I stands for the Fisher information matrix. For the logistic regression models employed
in this section, a natural approximation of I, ignoring the measurement error effect, is V TQV,

where V represents the covariates included in the model and Q is a diagonal matrix with the ith
element equal to μ̂λ,i(1 − μ̂λ,i). Here, μ̂λ,i = P(Yi = 1|Vi).

In the logistic regression model context of this section, we may employ its deviance as a
goodness-of-fit measure. Specifically, let μi be the conditional expectation of Yi given its covari-
ates for i = 1, . . . , n. The deviance of a model fit μ̂λ = (μ̂λ,1, . . . , μ̂λ,n)

T is defined to be

D(μ̂λ) = 2
n∑

i=1

[Yi log(Yi/μ̂λ,i) + (1 − Yi) log{(1 − Yi)/(1 − μ̂λ,i)}].

Define the GCV statistic to be

GCV(λ) = D(μ̂λ)

n(1 − df λ/n)2
,

and the BIC statistic to be

BIC(λ) = D(μ̂λ) + 2 log(n)df λ.

The GCV and the BIC tuning parameter selectors select λ by minimizing GCV(λ) and BIC(λ),
respectively. Note that the BIC tuning parameter selector is distinguished from the traditional BIC
variable selection criterion, which is not well defined for estimating equation methods. Wang,
Li and Tsai (2007) provided a study on the asymptotic behavior for the GCV and BIC tuning
parameter selectors for the non-concave penalized least-squares variable selection procedures
in linear and partially linear regression models. Further study of the asymptotic property of the
proposed tuning parameter selection is needed, but it is outside the scope of this paper.

4.2. Model error

Model error is an effective way of evaluating model adequacy versus model complexity. To
implement the concept of model error in evaluating our procedure, we first simplify its definition
for the logistic partially linear measurement error model. Denote μ(S,X,Z) = E(Y |S,X,Z),
and define the model error for a model μ̂(S,X,Z) as

ME(μ̂) = E{μ̂(S+,X+,Z+) − μ(S+,X+,Z+)}2,

where the expectation is taken over the new observation S+, X+ and Z+. Let g(·) be the
logit link. For the logistic partially linear model, the mean function has the form μ(S,X,Z) =
g−1{θ(Z) + βTV }, where V = (ST,XT)T. If θ̂ (·) and β̂ are consistent estimators for θ(·) and β ,
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respectively, then by a Taylor expansion the model error can be approximated by

ME(μ̂) ≈ E
(
ġ−1{θ(Z+) + βTV +}2[{θ̂ (Z+) − θ(Z+)}2

+ (β̂TV + − βTV +)2 + 2{θ̂ (Z+) − θ(Z+)}(β̂TV + − βTV +)]).
The first component is the inherent model error due to θ̂ (·), the second one is due to the lack of
fit of β̂ , and the third one is the cross-product between the first two components. Thus, to assess
the performance of the proposed variable selection procedure, we define the approximate model
error (AME) for β̂ to be

AME(β̂) = E[ġ−1{θ(Z+) + βTV +}2(β̂TV + − βTV +)2].
Furthermore, the AME of β̂ can be written as

AME(β̂) = (β̂ − β)TE[ġ−1{θ(Z+) + βTV +}2V +V +T](β̂ − β)
(4.1)

=̂ (β̂ − β)TCX(β̂ − β).

In our simulation, the matrix CX is estimated by 1 million Monte Carlo simulations. For mea-
surement error data, we observe W instead of X. We also consider an alternative approximate
model error

AMEW(β̂) = (β̂ − β)TCW(β̂ − β), (4.2)

where CW is obtained by replacing X with W in the definition of CX . The AME(β̂) and
AMEW(β̂) are defined for the parametric model case by setting θ(·) = 0. Note that although we
defined the model error in the context with a logistic link function, it is certainly not restricted to
such a case. The general approach for calculating AME is to approximate the probability density
function evaluated at the estimated parameters around the true parameter value and to extract the
linear term of the parameter of interest. AMEW is calculated by replacing X with W .

4.3. Simulation examples

To demonstrate the performance of our method in both parametric and semi-parametric measure-
ment error models, we conduct two simulation studies. In our simulation, we will examine only
the performance of the penalized estimating equation method with the SCAD penalty.

Example 1. In this example, we generate data from a logistic model where the covariate mea-
sured with error enters the model through a quadratic function and the covariates measured with-
out error enter linearly. The measurement error follows a normal additive pattern. Specifically,

logit{p(Y = 1|X,Z)} = β0 + β1X + β2X
2 + β3Z1 + β4Z2 + β5Z3 + β6Z4

+ β7Z5 + β8Z6 + β9Z7
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Table 1. MRMEs and model complexity, for example, 1

n RAME RAMEW # of zero coefficients

median (MAD) median (MAD) C E

GCV 500 0.694 (0.231) 0.698 (0.228) 4.574 0.006
BIC 500 0.396 (0.188) 0.396 (0.187) 5.857 0.074

GCV 1000 0.766 (0.187) 0.770 (0.185) 4.456 0
BIC 1000 0.390 (0.157) 0.401 (0.158) 5.758 0.010

and

W = X + U,

where β = (0,1.5,2,0,3,0,1.5,0,0,0)T, the covariate X is generated from a normal distrib-
ution with mean 0 and variance 1, (Z1, . . . ,Z6)

T is generated from a normal distribution with
mean 0, and covariance between Zi and Zj is 0.5|i−j |. The last component of the Z covariates,
Z7, is a binary variable taking value 0 or 1 with equal probability. U is normally distributed
with mean 0 and standard deviation 0.1. In our simulation, the sample size is taken to be either
n = 500 or n = 1000.

For the selected model, the model complexity is summarized in terms of the number of zero
coefficients and the model error is summarized in terms of relative approximation model error
(RAME), defined to be the ratio of model error of the selected model to that of the full model.
In Table 1, the RAME column corresponds to the sample median and median absolute deviation
(MAD) divided by a factor of 0.6745 of the RAME values over 1000 simulations. Similarly,
the RAMEW column corresponds to those of the RAMEW values over 1000 simulations. From
Table 1, it can be seen that the values of RAME and RAMEW are very close. The average
count of zero coefficients is also reported in Table 1, where the column labeled “C” presents the
average count restricted only to the true zero coefficients, while the column labeled “E” displays
the average count of the coefficients erroneously set to 0.

We next verify the consistency of the estimators and test the accuracy of the proposed stan-
dard error formula. Table 2 displays the bias and sample standard deviation (SD) of the estimates
for two non-zero coefficients, (β1, β2), over 1000 simulations and the sample average and the
sample standard deviations of the 1000 standard errors obtained by using the sandwich formula.

Table 2. Bias and standard errors, for example, 1 (n = 1000)

β̂1 β̂2

Bias (SD) SE (Std(SE)) Bias (SD) SE (Std(SE))

EE 0.072 (0.273) 0.268 (0.062) 0.124 (0.332) 0.321 (0.088)
GCV 0.029 (0.254) 0.250 (0.048) 0.009 (0.258) 0.253 (0.057)
BIC 0.024 (0.290) 0.249 (0.054) 0.052 (0.255) 0.244 (0.052)
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Table 3. MRMEs and model complexity, for example, 2

Method n RMEX RMEW # of zero coefficients

median (MAD) median (MAD) C E

GCV 500 0.878 (0.161) 0.880 (0.158) 4.060 0
BIC 500 0.381 (0.158) 0.387 (0.155) 5.713 0

GCV 1000 0.868 (0.164) 0.873 (0.160) 4.061 0
BIC 1000 0.386 (0.162) 0.392 (0.161) 5.694 0

The row labeled “EE” corresponds to the unpenalized estimating equation estimator. We omit
here the results for other non-zero coefficients and the results under sample size n = 500. Inter-
ested readers can find them in an earlier version of this work, Ma and Li (2007). Overall, the
estimators are consistent and the sandwich formula works well.

Example 2. In this example, we illustrate the performance of the method for a semi-parametric
measurement error model. Simulation data are generated from

logit(Y ) = β1X + β2S1 + · · · + β10S9 + θ(Z),

W = X + U,

where β , X, and W are the same as in the previous simulation. We generate S’s in a fash-
ion similar to the Z’s in Example 1. That is, (S1, . . . , S8) is generated from a normal distri-
bution with mean zero and covariance between Si and Sj is 0.5|i−j |. S9 is a binary variable
with equal probability to be zero or one. The random variable Z is generated from a uniform
distribution in [−π/2,π/2]. The true function θ(Z) = 0.5 cos(Z). The parameter takes values
β = (1.5,2,0,0,3,0,1.5,0,0,0)T.

The simulation results are summarized in Table 3, with notation similar to that of Table 1. From
Table 3, we can see that the penalized estimating equation estimators can significantly reduce
model complexity. Overall, the BIC tuning parameter selectors perform better, while GCV is
too conservative. We have further tested the consistency and the accuracy of the standard error
formula derived from the sandwich formula. The result is summarized in Table 4, with notation
similar to that of Table 2. We note the consistency of the estimator and that the standard error

Table 4. Bias and standard errors, for example, 2 (n = 1000)

Method β̂1 β̂2

Bias (SD) SE (Std(SE)) Bias (SD) SE (Std(SE))

EE 0.039 (0.170) 0.166 (0.018) 0.057 (0.194) 0.190 (0.018)
GCV 0.047 (0.174) 0.172 (0.020) 0.069 (0.196) 0.191 (0.021)
BIC 0.031 (0.169) 0.170 (0.019) 0.044 (0.179) 0.185 (0.019)
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formula performs very well. More simulation results are summarized in the earlier version of the
work, Ma and Li (2007).

4.4. An application

The Framingham heart study data set (Kannel et al. (1986)) is a well-known data set where it is
generally accepted that measurement error exists on the long-term systolic blood pressure (SBP).
In addition to SBP, other measurements include age, smoking status, and serum cholesterol. In
the literature, there has been speculation that a second-order term involving age might be needed
to analyze the dependence of heart disease occurrence. In addition, it is unclear if the interaction
between the various covariates plays a role in influencing the heart disease rate. The data set
includes 1615 observations.

With the method developed here, it is possible to perform a variable selection to address these
issues. Following the literature, we adopt the measurement error model of log(MSBP − 50) =
log(SBP − 50)+U , where U is a mean zero normal random variable with variance σ 2

u = 0.0126
and MSBP is the measured SBP. We denote the standardized log(MSBP − 50) as W . The stan-
dardization using the same parameters on log(SBP − 50) is denoted X. The standardized serum
cholesterol and age are denoted by Z1,Z2, respectively, and Z3 denotes the binary variable smok-
ing status. Using Y to denote the occurrence of heart disease, the saturated model that includes
all the interaction terms and also the square of age term is of the form

logit{p(Y = 1|X,Z′s)} = β1X + β2XZ1 + β3XZ2 + β4XZ3 + β5 + β6Z1 + β7Z2

+ β8Z3 + β9Z
2
2 + β10Z1Z2 + β11Z1Z3 + β12Z2Z3,

W = X + U.

We used both GCV and BIC tuning parameter selectors to choose λ. We present the tuning
parameters and the corresponding GCV and BIC scores in Figure 1. The final chosen λ is 0.073
and 0.172 by the GCV and BIC selectors, respectively. The selected model is depicted in Table 5.
The GCV criterion selects the covariates X,XZ1,1,Z1,Z2,Z3,Z

2
2,Z2Z3 into the model, while

the BIC criterion selects the covariates X,1,Z1,Z2 into the model. We report the selection and
estimation results in Table 5, as well as the semi-parametric estimation results without variable
selection.

As shown, the terms X,1,Z1,Z2 are selected by both criteria, while Z3,Z
2
2 , and some of the

interaction terms are selected only by GCV. The BIC criterion is very aggressive and it results in
a very simple final model while the GCV criterion is much more conservative, hence the resulting
model is more complex. This agrees with the simulation results obtained. Since both criteria have
included the covariate X, the measurement error feature and its treatment in the Framingham data
is unavoidable.

5. Discussion

In this paper, we have proposed a new class of variable selection procedures in the framework of
measurement error models. The procedure is proposed in a completely general functional mea-
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Figure 1. Tuning parameters and their corresponding BIC and GCV scores for the Framingham data.
The scores are normalized to the range [0,1].

surement error model setting and is suitable for both parametric and semi-parametric models
that contain unspecified smooth functions of an observable covariate. We have assumed the error

Table 5. Results for the Framingham data set

EE GCV BIC

β̂ (SE) β̂ (SE) β̂ (SE)

X 0.643 (0.248) 0.416 (0.093) 0.179 (0.039)
XZ1 −0.167 (0.097) −0.072 (0.041) 0 (NA)
XZ2 −0.059 (0.111) 0 (NA) 0 (NA)
XZ3 −0.214 (0.249) 0 (NA) 0 (NA)
Intercept −3.415 (0.428) −3.255 (0.356) −2.555 (0.092)
Z1 0.516 (0.212) 0.332 (0.085) 0.124 (0.033)
Z2 1.048 (0.341) 1.044 (0.329) 0.398 (0.067)
Z3 1.060 (0.443) 0.907 (0.373) 0 (NA)
Z2

2 −0.253 (0.125) −0.262 (0.121) 0 (NA)
Z1Z2 −0.072 (0.103) 0 (NA) 0 (NA)
Z1Z3 −0.161 (0.225) 0 (NA) 0 (NA)
Z2Z3 −0.442 (0.336) −0.473 (0.326) 0 (NA)
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model pW |X,Z(W |X,Z) to be completely known for ease of presentation. When the error model
contains an unknown parameter ξ , the identifiability of the problem requires additional informa-
tion such as multiple measurements or instruments. Such information should be incorporated to
estimate ξ . Specifically, in the variable selection context, we can simply append the estimating
equation with these additional estimating equations obtained from the corresponding score func-
tions with respect to ξ and append the penalty function p′

λ with zeros. Because the augmented
estimating equations still have the same convergence property as illustrated in Ma and Carroll
(2006), the same asymptotic convergence rates and oracle properties hold as in the known ξ case,
without any efficiency loss. When the error model pW |X,Z(W |X,Z) is completely unspecified,
a nonparametric estimation of the measurement error distribution has to be carried out first, then
the result can be plugged into the proposed variable selection and estimation procedure. In this
case, the asymptotic convergence rate of the parameters and the oracle property remain the same,
but the asymptotic variance will increase. The details of incorporating the estimation of unknown
error and demonstrating its subsequent convergence property in the estimation framework are the
focus of Hall and Ma (2007).

We also would like to point out that in the special case of generalized linear models and
normal additive error with possible heteroscedasticity, the procedure of solving linear integral
equations can be spared and the estimating equations are simplified significantly (Ma and Tsi-
atis (2006)). In such situations, the computation complexity of the proposed procedure will be
reduced to about the same level as for variable selection in regressions without errors in the
variables.

As pointed out by the referee, it is interesting to perform variable selection for high-
dimensional data. In this paper, we allow the number of covariates to grow to infinity at a
op(n−1/5) rate as the sample size n increases. However, the proposed procedures and the used
algorithm in this paper may not be directly applied to the large p, small n problems. Variable
selection for the large p, small n setting is a very active research topic. It is challenging to extend
the existing variable selection procedures for large p, small n problems to measurement error
data. Further research is needed on this topic, but this is outside the scope of this paper.

Appendix

Global assumption (P1) on the penalty function:

(P1) Let cn = max{|p′′
λ(|βj0|)| :βj0 �= 0}. Assume that λn → 0, an = O(n−1/2) and cn → 0

n → ∞. In addition, there exist constants C and D such that when γ1, γ2 > Cλ,
|p′′

λ(γ1) − p′′
λ(γ2)| ≤ D|γ1 − γ2|.

It is easy to verify that both the L1 and the SCAD penalties satisfy this condition.
The regularity conditions for Theorems 1 and 2:

(A1) The expectation of the first derivative of S∗
eff with respect to β exists at β0 and its left

eigenvalues are bounded away from zero and infinity uniformly for all n. For any entry
Sjk in ∂S∗

eff (β0)/∂β
T, E(S2

jk) < C1 < ∞.

(A2) The eigenvalues of the matrix E(S∗
eff ,I S

∗T
eff ,I ) satisfy 0 < C2 < λmin < · · · < λmax <

C3 < ∞ for all n. For any entries, Sk, Sj in S∗
eff (β0), E(S2

k S2
j ) < C4 < ∞.
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(A3) The second derivatives of S∗
eff with respect to β exist and the entries are uniformly

bounded by a function M(Wi,Zi, Yi) in a large enough neighborhood of β0. In addi-
tion, E(M2) < C5 < ∞ for all n, d .

Conditions (A1)–(A3) are mild regularity conditions. They guarantee that the solution of the
following estimating equation

n∑
i=1

S∗
eff (Wi,Zi, Yi, β) = 0

is root (n/dn) convergent, and possesses asymptotic normality.

Proof of Theorem 1. Condition (A1) allows us to define

J =
{
E

(
∂S∗

eff

∂βT

∣∣∣∣
β0

)}−1

, φ∗
eff = JS∗

eff and q ′
λn

(β) = Jp′
λn

(β).

Let αn = n−1/2 + an and φ∗
eff ,i (β) = φ∗

eff (Wi,Zi, Yi, β). It suffices to show that

n−1/2
n∑

i=1

φ∗
eff ,i (β) − n1/2q ′

λn
(β) = 0 (A1)

has a solution β̂ that satisfies ‖β̂ − β0‖ = Op(
√

dnαn). This will be shown using the Brouwer
fixed point theorem. Using the Taylor expansion, we have

n−1/2
n∑

i=1

φ∗
eff ,i (β) − n1/2q ′

λn
(β)

= n−1/2
n∑

i=1

φ∗
eff ,i (β0) − n1/2q ′

λn
(β0)

+ n−1/2
n∑

i=1

∂φ∗
eff ,i (β

∗)
∂βT (β − β0)

− n1/2
∂q ′

λn
(β0)

∂βT (β − β0){1 + op(1)},

where β∗ is between β and β0. It can be shown by conditions (A1)–(A3) and definition of φ∗
eff (·)

that

(β − β0)
T
{

1

n

n∑
i=1

∂φ∗
eff ,i (β

∗)
∂βT

}
(β − β0) = ‖β − β0‖2{1 + oP (1)}.
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We next check the key condition for the Brouwer fixed point theorem. For any β such that
‖β − β0‖ = C

√
dnαn for some constant C, it follows by condition (P1) that

(β − β0)
T

{
1√
n

n∑
i=1

φ∗
eff ,i (β) − n1/2q ′

λn
(β)

}

= (β − β0)
T

{
1√
n

n∑
i=1

φ∗
eff ,i (β0) − √

nq ′
λn

(β0)

}
+ √

n‖β − β0‖2{1 + oP (1)}.

Using the Cauchy–Schwarz inequality, it can be shown that the first term in the above equation is
of order ‖β −β0‖Op(

√
dn + dnna2

n) = Op(Cn1/2dnα
2
n). Note that

√
n‖β −β0‖2 = C2n1/2dnα

2
n.

Thus the second term in the above equation dominates the first term with probability 1−ε for any
ε > 0 as long as C is large enough. Thus, for any ε > 0 and for large enough C, the probability for
the above display to be larger than zero is at least 1 − ε. From the Brouwer fixed point theorem,
we know that with a probability of at least 1 − ε, there exists at least one solution for (A1) in the
region ‖β − β0‖ ≤ C

√
dnαn. �

Lemma on sparsity for Theorem 2.

Lemma 1. If the conditions in Theorem 2 hold, then for any given β that satisfies ‖β − β0‖ =
Op(

√
dn/n), with probability tending to 1, any solution (βT

I , βT
II)

T of (2.2) satisfies that βII = 0.

Proof. Denote the kth element in
∑n

i=1 S∗
eff (Wi,Zi, Yi, β) as Lnk(β), k = d1 + 1, . . . , dn. We

next show that the order of Lnk(β) is Op(
√

ndn),

Lnk(β) = Lnk(β0) +
dn∑

j=1

∂Lnk(β0)

∂βj

(βj − βj0)

(A2)

+ 2−1
dn∑
l=1

dn∑
j=1

∂2Lnk(β
∗)

∂βl ∂βj

(βl − βl0)(βj − βj0),

where β∗ is between β and β0. Because of condition (A2), the first term of (A2) is of order
Op(n1/2) = op(

√
ndn). The second term in (A2) can be further written as

dn∑
j=1

{
∂Lnk(β0)

∂βj

− E
∂Lnk(β0)

∂βj

}
(βj − βj0) +

dn∑
j=1

E
∂Lnk(β0)

∂βj

(βj − βj0). (A3)

Using the Cauchy–Schwarz inequality and condition (A1), it can be shown by straightforward
calculation that the first term in (A3) is of order Op(

√
dn/n) = op(

√
ndn). Using the Cauchy–

Schwarz inequality again, the second term in (A3) is controlled by

n

{
dn∑

j=1

(
E

∂Seff ,k

∂βT

)2
}1/2

‖β − β0‖ ≤ nλmax

(
E

∂Seff ,k

∂βT

)2

‖β − β0‖ = Op(
√

ndn).
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Thus, the second term of (A2) is of order Op(
√

ndn). As for the third term of (A2), we can have a
similar decomposition to that of (A3). Using the Cauchy–Schwarz inequality in matrix form and
condition (A3), it can be shown that the third term of (A2) is of order Op(d2

n) + Op(n−1/2d2
n) =

op(
√

ndn) as d5
n/n → 0. Thus, Lnk(β) is of order Op(

√
ndn). Hence we have

Lnk(β) − np′
λn

(βk) = −√
n
{√

n/dnp
′
λn

(|βk|) sign(βk) + Op(1)
}
.

Using condition (2.6), the sign of Lnk(β) − np′
λn

(βk) is decided by sign(βk) completely when n

is large enough. From the continuity of Lnk(β)− np′
λn

(βk), we obtain that it is zero at βk = 0. �

Proof of Theorem 2. From Theorem 1 and condition (P1), there is a root (n/dn) consistent
estimator β̂ . From Lemma 1, β̂ = (β̂T

I ,0T)T, so (i) is shown. Denote the first d1 equations in∑n
i=1 S∗

eff {Wi,Zi, Yi, (β
T
I ,0T)T} as Ln(βI ). Now consider solving the first d1 equations in (2.2)

for βI , while βII = 0. We have

0 = Ln(β̂I ) − np′
λn,I (β̂I )

= Ln(βI0) + ∂Ln(β
∗
I0)

∂βT
I

(β̂I − βI0) − nbn − np′′
λn

(β∗
I )(β̂I − βI0),

where β∗
I is between βI0 and β̂I . It follows by condition (P1) that∥∥∥∥n−1 ∂Ln(β

∗
I0)

∂βT
I

− p′′
λn,I (β

∗
I ) − E

∂Ln(βI0)

∂βT
I

+ p′′
λn,I (βI0)

∥∥∥∥2

≤ 2

∥∥∥∥n−1 ∂Ln(β
∗
I0)

∂βT
I

− E
∂Ln(βI0)

∂βT
I

∥∥∥∥2

+ Op(n−1dn).

Furthermore, for any fixed ε > 0, it follows by conditions (A1) and (A3) and the Chebyshev
inequality that

Pr

{∥∥∥∥n−1 ∂Ln(β
∗
I0)

∂βT
I

− E
∂Ln(βI0)

∂βT
I

∥∥∥∥ ≥ εdn
−1

}

≤ dn
2

n2ε2
E

∥∥∥∥∂Ln(β
∗
I0)

∂βT
I

− nE
∂Ln(βI0)

∂βT
I

∥∥∥∥2

= O(dn
2n−2d2

1n) = o(1),

since d1 ≤ dn. Thus, we have∥∥∥∥n−1 ∂Ln(β
∗
I0)

∂βT
I

− E
∂Ln(βI0)

∂βT
I

∥∥∥∥ = op(dn
−1).

Therefore, ∥∥∥∥n−1 ∂Ln(β
∗
I0)

∂βT
I

− p′′
λn,I (β

∗) − E
∂Ln(βI0)

∂βT
I

+ p′′
λn,I (βI0)

∥∥∥∥2

= op(dn
−2),
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and subsequently,∥∥∥∥{
n−1 ∂Ln(β

∗
I0)

∂βT
I

− p′′
λn,I (β

∗) − E
∂Ln(βI0)

∂βT
I

+ p′′
λn,I (βI0)

}
(β̂I − βI0)

∥∥∥∥
≤ op(d−1

n )Op(n−1/2d
1/2
n ) = op(n−1/2).

We thus obtain that{
−E

∂Ln(βI0)

∂βT
I

+ �n

}
(β̂I − βI0) + bn = n−1Ln(βI0) + op(n−1/2).

Denote I ∗ = E{S∗
n,eff ,I (βI0)S

∗T
n,eff ,I (βI0)}. Using condition (A2), it follows that

n1/2vTI ∗−1/2
[{

−E
∂Ln(βI0)

∂βT
I

+ �n

}
(β̂I − βI0) + bn

]
= n−1/2vTI ∗−1/2Ln(βI0) + op(1).

Let Yi = n−1/2vTI ∗−1/2Sn,eff ,I (Wi,Zi, Yi, βI0). It follows that for any ε > 0,

n∑
i=1

E‖Yi‖21(‖Yi‖ > ε) = nE‖Y1‖21(‖Y1‖ > ε) ≤ n(E‖Y1‖4)1/2{Pr(‖Y1‖ > ε)}1/2.

Using Chebyshev’s inequality, we have

Pr(‖Y1‖ > ε) ≤ E‖Y1‖2

ε2
= E‖vI ∗−1/2Seff ,I (W1,Z1, Y1, βI0)‖2

nε2
= vTv

nε2
= O(n−1).

Note that E(‖Y1‖4) = n−2E‖vTI ∗−1/2Seff ,I (W1,Z1, Y1, βI0)‖4. Note that the rank of vvT is
one, and hence λmax(vvT) equals the trace of vvT. So, λmax(vvT) = 1 as vTv = 1. Thus, it
follows that

E(‖Y1‖4) = n−2E{Seff ,I (W1,Z1, Y1, βI0)
TI ∗−1/2vvTI ∗−1/2Seff ,I (W1,Z1, Y1, βI0)}2

≤ n−2λ2
max(I

∗−1)E{Seff ,I (W1,Z1, Y1, βI0)
TSeff ,I (W1,Z1, Y1, βI0)}2

= n−2λ2
max(I

∗−1)E‖Seff ,I (W1,Z1, Y1, βI0)‖4 = O(d2
1n−2),

due to condition (A2). Hence,

n∑
i=1

E‖Yi‖21(‖Yi‖ > ε) = O(nd1n
−1n−1/2) = o(1).

On the other hand,

n∑
i=1

cov(Yi) = n cov{n−1/2vI ∗−1/2Seff ,I (W1,Z1, Y1, βI0)}

= vI ∗−1/2E{Seff ,I (W1,Z1, Y1, βI0)Seff ,I (W1,Z1, Y1, βI0)
T}I ∗−1/2vT = 1.
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Following the Lindeberg–Feller central limit theorem, the results in (ii) now follow. �

Regularity conditions for Theorems 3 and 4.
The notation Ci below is generic and is allowed to be different from that in condi-

tions (A1)–(A3).

(B1) The first derivatives of L with respect to β and θ exist and are denoted as Lβ and Lθ ,
respectively. The first derivative of θ with respect to β exists and is denoted as θβ . Thus
E(Lβ + Lθ θβ) exists and its left eigenvalues are bounded away from zero and infinity
uniformly for all n at β0 and the true function θ0(Z). For any entry Sjk of the matrix
d(Lβ + Lθ θβ)/dβ , E(S2

jk) < C1 < ∞.

(B2) The eigenvalues of the matrix E{LI − UI (Z)�}{LI − UI (Z)�}T satisfy 0 < C2 <

λmin < · · · < λmax < C3 < ∞ for all n; for any entries Sk, Sj in (Lβ + Lθ θβ), E(S2
k S2

j ) <

C4 < ∞.
(B3) The second derivatives of L with respect to β and θ exist, the second derivatives of θ with

respect to β exist, and the entries are uniformly bounded by a function M(Wi,Zi, Si, Yi)

in a neighborhood of β0, θ0. In addition, E(M2) < C5 < ∞ for all n, d .
(B4) The random variable Z has compact support and its density fZ(z) is positive on that

support. The bandwidth h satisfies nh4 → 0 and nh2 → ∞. θ(z) has a bounded second
derivative.

Proof of Theorem 3. Denote

J = [E{(Lβ + Lθ θβ)|β0,θ0}]−1, φ∗
eff (β, θ) = J L(β, θ) and

q ′
λn

(β) = Jp′
λn

(β).

Let αn = n−1/2 + an and φ∗
eff ,i (β, θ̂) = φ∗

eff {Wi,Zi, Si, Yi, β, θ̂(β)}. It will be shown that

n−1/2
n∑

i=1

φ∗
eff ,i (β, θ̂) − n1/2q ′

λn
(β) = 0 (A4)

has a solution β̂ that satisfies ‖β̂ − β0‖ = Op(d
1/2
n αn).

Due to the usual local estimating equation expansion, we have

θ̂ (z, β0) − θ0(z)

= (h2/2)θ ′′
0 (z) − n−1

n∑
j=1

Kh(Zj − z)�−1(z)�j (β0, θ0)/fZ(z) (A5)

+ op(n−1/2),
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which implies that θ̂ (z, β0) − θ0(z) = Op(h2 + n−1/2h−1/2). For any β such that ‖β − β0‖ =
C

√
dnαn for some constant C, we obtain the expansion

n−1/2
n∑

i=1

φ∗
eff ,i{β, θ̂(β)}

= n−1/2
n∑

i=1

φ∗
eff ,i{β0, θ̂ (β0)}

+ n−1/2
n∑

i=1

[
∂φ∗

eff ,i{β0 + θ̂ (β0)}
∂βT + ∂φ∗

eff ,i{β0 + θ̂ (β0)}
∂θT

∂θ̂

∂βT

]
(β − β0)

+ 1

2
√

n

n∑
i=1

(β̂ − β0)
T

d[φ∗
eff ,i{β0 + θ̂ (β0)} + φ∗

eff ,i{β0 + θ̂ (β0)} dθ̂
dβ

]
dβT

∣∣∣∣∣
β∗

(β − β0),

where β∗ is between β and β0. Because of condition (B3), each component of the last term is
uniformly of order Op(n1/2‖β − β0‖2). The second term can be written as n1/2{1 + op(1)}(β −
β0) under conditions (B1), (B3) and (B4). The first term can be further expanded as

n−1/2
n∑

i=1

φ∗
eff ,i{β0, θ̂ (β0)}

= n−1/2
n∑

i=1

∂φ∗
eff ,i{β0, θ̂ (β0)}

∂θT {θ̂ (β0) − θ0} + Op(n1/2){θ̂ (β0) − θ0}{θ̂ (β0) − θ0}T

= n−1/2
n∑

i=1

∂φ∗
eff ,i{β0, θ̂ (β0)}

∂θT {θ̂ (β0) − θ0} + op(1)

under conditions (B3) and (B4). Summarizing the above results, making use of (A5), we obtain

n−1/2
n∑

i=1

φ∗
eff ,i{β, θ̂(β)}

= n−1/2
n∑

i=1

φ∗
eff ,i (β0, θ0) + n1/2(β − β0)

− n−3/2
n∑

j,i=1

∂φ∗
eff ,i (β0, θ0)

∂θT Kh(Zj − Zi)
�(Zi)�j (β0, θ0)

fZ(Zi)
+ op(1)

= n−1/2
n∑

i=1

φ∗
eff ,i (β0, θ0) + n1/2(β − β0) − n−1/2

n∑
i=1

J U (Zi)�j (β0, θ0) + op(1)
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under condition (B4). Similar to the situation in Theorem 1, under condition (P1), we further
obtain

(β − β0)
T

{
n−1/2

n∑
i=1

φ∗
eff ,i (β, θ̂) − n1/2q ′

λn
(β)

}

= (β − β0)
T

{
n−1/2

n∑
i=1

φ∗
eff ,i (β0, θ0) − n1/2q ′

λn
(β0) − n−1/2

n∑
i=1

J U (Zi)�i(β0, θ0)

}
(A6)

+ n1/2‖β − β0‖2 + op{n1/2‖β − β0‖2}.
The first term in the above display is of order Op(Cn1/2dnα

2
n) and the second term equals

C2n1/2dnα
2
n, which dominates the first term as long as C is large enough. The last term is dom-

inated by the first two terms. Thus, for any ε > 0, as long as C is large enough, the probability
for the above display to be larger than zero is at least 1 − ε. From Brouwer’s fixed point theorem
we know that with a probability of at least 1 − ε, there exists at least one solution for (A4) in the
region ‖β − β0‖ ≤ Cd

1/2
n αn. �

Lemma for Theorem 4.

Lemma 2. If conditions in Theorem 4 hold, then for any given β that satisfies ‖β − β0‖ =
Op(

√
d/n), with probability tending to 1, any solution (βT

I , βT
II)

T of (2.2) satisfies that βII = 0.

Proof. Denote the kth equation in
∑n

i=1 Li{β, θ̂(β)} as Lnk(β, θ̂) and that in
∑n

i=1 U (Zi) ×
�i(β0, θ0) as Gnk(β0, θ0), k = d1 + 1, . . . , dn, then the expansion in Theorem 3 leads to

Lnk(β, θ̂) − np′
λn

(βk)

= Lnk(β0, θ0) − Gnk(β0, θ0)

+ n

d∑
j=1

(J−1)kj (βj − βj0) − np′
λn

(|βk|) sign(βk) + op

(√
ndn

)
.

Similar to the derivation in Lemma 1, the first three terms of the above display are all of order
Op(

√
ndn), hence we have

Lnk(β, θ̂) − np′
λn

(βk) = −√
ndn

{√
n/dnp

′
λn

(|βk|) sign(βk) + Op(1)
}
.

Because of (2.6), the sign of Lnk(β) − np′
λn

(βk) is decided by sign(βk) completely. From the
continuity of Lnk(β)−np′

λn
(βk), we obtain that it is zero at βk = 0 with a probability larger than

any 1 − ε. �

Proof of Theorem 4. (i) immediately follows by Lemma 1. Denote the first d1 equations in∑n
i=1 Li{(βT

I ,0T)T, θ̂} as Ln{βI , θ̂(βI )} and that in
∑n

i=1 �i(β0, θ0)U (Zi) as Gn(βI0, θ0). Note
that the d1 × d1 upper left block of J−1 is the matrix A defined in Theorem 4. Using the Taylor



298 Y. Ma and R. Li

expansion for the penalized estimating function at β = (βT
I ,0)T, the first d1 equations yield

0 = Ln{β̂I , θ̂ (β̂I )} − np′
λn,I (β̂I )

= Ln(βI0, θ0) − Gn(βI0, θ0) + nA(β̂I − βI0) − nbn

− n{�n + op(1)}(β̂I − βI0) + op(d
1/2
n n1/2)

= Ln(βI0, θ0) − Gn(βI0, θ0) + n(A − �n)[β̂I − βI0 − (A − �n)
−1bn] + op(d

1/2
n n1/2).

Using condition (B2), we have

n1/2vTB−1/2{(−A + �n)(β̂I − βI0) + bn}
= n−1/2vTB−1/2{Ln(βI0, θ0) − Gn(βI0, θ0)} + op(vTB−1/2)

= n−1/2vTB−1/2{Ln(βI0, θ0) − Gn(βI0, θ0)} + op(1).

Let Yi = n−1/2vTB−1/2{LnI i(βI0, θ0) − UnI (Zi)�i(βI0, θ0)}, i = 1, . . . , n. It follows that for
any ε > 0,

n∑
i=1

E‖Yi‖21(‖Yi‖ > ε) = nE‖Y1‖21(‖Y1‖ > ε) ≤ n(E‖Y1‖4)1/2{Pr(‖Y1‖ > ε)}1/2.

Using the Chebyshev inequality, we have Pr(‖Y1‖ > ε) = O(n−1) and E(‖Y1‖4) is bounded by

n−2λ2
max(B

−1)E[{LnI1(βI0, θ0) − UnI (Z1)�1(βI0, θ0)}T

× {LnI1(βI0, θ0) − UnI (Z1)�1(βI0, θ0)}]2,

which equals n−2λ2
max(B

−1)E‖{LnI1(βI0, θ0) − UnI (Z1)�1(βI0, θ0)}‖4 = O(d2
nn−2) by condi-

tion (B2). Hence,

n∑
i=1

E‖Yi‖21(‖Yi‖ > ε) = O(ndnn
−1n−1/2) = o(1).

On the other hand,

n∑
i=1

cov(Yi) = n cov[n−1/2vTB−1/2{LnI1(βI0, θ0) − UnI (Z1)�1(βI0, θ0)}] = 1.

(ii) follows by the Lindeberg–Feller central limit theorem. �
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