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This paper deals with the ergodicity (convergence of the marginals) and the law of large numbers for adap-
tive MCMC algorithms built from transition kernels that are not necessarily geometrically ergodic. We
develop a number of results that significantly broaden the class of adaptive MCMC algorithms for which
rigorous analysis is now possible. As an example, we give a detailed analysis of the adaptive Metropolis
algorithm of Haario et al. [Bernoulli 7 (2001) 223-242] when the target distribution is subexponential in
the tails.
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1. Introduction

This paper deals with the convergence of adaptive Markov chain Monte Carlo (AMCMC) algo-
rithms. Markov chain Monte Carlo (MCMC) is a well-known, widely used method to sample
from arbitrary probability distributions. One of the major limitations of the method is the dif-
ficulty in finding sensible values for the parameters of the Markov kernels. Adaptive MCMC
provides a general framework to tackle this problem where the parameters are adaptively tuned,
often using previously generated samples. This approach generates a class of stochastic processes
that is the object of this paper.

Denote by m the probability measure of interest on some measure space (X, X). Let
{Py,60 € O} be a family of ¢-irreducible and aperiodic Markov kernels, each with invariant
distribution 7. We are interested in the class of stochastic processes based on non-homogeneous
Markov chains {(X,,6,),n > 0} with transition kernels {P(n; (x,6); (dx’,dd")),n > 0} sat-
isfying f® P(n; (x,0): (-,d9")) = Py(x,-). Often, these transition kernels are of the form
{Po(x,dy)dm, @,y (d9’), n > 0}, where {H;, [ > 0} is a family of measurable functions, H; : ® x
X — ©. The stochastic approximation dynamic corresponds to the case H;(0,x) =60 +
yH (0, x). In this latter case, it is assumed that the best values for 6 are the solutions of the
equation f H (0, x)r(dx) = 0. Since the pioneering work of Gilks et al. (1998); Holden (1998);
Haario et al. (2001); Andrieu and Robert (2001), the number of AMCMC algorithms in the litera-
ture has significantly increased. However, despite much recent work on the topic, the asymptotic
behavior of these algorithms is still not completely understood. Almost all previous work on
the convergence of AMCMC is limited to the case where each kernel Py is geometrically er-
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godic (see, e.g., Roberts and Rosenthal (2007); Andrieu and Moulines (2006)). In this paper, we
weaken this condition and consider the case where each transition kernel is subgeometrically
ergodic.

More specifically, we study the ergodicity of the marginal {X,, n > 0}, that is, the convergence
to 7 of the distribution of X, irrespective of the initial distribution, and the existence of a strong
law of large numbers for AMCMC.

We first show that a diminishing adaptation assumption of the form |6, —6,_1| — 0, in a sense
to be made precise (assumption B1), together with a uniform-in-6 positive recurrence toward
a small set C (assumptions Al(i) and Al(iii)) and a uniform-in-6 ergodicity condition of the
kernels { Py, 6 € ©} (assumption Al(ii)) are enough to imply the ergodicity of AMCMC.

We believe that this result is close to being optimal. Indeed, it is well documented in the
literature that AMCMC can fail to be ergodic if the diminishing assumption does not hold (see,
e.g., Roberts and Rosenthal (2007) for examples). Furthermore, the additional assumptions are
also fairly weak since in the case where © is reduced to the single point {6,} so that {X,,, n > 0}
is a Markov chain with transition kernel Py, , these conditions hold if Py, is an aperiodic positive
kernel that is polynomially ergodic.

We then prove a strong law of large numbers for AMCMC. We show that the diminishing
adaptation assumption and a uniform-in-6 polynomial drift condition toward a small set C of
the form PpV <V — cvVi—e 4 blc(x), o € (0, 1), implies a strong law of large numbers for all
real-valued measurable functions f for which supy (| f|/ V#) < 00, B €[0,1 — ). This result
is close to what can be achieved with Markov chains (with fixed transition kernel) under similar
conditions; see Meyn and Tweedie (1993).

On a more technical note, this paper makes two key contributions to the analysis of AMCMC.
First, to study the ergodicity, we use a more careful coupling technique which extends the cou-
pling approach of Roberts and Rosenthal (2007). Second, we tackle the law of large numbers
using a resolvent kernel approach, together with martingale theory. This approach has a deci-
sive advantage over the more classical Poisson equation approach (see Andrieu and Moulines
(2006)), in that no continuity property of the resolvent kernels is required. It is also worth noting
that the results developed in this paper can be applied to adaptive Markov chains beyond Markov
chain Monte Carlo simulation, provided that all of the transition kernels have the same invariant
distribution.

The remainder of the paper is organized as follows. In Section 2, we state our assumptions,
followed by a statement of our main results. Detailed discussion of the assumptions and some
comparisons with the literature are provided in Section 2.4. We apply our results to the analysis
of the adaptive random walk Metropolis algorithm of Haario et al. (2001) when the target dis-
tribution is subexponential in the tails. This is covered in Section 3, together with a toy example
taken from Atchade and Rosenthal (2005). All proofs are postponed to Section 4.
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2. Statement of the results and discussion

2.1. Notation

For a transition kernel P on a measurable general state space (T, B(T)), we denote by P", n >0,
its nth iterate, defined as

PO, A) &5 (4), P"“(x,A)déffmx,dy)P"(y,A), n=0;

8, (dr) stands for the Dirac mass at {x}. P" is a transition kernel on (T, B(T)) that acts both on

bounded measurable functions f on T and on o-finite measures p on (T, B(T)) via P" f(-) def

S P, dy) £ (o) and wP"() Y [ u(do) PG, ).

If V:T — [1,400) is a function, then the V-norm of a function f:T — R is defined as
[ flv &ef supy | f1/V. When V = 1, this is the supremum norm. The set of functions with finite
V-norm is denoted by Ly .

If u is a signed measure on a measurable space (T, B(T)), then the total variation norm || || Tv
is defined as

def .
lulry = sup  |u(f)=2 sup [u(A)|= sup wu(A)— inf pu(A)
{£1fh=1} AeB(T) AeB(T) AeB(T)

and the V-norm, for some function V : T — [1, 4+00), is defined as || ||y def SUP(q |g]y <1} [ (Q)]-

Let X, © be two general state spaces, respectively endowed with countably generated o -fields
X and B(®). Let { Py, 0 € ©} be a family of Markov transition kernels on (X, X’) such that for
any (x, A) € X x X, 0 — Py(x, A) is measurable. Let { P (n; -, -), n > 0} be a family of transition
kernels on (X x ©, X ® B(®)), satisfying, forany A € X,

/ P(n; (x,0); (dx',d9")) = Py(x, A). (D)
Ax©O

An adaptive Markov chain is a non-homogeneous Markov chain {Z, = (X,,,6,),n > 0} on X x ®
with transition kernels {I3(n; 3+),n >0},

Among examples of such transition kernels, consider the case where {(X;, 6,),n > 0} is ob-
tained through the algorithm: given (X, 6,), sample X, 11 ~ Py, (X,, -) and set 8,11 = 0, with
probability 1 — p,41 orset 6,41 = @nH(Xn, 6n, X+1) with probability p,41. Then

P (x.0): (dx', d0")) = Py (x, dx) (1 = puy1)85(d0) + put1Bz, (s 9.0 (@01},

Consider the special case where p,+1 =1 and 6,41 = H,4+1(6y, X,+1), where {H;,l > 0} is a
family of measurable functions H;: ® x X — ©. Then

P(n: (x,0); (dx', d0")) & Py(x, dx')sp,, 9.1 (d6)).

Such a situation occurs if, for example, 6, is updated following a stochastic approximation
dynamic: 6,41 = 6n + Yut1 H On, Xnt1).
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From {Is(n; -,-),n > 0} and for any integer [ > 0, we introduce a family — indexed by / —
of sequence of transition kernels {[_’l(n; -,+),n > 0}, where f_’l(n; ) def 15(l +n;-,-), and we
denote by Pfcl,)e and Eil,)e the probability and expectation, respectively, on the canonical space
(2, F) of the canonical non-homogeneous Markov chain {Z,, = (X,,, 8,), n > 0} with transition
kernels {151 (n; +;+),n > 0} and initial distribution §(y gy. We denote by 6§ the shift operator on €2
and by {F, k > 0} the natural filtration of the process {Zi, k > 0}. We use the notation Py g and

E, ¢ as shorthand for IP)(C% and Eioé respectively.
Set
/ def
D(9,0) = sup||Py(x,-) — Py (x,)Tv.

xeX

2.2. Convergence of the marginals

We assume that minorization, drift conditions and ergodicity are available for Py uniformly in 6.

For a set C, denote by ¢ the return time to C X ©: ¢ def inf{n > 1, X,, € C}.

A1 There exist a measurable function V : X — [1, +00) and a measurable set C such that:
(1) sup;supcye Eg)g [r(t¢)] < +oo for some non-decreasing function r:N — (0,
+00) such that 3, 1/r(n) < +o00;
(ii) there exists a probability measure 7 such that

lim_sup V=" (x) sup || P§ (x, ) — 7|ty = 0;

n—>+00 yex 6e®

(iii) supy PpV <V on C¢ and supp,g{PoV (x) + V(x)} < +o0.
B1 There exist probability distributions &1, & on X, ©, respectively, such that for any € > 0,
lim,, IP)S],EQ (DO, 01—1) 2 €)=0.

Theorem 2.1. Assume Al and B1. Then

lim  sup |Eg 6[f(Xn) — ()1 =0.
nboo ey

Sufficient conditions for A1 to hold are the following uniform-in-6 conditions:

A2 (i) the transition kernels Py are ¢-irreducible and aperiodic;
(i) there exist a function V : X — [1, +00), o € (0, 1) and constants b, ¢ such that for
any 0 € ©,

PoV(x) < V(x) —cVIT¥x) + ble(x);

(iii) for any level set D of V, there exist ép > 0 and a probability vp such that for any 6,
Py(x,) = eplp(x)vp(").

We thus have the following corollary.
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Corollary 2.2 (of Theorem 2.1). Assume A2 and B1. Then

lim  sup |Eg 6 [f(Xn) — ()] =0.
nboo g ey

Assumptions A1(i) and A1(iii) are designed to control the behavior of the chain “far from the
center”. When the state space X is “bounded” so that, for example, V = 1 in A1(ii), then we have
the following result.

Lemma 2.3. If there exists a probability measure w such that 1im,_, , oo Supy, g | Py (x, ) —
7w ()|ltv =0, then A1(1) and Al(iii) hold with a bounded function V and C = X.

Combining the assumptions of Lemma 2.3 and B1, we deduce from Theorem 2.1 the conver-
gence of the marginals. This result coincides with (Roberts and Rosenthal (2007), Theorem 5).
As observed in Bai (2008) (personal communication), assumption A2 also implies the “con-
tainment condition” as defined in Roberts and Rosenthal (2007). Consequently, Corollary 2.2
could also be established by applying (Roberts and Rosenthal (2007), Theorem 13): this would

yield the following statement, which is adapted from Bai (2008). Define M (x, 6) def inf{n > 1,
1Py (x, ) —m()llTv <€}

Proposition 2.4. Assume A2 and B1. Then, for any € > 0, the sequence {M¢ (X, 6,),n > 0} is
bounded in probability for the probability P¢, ¢, and

lim  sup |Eg 6 [f(Xn) — ()] =0.
nboo g ey

2.3. Strong law of large numbers

Assumptions Al and B1 are strengthened as follows:

A3 there exist a probability measure v on X, a positive constant ¢ and a set C € X such that
forany 60 € ©, Py(x,-) > 1c(x)ev(-);

A4 there exist a measurable function V : X — [1, 400), 0 < o < 1 and positive constants b, ¢
such that forany 6 € ®, PV <V — cVi—e 4 bic;

A5 there exist a probability measure 7w and some 0 < f < 1 — « such that for any level set

DE(xex, Vx)<d)of V,

lim sup |[P}(x,)—m =0;
’1_)+OODX%” 9( ) ||Vﬁ

B2 for any level set D of V and any € > 0,

limsup sup IP’}(CI)G(D(O,,, On_1) > e) =0.
T 1>0Dxe©
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Theorem 2.5. Assume A3-AS and B2. Then, for any measurable function f:X — R in Ly
and any initial distribution & (resp. &) on X (resp. ®) such that &1(V) < 400,

n
. —1 _ -
nEI—Eoon kg_l fXp) =nm(f), Pe &,-a.s.

As in the case of the convergence of the marginals, when A5 and B2 hold with D = X and
B =0, A3 and A4 can be omitted. We thus have the following.

Proposition 2.6. Assume that A5 and B2 hold with D = X and 8 = 0. Then, for any measurable
bounded function f :X — R and any initial distribution &1 (resp. &) on X (resp. ©®),

n
ngr}rloonflkx;f(xk)zﬂ(f)v Pe, g,-a.s.

2.4. Discussion

2.4.1. Non-adaptive case

We start by comparing our assumptions to assumptions in Markov chain theory under which
the law of large numbers hold. In the setup above, taking ® = {0, } and H (6., x) = 6, reduces
{X,,n > 0} to a Markov chain with transition kernel Py, . Assume that Py, is Harris recurrent.

In that case, a condition which is known to be minimal and to imply ergodicity in total variation
norm is that Py, is an aperiodic positive Harris recurrent transition kernel (Meyn and Tweedie
(1993), Theorems 11.0.1 and 13.0.1). Condition A1(i) is stronger than positive Harris recurrence
since it requires supg Ex[r(t¢)] < 4-00 for some rate r, r(n) 3> n. Nevertheless, as discussed in
the proof (see Remark 2, Section 4), the condition ), {1/r(n)} < 400 is really designed for the
adaptive case. A1(ii) is stronger than what we want to prove (since A1(ii) implies the conclusion
of Theorem 2.1 in the non-adaptive case); indeed, this is due to our proof technique, which is
based on the comparison of the adaptive process to a process — namely, a Markov chain with
transition kernel Py — whose stationary distribution is 7. Our proof is thus designed to address
the adaptive case. Finally, B1 is trivially true.

For the strong law of large numbers (Theorem 2.5), B2 is still trivially true in the Markovian
case and A5 is implied by A3 and A4, combined with the assumption that Py, is ¢-irreducible
and aperiodic (see Appendix A and references therein). In the Markovian case, whenever Py, is
¢-irreducible and aperiodic, A3 and A4 are known sufficient conditions for a strong law of large
numbers for f € Ly1-«, which is somewhat stronger than the conclusions of Theorem 2.5. This
slight loss of efficiency is due to the proof technique based on martingale theory (see comments
in Section 2.4.5). Observe that in the geometric case, there is the same loss of generality as
in Theorem 8 of Andrieu and Moulines (2006). More generally, any proof of the law of large
numbers based on martingale theory (through, e.g., the use of Poisson’s equation or the resolvent
kernel) will incur the same loss of efficiency since limit theorems exist only for L?”-martingales
with p > 1.
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2.4.2. Checking assumptions A1(i) and AS

A1(ii) and A5 are the most technical of our assumptions. Contrary to the case of a single kernel,
the relations between A1(ii) (resp. AS) and A1(1)—A3 (resp. A3, A4) are not completely well un-
derstood. Nevertheless, these assumptions can be checked under conditions which are essentially
of the form A3, A4 along with the assumptions that each transition kernel Py is ¢-irreducible
and aperiodic, as discussed in Appendix A.

2.4.3. On the uniformity in 6 in assumptions A1(i), Al(ii), A3 and A4

We have formulated A1(i), Al(ii), A3 and A4 such that all of the constants involved are inde-
pendent of 6, for 6 € ©. Intuitively, this corresponds to AMCMC algorithms based on kernels
with similar overall ergodicity properties. This uniformity assumption might seem unrealisti-
cally strong at first. However, the next example shows that when these conditions do not hold
uniformly in 6 for 6 € ©, pathologies can occur if the adaptation parameter can wander to the
boundary of ®.

Example 1. This example is adapted from Winkler (2003). Let X = {0, 1} and {Py, 6 € (0, 1)}
be a family of transition matrices with Py(0,0) = Py(1,1) =1—6. Let {8,,n >0}, 6, € (0, 1),
be a deterministic sequence of real numbers decreasing to 0 and let {X,,n > 0} be a non-
homogeneous Markov chain on {0, 1} with transition matrices {Py,, n > 0}. One can check that
D@6,,6,-1) <6,_1 — 6, forall n > 1 so that B1 and B2 hold.

For any compact subset K of (0, 1), it can be checked that Al(i), Al(ii), A3 and A4
hold uniformly for all & € K. However, these assumptions do not hold uniformly for all
0 € (0, 1). Therefore, Theorems 2.1 and 2.5 do not apply. Actually, one can easily check that
Py.6,(Xn € ) = 7 (-) as n — oo, but that IFEX,(;O[(n_1 Yoo S (Xp) — 7(f))?] does not converge
to O for bounded functions f. That is, the marginal distribution of X,, converges to i, but a weak
law of large numbers fails to hold.

This raises the question of how to construct AMCMC when Al(i), Al(ii), A3 and A4 do not
hold uniformly for all § € ®. When these assumptions hold uniformly on any compact subsets
of ® and the adaptation is based on stochastic approximation, one approach is to stop the adap-
tation or to reproject 6, back on /C whenever 6, ¢ K for some fixed compact KC of ®. A more
elaborate strategy is Chen’s truncation method which — roughly speaking — reinitializes the algo-
rithm with a larger compact whenever 6,, ¢ C (Chen and Zhu (1986); Chen et al. (1988)). A third
strategy consists of proving a drift condition on the bivariate process {(X},, 6,), n > 0} in order to
ensure the stability of the process (Andrieu and Tadic (2008), see also Benveniste et al. (1987)).
This question is, however, beyond the scope of this paper; the use of Chen’s truncation method
to weaken our assumption is addressed in Atchadé and Fort (2008).

2.4.4. Comparison with the literature

The convergence of AMCMC has been considered in a number of early works, most under a
geometric ergodicity assumption. Haario et al. (2001) proved the convergence of the adaptive
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random walk Metropolis (ARWM) when the state space is bounded. Their results were general-
ized to unbounded spaces in Atchade and Rosenthal (2005), assuming the diminishing adaptation
assumption and a geometric drift condition of the form

PV (x) <AV (x)+blc(x), 2)

forie (0,1),b<ooand 6 € ©O.

Andrieu and Moulines (2006) undertook a thorough analysis of adaptive chains under the geo-
metric drift condition (2) and proved a strong law of large numbers and a central limit theorem.
Andrieu and Atchade (2007) provided a theoretical discussion on the efficiency of AMCMC
under (2).

Roberts and Rosenthal (2007) improved on the literature by relaxing the convergence rate
assumption on the kernels. The authors proved the convergence of the marginal and a weak law
of large numbers for bounded functions. However, their analysis requires a uniform control on
certain moments of the drift function, a condition which is easily checked in the geometric case
(i.e., when A2 or A4 is replaced by (2)). Until recently, it was an open question in the polynomial
case, but this was recently solved by Bai (2008) — contemporaneously with our own work — who
proved that such a control holds under conditions which are essentially of the form A2.

Yang (2007) tackled some open questions mentioned in Roberts and Rosenthal (2007) by
providing sufficient conditions — close to the conditions we give in Theorems 2.1 and 2.5 — to
ensure convergence of the marginals and a weak law of large numbers for bounded functions.
The conditions in (Yang (2007), Theorems 3.1 and 3.2) are stronger than our conditions, but we
have noted some omissions and mistakes in the proofs of these theorems.

2.4.5. Comments on the methods of proof

The proof of Theorem 2.1 is based on an argument extended from Roberts and Rosenthal (2007),
which can be sketched heuristically as follows. For N large enough, we can expect PQI’Y (Xu, ")
to be within € of 7 (by ergodicity). On the other hand, since the adaptation is diminishing, by
waiting long enough, we can find n such that the distribution of X,y given (X;, 8,) is within
€ of Pé;’ (Xn, -). Combining these two arguments, we can then conclude that the distribution
of X,,+n is within 2¢ of 7. This is essentially the argument of Roberts and Rosenthal (2007).
The difficulty with this argument is that the distance between Pgl:l’ (x, -) and 7 depends, in general,
on x and can rarely be bounded uniformly in x. We solve this problem here by introducing some
level set C of V and using two basic facts: (i) under A1(i), the process cannot wait too long before
coming back into C; (ii) under A1(ii) and (iii), a bound on the distance between POIZ (x,-)and
uniformly in x, for x € C, is possible.

The proof of Theorem 2.5 is based on a resolvent kernel approach that we adapted from
Merlevede et al. (2006) (see also Maxwell and Woodroofe (2000)), combined with martingale
theory. Another possible route to the SLLN is the Poisson equation technique which was used to
study adaptive MCMC in Andrieu and Moulines (2006). Under A3 and A4, a solution gy to Pois-
son’s equation with transition kernel Py exists forany f € Lys,0<8 <1 —a and gg € Lyp+a.
However, in order to use {gg,0 € ®} to obtain an SLLN for f, we typically need to control
|go — go’|, which, overall, can be expensive. Here, we avoid these pitfalls by introducing the



124 Y. Atchadé and G. Fort

resolvent g, (x, 6) of the process {X,}, defined by

0@ €Y - MEY (X)), xeX.0€®,ac(0,1).020.
j=0

3. Examples

3.1. A toy example

We first consider an example discussed in Atchade and Rosenthal (2005) (see also Roberts and
Rosenthal (2007)). Let 7= be a target density on the integers {1,..., K}, K > 4. Let {Py,0 €
{1, ..., M}} be a family of random walk Metropolis algorithms with proposal distribution gg, the
uniform distributionon {x — 6, ..., x —1,x+1,...,x +6}.

Consider the sequence {(X},, 6,), n > 0} defined as follows: given X, 6,:

o the conditional distribution of X, is Py, (X, -);
o if X411 =X,, set 6,11 =max(l,6, — 1) with probability p,; and 6,41 = 6, otherwise;
if X,41 # Xp, set 0,41 = min(M, 6, + 1) with probability p,+1 and 6,11 = 6,, otherwise.
This algorithm defines a non-homogeneous Markov chain — still denoted {(X,,, 6,,),n > 0} —on a

canonical probability space endowed with a probability IP. The transitions of this Markov process
are given by the family of transition kernels { P (n; (x, 0), (dx’, d9’), n > 0}, where

P(n; (x,0), (dx',d0") = Po(x, dx") (L { Pas+181vo-1)(d0") + (1 — puy1)89(d0)}
+ Lete { ot 18ma@+1)(d0)) + (1 — puy1)89(d0))}).

In this example, each kernel Py is uniformly ergodic: Py is ¢-irreducible, aperiodic, possesses
an invariant probability measure 7 and is such that

limsup || Py (x, ) =7 ()[lrv = 0.
m xex
Since O is finite, this implies that A1(ii) (resp. AS5) holds with V =1 (resp. D = X and 8 = 0).
Furthermore, E;(cl,)e [D(6,, 6,+1)] <2pu+1 so that B1 (resp. B2) holds with any probability mea-
sures &1, & (resp. with D = X) provided p, — 0. By Lemma 2.3 combined with Theorem 2.1,
and by Proposition 2.6, we have the following.

Proposition 3.1. Assume that lim,, p,, = 0. For any probability distributions &1, & on X, ©:

@) supis ¢y <1y 1B o[ f (X)) =7 (/)] = 0;
(ii) for any bounded function f,

nY fX) > a(f), P geas.

k=1



Subgeometric adaptive MCMC 125
3.2. The adaptive random walk Metropolis of Haario et al. (2001)

We illustrate our results with the adaptive random walk Metropolis of Haario et al. (2001).
The random walk Metropolis (RWM) algorithm is a popular MCMC algorithm; see Hastings
(1970); Metropolis et al. (1953). Let a target density 7, absolutely continuous with respect to the
Lebesgue measure puyep. We still denote by 7 the density. Choose a proposal distribution with
density with respect to uyep denoted ¢, and assume that ¢ is a positive symmetric density on R”.
The algorithm generates a Markov chain {X,,, n > 0} with invariant distribution 7 as follows.
Given X, = x, anew value Y = x 4+ Z is proposed, where Z is generated from g (-). We then ei-

ther ‘accept’ Y and set X, 41 = Y with probability «(x, Y) def min(1, 7 (Y)/m(x)) or we ‘reject’
Y and set X;,+1 = x.

For definiteness, we will assume that ¢ is a zero-mean multivariate Gaussian distribution (this
assumption can be replaced by regularity conditions and moment conditions on the proposal
distribution). Given a proposal distribution with finite second moments, the convergence rate of
the RWM kernel depends mainly on the tail behavior of the target distribution . If 7 is super-
exponential in the tails with regular contours, then the RWM kernel is typically geometrically
ergodic (Jarner and Hansen (2000)). Otherwise, it is typically subgeometric (Fort and Moulines
(2000, 2003); Douc et al. (2004)).

Define

def def
[ = /xﬂ(x)uLeb(dx), %, = /xxTN(x)uLeb(dx) T
X X

to be, respectively, the expectation and the covariance matrix of = (-T denotes the transpose
operation). Theoretical results suggest setting the variance-covariance matrix ¥ of the proposal
distribution to be ¥ = ¢, X,, where ¢, is set so as to reach the optimal acceptance rate & in
stationarity (typically, & is set to values around 0.3-0.4); see, for example, Roberts and Rosenthal
(2001) for more details. Haario ez al. (2001) proposed an adaptive algorithm to find X, adaptively
during the simulation. This algorithm has been studied in detail in Andrieu and Moulines (2006),
under the assumption that 7 is superexponential in the tails. An adaptive algorithm to find the
optimal value ¢, was proposed in Atchade and Rosenthal (2005) (see also Atchade (2006)) and
studied under the assumption that 7 is superexponential in the tails. We extend these results to
cases where 7 is subexponential in the tails.

Let ®, be a convex compact of the cone of p x p symmetric positive definite matrices en-

dowed with the Shur norm | - |s, |A]s & \/Tr(ATA). For example, fora, M > 0, O, = (A +ald:

A is symmetric positive semidefinite and |[A]; < M}. Next, for —oo < k; < k;, <00 and O, a

compact subset of X, we introduce the space © def O, x O4 x [k, ky]. For 0 = (u, 3, c) € O,
denote by Py the transition kernel of the RWM algorithm with proposal gg, where gy stands for
the multivariate Gaussian distribution with variance-covariance matrix e .

Consider the adaptive RWM algorithm defined as follows.

Algorithm 3.1. Initialization: Let o be the target acceptance probability. Choose Xq € X,

(o, 2o, co) € O.
Iteration: Given (X,,, 4y, 2, Cn):
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1. Generate Z,11 ~ qp, duren and set Yy 11 = X, + Z,41. With probability a(X,,, Y,41), set
Xn+1 = Yn4+1 and with probability 1 — a (X, Yn+1), set X411 = X,.

2. Set:
=ty + @+ D N X1 — ), 3)
=34+ 0+ DT X1 — ) Xt — )" — i, 4)
1 _
c=cn+n—_H(a(Xn,Yn+1)—a). 5

3. If (U, 2,¢c) € O, set Upt1 = U, Lpt1 = X and cy41 = c. Otherwise, set Un+1 = [n,
Yhtl1 = Xy and cpy1 = Cp.

This is an algorithmic description of a random process {(X, ,_Gn),n > 0}, which is a non-
homogeneous Markov chain with successive transitions kernels { P (n; (x, 0), (dx’, d6")), n > 0}
given by

P(n; (x,0), (dx’,d8"))
=/qe(z){a(x,x+z)5x+z(dx’)+(1 —a(x,x +2))8:(dx")} -

X (Lp0.x+2.17)0)8p0.x+2.4/) (A0") + L (40 1120 ¢0) 80 (d0")) dtreb (dz),

where ¢ is the function defined from the right-hand side expressions of (3)—(5). Integrating
over 0', we see that for any A € X,

/ P(n; (x,6), (dx',d0")) = Py(x, A).
AXO

Lemma 3.2. Assume that w is bounded from below and from above on compact sets. Then any
compact subset C of X with puyep(C) > 0 satisfies A3.

Proof. See Theorem 2.2 of Roberts and Tweedie (1996). U

Following (Fort and Moulines (2000)), we assume that 7 is subexponential in the tails:

D1 m is positive and continuous on R”, and twice continuously differentiable in the tails;
D2 there exist m € (0, 1), positive constants d; < D;, i =0, 1,2 and r, R > 0 such that for
|x| > R:
: Vr(x) .
gl) <|V7T(x)\ , |/;_|> <—r;
(i) dolx|" < —logm(x) < Dolx|™;
(iii) di]x|""" <|Vlogm(x)| < Dilx|""";
(iv) dalx|" ™2 < |Vlogm(x)| < Dax|" 2.

Examples of target densities that satisfy D1 and D2 are the Weibull distributions on R with
density 7 (x) oc |x|"™ ' exp(—pB|x|™) (for large |x|), B > 0, m € (0, 1). Multidimensional exam-
ples are provided in Fort and Moulines (2000).
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3.2.1. Law of large numbers for exponential functions
In this subsection, we assume that

D3 there exist s, > 0,0 <v <1—m and 0 < n < 1 such that as |x| - +o0,

r(x) \™ )
Sup/ (1 v —) qo(2)ULeb(dz) = 0(|x|2(m l)).
{z,lz]=nlx|v}

0O w(x+2)

A sufficient condition for D3 is that 7w (x +z) > 7 (x)7(z) for any x large enough and |z| > n|x|V
(which holds true for Weibull distributions with O < m < 1). Indeed, we then have

ax) \*
/{z,zlznlxlv}(l v TG+ +Z)) g6 (z) Leb(dz)

< Cexp(—A.n?|x|*Y) sup / exp(sxDolzI™) exp(helz|*) g (2) Leb (d2)
0ec®

for some constant C < +00, and A, > 0 such that the right-hand side is finite.

Lemma 3.3. Assume D1-D3. For 0 < s < s,, define Vs(x) def 14+ 775(x). There exists 0 < s <
s« and, for any a € (0, 1), there exist positive constants b, ¢ and a compact set C such that

sup Py Vs (x) < Vs(x) — eV %(x) + bl (x).
fe®

Hence, A2—A5 hold.

Lemma 3.4. Assume D1-D3. B2 holds and B1 holds for any probability measures &1, & such
that [ |Inm|*™dg < +oo.

The proofs of Lemmas 3.3 and 3.4 appear in Appendix C.

Proposition 3.5. Assume D1-D3. Consider the sequence {X,,,n > 0} given by Algorithm 3.1.
(i) For any probability measures &1, &, such that f |Inm|?/™ d&; < +o0,

sup  |Egy &, [f (Xn)] =7 ()] = 0.
AR

(ii) There exists 0 < s < s, such that for any probability measures &,& such that
[ 17 |7* d&; < +o0, and any function f € L1, ,—,0<r <s,

Y fX) >, Py geas.

k=1
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The drift function Vy exhibited in Lemma 3.3. is designed for limit theorems relative to func-
tions f increasing as exp(8|x|”™). This implies a condition on the initial distribution & which
has to possess subexponential moments (see Proposition 3.5(ii)), something which always holds
when & = 8,, x € X.

3.2.2. Law of large numbers for polynomially increasing functions

Proposition 3.5 also addresses the case where f is of the form 1+ |x|”, r > 0. Nevertheless, the
conditions on &; and the assumptions D3 can be weakened in that case.

We have to find a drift function V such that V1=%(x) ~ 1 + |x|"** for some « € (0, 1),
¢ > 0. Under D3, this can be obtained from the proof of Lemma 3.3 and this yields V(x) ~
1 + |x|" 2™ (apply Jensen’s inequality to the drift inequality (24) with the concave function
(1) ~ [Ins]++2/m=1. gee Lemma 3.5 in Jarner and Roberts (2002) for similar calculations).
Hence, the condition on & becomes &; (Jx|"t*+2~") < o0 for some ¢ > 0.

Drift inequalities with V ~ (—Inm)® for some s > 2/m — 1 can also be derived by direct
computation: in that case, D3 can be removed. Details are omitted and left to the interested
reader.

To conclude, observe that these discussions relative to polynomially increasing functions can
be extended to any function f which is a concave transformation of 7 ~*.

4. Proofs of the results of Section 2

For a set C € X, define the hitting time on C x ® of {Z,,, n > 0} by o¢ définf{n >0,Z, €Cx 0O}
If (| f]) <400, we setfd:eff—n(f).

4.1. Preliminary results

We gather some useful preliminary results in this section. Section 4.1.1 provides an approxima-
tion of the marginal distribution of the adaptive chain by the distribution of a related Markov
chain. In Section 4.1.2, we develop various bounds for modulated moments of the adaptive chain
as consequences of the drift conditions. In Section 4.1.3, we bound the expected return times of
the adaptive chain to level sets of the drift function V. The culminating result of this subsection

is Theorem 4.10, which gives an explicit bound on the resolvent function gy) (x,0).

4.1.1. Optimal coupling

Lemma 4.1. For any integers1 >0, N > 2, any measurable bounded function f on XN and any
(x,0) eXx 0,

N
A B, X1 = [ ot s [T Rooc o f o)
XN k=2

N—-1 j
< ZZ B, (D@, 6 -1)].
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Proof. We can assume without loss of generality that |f|; < 1. Set zx = (xi, ). With
the co_nvention that ]_[Z:a ar = 1 for a > b and upon noting that fx Py(x,dx"h(x") =
fo@) Pi(0; (x,0), (dx’, d0"))h(x") for any bounded measurable function & : X — R, we have

N-—1 Jj
a=|[ ¥ A0 de [ Atk 1z, dz-
xxeN ‘= pall

N
x {P1(jizj.dzj41) — Pi(0; (xj,0),dzj41)} H Pi(0; (xg—1,0),dz) £ (x1, ..., XN)
k=j+2

N—-1 J
<> / Pi(0; (x,60), dzp) [ | Pitk — 1; 2k, dz) sup || Py (x, ) — Po(x, )i,
i=1 X7 k=2 xeX

where we have used the fact that

N
/ T PO 1 0), dz) f(x1s 2D
(Xx@)N—i-1 k=jt2
is bounded by a function E(xy,...,xj41) that does not depend on #, kK < N, and for any

bounded function Z on X/*!,
/ {Pi(j; zj,dzj41) — P1(0; (x},0),dz; 4 D} E(x1, ..., Xjg1)
Xx©

= /{sz (xj,dxjp1) = Po(xj, dxjr)}E 0, ... xj41) <sup | Py (x, ) — Po(x, ) llTvIElr.
X

xeX
Hence,
N-—1
I
A< Y B [supll Py, (6 = Pay( )l |
- xeX
j=l
N-1 J N-1 j
! 1
<Y EY, [Z sup || Py, (X,')—Po,-l(X,')HTV] =YY EY (D@61
=1 i=1 Y€X j=1i=1 0

Lemma 4.2. Let ., v be two probability distributions. There exist a probability space (2, F, P)
and random variables X,Y on (2, F) suchthat X ~ u, Y ~vandP(X=Y)=1—||u—v| V.

The proof can be found in, for example, Proposition 3 of Roberts and Rosenthal (2004). As a
consequence of Lemmas 4.1 and 4.2, we have the following.
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Proposition 4.3. Let [ > 0, N > 2 and set z = (x,0). There exists a process {(Xk, )~(k),
0 <k < N} defined on a probability space endowed with the probability @il)z such that

N—-1 j

_(l) ~

P, (Xi=X;,0<k<N)= 1= "> EV[D®;, 6, 1),
j=1i=1

(Xo, . s XN) flas the X-marginal distribution of IPS) restricted to the time interval {0, ..., N},
and (Xo, ..., Xn) has the same distribution as a homogeneous Markov chain with transition
kernel Py and initial distribution §.

4.1.2. Modulated moments for the adaptive chain

Let V:X — [1, +00) be a measurable function and assume that there exist C € X, positive con-
stants b, c and 0 < o < 1 such that for any 6 € ®,

PyV <V —cVI7 4 b1,. (6)
Lemma 4.4_. Assume (6). There exists b such that forany 0 < B <1,0€0: Py VB <vh —
BV £ bic.
Proof. See Lemma 3.5 in Jarner and Roberts (2002). U

Proposition 4.5. Assume (6). For any l >0, (x,60) € X x ® and any stopping time t,
7—1 " T—1 G
cEY, [Z(kac + 1) 1} < V@) +oEY, [Z((k +Dac+1)" ILC(Xk):|.
k=0 k=0

Proof. The proof can be adapted from Proposition 2.1 in Douc ef al. (2004) and Proposi-
tion 11.3.2 in Meyn and Tweedie (1993), and is thus omitted. U

Proposition 4.6. Assume (6).
(i) There exists b such that forany j >0,0<p <1,1>0and (x,0) € X x O,

! =
ED VA (X1 < VP) +bjP.
(ii) Let 0 < B <1and0 <a < 1. For any stopping time t,

—1
EV) (1= a) V(X)L o ioo] +EY, [Z(l —a){aVF (X)) + Be(l — a)vﬁ—“(XJ-)}}
j=0

—1
< VP@) +b(1 - a)EY), |:Z(1 - a)fﬂc(xj)].

j=0
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(iii) Let0<B <1—a and 0 < a < 1. For any stopping time t and any q € [1, +00],

T—1
Ejf}e [2(1 —a)fvﬂ(xj)}

j=0

T—1
<a'171 (1 —a)y"VayEte/ax) (1 +bEY, [2(1 - a)-fﬂc(xj)]) ()~
=0

(with the convention that 1/q = 0 when g = +00).

Proof. The proof is already done in the case / = 0. The general case is similar and omitted. (i) is
a trivial consequence of Lemma 4.4. (i) Let 8 <1.Setty =7t AN and ¥, = (1 —a)" Vﬁ(X,,).
Then

Yoy =Yo+ Y (Yj—Y, )=Yo+ Y (1—a)/ (1 -a)VF(X)) - VF(X, 1))
J=1 j=1

=Yoo+ -/ (VEX)) - ViX;_))—a) (1—a) VX, ).
j=1 j=1

Hence,

I'N—l
Ex oYyl +aEy g [ Y (—ayvF <X,->}

j=0

=VPW) + ) (=B o[ (VPX) = VAXj1))1j<ry]
Jj=1

< VAW + )Y (0 =a)Ey o[ (—BeVF (X 1) +ble(Xj-1)) <oy ],
j=1

where we have used Lemma 4.4 in the last inequality. This implies that

v—1 v—1
By 6[Yey]+aly o [ doa- a)fvﬁ(Xp] + (1 —a)BcEy g [ > (—a) Vﬂ“(xj)}
j=0 Jj=0

‘[N—l
<VP@) +b(1 —a)Exp [ Yo a- a)'/ﬂc(Xj)}-

j=0

The result follows when N — +o00.
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(iii) The previous case provides two upper bounds, namely, for 0 < § <1 — «,

-1 T—1
aF. [Z(l - a)fvﬂ<xj)] <V () +b(1—a)Ey g [Z(l - a)f'ﬂa(xj)}

j=0 j=0
and
7—1 . ~ T—1 '
(1 —a)((B+a)c)Exg [Z(l —a)l Vﬂ(Xj)] < VA () 4+ bE, g [Z(l - a)!ﬂc(xj)}.
j=0 j=0
We then use the property [c < c] Acy] => ¢ < ci/qcé_l/q for any ¢ € [1, +o0]. O

l_)roposition 4.7. Assume (6). Let {r,, n > 0} be a non-increasing positive sequence. There exists
b such that forany 1 >0, (x,0) e Xx 0,0<8<1andn >0,

BcED [Zrk+1v'3 (Xk)} < B, IVA(X)]+BE), [Zrk+1ﬂc(Xk)]-

k>n k>n
The proof follows along the same lines as the proof of Proposition 4.6(ii) and is thus omitted.

4.1.3. Delayed successive visits to an accessible level set of V

Let D € X and let n,, N be positive integers. Define on (2, F, ]P’( 'p) the sequence of N-valued
random variables {t”,n > 1} as

odef 1 def ¢

0 df
= 0, =104 n,+tpoh” s, Tk LN Lo 0T, k>1.

Proposition 4.8. Assume A3 and that there exist V : X — [1, +00) and a constant b < 400 such
that for any 0 € ®, PpV <V — 1 + blc. Let D € X. Let ny, N be two non-negative integers.
Then

p—1
ev(D)Ei’?g[ > ﬂc(xk)} <1

k=0

and if supp V < 400 and v(D) > 0, then there exists a (finite) constant C depending on
g, v(D),supp V, b, ny, N such that forany [ > 0, (x,0) e X x ® and k > 0,

EY, (7" <kC + V().

Proof. Since V > 1, Proposition 4.6(ii), applied with a =0, S=a =1,c=1 and t = 7p,
implies that

mp—1
E{)[ep] < V(x) + BE [Z nc(Xk)]
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By A3, we have Py(x, D) > [ev(D)]1c(x) for any (x, 6) so that

mp—1 mp—1
ev(D)Ei’?@[ > ]lc(Xk):| < Eg}e[z P9k<xk,z>>}
k=0

k=0
p—1
1
=E{) [ > 1D<Xk+1>} <1
k=0

Hence, E)(Cl’)g [tpl <= V(x)+ blev(D)]~L. By the Markov property and Proposition 4.6(i), we have

ELyle'] < e+ V@) +blev(D)] ! +EJ [EZ P [op]]

Zn*+tD

<n,+2b[ev(D)] "' + V(x) +supV + n,b.
D

The proof is by induction on k. Assume that Eg’)g[rk] < kC + V(x) with C > 2b[sv(D)]"! +
supp V + (N v n)(1+ b). Then, again using the Markov property and Proposition 4.6(i), and
upon noting that IP’)(C{)H (ZxeD)=1,
k
E;(cl,)e [.L,k—l—l] <N+ E,(yl,)e [‘L'k] + ]E)(cl,)e [E(Z‘ik—:i\//-ﬁ-l) [T'D]]
<N +blevD)] ' +E [+ EQ [V (X i, )]
—= x,0 x,0 k4N

— k
< N +blev(D)] ' +EV, [r*1+EY), [E(Zij” [V (X3)]]

< N +blsv(D) " +EY, (74 + (sup vV NB). 5
D

4.1.4. Generalized Poisson equation

Assume (6). Let0 <a <1,/ >0and 0 < 8 <1 —a. For f € Ly such that 7 (| f]) < +o0, let
us define the function

80,0 31—y EY, X)),
j=0

Proposition 4.9. Assume (6). Let 0 < <1 —oa and f € Lyp. Forany (x,0) eXx 0,1 >0
and0<a<1, gﬁz’) exists, and

z [ D[
F) =180 0) —ELy [g0 0 (x6n)].

Proof. By Proposition 4.6(1), [EVy[F(X /)]l < | flys(VF(x) + bjP). Hence, §{’(x,6) exists
for any x, 6, . Furthermore, gff“) (X1,601) is Pil’)g-integrable. By the definition of §(§l) and by
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the Markov property, we have

ED, [20+ (X1, 00)] Z(l—a)f“Ei{)g[f(XjH)]

jz0
=(1-a' Yy d-aE (X))
jz1
=(1-a)' @V x.0) -1 -a)f). O

Theorem 4.10. Assume A3-AS5 and B2. Let 0 < B < 1 —«. For any € > 0, there exists an integer
n>2 such that forany 0 <a <1, f € Lyp, >0, (x,0) e X x O and q € [1, +00],

(fly) 18P x, 0) <de(1— (1 —a)") 'n
VvBta/q(x)

_ V) e
al—1/a(1 — a)l/a COI

X (1 + b[ev(D)] ™ 4+ 2(1 + bn,) (1 4 b) sup Vﬁ+°‘/‘7).
D

By convention, 1/q = 0 when g = +00. In particular, lima_>0(|f|vﬁ)’1 |a§l(,l)(x, 0)|=0.
Remark 1. Before launching into the proof of the theorem, we first make two important remarks.
First, a simplified restatement of Theorem 4.10 is the following: there exists a finite constant cg
such thatforany 0 <a <1/2, f € Ly5,1 >0, (x,0) e Xx ® and q € [1, +0o0],

88" (. 0)] < col Flvsa™" (1 +al/TVPTe/a (x)). ()

This follows by taking € = 1, say, and upon noting that n(1 — (1 —a)")~! < 2"~ /a. The second
point is that if we take a, as € (0, 1), then we can write

0 (x,0) — gV (x,0) = — 1 — (1 —ap*ED, [650 Xy, 60)].
Sai Sa Tt —an g 1 (£ Xk 00

By (7) and Proposition 4.6(iii), it holds that
2 1
160, 0) — 80 (x, )| < c1l flyslaz — arlay 'ay VIV F+ela (), (®)

for some finite constant ¢y, for all 0 < aj,a2 <1/2, f € Lyp, 1 >0, (x,0) e X x O and g €
[1, +o0].

Proof of Theorem 4.10. Let € > 0. Let us consider the sequence of stopping times {z¥, k > 0}
defined in Section 4.1.3, where (D, N, n,) are defined below.
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Choice of D, N, n,. Choose a level set D of V large enough so that v(D) > 0. Choose N such
that
N—1

—Z sup [|P] (x,) = ()lys <e, )

ODXO

the existence of which is given by A5, and such that —sincea + 8 < 1 —

(@c)"'N~! (sup vhre  pnBte | l;[sv(D)]_1> <e. (10)
D

Set eN = N2{e (supp VB + bN-! ZN ! 7#)=11/A=P) (which can be assumed to be strictly
lower than N2 since B > 0). By B2, choose n, such that for any ¢ > n,, [ > 0,
supp o PV (D(6,.64-1) = en/2) < en /4.

By Proposition 4.8, ]P’( (r <+4oo0)=1forany (x,0) e Xx 0, >0,k >0.

Optimal coupling. W1th these definitions, supizlsupkzllE(l [IE(t +l)[D(9i, 0i—1)]] < en,
upon noting that IE”)(CI’)Q (ny <t =1 and D@®,0) < 2. We apply Proposition 4.3 and set
En E Xy = X, 0 <k < N}. We have, forany [ > 0, k > 1, (x,0) € X x ©,

N-1 j
1
RGN I ES D@6 01 < Ney <1 ()

Observe that D, N and n, do not depend upon a, [, x,6 and f.
Proof of Theorem 4.10. Assume that forany 0 <a < 1,1 >0, (x,0) e Xx ® and k > 2,

N—-1
ko _
E)(CZ’)@ [Z(l _ a)f +j+1f(ka+j)]
=0

<|flys3Ne(l —ay"+*=DN, (12)

‘We have

000 =Y 1—aytE { ColF O a1+ Y BV (X)L, 1}
j=0 k>1
On one hand, by Proposition 4.6(iii) applied with T = p and Proposition 4.8,

p—1
EY, [ d - a)f“f(xj)”

j=0

Y (=BG F (X1, 00| =

Jj=0

p—1
< |f|wE§C’?{ dYa- a)f“vﬂ(Xj)}

j=0

- VBT (x) (1 +blev(D)]7h
<Iflys 2=/ 1 —a)l/a

(ac)™ 4,
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Applied with T = tp, Propositions 4.6(i), (iii) and 4.8 yield

Z(l _a)j+1 (1) [f(X )]1‘[0<]<T]]‘

Jj=0

r1—1

D+ +Tpof™* D —|
(Z) |:

=1f1,4[E > (1- a)f“f'(xj)”
J=TD
N+ Tpol™* —1
< E)(cl,)e |:E(er1;+l)|: Z (1— a)j+1V‘3(Xj):|:|
j=0

ne—1 Tp—1
<t [z [Sa-omvia | [sifa [ Sa-omvw |

J=0

(14 bn)(1 +b)

T T —1/4 gyp yB+e/a .
a Va1 —qylg ¥ TSP

Fork > 1,

Z(l a)/-H]E(l) f(X )1 k<j<.[k+l]‘

Jj=0

thN—1
(1)|: Z (1 a)]+lf(X )}‘

j=tk

mp—1
k k . —
(l) |:(1 )T +NE(ZTT](—:]A\]/+Z)|:Z (l_a)j+1|f|(Xj):|:|
j=0
By Proposition 4.6(1) and (ii) applied with T = 7p, Proposition 4.8 and equation (12), and upon

noting that th>n,+k-1DNP O

(x.6) S

> (= ay M ED L F (X ) pisj gi]

j=0

< IF1vES,[(1 = )" * DN BNe + (1 — )V (VA (X ay ) + BLev(D)] Y (@e) )]

= 1flve (1 =" DN (3Ne + (@)™ sup. EV) (VA Xw) + blev(D) 7))
r,,Dx®

< | Flys(1 —ayr==DN <3Ne + (ae)”! (sup vhre 4 pNBre 4 B[su(D)]—l))
D

<de|flys(1 —a)k=DNN,
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where we used the definition of N (see equation (10)) and Proposition 4.6(i). This yields the

desired result.
Proof of Equation (12). By the strong Markov property and since % > n, + N (k — 1) IP)(lee-a.s.,

N—1
=0

<(1— a)n*+N(k_1)E)(Cl)9|:

N—-1
Eg " [Z(l - a)f“ﬂxj)] H

Jj=0

Furthermore, by Proposition 4.3,

N-1
ES ) [Z (1- a)f’“f(xj)}

j=0
=(tk+1) = i+1 7
=E;, 2, [Z(l - a)mf(xj)}
j=0

ok N—1 o ok N-1 o o
=B, 2, [Z(l - a)’“f(Xj)} +E 7, [Z(l —ay U F X)) ~ f(X,;)}Jls;-v}-

j=0 J=0

On one hand, we have ]P’)(Cl)e -a.s.,

ok N-1 o
E7 .2 [Z(l - a>f“f<xj>”

j=0

N—1
<Iflvs Y (1=a)* sup |P)(x,) = ()llys < |flysNe,
=0 Dx©

by (9). On the other hand, ]P’il‘)g-a.s.,

ok N-1 - B
E(Zf:é),k |:Z(1 — a)/+1{f(Xj) — f(Xj)}ﬂg;;v:H

Jj=0
) [
. , .
<IflviBz, 7z | > A=/ {VFX)) + vﬁmmﬂ
L j=0

- /N—1 J Y
R - CaR)) » > STHD e\ 1-
<I1fIvEz, 2, (Z(l—a>f+1{vﬂ<X,,>+vf’<X,->}> } Pz, 7, €)',
L \j=0
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by using Jensen’s inequality (8 < 1). By the Minkowski inequality, Proposition 4.6(i) and iterat-
ing the drift inequality A4, we have

—(ck+1 . ‘ )\ '8
E; 7, [(Z(l —ay V(X)) + vﬂ(x.,)}> ]
j=0

N-—1
1 T+ =@+ v
<Y U-a"MEz, 7 VXN +E; 7 VX I
j=0
N—1 ‘ ' 5
=Y - sp @V + (sw Pv) ]
=0 1, Dx® Dx®
N—1 . B N—1
<2y (- a)f“(supv + jB) <2N (sup VELbNT! Y jﬁ>.
Jj=0 D D j=1

Finally,

ok ) _ —(tk X — _
B[Py, 7, €)' 1< @B, €)' < ren)! .

where we used (11) in the last inequality. To conclude the proof, we use the definition of . [J

4.2. Proof of Theorem 2.1

Let € > 0. We prove that there exists n, such that for any n > n., SUP{ 7| 1 <1 |Egl‘g2[f(Xn)]| <
€.

4.2.1. Definition of D, N, Q and n,
By A1(i), choose Q such that

0) 1
sup sup E,[r(ze)] — <e. (13)
I (x.0)eCx® w6 ,p%r(k)

By AI(ii), choose N such that

_ €
sup VI @IPY (x, ) — Oty < —. (14)
(x.0)eCx© 0
By B1, choose n, such that, for any n > n,,
€
Ps, &, (D6, Op_1) > €/(2(N S DR70) ) [ — 15
t1.6,(DOn, On—1) = €/(2(N + Q )Q))_4(N—|—Q—1)2Q (15)
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4.2.2. Optimal coupling

We apply Proposition 4.3 with/ =0and N <~ N+ Q. Set En40 déf{Xk = )~(k, 0<k<N-+Q}.
It holds for any r > n, that

)
Ee 2 [ﬂXreCPz,,z, (510\/+Q)]
N+Q0-1 j

< Y Y B [1x,ecEY (DO 6:-1)]] (16)

j=1 =l

N+0-1 j
< D Y By alDOigr, by <€Q7,
j=1 =l

where, in the last inequality, we use the fact that D(6,0’) < 2 and the definition of n, (see
equation (15)).

4.2.3. Proof

Letn > N 4+ Q + n,. We consider the partition given by the last exit from the set C before time
n — N. We use the notation {X,.,, ¢ C} as shorthand for ﬂfzn{X t ¢ C}, with the convention that
{Xm+1:m & C} = Q. We write

n—N

Eél,éz[f(xn)] zEsl’SZ[f_(X")]lXO:n—N¢C] + Z Eél,52[f(Xn)1Xk€CﬂXk+1:n—N¢C]'
k=0

Since f is bounded on X by | f|;, we have
_ _ - c
Eg 6, [ f (Xn)1xg, yec] < 1f11Pg e, (tc =n — N) < |f|1E§1,€2|:m A 1}-

The right-hand side is upper bounded by | f|€ for n large enough. By definition of Q in (13),

n—(N+0) )

Z ES],& [f(Xl’l)]leEC]leJr];n,NgéC]

k=0

n—(N+Q)
3 k
I Y. Een[ixecPy g (e zn—N—k)] (17)
k=0

1

@ <|flhe.

<1 flrsup sup BV, [r(ze)] )
I Cx® k>0
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Letke{n—(N+ Q)+ 1,...,n— N}. By definition of N and n, (see equations (14) and (15)),
upon noting that k > n — (N + Q) > n,, we have

Eey e[ (X Lxg Ly wec] — 1PN Ee e [LxiecPo. 2, (€54 0)]
<Ee e, [1x,ecBy, 2,1 Xnoi)Lxy v xeclénio]]
<Eg e [Lx,ecBy, 2 [F Knt)lz,  sclensol]
< Eg []lxkecﬁg(k),zk [f(f(”*k)]lf(lmw,ﬁc]] + 1 f11Ee & []lxkec@gl)’zk (Evsio)]
<Ee e,[1xecBo, 2,05, oo P T Ruon-o]] + 1 Fl1€Q™!
<1f1eQ e, e, [1x,ecBy, 2,15, geV Fnon-01] +1flieQ”!

<i1fhee™] s PV@+swpV)+ifleo,
(x,0)eCxO C

where we used A1(iii) in the last inequality. Hence,

n—N

> Eealf(Xwlyecly, weel = (14 sup PV +supV)elflr.
k=n—(N+Q)+1 (x,0)eCx© C

This concludes the proof.

Remark 2. In the case where the process is non-adaptive, we can assume without loss of gener-
ality that it possesses an atom «; in that case, the lines (17) can be modified so that the assump-
tions ), {1/r(n)} < +oo can be removed. In the case of an atomic chain, we can indeed apply
the above computations with C replaced by « and write

n—(N+Q) _ _ n—(N+Q)
> Ealf(Xn)ixiealxipmngal <I1F1 Y. Po(ta=n—N—k)
k=0 k=0
<11 ) Pal(ta = K).
k=0

The right-hand side is small for convenient Q, provided that E,[r(z,)] < 400 with r(n) = n.
Unfortunately, the adaptive chain {(X,,, 6,), n > 0} does not possess an atom, thus explaining the
condition on r.

4.3. Proof of Corollary 2.2

The condition A1(ii) is established in Appendix A. Let D be a level set large enough such that
v(D) > 0; Proposition 4.8 then implies that there exists a constant ¢ < oo such that for any / > 0,
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E",[tp] < cV (x). This implies that for 0 < < 1 — a,

D D ™
E)(cl,)e |:Z(k + 1)'71| < ]E;(cl,)e [Z(Eg‘jéi [‘L’D])n:| < CUIE)((I,)(, |:Z yl-e (Xk)]

k=0 k=0 k=0

< C(V(x)+bEY, [tp]) < C'V (),

for some finite constants C, C’ independent of 6. Hence, A1(i) holds with r(n) ~ nltn. Finally,
PyV <V — cvVi—o 4 blc implies that PV <V — cyVl_"‘ + blp for any y € (0, 1) and the

level set D &ef {x, V=% < b[c(1 — y)]7'}. This yields Al(iii).

4.4. Proof of Proposition 2.4

Under A2, there exists a constant C — that does not depend on 6 — such that for any (x, ) € Xx ©,
n>0andx €1, oz_l],

yra ()C) .
e
see Appendix A. To apply Theorem 13 of Roberts and Rosenthal (2007), we only have to prove
that there exists « € [1, @~ 1] such that the sequence {V*%(X,); n > 0} is bounded in probability,
which is equivalent to proving that {Vﬂ (X3); n > 0} is bounded in probability for some (and thus

any) B € (0, 1] . This is a consequence of Lemma 4.11 applied with W = V# for some g € (0, 1]
and r(n) = (n + 1)!*7 for some 7 > 0 (see the proof of Corollary 2.2 for similar computations).

1Py (x,) =@ty <C

Lemma 4.11. Assume that there exist a set C and functions W :X — (0,400) and r:N —
(0, +00) such that r is non-decreasing, PW < W on C¢ and

sup PgW < 400, sup sup E)(Cl)g [r(ze)] < +o0, Z{l/r(k)} < +00.
Cx® I Cx® P2

For any probability distributions €1, & on X, ©, respectively, {W (X,,), n > 0} is bounded in prob-
ability for the probability Pg, ¢,.

Proof. Let € > 0. We prove that there exist M, N, such that for any M > M, and n > N,
Pro(W(X,)> M) <e€.Choose N such that for any n > N,

T
Es.,sz[;c A 1} <e/3. supsup ES, r(ze)] Y _{1/r(k)} < €/3,

k>n
and choose M, such that for any M > M, N supeyq PoW < €M /3. We write

n—1

Pe, e, (W(Xa) = M) = > Py, (W(Xu) = M, Xy €C, Xir1:n ¢.C)
k=0

+ Py 5, (W(Xp) = M, X0, ¢ C).
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By the Markov inequality, for n > N,

T
Pey 6, (W(Xn) = M, Xon ¢ C) < Py &5 (Xom ¢ C) < Py g, (tc > 1) < Egy [gc A 1} <€/3.

Furthermore, for n > N,

n—N¢
Z PEl,Sz(W(Xn) >M, X, €C, Xpq1:n & C)
k=0
n—Ne
= Z ]P)Sl»fz(Xk €C, Xiy1:0 ¢0)
k=0
n—N¢ NN,
I
= Z Eg, 6, []lC(Xk) sup sup P;’)g (X1n—k ¢ C)] < Z sup sup P,((l,)e(fc >n—k)
k=0 I Cx® = 1 cxe

n

1 0
< ——sup sup E ', [r(ze)] <€/3.
k_XNZ r)) 1 cxo

Finally, for n > N, we write
n

Y Peo(W(Xp) = M. Xp €C, Xiy1n £C)
k=n—Nc+1

n
< Y Eep[1eX0PY o (W(Xnoi) = M. X1 ¢ C)].
k=n—Nc¢+1

We have, forany k € {n — N+ 1,...,n}and (x,0) €C x O,
1 1
B (W (Xn) = M. X1k ¢ C) < - B IW (X0 Tee (Kini-)] < 2 ESIW XD,

where, in the last inequality, we used the drift inequality on W outside C. Hence,
. N,
D Peo(WX0) = M, Xk €C, Xipin ¢C) < <= sup PyW (x) < ¢/3.

k=n—Nc+1 Cx6

The proof is thus complete. ]
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4.5. Proof of Theorem 2.5

5

By using the function g, introduced in Section 4.1.4 and by Proposition 4.9, we write, P, g-a.s.,

Y F X =07 (-7 8P (Xe. 6 —ES) o [25TV (X1, 01)])
k=1 k=1
n'(1-a)” IZ {80 Xk, 01) — By 9250 (X, 601 Fi 1]

n'(-a)” 12 0 [857 (X, 00| Fi1]
— (1= a)E o [35TD (Xir1, Oy )17 ]}
- 0)712 {89 Xk, 00) — Ex 0[8% (X, 001 Fk-1]}
+n7 ' 1 —a) By o[8"7 (X1, 001 F0] — B o[ 85D (X1, 0D Fa ]}

—a)” IZE o[88D (Kisr, O DI Fi .

We apply the above inequalities with a = a,, and consider the different terms in turn. We show
that they tend [Py p-a.s. to zero when the deterministic sequence {a,,n > 1} satisfies conditions
which are verified, for example, with a, = (n + 1)~% for some ¢ such that

>0, 20 <1—(05vB(1-—a)7!), c<1—-p—a) .
To prove that each term converges a.s. to zero, we use the following characterization:

[v6>o lim ]P’(sup|Xm|>e>] e  [{X,,n>0}— 0P-as.].

+00 m>n

Hereafter, we assume that | f|,s = 1. In the following, ¢ (and, below, c1, ¢2) is a constant, the
value of which may vary from appearance to appearance.

Convergence of Term 1. Set p def (1 —a)/B. We prove that
n' 1 —ay)™! Z 180Xk, 00 — ey, [80 (Xk. 001 Ficr ]} — 0 Pgy g,-as.,

provided that the sequence {a,,n > 0} is non-increasing, limn%oonmax(l/p’l/z)’l/an =0,
>on n~HpmaxA/p1/2=1 /4 1P < 400 and Doplan —an—1 |an_fl [nmax(/p.1/2=1 1 1 < 400.
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def def
Proof. Define D, ; = 37 (X1, 60) — Ee, 6,185 (Xi, 001 Fi_11; Sui = Z, \ Dn,jifk <nand

S,,kdffz D,,,j~|—z —n41 Dj.jif k> n;and R,,difZ” 1D — Dy _1,j. Then, for each n,

{(Sn.k» fk) k >1}isa martlngale For k > n and by Lemma B 1, there exists a universal constant
C such that

n k
Egl,gznsn,uf’]sckma’“”/z’”‘(ZEsl,ezﬂDn,nPH > Eél,éz[le,ﬂp])
Jj=1 j=n+1

k
< 1| flysk™ P2D1q PN Ry 0 [V(X))] (18)
j=1

<1l flysk™XPI2D g P (v),

where we used (7) and Proposition 4.6(ii). It follows that for any n > 1, limy_ 0o N7 PEg, ¢,
(ISu.NIP) <c1 limpy_s oo (N™XA/P1/2=1 10 3P — (0. Then, by the martingale array extension of
the Chow—-Birnbaum—Marshall inequality (Lemma B.2),
> 8)
o

ZDM
P
SZ(k”—<k+1>”)Esl,&[lsn,kl"H( P A |Rk|p]) .

27PSPP,. gz<supm " —am™

j=1
k=n k=n+1

Under the assumptions on the sequence {a,,n > 0} and given the bound (18), the first term in
the right-hand side tends to zero as n — 400. To bound the second term, we first note that
{(ZIJ‘.:1 Dy j — Dy—1,j, Fk), k > 1} is a martingale for each n. Therefore, by Lemma B.1 and
the definition of D, ;,

n—1
B, &,[|Ra |1 < Cn™@P/2D"UN R o [1Dyy j — Dy1,j17]
j=1
n—1 )
S 2CnmaX(P/2,l)—1 ZES],&Hgl(l,J,)(X]’ 9]) _ gt(li) 1 (X], 9])|p]
j=1

Then, using (8) (with ¢ = 00) and the usual argument for bounding moments of VA(X i), we get

l
E/% [IRa|?] < 1| Flysn™ V2P 0, — a0, a2 61(V).

Under the assumptions, ), n IE;/ Iéz[|Rn |”] < 400 and this completes the proof. O

Convergence of Term 2. We prove that

n (1 = an) B g [0 (X1, 0 Fo) —
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provided that lim, na, = +00 and lim, a, = 0.

Proof. By Theorem 4.10 applied with ¢ = 400, it may be proven that there exist constants ¢, N
such that

[Be, [0 (X101 7o) | < eay '61(V) + (1= (1 —an™) ' N

Divided by n='(1 — ay,), the right-hand side tends to zero as n — +o0. [l
Convergence of Term 3. We prove that
n (= a) By 5 [80T) (Xng1, 00 DIF] — 0 Py gy-as.,

. 1 . . . . —B(1—a) -]
provided that the sequence {n lan Lpn> 1} is non-increasing, lim,, n! B(1-a) a, = 400,

Y (nay)~ =P < 400 and lim, a, = 0.

Proof. There exist constants cq, ¢z, N such that for any »n large enough (i.e., such that 1 —a, >
1/2)and p & (1 — a)p~!

]P’gl,gz(sup m~ 1 —ap,)~! |Egl‘g2[gam+1)(xm+l,9m+l)|fm]| > 8)
m>n
S2”5_"Esl,sz[5“Pm_p|Esl,s (& ™" K1, Ons DI ]| ]
m>n

<2P87F Z m~ PR, EZHE‘& & [g(mﬂ)(xmﬂ’0"1+1)|‘7:m]’p]

m=>n
<2677y m e g[8 X, Oms )]
m>n
2p—1 N !
<2757 Yy m” { —5 B e[V (X 1)]+62<—> }
MZ; ap e " (1= (1 =an)")

where we used Theorem 4.10 with ¢ = 4-00. Furthermore, by Propositions 4.6(i), 4.7 and the
drift inequality,

Pey.eo (sup m ™" (1 = a) ™' [Ee, &, [8007) X1, 61 F ] 2 6)
m>n

2P| _, _ —P,4 - N ’
< 57 {n pal’l PEglygz[V(Xn)]‘FmZ;m pamp—'—r;lm p<m> }

2P| _, _ r i —Pg - N ’
ST ot S () |

Under the stated conditions on {a,,, n > 1}, the right-hand side tends to zero as n — +o00. O
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Convergence of Term 4. We prove that

n
ann™ ' (1= an) ™'Y ey 6 [85TD (X1, O DIF] — 0 Py gy-as.,
k=1

provided that {a}lA[(l—“—ﬁ)/a]nq

lim, a, =0.

ANd—a=p)/e], —

. . . 1
,n > 1} is non-increasing, Zn a, I « 400 and

Proof. Choose g > 1 such that 8 + /g <1 — «. Fix € > 0. From Theorem 4.10, there exist
constants C, N such that foranyn > 1,1 >0, (x,0) e X x O,

160 (x,0)| < Cap/ 4™ V1 (x) £ 4eN (1 — (1 —a)V) ™.

Hence, for n large enough such that (1 — a,) > 1/2, we have

n
amn™' (1= a) ™Y By 6 [85Y Xirr, kD)1 At
k=1

n
—1 _
<8ayeN(1— (1 —an™) ™ +2Ca, 0" e, 6 [VA1(Xp 1) Fil
k=1

n
<8a,eN(1— (1 —an") ™ +2Ca)n™" Y V!4 (Xp) +2Cay b,
k=1

where we used 8 + «/q < 1 — « and Proposition 4.6(i) in the last inequality. Since lim, a, =0
and lim, a,e N(1 — (1 — a,)V)! =€, we only have to prove that a,ll/qn_1 Yot vi—e(x)
converges to zero Pg g,-a.s. By Kronecker’s lemma (see, e.g., Section 2.6 of Hall and Heyde
(1980)), this amounts to proving that ;- a,:/qk_1 V1=2(Xy) is finite a.s. This property holds
upon noting that, by Proposition 4.7 and Proposition 4.6(i),

Et, [Za;/"k‘ V“"(X,a} <a,/ n B 6 [VXDI+ Y a/ k!

k>n k>n
<a/ "N E W) +bn) + > a) k!
k>n
and the right-hand side tends to zero under the stated assumptions. ]

4.6. Proof of Proposition 2.6

We only give the sketch of the proof since the proof is very similar to that of Theorem 2.5.
We start by proving a result similar to Theorem 4.10. Since D = X, the sequence {z¥, k > 0} is
deterministic and 7! = t¥ 4- N + 1. By adapting the proof of Theorem 4.10 ( f is bounded and
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D = X), we establish that for any € > 0, there exists an integer n > 2 such that forany 0 <a < 1,
any bounded function f,/ > 0and (x,0) € X x O,

(|f|1)71|§5(,l)(x,9)| <n +€(1 - —Cl)n)_ln_

We then introduce the martingale decomposition as in the proof of Theorem 2.5 and follow along
the same lines (with any p > 1).

Appendix A: Explicit control of convergence

We provide sufficient conditions for the assumptions A1(ii) and AS. The technique relies on the
explicit control of convergence of a transition kernel P on a general state space (T, B(T)) to its
stationary distribution .

Proposition A.1. Let P be a ¢-irreducible and aperiodic transition kernel on (T, B(T)).

(i) Assume that there exist a probability measure v on T, positive constants ¢, b, ¢, a measur-
able set C, a measurable function V : T — [1, +00) and 0 < a < 1 such that

P(x,)>1c(x)ev(), PV <V —cV™ 4 b10. (19)

Then P possesses an invariant probability measure 7 and w(V1~%) < +o0.

(ii) Assume, in addition, that c infee yl-e>p supe V < 400 and v(C) > 0. There then exists
a constant C depending on supe V, v(C) and €, o, b, ¢, such that for any 0 < <1 —«
and 1 <k 50{’1(1 - B),

(n+ D HP (x, ) = ()llys < CVET*(x). (20)

Proof. Conditions (19) imply that V is unbounded off petite set and P is recurrent. They also
imply that {V < +o00} is full and absorbing. Hence, there exists a level set D of V large enough
so that v(D) > 0. Following along the same lines as in the proof of Proposition 4.8, we prove
that supp Ex[tp] < +00. The proof of (i) in concluded by Theorems 8.4.3 and 10.0.1 of Meyn
and Tweedie (1993). The proof of (ii) is given in, for example, Fort and Moulines (2003) (see
also Andrieu and Fort (2005); Douc et al. (2007)). U

When b < ¢, cinfee V1=® > b Otherwise, it is easy to deduce the conditions of (ii) from
conditions of the form (i).

Corollary A.2. Let P be a ¢-irreducible and aperiodic transition kernel on (T, B(T)). Assume
that there exist positive constants b, c, a measurable set C, an unbounded measurable function
V:T — [1,+00) and 0 < « < 1 such that PV <V —c¢V1i=® 4 blc. Assume, in addition, that
the level sets of V are 1-small. There then exist a level set D of V, positive constants ep, cp and
a probability measure vp such that

P(x,) > 1px)epvp(), PV <V —cpV'™ +bip,
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supp V < +00, vp(D) > 0, and cp infpe V7% > b.

Proof. Forany 0 <y <1, PV <V —ypcVI= 4 blp, with D, &ef (VI=* < blc(1 — )]}
Hence, supp, V < 400 and for y close to 1, we have ycinfD; V1= > p. Finally, the drift
condition (19) implies that the set {V < 400} is full and absorbing and thus the level sets {V < d}
are accessible for any d large enough. g

The 1-smallness assumption is usually done for convenience and is not restrictive. In the case
where the level sets are petite (and thus m-small for some m > 1), the explicit upper bounds get
intricate and are never given a detailed treatment in the literature (at least not in the polynomial
case). Nevertheless, it is a recognized fact that the bounds derived in the case m = 1 can be
extended to the case m > 1.

Appendix B: L?-martingales and the
Chow-Birnbaum-Marshall inequality

We deal with martingales and martingale arrays in the paper using the following two results.

Lemma B.1. Let {(Dy, Fr),1 < k > 1} be a martingale difference sequence and M, =
Y ey Dx. Forany p > 1,

n
E[|My|7] < Cn™P/2D=1N (| Dy |P), @1
k=1
where C = (18pg'/?)?, p~ ' 4+ ¢~ = 1.

Proof. By Burkholder’s inequality (Hall and Heyde (1980), Theorem 2.10) applied to the mar-
tingale {(M,, F,),n > 1}, we get

k p/2
E<|Mn|">sCE[(Z|Dk|2) }
k=1

where C = (18pq!/?)?, p~! + ¢~! = 1. The proof follows by noting that

n p/2 n
(Z |Dk|2> <nmxXPEDZIN T Dy, (22)
k=1

k=1

To prove (22), note that if 1 < p <2, then the convexity inequality (a 4+ b)* < a* + b%, which
holds true for all @, b > 0 and 0 < a < 1, implies that (3_"_ | D[P/ < S 0_, |Dk|P. If p > 2,
then Holder’s inequality gives (3{_, |Dx|*)P/? <nP/2=1(33_, | Dx|P). O
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Lemma B.2 can be found in Atchade (2009) and provides a generalization to the classical
Chow-Birnbaum—-Marshall inequality.

LemmaB.2. Let{D, ;, F, i, 1 <i <n},n > 1, be a martingale-difference array and {c,, n > 1}
a non-increasing sequence of positive numbers. Assume that F, ; = F; for all i, n. Define

,,kd_efZDn,, ifl<k<n and S,,kd_efZD,,,Jr Z D ;. ifk>n
j=n+1
dfn 1
= 2:(Dnj n Lj)
Forn<m<N,p>1land X >0,

N-—1

2P APB( max Myl > 1) < REASNI) + D] —f DE(S,,;17)
j=n

N p
+]E|:( > cj|Rj|> } (23)
j=n+1

Appendix C: Proofs for Section 3.2

In the proofs, C will denote a generic finite constant whose actual value might change from one
appearance to the next. The proofs below differ from those in earlier works (see, e.g., Fort and
Moulines (2000); Douc et al. (2004)) since g is not assumed to be compactly supported.

C.1. Proof of Lemma 3.3

Lemma C.1. Assume D1 and D2. For all x large enough and |z| < n|x|V, t — Vi(x+12) is twice
continuously differentiable on [0, 1]. There exist a constant C < 400 and a positive function &
such that im0 £(x) = 0, such that for all x large enough, |z| < n|x|" and s < s,,

sup [V2Vi(x +12)] < CsVy(x)|x 2D (s + (x)).
tel0,1]

Proof. |x + z| > |x| — n|x|¥ = (1 — n)|x|" so that t — V,(x 4 tz) is twice continuously differ-
entiable on [0, 1] for |x| large enough. We have
V. t
IV2V,(x +12)] < sVs(x)%Wlnn(x +1z)Vinm(x +12) 7]
s (X
IVZInm(x +12)]
X
|Vlnn(x +t2)Vinn(x +12)T| )
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Under the stated assumptions, there exists a constant C such that for any x large enough and
|z < nlx]”,

sup x|~

( |V2Inm(x +12)] > D
s <
tel0,1]

+ S+ ———
IVInm(x +tz2)Vinm(x +12)7] d?(1—n)
and

sup |ViInz(x +12)Vinz(x +12)7) < [x[2"=V D31 — plx|v=1)2m=D,
te[0,1]

Finally,

a(x+tz)\"° a(x+tz)\"°
sup (¥> <1+4s.Dilz| sup |x+tz|™"  sup (Q) ,
re[0,1],5<s, \  T(X) 1€[0,1] re[0,1],5<s, \ T (X)

which yields the desired result upon noting that |z||x + 7z ' < nlx|VT"~ 11 — x|V~ is
arbitrarily small for x large enough. ]

We now turn to the proof of Lemma 3.3. For x € X, define R(x) :={y e X:m(y) <7 (x)} and
RGx) —x ¥y —x:y e R(x)). We have

PoVy(x) — Vi(x) = / (Vo (x +2) — Vo)) o (pirep(d2)

+ / (Vir+2) - voc))(M - 1>619(Z)HLeb(dZ)~
R(x)—x 7 (x)

If x remains in a compact set C, then using D2(ii) and the continuity of x — V;(x), we have
Vs(x +2) < C(1 4+ exp(sDolz|™)). It follows that

sup sup{ Py Vi (x) — Vs(x)} < C SUP/ (1 + eXP(SDolz|m))6]0(Z)MLeb(dZ) < 4o00.
6O xeC 0e0 J R(x)—x

More generally, let x be sufficiently large. Define /(x) def logm(x), Ry (x,z) o Vi(x +2) —
Vs () + s Vs 0z, VIO)), R0, 2) € (x + ()™ — 1 = (2, VI(x)). Using the fact that
the mean of gy is zero, we can write Py Vi(x) — Vi(x) = I1(x,0,s) + Ih(x,0,s) + I3(x,6,s),
where

Il(x,Q,S)dzef—sVs(X) . (z, VI(x))?qe () itren(d2),
def w(x +2z2)
h(x,0,5) = /Rv(x,z)qe(z)MLeb(dz)Jr/ Rv(x,z)(i - 1)40(Z)MLeb(dZ)
R(x)—x 7 (x)
and
I3(x,0,s) &g Vi (x) Ry (x,2){z, VI(x))qa(z) tLeb(d2).

R(x)—x
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C.1.1. First term

It follows from (Fort and Moulines (2000), Lemma B.3 and proof of Proposition 3) that, un-
der D2(i), there exists » > 0 such that for all 6§ € ©,

/R o (z, VI(x))?qo (2) iLeb(dz) > b|VI(x)]?.

Hence, supgeg 11(x, 0, 5) < —sVy(x)bdf|x*" 1.

C.1.2. Second term

For z € R(x) — x, m(x + z) < w(x). Therefore, |I5(x,0,s)| < 2f |Rv (x,2)|q0(2) hLeb(dZ). By
Lemma C.1, there exists C < +o00 — independent of s for s < s, — such that for any |z| < n|x|Y,

IRy (x,2)| < CsVy(0)|x 2™ D)z (s + e(x)).

This implies that there exists a constant C < 400 — independent of s for s < s, — such that

/ IRy (x, 2)Ig0 (D) it1eb(dz) < CsVi(x)|x 2™V (s + e(x)) / 121° g6 (2) ptLen (dz)

Vi(x +2)
+ Vi (x) — 2 g9 (2) Len(d2)
{olzl=nlxry Vs(x)
+ CVy(x)|x|™! / |21q0 (2) iLeb (d2).
{z,1z]=nlx|V}

There exists a constant C such that for 6 € ® and s < s,, the first term in the right-hand
side is upper bounded by CsV; (x)]x|2™=D (s + e(x)). Under D3, the second term is upper
bounded by Vi (x)|x 2= Dg(x) with limy|— 100 €(x) = O uniformly in @ for # € ®, and in
s for s < s,. Since gy is a multivariate Gaussian distribution, there exists A, > 0 such that
SUPgco f exp(k*|z|2)qg(z)uLeb(dz) < +o0o. Under D3, the third term is upper bounded by
CV,(x)|x|2m=D exp(—kn2|x|2v) for some A € (0, A,), uniformly in 6 for 6 € ®, and in s for
s < s,.. Hence, we have proved that there exists C, < oo such that for any s < s,,

sup | (x, 0, $)] < Cu Vs (x)[x 2D (5% + e (x))
0e®

for a positive function ¢ independent of s and such that lim|y |, 100 £(x) = 0.

C.1.3. Third term

Following along the same lines as in the control of I>(x, 8, s), it may be proven that

B(x,0,s) < sVs(x)Dy|x|" ! / |z1(1 + Dilzllx " ")go (2) pren(dz)

{z,z]=nlx|"}

+ C Vs () |xPm=D / 123 g6 (2) iLeb (dz) < C V() ]x|?"Ve(x)

{z.1zI=<nlx|V}
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for a positive function ¢ independent of s, 6 and such that limy|— 100 £(x) = 0.

C.1.4. Conclusion

Let a € (0, 1). By combining the above calculations, we prove that by choosing s small enough

def
such that c, = bd12 — C,s >0, we have

sup Py Vi (x) < Vi(x) — ¢ Vs () [x 2D 4 b, 10 (x) (24)
0e®

< Vy(x) —0.5¢, V7% (x) 4+ b, 1c(x) (25)

for a compact set C. This proves A2(ii) and A4. A5 follows from the results of Appendix A.
A2(iii) and A3 follow from Lemma 3.2.

C.2. Proof of Lemma 3.4

An easy modification in the proof of Proposition 11 in Andrieu and Moulines (2006) (to adjust
for the difference in the drift function) shows that D(8,60) <2 fx |gecs (X) — G, 5 (X) | eLeb (dX).
We then apply Lemma 12 from Andrieu and Moulines (2006) to obtain that D(0,6") < C|e‘T —
ec,E’|S, where C is a finite constant depending on the compact ®. Hereafter, C is finite and its
value may change from one appearance to the next. For any /,n >0,¢ >0, x e R” and 0 € O,
we have

IP))(CI,)Q (D(@n, Ont1) = E) . eilEil’)g[D(an On+1]

1
< CEY,lens1 — eal + [ Bns1 — Tuls]

< CU+n+ D 1 +EY 1 X012+ VES X011 21).

D2(ii) implies that we can find C < oo such that |)c|2 < C¢(Vs(x)) for all x € X, where ¢ (¢) =
[In¢]*/™. From the drift condition (Lemma 3.3), Proposition 4.6(i) and the concavity of ¢, we
deduce that there exists C such that E;l’)g [1X, |2] < Cl[In Vg (x)]z/ "[lnn)?™. We conclude that for
any probability & such that & ([In Vs]z/’") < 400, lim, Pg, & (D (6, 644+1) = €) = 0 and for any
level set D of Vi,

lim sup sup ]P’il)e(D(Qn, Ont1) =€) =0.
=0 >0 pxe
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