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Multivariate COGARCH(1,1) processes are introduced as a continuous-time models for multidimensional
heteroskedastic observations. Our model is driven by a single multivariate Lévy process and the latent time-
varying covariance matrix is directly specified as a stochastic process in the positive semidefinite matrices.

After defining the COGARCH(1,1) process, we analyze its probabilistic properties. We show a sufficient
condition for the existence of a stationary distribution for the stochastic covariance matrix process and
present criteria ensuring the finiteness of moments. Under certain natural assumptions on the moments of the
driving Lévy process, explicit expressions for the first and second-order moments and (asymptotic) second-
order stationarity of the covariance matrix process are obtained. Furthermore, we study the stationarity and
second-order structure of the increments of the multivariate COGARCH(1,1) process and their “squares”.
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1. Introduction

In this paper, a multivariate extension of the continuous-time generalized autoregressive con-
ditional heteroskedasticity (COGARCH, for short) process of order (1,1) introduced in [26] is
defined and studied in detail. The one-dimensional COGARCH(1,1) process (see also [10,22,
27]) is given as the solution of

dGt = √
vt− dLt , (1.1)

dvt = −β(vt− − c)dt + αvt− d[L,L]dt , (1.2)

using the discontinuous part [L,L]d of the quadratic variation of a univariate Lévy process L,
parameters α,β, c > 0 and initial values G0 = 0, v0 ≥ 0. The process G is referred to as the
COGARCH(1,1) process and the variance process v as its volatility process, where the name
“volatility process” derives from the term typically used in economics.

Heteroskedastic data are often modelled with (normal) variance mixture models. In such a
model, one has Xn = √

vnεn for n ∈ N, where ε is an i.i.d. sequence and v a sequence of posi-
tive random variables modelling the current variance of the observations X. Typically, one has,
moreover, that εn and vn are, for fixed n ∈ N, independent. Obviously, equations (1.1) and (1.2)
constitute a continuous-time counterpart of a variance mixture model with some special process
for the variance and driven by a single Lévy process. Loosely speaking, the increments dLt are
“mixed” with the variance vt− and the two are independent for fixed t .

In a multivariate setup, the positive variance v needs to be replaced by a covariance matrix
process V . Thus, the volatility process has to be a stochastic process in the positive semidefinite
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matrices. This requirement leads to challenging questions in modelling and interesting math-
ematical issues since, in particular, only very few continuous-time stochastic processes in the
positive semidefinite matrices have been thus far studied (mainly various “Wishart” processes,
see [11,12,14,19,20]; or, recently, Ornstein–Uhlenbeck-type processes, see [5,34,35]). Appropri-
ate multivariate models for heteroskedastic data are, however, clearly needed because in many
areas of application, one has to model and understand the joint behavior of several time series
exhibiting non-trivial interdependencies. Moreover, for various reasons (for example, unequally
spaced observations, inference at several frequencies or amenability to continuous-time finan-
cial theory), it is often desirable to use continuous-time models instead of related discrete-time
models like GARCH models, for instance.

After briefly stating some preliminaries regarding notation and Lévy processes in Section 2,
we introduce our multivariate COGARCH(1,1) processes (MUCOGARCH(1,1), for short) in
Section 3 and establish well-definedness. Thereafter, we analyze its volatility process in Sec-
tion 4. In the first part of that section, we present a univariate COGARCH(1,1) process that
bounds the volatility process in a norm intrinsically related to the autoregressive parameter and
use this bound to give sufficient conditions for the finiteness of moments. This is followed by
a demonstration that the volatility process alone and the MUCOGARCH(1,1) process together
with its volatility are strong Markov processes. Moreover, we establish conditions for the exis-
tence of a stationary distribution of the volatility in Section 4.2. In the last part of Section 4, we
calculate the second-order structure of the volatility process explicitly under certain assumptions
on the moments of the driving Lévy process and establish (asymptotic) second-order stationarity.

In Section 5, we focus on the increments of the MUCOGARCH(1,1) process itself, showing
that it has stationary increments provided the volatility is stationary. Thereafter, we calculate
the second-order moment structure of the increments (that is, the returns in a financial context)
observed on a regularly spaced discrete grid and their “squares” (that is, the increments times
their transposes). Here, we obtain, in particular, that the increments have zero autocorrelation, but
their “squares” have exponentially decaying autocorrelation. Moreover, the explicit expressions
for the moments obtained make the processes amenable to statistical estimation.

Finally, we present all proofs, together with auxiliary technical results, in Section 6.

2. Preliminaries

2.1. Notation

We denote the set of real m × n matrices by Mm,n(R). If m = n, we simply write Mn(R) and
denote the group of invertible n × n matrices by GLn(R), the linear subspace of symmetric
matrices by Sn, the (closed) positive semidefinite cone by S

+
n and the open positive definite

cone by S
++
n . In stands for the n × n identity matrix. The natural ordering on the symmetric

n × n matrices shall be denoted by ≤, that is, for A,B ∈ Mn(R), we have that A ≤ B if and
only if B − A ∈ S

+
n (likewise, A < B ⇔ B − A ∈ S

++
d ). The tensor (Kronecker) product of two

matrices A,B is written as A ⊗ B . vec denotes the well-known vectorization operator that maps
the set of n × n matrices to R

n2
by stacking the columns of the matrices below one another. For

more information regarding the tensor product and vec operator, we refer to [24], Chapter 4. The
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spectrum of a matrix is denoted by σ(·) and the spectral radius by ρ(·). Finally, A∗ denotes the
transpose (adjoint) of a matrix A ∈ Mm,n(R).

Norms of vectors or matrices are denoted by ‖ · ‖. If the norm is not further specified, then it
is irrelevant which particular norm is used.

Throughout, we assume that all random variables and processes are defined on a given filtered
probability space (�, F ,P , (Ft )t∈T ), with T = N in the discrete-time case and T = R

+ in the
continuous-time one. Moreover, in the continuous-time setting, we assume the usual conditions
(complete, right-continuous filtration) to be satisfied.

Furthermore, we employ an intuitive notation with respect to (stochastic) integration with
matrix-valued integrators, referring to any of the standard texts (for example, [36]) for a com-
prehensive treatment of the theory of stochastic integration. Let (At )t∈R+ in Mm,n(R) and
(Bt )t∈R+ in Mr,s(R) be càdlàg and adapted processes and (Lt )t∈R+ in Mn,r (R) be a semi-
martingale. We then denote by

∫ t

0 As− dLsBs− the matrix Ct in Mm,s(R) which has ij th element
Cij,t = ∑n

k=1
∑r

l=1

∫ t

0 Aik,s−Blj,s− dLkl,s . Equivalently, such an integral can be understood in
the sense of [32,33] by identifying it with the integral

∫ t

0 As− dLs , with At being, for each fixed
t , the linear operator Mn,r (R) → Mm,s(R),X �→ AtXBt . If (Xt )t∈R+ is a semimartingale in R

m

and (Yt )t∈R+ one in R
n, then the quadratic variation ([X,Y ]t )t∈R+ is defined as the finite vari-

ation process in Mm,n(R) with components [X,Y ]ij,t = [Xi,Yj ]t for t ∈ R
+ and i = 1, . . . ,m,

j = 1, . . . , n.

2.2. Lévy processes

Later, we shall use Lévy processes (see [1,36,39], for instance) both in R
d and in the symmetric

matrices Sd . Thus, we briefly recall the relevant basic notions for them now.
We consider a Lévy process L = (Lt )t∈R+ (where L0 = 0 a.s.) in R

d which is determined
by its characteristic function in the Lévy–Khintchine form E[ei〈u,Lt 〉] = exp{tψL(u)} for t ∈ R+
with

ψL(u) = i〈γL,u〉 − 1

2
〈u, τLu〉 +

∫
Rd

(
ei〈u,x〉 − 1 − i〈u,x〉I[0,1](‖x‖))νL(dx), u ∈ R

d,

where γL ∈ R
d , τL ∈ S

+
d and the Lévy measure νL is a measure on R

d satisfying νL({0}) = 0
and

∫
Rd (‖x‖2 ∧ 1)νL(dx) < ∞. Moreover, 〈·, ·〉 denotes the usual Euclidean scalar product on

R
d .
We always assume L to be cadlag and denote its jump measure by μL, that is, μL is the

Poisson random measure on R
+ × R

d \ {0} given by μL(B) = �{s ≥ 0 : (s,Ls − Ls−) ∈ B} for
any measurable set B ⊂ R

+ ×R
d \ {0}. Likewise, μ̃L(ds,dx) = μL(ds,dx)−ds νL(dx) denotes

the compensated jump measure.
If

∫
‖x‖>1 ‖x‖2νL(dx) < ∞, then L has finite mean and covariance matrix given by

E(L1) = γL +
∫

‖x‖>1
xν(dx), var(L1) = τL +

∫
Rd

xx∗νL(dx). (2.1)
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Provided τL = 0 and
∫
‖x‖≤1 ‖x‖νL(dx) < ∞, the Lévy process L has paths of finite variation

and

ψL(u) = i〈γ̃L, u〉 +
∫

Rd

(
ei〈u,x〉 − 1

)
νL(dx) with γ̃L = γL −

∫
‖x‖≤1

xνL(dx).

Regarding matrix-valued Lévy processes, we will only encounter matrix subordinators (see
[3]), that is, Lévy processes with paths in S

+
d . Since matrix subordinators are of finite varia-

tion and tr(X∗Y) (with X,Y ∈ Sd and tr denoting the usual trace functional) defines a scalar
product on Sd linked to the Euclidean scalar product on R

d2
via tr(X∗Y) = vec(X)∗ vec(Y ) =

〈vec(Y ),vec(X)〉, the characteristic function of a matrix subordinator can be represented as

E
(
ei tr(L∗

t Z)
) = exp(tψL(Z)), Z ∈ Sd ,

where ψL(Z) := i tr(γLZ) +
∫

S
+
d

(
ei tr(XZ) − 1

)
νL(dX)

with drift γL ∈ S
+
d and Lévy measure νL.

The discontinuous part of the quadratic variation of any Lévy process L in R
d ,

[L,L]dt :=
∫ t

0

∫
Rd

xx∗μL(ds,dx) =
∑

0≤s≤t

(
Ls)(
Ls)
∗

is a matrix subordinator with drift zero and Lévy measure given by

ν[L,L]d(B) =
∫

Rd

IB(xx∗)νL(dx)

for all Borel sets B ⊆ Sd .

3. Definition of multivariate COGARCH(1,1) processes

The main idea for the definition of a multivariate COGARCH(1,1) process is to replace the noise
ε of a multivariate GARCH(1,1) process (see [6,16] and references therein) by the jumps of a
multivariate Lévy process L, and the autoregressive structure of the covariance matrix process
by a continuous-time autoregressive (AR) structure (that is, an Ornstein–Uhlenbeck (OU) type
structure). So, the idea is again basically the same as in [10] for the univariate COGARCH(p,q)
process.

In the simplest BEKK GARCH(1,1) model of [16], the volatility process is given by

�n = C + A�
1/2
n−1εn−1ε

∗
n−1�

1/2
n−1A

∗ + B�n−1B
∗ (3.1)

with C ∈ S
+
d , A,B ∈ Md(R) and (εn)n∈N0 being an i.i.d. sequence in R

d . This shows that the
dynamics of (�n)n∈N0 are those of a multivariate AR process, which is “self-exciting” in the

sense that we have an AR structure with the noise given by (�
1/2
n−1εn−1ε

∗
n−1�

1/2
n−1)n∈N.
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Replacing the AR structure with an OU-type structure, using V
1/2
t− d[L,L]dt V

1/2
t− as “noise”,

where L is a d-dimensional Lévy process, and using the same linear operators as for positive
semidefinite processes of OU type (see [5,35]) now leads to a multivariate continuous-time
GARCH(1,1) process G (referred to as a MUCOGARCH(1,1) process in the following) given
by the following definition.

Definition 3.1 (MUCOGARCH(1,1)). Let L be an R
d -valued Lévy process and A,B ∈

Md(R), C ∈ S
++
d . The process G = (Gt )t∈R+ solving

dGt = V
1/2
t− dLt , (3.2)

Vt = C + Yt , (3.3)

dYt = (BYt− + Yt−B∗)dt + AV
1/2
t− d[L,L]dt V

1/2
t− A∗, (3.4)

with initial values G0 in R
d and Y0 in S

+
d , is then called a MUCOGARCH(1,1) process.

The process Y = (Yt )t∈R+ with paths in S
+
d is referred to as a MUCOGARCH(1,1) volatility

process.

As we are only dealing with MUCOGARCH processes of order (1,1), we often write only
“MUCOGARCH” instead of “MUCOGARCH(1,1)” in the sequel.

We can also directly state a stochastic differential equation (SDE) for the covariance matrix
process V :

dVt = (
B(Vt− − C) + (Vt− − C)B∗)dt + AV

1/2
t− d[L,L]dt V

1/2
t− A∗. (3.5)

This SDE has a “mean-reverting structure” (provided σ(B) ⊂ (−∞,0)+ iR), namely, V returns
to the level C at an exponential rate determined by B , as long as there are no jumps. However,
since all jumps are positive semidefinite, as we shall see, C is not a “mean” level, but a lower
bound.

Equivalently, we can use the following representation using the vec operator:

dGt = V
1/2
t− dLt , Vt = C + Yt ,

d vec(Yt ) = (B ⊗ I + I ⊗ B)vec(Yt−)dt + (A ⊗ A)(V
1/2
t− ⊗ V

1/2
t− )d vec([L,L]dt ),

d vec(Vt ) = (B ⊗ I + I ⊗ B)
(
vec(Vt−) − vec(C)

)
dt + (A ⊗ A)(V

1/2
t− ⊗ V

1/2
t− )d vec([L,L]dt ).

For the MUCOGARCH process to be well defined, it is necessary that there exists a unique
solution to the above system of stochastic differential equations and that V does not leave the
set S

+
d . In the following, it is implicitly understood that our processes and stochastic differen-

tial equations are not living on the space Md(R) (resp., R
d2

), but on the linear subspace Sd of
symmetric matrices (resp., vec(Sd)). The latter can, as usual, be identified with R

d(d+1)/2, when
appropriate. The importance of this lies in the fact that S

++
d is an open subset of Sd and it is most

natural to consider (stochastic) differential equations on open sets.
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Theorem 3.2. Let A,B ∈ Md(R), C ∈ S
++
d and L be a d-dimensional Lévy process. The SDE

(3.4) with initial value Y0 ∈ S
+
d then has a unique positive semidefinite solution (Yt )t∈R+ . The

solution (Yt )t∈R+ is locally bounded and of finite variation. Moreover, it satisfies Yt ≥ eBtY0eB∗t

for all t ∈ R
+.

Remark 3.3. (i) An analogous result holds when considering C ∈ S
+
d and restricting the initial

value to Y0 ∈ S
++
d (“locally bounded” needs to be replaced with “locally bounded within S

+
d ”, as

defined in [5], Definition 3.1). All of the following results (except those regarding the existence
of stationary solutions) can be immediately adapted to this case.

(ii) For d = 1, it is straightforward to see that our definition agrees (after a reparametrization)
with the case p = q = 1 of the general COGARCH(p,q) definition given in [10], that is, Yt

agrees with their process α1Yt and our Vt with their Vt+. Hence, [10], Theorem 2.2, implies that
our definition agrees with the original definition given in [26].

Likewise, we could have considered the SDE (3.5). Using the relationship between (3.5) and
(3.4), we obtain the following.

Corollary 3.4. Let A,B ∈ Md(R), C ∈ S
++
d and L be a d-dimensional Lévy process. Assume

that the initial value satisfies V0 ≥ C. The SDE (3.5) then has a unique positive definite solution
(Vt )t∈R+ and Vt ≥ C + eBt (V0 − C)eB∗t ≥ C for all t ∈ R

+.

It may appear natural also to allow initial values V0 ∈ S
+
d with V0 < C. In this case, one still

has that Vt ≥ C + eBt (V0 − C)eB∗t needs to be true for any solution of (3.5), as long as it exists.
However, in this case, the solution of (3.5) may leave the set S

+
d and thus have only a finite

lifetime, as the following example shows. Take

C =
(

2 0
0 2

)
, V0 =

(
0.5 0
0 0.5

)
,

B =
(−0.5 ln(10/9) 0

1 −0.5 ln(10/9)

)
, x =

(
1
1

)

and L as the zero Lévy process. We then obtain that

eB =
√

9

10

(
1 0
1 1

)
and x∗V1x = −11

4
.

So, V1 /∈ S
+
d , although V0 ∈ S

+
d . Note that this problem also arises with positive probability if

the driving Lévy process is compound Poisson, as it may then happen that there is no jump until
time 1.

Remark 3.5. The insight gained from positive semidefinite OU processes in [5] suggests that all
eigenvalues of B should have negative real part if one wants a stationary COGARCH volatility
process as covariance matrix process. It is clear that, in this case, Vt → C as t → ∞ if the Lévy
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process had no jumps. Thus, in general, the process V tends to C, as long as the driving Lévy
process does not jump. The above counterexample shows that when the process V is smaller
than C (in the ordering of the positive semidefinite matrices), this does not occur in a “straight”
manner, whereas in the univariate model, the volatility process is always increasing below C (see
[27], Proposition 2).

Similar to the usual shot noise representation of OU-type processes, we have the following.

Theorem 3.6. The MUCOGARCH(1,1) volatility process Y satisfies

Yt = eBtY0eB∗t +
∫ t

0
eB(t−s)A(C + Ys−)1/2 d[L,L]ds (C + Ys−)1/2A∗eB∗(t−s)

(3.6)
for all t ∈ R

+.

Recently, [38] studied univariate equations of the form X(t) = J (t) + ∫ t

0 g(t − s)f (Xs−)dZs

and their relation to certain SDEs. In particular, they obtained uniqueness of the solutions under
uniform Lipschitz assumptions on f . Our equation (3.6) is a multivariate equation of this type,
with f being only locally Lipschitz. From the arguments given in [38], one sees that their Theo-
rem 5.2 remains valid in a multivariate setting. Using a localization procedure as in the proof of
[40], Theorem 6.6.3, this uniqueness result extends to f being defined only on an open subset and
locally Lipschitz. Hence, (3.6) provides an alternative characterization for the MUCOGARCH
volatility process.

So far, we have excluded the MUCOGARCH process G itself from the analysis. However, the
following result is obtained along the same lines as Theorem 3.2.

Theorem 3.7. Let A,B ∈ Md(R), C ∈ S
++
d and L be a d-dimensional Lévy process. The system

of SDEs (3.2), (3.4) then has a unique solution (Gt , Yt )t∈R+ with paths in R
d ×S

+
d for any initial

value (G0, Y0) in R
d × S

+
d . The solution (Gt , Yt )t∈R+ is a semimartingale and locally bounded.

4. Properties of the volatility process

4.1. Univariate COGARCH(1,1) bounds

We now show that, similarly to the COGARCH(p,q) case (see [10], Lemma 9.1), the norm
of a MUCOGARCH(1,1) volatility process can be bounded by a univariate COGARCH(1,1)

volatility process. This immediately gives useful conditions for the finiteness of moments and
has far-reaching implications regarding the existence of stationary distributions.

In the following, we shall consider a special norm that fits our model particularly well. ‖ · ‖2
denotes the operator norm on Md2(R) associated with the usual Euclidean norm. Assume, now,
that B is diagonalizable and let S ∈ GLd(C) be such that S−1BS is diagonal. We then define the
norm ‖ · ‖B,S on Md2(R) by ‖X‖B,S := ‖(S−1 ⊗ S−1)X(S ⊗ S)‖2 for X ∈ Md2(R). It should
be noted that ‖ · ‖B,S depends both on B and on the choice of the matrix S diagonalizing B .
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Actually, ‖ · ‖B,S is again an operator norm, namely the one associated with the norm ‖x‖B,S :=
‖(S−1 ⊗ S−1)x‖2 on R

d2
. Besides, ‖ · ‖B,S is simply the norm ‖ · ‖2, provided S is a unitary

matrix (see [23], page 308).

Theorem 4.1. Let Y be a MUCOGARCH volatility process with initial value Y0 ∈ S
+
d and driven

by a Lévy process L in R
d . Assume, further, that B ∈ Md(R) is diagonalizable and let S ∈

GLd(C) be such that S−1BS is diagonal. The process solving the SDE,

dyt = 2λyt− dt + ‖S‖2
2‖S−1‖2

2K2,B‖A ⊗ A‖B,S

(‖C‖2

K2,B

+ yt−
)

dL̃t ,

(4.1)
y0 = ‖vec(Y0)‖B,S

with

L̃t :=
∫ t

0

∫
Rd

‖vec(xx∗)‖B,SμL(ds,dx), λ := max(�(σ (B)))

and

K2,B := max
X∈S

+
d ,‖X‖2=1

( ‖X‖2

‖vec(X)‖B,S

)
,

is the volatility process of a univariate MUCOGARCH(1,1) process and y satisfies

‖vec(Yt )‖B,S ≤ yt for all t ∈ R
+ a.s. (4.2)

Moreover, K2,B ≤ ‖S‖2
2 maxX∈S

+
d ,‖X‖2=1

( ‖X‖2‖vec(X)‖2

) ≤ ‖S‖2
2.

Remark 4.2. (i) Provided S is unitary, K2,B = 1. Otherwise, an inspection of the proof shows that
the inequality (4.2) also holds if K2,B is replaced by ‖S‖2 in (4.1), which saves one from calcu-
lating the value of K2,B in practice. Likewise, ‖A⊗A‖B,S can be replaced by ‖A⊗A‖2 = ‖A‖2

2
since ‖(A⊗A)((C +Y�1−)1/2 ⊗ (C +Y�1−)1/2)‖B,S ≤ ‖S‖2

2‖S−1‖2
2‖(A⊗A)((C +Y�1−)1/2 ⊗

(C + Y�1−)1/2)‖2.
This can be done in all of the forthcoming results involving K2,B or ‖A ⊗ A‖B,S .
(ii) As can be seen from the proof, the diagonalizability of B is essential and, unfortunately,

it seems very intricate to extend the result to the non-diagonalizable case. In applications, how-
ever, this appears to be no severe constraint, as the non-diagonalizable matrices have Lebesgue
measure zero.

Since the finiteness of moments of univariate COGARCH(1,1) processes is well known from
[26], Section 4, we can now give sufficient conditions for the MUCOGARCH volatility process
to have some finite moments, which we will improve upon in Proposition 4.7.

Proposition 4.3. Let k ∈ N, Y0 ∈ S
+
d such that E(‖Y0‖k) < ∞ and let B be diagonalizable. As-

sume further that the MUCOGARCH volatility process Y is driven by a Lévy process L satisfying
E(‖L1‖2k) < ∞. Then E(‖Yt‖k) < ∞ for all t ∈ R

+ and t �→ E(‖Yt‖k) is locally bounded.
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4.2. Markovian properties and stationarity

Turning to the study of the Markovian properties of a MUCOGARCH process, we refer to stan-
dard references like [15,17,18] for definitions and necessary general results. Moreover, we im-
plicitly assume that our given filtered probability space is enlarged as in [36], page 293, to allow
for arbitrary initial conditions of the SDEs, and the weak Feller property is defined as in [15],
namely by demanding that the transition semigroup is stochastically continuous and maps the
bounded continuous functions on the state space into themselves.

The usual results on the Markov properties of SDEs (see [36], Section V.6) extend to locally
Lipschitz SDEs on open sets (see [40], Section 6.7.1.2, for details) and to closed sets, provided
the solution is ensured to stay in the closed set at all times and the SDE is defined on an open set
containing the closed set. The latter is the case for the MUCOGARCH, the closed set S

+
d and the

open set UC,ε as defined in the proof of Theorem 3.2. Thus, we obtain the following result.

Theorem 4.4. The MUCOGARCH process (G,Y ) and its volatility process Y alone are tempo-
rally homogeneous strong Markov processes on R

d × S
+
d and S

+
d , respectively, and they have the

weak Feller property.

One of the most important questions regarding Markov processes in applications is the exis-
tence of stationary distributions.

Theorem 4.5. Let B ∈ Md(R) be diagonalizable with S ∈ GLd(C) such that S−1BS is diag-
onal. Furthermore, let L be a d-dimensional Lévy process with non-zero Lévy measure, λ be
defined as in Theorem 4.1 and α1 := ‖S‖2

2‖S−1‖2
2K2,B‖A ⊗ A‖B,S . Assume that∫

Rd

log
(
1 + α1‖vec(yy∗)‖B,S

)
νL(dy) < −2λ. (4.3)

There then exists a stationary distribution μ ∈ M1(S
+
d ), that is, the set of all probability mea-

sures on the Borel-σ -algebra of S
+
d , for the MUCOGARCH(1,1) volatility process Y such that∫

Rd

((
1 + α1‖vec(yy∗)‖B,S

)k − 1
)
νL(dy) < −2λk (4.4)

for some k ∈ N implies that
∫

S
+
d

‖x‖kμ(dx) < ∞, that is, that the kth moment of the stationary

distribution is finite.

Of course, this result immediately translates to stationarity of V . Moreover, for d = 1, it re-
covers the necessary and sufficient stationarity condition of [26].

Remark 4.6. (a) From [26], Lemma 4.1(d), it follows that, if (4.4) is satisfied for k ∈ N, then it
is also satisfied for all k̃ ∈ N, k̃ ≤ k.

(b) Combining the results of Section 4.1 shows that α1 = ‖A‖2
2 and ‖ · ‖B,S = ‖ · ‖2 if B is

normal.



Multivariate COGARCH(1,1) 89

Establishing uniqueness of the stationary distribution and convergence to the stationary distri-
bution for arbitrary starting values appears to be a rather intricate question due to the Lipschitz
property holding only locally and the fact that d[L,L]d lives on the rank one matrices. However,
in the next section, we obtain at least asymptotic second-order stationarity and that the stationary
second-order structure is unique under some technical conditions.

To conclude this section, we consider some examples exploring the dependence of the station-
ary distribution on the parameters and the relation to the stationarity of univariate COGARCH
processes.

Example 4.1. Let c ∈ R
+\{0}, A,B ∈ Md(R) and L be a d-dimensional Lévy process. If V

satisfies

dVt = (
B(Vt− − cId) + (Vt− − cId)B∗)dt + AV

1/2
t− d[L,L]dt V

1/2
t− A∗, (4.5)

then Z defined by Zt = Vt/c satisfies

dZt = (
B(Zt− − Id) + (Zt− − Id)B∗)dt + AZ

1/2
t− d[L,L]dt Z

1/2
t− A∗, (4.6)

which does not depend on c. In particular, if μ ∈ M1(S
+
d ) is a stationary distribution for (4.6),

then μc ∈ M1(S
+
d ), defined by μc(W) = μ(W/c) for all Borel sets W ⊂ S

+
d , is a stationary

distribution for (4.5).

Example 4.2. Assume that A,B,C and Y0 are diagonal, the components of Y0 are independent
and the components of the Lévy process are completely independent, that is, whenever L has
a jump, then only one of the d components jumps. In this case, Y or V , respectively, consists
of d independent univariate COGARCH(1,1) volatility processes. If each of the d univariate
COGARCH(1,1) volatility processes converges in distribution to a stationary distribution, then
Y or V , respectively, converges in distribution to a stationary distribution. In this example, con-
dition (4.3) can be shown to imply the necessary and sufficient stationarity condition of [26],
Theorem 3.1, for all components simultaneously. Actually, condition (4.3) is stronger than re-
quiring that the univariate stationarity condition be satisfied for all components.

However, it should be noted that the picture is very different when Y0 is not diagonal because
then jumps in one component of L typically affect all components of Y . Hence, it is not clear
whether one still has convergence to a stationary distribution and whether this has to be the same
distribution as the limit distribution when Y0 is diagonal. When we have that Y is asymptotically
second order stationary (see Theorem 4.20 below) and the limiting distribution for a diagonal
Y0 has finite second moments, the off-diagonal (covariance) elements of Y or V , respectively,
necessarily converge to zero in L2 as t → ∞.

Example 4.3. A degenerate situation occurs if C ∈ S
+
d \S

++
d . Take d = 2, A = αI2, B = −βI2

with α,β ∈ R
+\{0} and C =

(
1
1

1
1

)
. If one has that Y0 = yC with y ∈ R

+ (possibly random),

then Y is at all times a scalar multiple of C and, when L jumps, all components (variance and
covariance ones) have a jump of the same height. However, one again has a completely different
picture if Y0 is chosen differently, for example, Y is in S

++
d at all times, provided Y0 ∈ S

++
d . This
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also shows that the assumption C ∈ S
++
d made in the definition of the MUCOGARCH processes

is essential to avoid pathological situations.

4.3. Second-order moment structure

Assuming stationarity and the existence of the relevant moments of the stationary solution, we
calculate explicit expressions for the moments of a stationary MUCOGARCH(1,1) volatility
process in this section, treat the non-stationary case along the way and present results regarding
(asymptotic) second-order stationarity. Due to the special structure of the stochastic differential
equation (3.4), especially due to the presence of the matrix square root, it is only possible under
certain assumptions on the Lévy process to obtain explicit formulae. The results of this chapter
provide the basis for method of moments estimation, provided the volatility process is (approx-
imately) observed and shows that the second-order structure of the volatility process is in line
with observed financial data, since the matrix exponential decay of the autocovariance is rather
flexible and has been found realistic in the analysis of OU-type models (see [34]).

Henceforth, we often assume the following in this section.

Assumption 4.1. (Yt )t∈R+ is a second-order stationary MUCOGARCH(1,1) volatility process.

Assumption 4.2. The pure jump part of the driving Lévy process (Lt )t∈R+ has finite variance
which is a scalar multiple of the identity matrix:

If we let Ld
t := ∫ t

0

∫
‖x‖≤1 x(μL(ds,dx) − ds νL(dx)) + ∫ t

0

∫
‖x‖>1 xμL(ds,dx) denote the pure

jump part of L, then this means that there exists a σL ∈ R
+ such that var(Ld

1 ) = ∫
Rd xx∗νL(dx) =

σLId .

This assumption is comparable to considering only standard Brownian motion in Brownian-
motion-based models and, hence, not very restrictive since any Lévy process with finite second
moments can be transformed into one satisfying Assumption 4.2 by a linear transformation and
since the variance of G can still be flexibly modelled via the remaining parameters, as will be
seen from Proposition 5.2.

First, we need a refinement of Proposition 4.3 to the case where B is not diagonalizable.

Proposition 4.7. Let Y be a MUCOGARCH(1,1) volatility process and k ∈ {1} ∪ [2,∞).
If E(‖Y0‖k) < ∞ and E(‖L1‖2k) < ∞, then E(‖Yt‖k) < ∞ for all t ∈ R

+ and t �→ E(‖Yt‖k)

is locally bounded.

We can now calculate the expected value of the volatility.

Theorem 4.8. Assume that Assumption 4.2 holds:

(i) If E(‖Y0‖) < ∞, then

E(vec(Yt )) = eBtE(vec(Y0)) +
∫ t

0
eB(t−s) ds σL(A ⊗ A)vec(C)
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with B := B ⊗ Id + Id ⊗ B + σLA ⊗ A. If B is invertible, then

E(vec(Yt )) = eBt
(
E(vec(Y0)) + σLB−1(A ⊗ A)vec(C)

) − σLB−1(A ⊗ A)vec(C) (4.7)

for all t ∈ R
+.

(ii) Under Assumption 4.1, the stationary expected value E(Y0) of the MUCOGARCH volatil-
ity process satisfies

BE(Y0) + E(Y0)B
∗ + σLAE(Y0)A

∗ = −σLACA∗. (4.8)

If B is invertible, then the following formulae hold:

E(vec(Y0)) = −σLB−1(A ⊗ A)vec(C) and
(4.9)

E(vec(V0)) = B−1(B ⊗ Id + Id ⊗ B)vec(C).

Remark 4.9. Observe that the stationary expectation is the limit of the expected value in (i) for
t → ∞ provided σ(B) ⊂ (−∞,0) + iR.

Theorem 4.5 can not only be used to show that Assumption 4.1 is satisfied, but also to ensure
the invertibility of B. Hence, Theorem 4.8 provides an explicit expression for the mean of the
stationary distribution of Theorem 4.5.

Lemma 4.10. Assume that (4.4) is satisfied with k = 1 for the MUCOGARCH volatility process
Y and that Assumption 4.2 holds. Then, B, defined as above, is invertible and σ(B) ⊂ (−∞,0)+
iR.

Before analyzing the variance, let us study the autocovariance function. If (Xt )t∈R+ is a
second-order stationary process with values in Rd , the autocovariance function acovX : R �→
Md(R) of X is given by acovX(h) = cov(Xh,X0) = E(XhX

∗
0) − E(X0)E(X0)

∗ for h ≥ 0 and
by acovX(h) = (acovX(−h))∗ for h < 0. As we are considering matrix-valued processes (Zt )t∈R

in the following, we set acovZ := acovvec(Z) in this case.

Theorem 4.11. (i) Under Assumptions 4.1 and 4.2, the autocovariance function of the
MUCOGARCH volatility process satisfies

d

dh
acovY (h) = (B ⊗ Id + Id ⊗ B + σLA ⊗ A) acovY (h) (4.10)

for h ≥ 0.
Hence,

acovY (h) = acovV (h) = e(B⊗Id+Id⊗B+σLA⊗A)h var(vec(Y0)), h ≥ 0. (4.11)

(ii) If Assumption 4.2 is satisfied and E(‖Y0‖2),E(‖L1‖4) are finite, it holds that

cov(Yu+h,Yu) = cov(Vu+h,Vu) = e(B⊗Id+Id⊗B+σLA⊗A)h var(vec(Yu)) (4.12)

for all u,h ≥ 0.
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The autocovariance function of the volatility process Y is thus exponentially decreasing in a
matrix sense, so the individual entries may decay as sums of exponentials, exponentially damped
sinusoids (if the eigenvalues have non-vanishing complex parts) or exponentially damped poly-
nomials (if the matrix is not diagonalizable).

However, we are so far lacking an explicit expression for var(vec(Y0)). Unfortunately, our
Assumption 4.2 on the second moment of the jumps of the driving Lévy process L seems not to
be sufficient to obtain an explicit expression for the variance.

As we shall see from the proofs, the quadratic variation of the vectorized discontinuous part
of the quadratic variation of the driving Lévy process,

[vec([L,L]d),vec([L,L]d)]dt =
∫ t

0

∫
Rd

vec(xx∗)vec(xx∗)∗μL(ds,dx),

which is again a pure jump Lévy process of finite variation, will appear in our calculations of the
second moment and we need it to have finite expectation. In fact, we even need to make specific
assumptions on its expectation.

To determine what assumptions are reasonable, let us assume for a moment that L is a d-
dimensional compound Poisson process with rate one and with jump distribution being the
d-dimensional standard normal distribution. This implies that [L,L]d is a compound Poisson
process with rate one and with the jump distribution being a Wishart distribution. Then, denoting
the d-dimensional standard normal distribution by N(dx) and noting that vec(xx∗)vec(xx∗)∗ =
(x ⊗ x)(x∗ ⊗ x∗) = (xx∗) ⊗ (xx∗), we have

E([vec([L,L]d),vec([L,L]d)]d1 ) =
∫

Rd

(xx∗) ⊗ (xx∗)N(dx)

(4.13)
= Id2 + Kd + vec(Id)vec(Id)∗,

from [30], Theorem 4.1. Here, Kd ∈ Md2(R) denotes the commutation matrix which can be
characterized by Kd vec(A) = vec(A∗) for all A ∈ Md(R) (see [30] for more details). This gen-
eralizes to the following result.

Lemma 4.12. Let L be a d-dimensional compound Poisson process with rate c and with jumps
distributed like

√
εX, where X is a d-dimensional standard normal random variable and ε is a

random variable in R
+ with finite variance and independent of X. Then,

E([vec([L,L]d),vec([L,L])d]d1 ) = cE(ε2)
(
Id2 + Kd + vec(Id)vec(Id)∗

)
. (4.14)

Moving away from a Lévy process of finite activity, a similar result holds for the following
variant of type G processes, a special kind of a normal mixture.

Definition 4.13 (Type ˜G). Let L be a d-dimensional Lévy process. If there exists an R
+-valued

infinitely divisible random variable ε independent of a d-dimensional standard normal random

variable X such that L1
L= √

εX, then L is said to be of type G̃. (Here,
L= denotes equality in law.)

We have chosen the name “type G̃” above because these processes correspond to a particular
case of multG laws as defined in [2], Definition 3.1. Actually, many interesting Lévy processes
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are of type G̃, for instance, the multivariate symmetric GH (NIG) processes with the parameter
� set to Id (see [9,31]). For details on distributions and Lévy processes of type G in general, we
refer to [2,29].

Lemma 4.14. Let L be a d-dimensional Lévy process of type G̃ with a finite fourth moment.
Then E([vec([L,L]d),vec([L,L]d)]d1 ) = ρL(Id2 + Kd + vec(Id)vec(Id)∗) with ρL ∈ R

+.

These results motivate the following assumption.

Assumption 4.3. The pure jump part of the driving Lévy process (Lt )t∈R+ has a finite fourth
moment, that is,

∫
Rd ‖x‖4νL(dx) < ∞, and there exists a real constant ρL such that

E([vec([L,L]d),vec([L,L]d)]d1 ) = ρL

(
Id2 + Kd + vec(Id)vec(Id)∗

)
.

Intuitively, this means that the jumps of L have the same fourth moment as a standard normal
distribution. This assumption is considerably more restrictive than Assumption 4.2. However, it is
comparable to the assumptions made for discrete-time multivariate GARCH processes (see [21])
and from the proofs, one sees that explicit results are only obtainable if the fourth moment of the
jumps is comprised of well-understood matrices which act on tensor products in a suitable way.

To state our next result, we need to introduce some additional special linear operators and
matrices. If we define

Q :Md2(R) → Md2(R),
(4.15)

(QX)(k−1)d+l,(p−1)d+q = X(k−1)d+p,(l−1)d+q for all k, l,p, q = {1,2, . . . , d},
then Q−1 = Q, obviously, and Q(vec(X)vec(Z)∗) = X ⊗ Z for all X,Z ∈ Sd (see [34],
Theorem 4.3). Furthermore, we define Q ∈ Md4(R) as the matrix associated with the linear

map vec◦Q ◦ vec−1 on R
d4

and Kd ∈ Md4(R) as the matrix associated with the linear map

vec(Kd vec−1(x)) for x ∈ R
d4

, where vec :Md2(R) → R
d4

. It is easy to see that both Q and Kd

simply permute the entries of a vector x ∈ R
d4

. Both Q and Kd are thus permutation matrices,
so we have ‖Q‖2 = ‖Kd‖2 = 1, where ‖ · ‖2 is the operator norm associated with the usual
Euclidean norm on R

d4
.

Theorem 4.15. Assume that Assumptions 4.2 and 4.3 hold.

(i) If E(‖Y0‖2) < ∞, then

d

dt
vec(E(vec(Yt )vec(Yt )

∗))

= d

dt
E

(
vec(Yt ) ⊗ vec(Yt )

)
(4.16)

= C vec(E(vec(Yt )vec(Yt )
∗)) + (

σL(A ⊗ A) ⊗ Id2 + AR
)

vec(C) ⊗ E(vec(Yt ))

+ (
σLId2 ⊗ (A ⊗ A) + AR

)
E(vec(Yt )) ⊗ vec(C) + AR vec(C) ⊗ vec(C),
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where

A = (A ⊗ A) ⊗ (A ⊗ A); R = ρL(Q + Kd Q + Id4)

C := (B ⊗ Id + Id ⊗ B) ⊗ Id2 + Id2 ⊗ (B ⊗ Id + Id ⊗ B)

+ σL

(
(A ⊗ A) ⊗ Id2 + Id2 ⊗ (A ⊗ A)

) + AR.

(ii) Under Assumption 4.1, the stationary second moment E(vec(Y0)vec(Y0)
∗) of the

MUCOGARCH volatility process satisfies

BE(vec(Y0)vec(Y0)
∗) + E(vec(Y0)vec(Y0)

∗)B∗

+ (A ⊗ A)RE(vec(Y0)vec(Y0)
∗)(A∗ ⊗ A∗)

(4.17)
= −σL[(A ⊗ A)vec(C)E(vec(Y0))

∗ + E(vec(Y0))vec(C)∗(A∗ ⊗ A∗)]
− (A ⊗ A)R(E(vec(Y0))vec(C)∗ + vec(C)E(vec(Y0))

∗ + vec(C)vec(C)∗)(A∗ ⊗ A∗),

with R := ρL(Q + KdQ + Id2).
Provided C is invertible, E(vec(Y0)vec(Y0)

∗) is given by

vec(E(vec(Y0)vec(Y0)
∗))

= −C−1[AR
(
vec(C) ⊗ vec(C)

)
(4.18)

+ (
σL(A ⊗ A) ⊗ Id2 + AR

)
vec(C) ⊗ E(vec(Y0))

+ (
σLId2 ⊗ (A ⊗ A) + AR

)
E(vec(Y0)) ⊗ vec(C)

]
.

Remark 4.16. The differential equation (4.16) is an inhomogeneous linear differential equation
with constant coefficients. Hence, it is standard to obtain an explicit solution. We refrain from
stating it, as the stationary case seems to be of the most importance.

Again, condition (4.4) of Theorem 4.5, which ensures the existence of moments of the sta-
tionary distribution obtained there, also implies invertibility of C under an additional technical
assumption.

To state the result, we set S = S ⊗S ⊗S ⊗S and define a new norm ‖ · ‖B̃,S on R
d4

by setting
‖x‖B̃,S = ‖S −1x‖2. The associated operator norm on Md4(R) is given by ‖X‖B̃,S = ‖S −1XS‖2.

Lemma 4.17. Assume that (4.4) is satisfied with k = 2 for the MUCOGARCH volatility process
Y and that Assumptions 4.2 and 4.3 hold. Provided that

‖Q + Kd Q + Id4‖B̃,S ≤ K2
2,B

∥∥vec
(
Id2 + Kd + vec(Id)vec(Id)∗

)∥∥
B̃,S

(4.19)

also holds, σ(C) ⊂ (−∞,0) + iR and C is invertible.

A rather unpleasant feature of this lemma is that we need the technical condition (4.19). The
following lemma shows that it is always true if S is unitary, and for concrete parameter values, it
can, of course, be checked numerically.
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Lemma 4.18. If S is unitary, then (4.19) is satisfied.

We end our comprehensive calculations for the second-order moment structure of the
MUCOGARCH volatility process by turning to the stationary variance.

Corollary 4.19. If Assumptions 4.1–4.3 hold and C is invertible, then the stationary variance
var(vec(Y0)) = var(vec(V0)) of the MUCOGARCH volatility process is given by

vec(var(vec(Y0))) = −C−1[(σ 2
LC(B−1 ⊗ B−1)A + AR

)
(vec(C) ⊗ vec(C))

+ (
σL(A ⊗ A) ⊗ Id2 + AR

)
vec(C) ⊗ E(vec(Y0)) (4.20)

+ (
σLId2 ⊗ (A ⊗ A) + AR

)
E(vec(Y0)) ⊗ vec(C)

]
.

Proof. Combine (4.18),

vec(E(vec(Y0))E(vec(Y0)
∗)) = σ 2

L(B−1 ⊗ B−1)A
(
vec(C) ⊗ vec(C)

)
and the elementary formula var(vec(Y0)) = E(vec(Y0)vec(Y0)

∗) − E(vec(Y0))E(vec(Y0)
∗). �

Under specific moment assumptions on the driving Lévy process, we have thus calculated the
second-order structure of a stationary MUCOGARCH volatility process completely.

Finally, we give conditions ensuring (asymptotic) second-order stationarity. A stochastic
process X in Sd is said to be asymptotically second-order stationary with mean μ ∈ R

d2
, variance

� ∈ S
+
d2 and autocovariance function f : R+ → Md2(R) if it has finite second moments and

lim
t→∞E(Xt) = μ, lim

t→∞ var(vec(Xt )) = � and

lim
t→∞ sup

h∈R+
{‖ cov(vec(Xt+h),vec(Xt )) − f (h)‖} = 0.

Theorem 4.20. Let Assumptions 4.2 and 4.3 be satisfied and assume further that the matrices
B,B,C are such that σ(B),σ (B), σ (C) ⊂ (−∞,0) + iR.

(i) If Y0 satisfies (4.9) and (4.20), then the MUCOGARCH volatility process Y is second-
order stationary.

(ii) If E(‖Y0‖2) < ∞, then the MUCOGARCH volatility process Y is asymptotically second-
order stationary with mean, variance and autocovariance function given by (4.9), (4.20) and
(4.11).

5. The increments of the MUCOGARCH(1,1) process

Thus far, we have mainly studied the MUCOGARCH volatility processes Y and V . However, in
practice, one typically cannot observe the volatility, but only the process G (which, in a financial
context, for instance, resembles log-prices) at finitely many points in time. In the following, we
presume that G is observed on a discrete-time grid starting at zero and with fixed grid size 
 > 0.
It is obvious how the results of this section generalize to non-equidistant observations or to the
setup considered in [10,26].



96 R. Stelzer

In financial time series, one commonly observes that the returns themselves are uncorrelated,
but the “squared returns” (that is, the return vector times its transpose in a multivariate setting)
are considerably correlated. The following results show that the MUCOGARCH model can re-
produce this very important stylized feature and, furthermore, they provide the basis for simple
moment estimators (as in [22]).

We define the sequence of increments G = (Gn)n∈N by setting

Gn =
∫ n


(n−1)


V
1/2
s− dLs. (5.1)

Moreover, we shall throughout most of this section presume the following.

Assumption 5.1. Y (or equivalently V ) is stationary.

Proposition 5.1. If Assumption 5.1 holds, then G is stationary.

Proof. Employing Theorem 4.4 and the same arguments as for [26], Corollary 3.1, shows that
G has stationary increments. �

In order to be able to obtain explicit expressions for the moments of G, we need to strengthen
Assumption 4.2 as follows.

Assumption 5.2. Assumption 4.2 is satisfied and, moreover,

E(L1) = 0 and var(L1) = (σW + σL)Id with σW ≥ 0.

This assumption means that in addition to Assumption 4.2, the Brownian part of L is a scalar
multiple of d-dimensional standard Brownian motion.

We start by giving conditions for the finiteness of the second moments of G, and thus of G,
without requiring stationarity and explicit expressions for the moments in the stationary case.

Proposition 5.2. Assume that E(L1) = 0, E(‖L1‖2) < ∞ and E(‖Y0‖) < ∞. Then E(‖Gt‖2) <

∞ for all t ∈ R
+.

If Assumptions 5.1 and 5.2 are also satisfied, then the stationary sequence G has the following
second-order structure:

E(G1) = 0, (5.2)

var(G1) = (σL + σW)
E(V0), (5.3)

vec(var(G1)) = (σL + σW)
B−1(B ⊗ Id + Id ⊗ B)vec(C), (5.4)

acovG(h) = 0 for all h ∈ Z\{0}. (5.5)

Remark 5.3. (i) In the stationary case, this shows that G is a white noise sequence.
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(ii) Straightforward extensions of the arguments in the proof show that if Y is not station-
ary, but only (asymptotically) second-order stationary, then G is (asymptotically) second-order
stationary.

For the squared returns GG∗ = (GnG∗
n)n∈N, we get the following.

Proposition 5.4. Assume that E(L1) = 0, E(‖L1‖4) < ∞ and E(‖Y0‖2) is finite. Then
E(‖Gt‖4) < ∞ and, likewise, E(‖GtG

∗
t ‖2) < ∞ for all t ∈ R

+.
If Assumptions 5.1 and 5.2 are also satisfied, then the stationary sequence GG∗ has the fol-

lowing second-order structure:

E(G1G∗
1) = (σL + σW)
E(V0), (5.6)

acovGG∗(h) = eB
hB−1(Id2 − e−B
)(σL + σW) cov(vec(Y
),vec(G1G∗
1)) (5.7)

for h ∈ N.

Thus, the squared returns GG∗ have, like an ARMA(1,1) process, a matrix exponentially
decreasing autocovariance function from lag one onwards. That such an autocovariance structure
is reasonable for financial data can be seen from [34], for instance. In financial data, (quasi-) long-
range dependence is frequently encountered, which is often (see, for example, [4]) well modelled
by specifying the autocovariance function of the squared increments as the sum of fast and very
slowly decaying exponential functions. Since we have a matrix exponential decay, we obtain
such a behavior componentwise by appropriate choices for our parameters, with the different
rates of the exponential decay being determined by the eigenvalues of B. Additionally we can
cover a sinusoidal component.

In the univariate case, [22] obtained, under additional assumptions on L, explicit expressions
for var(vec(G1G∗

1)) and cov(vec(Y
),vec(G1G∗
1)). As these are, however, already rather lengthy

and complicated formulae, we refrain from calculating these values in our multivariate model.

6. Proofs and auxiliary results

In this section, we provide the proofs of our results, along with necessary additional technical
results.

6.1. Proofs for Section 3

We begin with some matrix analytic results analyzing the Lipschitz properties of the map V �→
V 1/2 ⊗ V 1/2 used in the definition of the MUCOGARCH(1,1) volatility process. We denote by
‖ · ‖2 the operator norm associated with the usual Euclidean norm on R

d .

Lemma 6.1 ([7], Problem I.6.11). For all A,B ∈ Md(R), we have

‖A ⊗ A − B ⊗ B‖2 ≤ 2 max{‖A‖2,‖B‖2}‖A − B‖2.
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In particular, the mapping ⊗ :Md(R) → Md2(R),X �→ X ⊗ X is uniformly Lipschitz on any set
of the form {x ∈ Md(R) :‖x‖ ≤ c} with c > 0.

The proof is obvious from the ideas outlined in [7].

Lemma 6.2 ([7], page 305). Let A,B ∈ S
+
d and a > 0 such that A,B ≥ aId . Then

‖A1/2 − B1/2‖2 ≤ 1

2
√

a
‖A − B‖2.

Hence, the mapping S
+
d → S

+
d ,X �→ X1/2 is uniformly Lipschitz on any set of the form {x ∈

S
+
d :x ≥ cId} ⊂ S

++
d with c > 0.

For a variant of the above statement see [24], page 557.

Lemma 6.3. Consider the map F : S+
d → S

+
d ,X �→ X1/2 ⊗X1/2 = (X ⊗X)1/2. F is continuous

and uniformly Lipschitz on any set of the form {x ∈ S
+
d :x ≥ cI,‖x‖ ≤ c̃} with c, c̃ > 0. Moreover,

we have that ‖A1/2 ⊗ A1/2‖2 = ‖A‖2 for all A ∈ Sd .

Proof. The identity X1/2 ⊗X1/2 = (X ⊗X)1/2 is an immediate consequence of basic properties
of the tensor product (see [24], Chapter 4) and the continuity of F follows from the continuity of
the tensor product and the positive definite square root (see [24], Theorem 6.2.37). The Lipschitz
property follows from a combination of the previous two lemmas. Finally, ‖A1/2 ⊗ A1/2‖2 =
‖A‖2 is established by noting that ‖A1/2 ⊗ A1/2‖2 = ‖A1/2‖2

2 (see [7], page 15) and ‖A1/2‖2 =
‖A‖1/2

2 . The latter follows immediately from the fact that ‖A‖2 = √
ρ(A∗A) = ρ(A) for all

A ∈ S
+
d . �

Finally, we show that the global Lipschitz property is not satisfied for this map, not even if we
restrict it to sets being bounded away from zero.

Lemma 6.4. For the map F defined in the previous lemma, there exists no finite K ∈ R
+ such

that

‖F(x) − F(y)‖ ≤ K‖x − y‖ (6.1)

for all x, y ∈ S
++
d . The same holds for all x, y ∈ {z ∈ Sd : z ≥ C} with arbitrary C ∈ S

++
d .

Proof. From the following proof, it is clear that we can take d = 2 without loss of generality.
Let x = diag(x1, x2) and y = diag(y1, y2), with x1, x2, y1, y2 ∈ R

+\{0} and diag(x1, x2) being,
as usual, the diagonal matrix with diagonal entries x1 and x2. We have F(x) = diag(x1,

√
x1x2,√

x1x2, x2). Assume that (6.1) is true with a finite K ∈ R
+. There is then a finite k ∈ R

+ such
that |√x1x2 − √

y1y2| ≤ k(|x1 − y1| + |x2 − y2|) for all x1, x2, y1, y2 ∈ R
+\{0}. Choosing x2 =

y2 = 1, this gives |√x1 − √
y1| ≤ k|x1 − y1| for all x1, y1 ∈ R

+\{0}, which is a contradiction
to the well-known fact that the square root is not globally Lipschitz on R

+\{0}. Regarding the
case x, y ∈ {z ∈ Sd : z ≥ C}, we can, without loss of generality, restrict ourselves to C = cId with
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c ∈ R
+\{0}. Choosing x2 = y2, x1 = 9c and y1 = 4c gives |√cx2| ≤ 5kc. As x2 can be taken

arbitrarily large, this is a contradiction. �

In the following, we use the fact that any stochastic differential equation defined on an open set
which has locally Lipschitz coefficients growing at most linearly has a unique solution until the
first time the open set is left or its boundary is reached. This result follows along the same lines
as the usual existence results for SDEs with locally Lipschitz coefficients defined on Rd (see, for
example, [33] or [36], Theorem V.38). Alternatively, a proof for open sets of the type relevant
below can be found in [40], Section 6.7, which uses only the standard existence and uniqueness
results for SDEs on R

d with globally Lipschitz coefficients and orthogonal projections.

Proof of Theorem 3.2. Define the maps F and G by F(vec(y)) = (Id ⊗ B + B ⊗ Id)vec(y)

and G(y) = (A ⊗ A)((C + y)1/2 ⊗ (C + y)1/2). The SDE (3.4) can then be written as

d vec(Yt ) = F(vec(Yt−))dt + G(Yt−)d vec([L,L]dt ). (6.2)

Moreover, we define the set UC,ε = {x ∈ Sd :x > −εId} for some ε with 0 < ε < minσ(C).
Then the set UC,ε (and thus vec(UC,ε)) is open and for each x ∈ UC,ε , we have x + C >

(minσ(C) − ε)Id ∈ S
++
d . Since the foregoing results imply that G is locally Lipschitz on UC,ε

and has linear growth (a function f has linear growth if ‖f (x)‖2 ≤ C(1 + ‖x‖2)), standard re-
sults on the existence of solutions of SDEs give that (6.2) has a unique locally bounded solution
(Yt )t∈R+ with initial value Y0, provided it can be ensured that every solution does not leave
the set UC,ε or touch its boundary. However, it is easy to see that every solution must satisfy
Yt ≥ eBtY0eB∗t since all jumps AV

1/2
t− 
[L,L]dt V

1/2
t− A∗ are positive semidefinite and between

jumps, Y follows the deterministic differential equation dYt = (BYt− + Yt−B∗)dt uniquely
solved by Yt = eBtY0eB∗t , so any solution necessarily stays in S

+
d .

The finite variation property is clear since time t and [L,L]d are of finite variation. �

Proof of Theorem 3.6. Define Mt = ∫ t

0 A(C + Ys−)1/2 d[L,L]ds (C + Ys−)1/2A∗. Then M is
S

+
d -increasing and of finite variation and Y obviously solves the stochastic differential equation

dXt = (BXt− +Xt−B∗)dt + dMt(∗). Standard theory implies that this differential equation has
a unique solution, and the same elementary calculations as for Ornstein–Uhlenbeck processes
show that the solution of (∗) with initial value Y0, which is necessarily equal to Y , is given by

eBtY0eB∗t +
∫ t

0
eB(t−s)AdMsA

∗eB∗(t−s)

= eBtY0eB∗t +
∫ t

0
eB(t−s)A(C + Ys−)1/2 d[L,L]ds (C + Ys−)1/2A∗eB∗(t−s). �

6.2. Proofs for Section 4

6.2.1. Proofs for Section 4.1

The univariate COGARCH(1,1) bounds will first be shown for processes driven by compound
Poisson processes and then for the general case using an approximation by compound Poisson
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processes which is of interest in its own right, as it provides, for instance, a possible approxima-
tion scheme to be used in simulations.

To see that the processes defined in the following are indeed univariate COGARCH processes,
we need the following general lemma.

Lemma 6.5. Let (Lt )t∈R+ be a driftless Lévy subordinator. There then exists a Lévy process
(Lt )t∈R+ in R such that Lt = [L,L]dt for all t ∈ R

+.

Proof. Denote the jump measure associated with L by μL, that is, Lt = ∫ t

0

∫
R+ xμL(ds,dx),

and denote its Lévy measure by νL. Let

Lt =
∫ t

0

∫
0<x≤1

√
x
(
μL(ds,dx) − ds νL(dx)

) +
∫ t

0

∫
x>1

√
xμL(ds,dx),

noting that the existence of the first integral follows from the finiteness of
∫

0<x≤1

√
x

2
νL(dx) =∫

0<x≤1 xνL(dx) since L is of finite variation. Now (Lt )t∈R+ is a Lévy process and Lt =
[L,L]dt . �

The following elementary results regarding the norm ‖ · ‖B,S are straightforward to obtain.

Lemma 6.6. It holds that ‖S ⊗ S‖B,S = ‖S‖2
2 and ‖S−1 ⊗ S−1‖B,S = ‖S−1‖2

2. Moreover,

‖x‖B,S ≤ ‖S−1‖2
2‖x‖2 and ‖x‖2 ≤ ‖S‖2

2‖x‖B,S for all x ∈ R
d2

,

‖X‖B,S ≤ ‖S‖2
2‖S−1‖2

2‖X‖2 and ‖X‖2 ≤ ‖S‖2
2‖S−1‖2

2‖X‖B,S for all X ∈ Md2(R).

Note that a very similar norm has also been used in [10].
We can now analyze the norms of compound Poisson driven MUCOGARCH volatility

processes. Recall that in the univariate case, the MUCOGARCH volatility process Y is just a
deterministically scaled version of the COGARCH volatility process Y defined in [10].

Proof of Theorem 4.1 if L is compound Poisson. Using Lemma 6.5, it is clear that the process
(yt )t∈R defined in Theorem 4.1 is a univariate MUCOGARCH(1,1) process.

Let �1 be the time of the first jump of L and let t ∈ [0,�1). Since ‖e(Id⊗B+B⊗Id )t‖B,S = e2λt ,
it holds that

‖vec(Yt )‖B,S = ∥∥e(Id⊗B+B⊗Id )t vec(Y0)
∥∥

B,S
≤ ∥∥e(Id⊗B+B⊗Id )t

∥∥
B,S

‖vec(Y0)‖B,S

= e2λty0 = yt .

Thus, (4.2) is shown for all t ∈ [0,�1). At time �1, we have

‖vec(Y�1)‖B,S

= ∥∥vec(Y�1−) + (A ⊗ A)
(
(C + Y�1−)1/2 ⊗ (C + Y�1−)1/2)vec(
L�1(
L�1)

∗)
∥∥

B,S
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≤ y�1− + ‖A ⊗ A‖B,S‖(C + Y�1−)1/2 ⊗ (C + Y�1−)1/2‖B,S‖vec(
L�1(
L�1)
∗)‖B,S

≤ y�1− + ‖A ⊗ A‖B,S‖S‖2
2‖S−1‖2

2‖(C + Y�1−)1/2 ⊗ (C + Y�1−)1/2‖2
L̃�1

≤ y�1− + ‖A ⊗ A‖B,S‖S‖2
2‖S−1‖2

2(‖C‖2 + ‖Y�1−‖2)
L̃�1

≤ y�1− + ‖A ⊗ A‖B,S‖S‖2
2‖S−1‖2

2K2,B

(
K−1

2,B‖C‖2 + ‖vec(Y�1−)‖B,S

)

L̃�1 = y�1,

which establishes (4.2) for t = �1. Iterating these arguments shows (4.2) for all t ∈ R
+.

The first inequality for K2,B follows from Lemma 6.6 and the second one by [23], page 314.
�

In order to extend Theorem 4.1 to MUCOGARCH processes driven by general Lévy
processes, we need to show that we can approximate a MUCOGARCH volatility process by
approximating the driving Lévy process. The following result is very similar to [10], Lemma 8.2.
However, we need to give a detailed proof since the standard results cannot be applied due to the
fact that we have only locally Lipschitz coefficients.

Proposition 6.7. Let Y be a MUCOGARCH volatility process with C ∈ S
++
d and Y0 ∈ S

+
d ,

driven by a Lévy process L in Rd , and let (εn)n∈N be a monotonically decreasing sequence
in R

+\{0} with limn→∞ εn = 0. Define compound Poisson Lévy processes Ln by Ln,t =∫ t

0

∫
Rd ,‖x‖≥εn

xμL(ds,dx) for n ∈ N and associated MUCOGARCH volatility processes Yn by

dYn,t = (BYn,t− + Yn,t−B∗)dt + A(C + Yn,t−)1/2 d[Ln,Ln]dt (C + Yn,t−)1/2A∗,
(6.3)

Yn,0 = Y0.

Then Yn → Y as n → ∞ almost surely uniformly on compacts.

Proof. First, observe that [Ln,Ln]dt = ∫ t

0

∫
‖x‖≥εn

xx∗μL(ds,dx) implies that [Ln,Ln]d →
[L,L]d, as n → ∞ a.s. uniformly on compacts, and that [Ln,Ln]d is monotonically increas-
ing in n.

Since all processes involved are of finite variation, we can prove the claim with a pathwise
approach. So, fix ω ∈ � and thereby one path. Let T ∈ R+ be arbitrary. The Gronwall inequality
(see [36], Exercise 15, page 358) shows that

‖Yn,t‖2 ≤
(

‖Y0‖2 + ‖A‖2
2‖C‖2

∫ T

0

∫
Rd

‖x‖2
2μLn(ds,dx)

)
e‖A‖2

2

∫ t
0

∫
Rd ‖x‖2

2μLn(ds,dx)+2‖B‖2t

≤
(

‖Y0‖2 + ‖A‖2
2‖C‖2

∫ T

0

∫
Rd

‖x‖2
2μL(ds,dx)

)
e‖A‖2

2

∫ T
0

∫
Rd ‖x‖2

2μL(ds,dx)+2‖B‖2T ,

‖Yt‖2 ≤
(

‖Y0‖2 + ‖A‖2
2‖C‖2

∫ T

0

∫
Rd

‖x‖2
2μL(ds,dx)

)
e‖A‖2

2

∫ T
0

∫
Rd ‖x‖2

2μL(ds,dx)+2‖B‖2T

for all t ∈ [0, T ]. Since Yt ≥ eBtY0eB∗t , Yn,t ≥ eBtY0eB∗t and Y0 is positive semidefinite, C + Y

and (C +Yn)n∈N all remain in one common compact set in S
++
d on [0, T ]. Thus, when consider-
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ing (3.4) and (6.3), we can regard the coefficients of these SDEs as being globally Lipschitz with
a common Lipschitz coefficient. Thus, [36], Corollary, page 261 after Theorem v.11, implies that
Yn(ω) → Y(ω) uniformly on [0, T ]. Note that, formally, the result of [36] is applied on the prob-
ability space given by the set {ω}, the trivial σ -algebra {{ω},∅} (which also gives the filtration)
and the Dirac measure with respect to ω.

Since ω ∈ � and T ∈ R
+ were arbitrary, this completes the proof. �

Proof of Theorem 4.1 for general L. Let (Yn)n∈N be the sequence of compound Poisson
driven MUCOGARCH(1,1) processes converging a.s. on compacts to Y constructed in the
last proposition. For n ∈ N, denote by yn the univariate MUCOGARCH(1,1) processes with
‖vec(Yn,t )‖B,S ≤ yn,t for all t ∈ R

+. Then yn,t + K−1
2,B‖C‖ is a univariate COGARCH(1,1)

volatility process as defined in [26], where it is denoted by σ 2
t+. Since we only add more jumps

in [Ln,Ln]d when we increase n, it is straightforward to see from equations (3.3) and (3.4) in
[26] that yn+l,t ≥ yn,t for all n, l ∈ N and t ∈ R

+. Moreover, defining the process y by

dyt = 2λyt− dt + ‖S‖2
2‖S−1‖2

2K2,B‖A ⊗ A‖B,S

(‖C‖2

K2,B

+ yt−
)

dL̃t ,

(6.4)
y0 = ‖vec(Y0)‖B,S,

with L̃t := ∫ t

0

∫
Rd ‖vec(xx∗)‖B,SμL(ds,dx), the same argument implies that yn,t ≤ yt for all

n ∈ N and t ∈ R
+. Note that (L̃t )t∈R+ is a well-defined Lévy process, because there is a K > 0

such that∫
Rd

(‖vec(xx∗)‖B,S ∧ 1
)
νL(dx) ≤ K

∫
Rd

(‖xx∗‖2 ∧ 1)νL(dx) = K

∫
Rd

(‖x‖2
2 ∧ 1)νL(dx) < ∞.

Passing to the limit n → ∞ in ‖vec(Yn,t )‖B,S ≤ yn,t ≤ yt establishes ‖vec(Yt )‖B,S ≤ yt for all
t ∈ R

+. �

Proof of Proposition 4.3. Let y be the process constructed in Theorem 4.1. It then suffices to
show that E(yk

t ) < ∞ and that this is locally bounded in t . By construction, E(yk
0) is finite.

Moreover, let L̄ be the Lévy process constructed in Lemma 6.5 such that L̃t = [L̄, L̄]dt . The
finiteness of E(‖L1‖2k) implies that

∫
Rd ‖x‖2k

2 νL(dx) = ∫
Rd ‖xx∗‖k

2νL(dx) < ∞ (with ‖ · ‖2 de-
noting the Euclidean norm in the first integral and the associated operator norm in the second
integral). Since the finiteness of the integrals is independent of the particular norm used, it fol-
lows that

∫
Rd ‖vec(xx∗)‖k

B,SνL(dx) = ∫
R

|x|kν
L̃
(dx) = ∫

R
|x|2kνL̄(dx) < ∞. Hence, E(|L̄1|2k)

is finite and using the results of [26], Section 4, as in the proof of [10], Proposition 4.1, completes
the proof of this proposition. �

6.2.2. Proofs for Section 4.2

In order to show the existence of a stationary distribution of the MUCOGARCH volatility process
Y , we need to recall a result from the theory of weak convergence. For more details and the
relevant background, we refer to any of the standard texts (for example, [8,25]). Below, we denote
by M1(E) the set of all probability measures on the Borel σ -algebra of a Polish space E.
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The following theorem on the existence of a stationary distribution for a Markov process is
referred to as the “Krylov–Bogoliubov existence theorem” in the literature. For a proof, see [13],
Section 3.1, or [37], Theorem 4.6.

Theorem 6.8. Let E be a Polish space and (Ps)s∈R+ the transition semigroup of an E-valued
weak Feller Markov process. Assume that there is an η ∈ M1(E) such that the set {P ∗

t η : t ∈ R
+}

is tight. There then exists a μ ∈ M1(E) such that P ∗
t μ = μ for all t ∈ R

+, that is, μ is an
invariant measure for (Ps)s∈R+ or a stationary distribution for the Markov process, respectively,
and μ is in the closed (with respect to weak convergence) convex hull of {P ∗

t η : t ∈ R
+}.

Above, P ∗
t : M1(E) → M1(E) denotes the operator given by P ∗

t μ(U) = ∫
E

Ps(x,U)μ(dx)

for any Borel set U where Pt (x,U) is the transition probability of the Markov process from the
initial state x to the set U at time t ∈ R

+.

Proof. Proof of Theorem 4.5 Let λ, L̃ be defined as in Theorem 4.1 and L̄ be the Lévy process
constructed in Lemma 6.5 such that L̃t = [L̄, L̄]dt . Then∫

Rd

log
(
1 + α1‖vec(yy∗)‖B,S

)
νL(dy) =

∫
Rd

log(1 + α1y
2)νL̄(dy)

and thus [10], Theorem 3.1, (see also [26], Theorem 3.1), shows that the process y satisfying
(4.1) converges in distribution to a distribution concentrated on R

+. Assume now that y0 has this
stationary probability distribution and is independent of (Ls)s∈R+ . Setting Y0 = y0‖vec(Id )‖B,S

Id

gives an initial value for the MUCOGARCH volatility process that is independent of L and,
moreover, ‖vec(Y0)‖B,S = y0. Thus, the process y satisfying ‖vec(Yt )‖B,S ≤ yt for all t ∈ R

+
(see Theorem 4.1) is stationary. Since for every K > 0, the set {x ∈ Sd :‖x‖ ≤ K} is compact
in S

+
d , P(‖Yt‖B,S ≤ K) ≥ P(yt ≤ K) and y is stationary with a stationary distribution concen-

trated on R
+, it follows that the set {L(Yt ) : t ∈ R

+} of laws L(Yt ) of Yt forms a tight subset
of M1(S

+
d ). Therefore, Theorem 6.8 combined with Theorem 4.4 implies that there exists a sta-

tionary distribution μ ∈ M1(S
+
d ) for the MUCOGARCH volatility process Y such that μ is in

the closed convex hull of {L(Yt ) : t ∈ R
+}.

If (4.4) holds for some k ∈ N, [10], Proposition 4.1 (see also [26], Section 4), shows that the
stationary distribution of y has a finite kth moment. This, in turn, implies that E(‖Yt‖k) ≤ c

for some finite c ∈ R
+ and all t ∈ R

+. Hence,
∫

S
+
d

‖x‖kμ(dx) < ∞ because μ is in the closed

convex hull of {L(Yt ) : t ∈ R
+}. �

6.2.3. Proofs for Section 4.3

In the following calculations of moments of Y , we often use the fact that the stochastic continuity
of L implies E(Yt−) = E(Yt ), var(vec(Yt−)) = var(vec(Yt )) and similar results. Moreover, the
following version of the so-called compensation formula is needed.

Lemma 6.9. Assume that (Xt )t∈R+ is an adapted cadlag Md(R)-valued process satisfying
E(‖Xt‖) < ∞ for all t ∈ R

+, t �→ E(‖Xt‖) is locally bounded and (Lt )t∈R+ is a drift-
less pure jump Lévy process in R

d of finite variation with finite expectation E(‖L1‖). Then
E(

∫ t

0 Xs− dLs) = ∫ t

0 E(Xs−)E(L1)ds for t ∈ R
+.
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Proof. Since Lt = ∫ t

0

∫
Rd zμL(ds,dz), the compensation formula (see [28], Section 4.3.2) im-

plies that

E

(∫ t

0
Xs− dLs

)
= E

(∫ t

0

∫
Rd

Xs−zμL(ds,dz)

)
= E

(∫ t

0
Xs−

∫
Rd

zνL(dz)ds

)

= E

(∫ t

0
Xs−E(L1)ds

)
.

Observing that
∫ t

0 E(‖Xs−‖)‖E(L1)‖ds is finite for every t ∈ R
+, an application of Fubini’s

theorem completes the proof. �

Proof of Proposition 4.7. Consider the case k = 1 first. Elementary arguments give that

‖Yt‖2 ≤ ‖Y0‖2 + ‖A‖2
2‖C‖2

∫ t

0

∫
Rd

‖x‖2
2μL(ds,dx) + 2‖B‖2

∫ t

0
‖Ys−‖2 ds

+ ‖A‖2
2

∫ t

0

∫
Rd

‖Ys−‖2‖x‖2
2μL(ds,dx).

Using stochastic continuity, the compensation formula and the observation that
∫

Rd ‖x‖2
2νL(dx)<

∞ due to the finiteness of E(‖L1‖2
2), this implies that

E(‖Yt‖2) ≤ E(‖Y0‖2) + ‖A‖2
2‖C‖2T

∫
Rd

‖x‖2
2νL(dx)

+
(

2‖B‖2 + ‖A‖2
2

∫
Rd

‖x‖2
2νL(dx)

)∫ t

0
E(‖Ys‖2)ds

for all t ∈ [0, T ] and any T ∈ R+. The Gronwall lemma thus shows that E(‖Yt‖2) is finite and
bounded for t ∈ [0, T ]. Since T was arbitrary, this completes the proof for this case.

In the case k ≥ 2, we obtain from [36], Theorem V.66, and the elementary inequality |a+b|k ≤
2k−1(|a|k + |b|k) for all a, b ∈ R that there exists a constant Kk ∈ R

+ such that

E(‖Yt‖k
2) ≤ Kk

(
E(‖Y0‖k

2) + ‖A‖2k
2 ‖C‖k

2t + (2k‖B‖k
2 + ‖A‖2k

2 )

∫ t

0
E(‖Ys‖k

2)ds

)
.

Using the Gronwall lemma and arguing analogously to the case k = 1 now completes the proof. �

Proof of Theorem 4.8. Proposition 4.7 ensures the finiteness and local boundedness of the first
absolute moment needed in the following. From the defining stochastic differential equation
(3.4), we have

Yt = Y0 +
∫ t

0
(BYs− + Ys−B∗)ds +

∫ t

0
A(Ys− + C)1/2 d[L,L]ds (Ys− + C)1/2A∗.
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Therefore,

E(Yt ) = E(Y0) +
∫ t

0

(
BE(Ys) + E(Ys)B

∗)ds + σL

∫ t

0
AE(Ys + C)A∗ ds, (6.5)

using a Fubini argument, stochastic continuity, the variant of the compensation formula given
in Lemma 6.9 and the observation that E([L,L]d1 ) = ∫

Rd xx∗ν(dx) = var(Ld
1 ) is implied by

equation (2.1). Thus,

vec

(
E

(∫ t

0
A(Ys− + C)1/2 d[L,L]ds (Ys− + C)1/2A∗

))

= E

(∫ t

0
(A ⊗ A)

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2)d vec([L,L]ds )

)

=
∫ t

0
(A ⊗ A)E

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2)vec(E([L,L]d1 ))ds

= σL

∫ t

0
(A ⊗ A)E

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2 vec(Id)

)
ds

= σL vec

(∫ t

0
AE(Ys− + C)A∗ ds

)
.

Equation (6.5) therefore implies the following differential equation after vectorizing:

d

dt
E(vec(Yt )) = BE(vec(Yt )) + σL(A ⊗ A)vec(C).

Solving this ODE establishes (i).
Turning to (ii), the assumed second-order stationarity and (6.5) imply that

BE(Y0) + E(Y0)B
∗ + σLA

(
E(Y0) + C

)
A∗ = 0.

The rest is just a matter of rewriting this linear equation. �

Proof of Lemma 4.10. From Assumption 4.2, we have that

σL‖vec(Id)‖B,S =
∥∥∥∥
∫

Rd

vec(xx∗)νL(dx)

∥∥∥∥
B,S

≤
∫

Rd

‖vec(xx∗)‖B,SνL(dx). (6.6)

For k = 1, condition (4.4) becomes ‖S‖2
2‖S−1‖2

2K2,B‖A ⊗ A‖B,S

∫
Rd ‖vec(xx∗)‖B,SνL(dx) <

−2λ. Using (6.6), ‖S‖2‖S−1‖2 ≥ 1 and the fact that K2,B‖vec(Id)‖B,S ≥ ‖Id‖2 = 1 due to the
definition of K2,B , one obtains

σL‖A ⊗ A‖B,S = σL‖(S−1 ⊗ S−1)(A ⊗ A)(S ⊗ S)‖2 < −2λ.
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Let μ now be any eigenvalue of B and note that (S−1 ⊗ S−1)(B ⊗ Id + Id ⊗ B)(S ⊗ S) is
diagonal. Thus, the Bauer–Fike theorem (see [23], Theorem 6.3.2 and its proof, for instance)
gives that there exists a μ̃ ∈ σ(B ⊗ Id + Id ⊗ B) such that

|�(μ) − �(μ̃)| ≤ |μ − μ̃| ≤ ‖(S−1 ⊗ S−1)(B − B ⊗ Id − Id ⊗ B)(S ⊗ S)‖
= σL‖(S−1 ⊗ S−1)(A ⊗ A)(S ⊗ S)‖2 < −2λ.

Hence, �(μ) < max{�(μ̃) : μ̃ ∈ σ(B ⊗ Id + Id ⊗B)}− 2λ = 0 because the maximum equals 2λ

due to σ(B ⊗ Id + Id ⊗B) = σ(B)+σ(B) and the definition of λ = max(�(σ (B))). Therefore,
σ(B) ⊂ (−∞,0) + iR and B is invertible. �

Proof of Theorem 4.11. We only prove (i), because the proof of (ii) proceeds along the same
lines, noting that the finiteness is ensured by Proposition 4.7.

The equality acovY (·) = acovV (·) is obvious. Due to the second-order stationarity, we have

acovY (h) = cov

(
vec

(
Y0 +

∫ h

0
(BYs− + Ys−B∗)ds

+
∫ h

0
A(Ys− + C)1/2 d[L,L]ds (Ys− + C)1/2A∗

)
,vec(Y0)

)

= var(vec(Y0)) + E

(∫ h

0
(B ⊗ Id + Id ⊗ B)vec(Ys−)vec(Y0)

∗ ds

)

− E

(∫ t

0
(B ⊗ Id + Id ⊗ B)vec(Ys−)ds

)
E(vec(Y0)

∗)

+ E

(∫ h

0
(A ⊗ A)

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2)d vec([L,L]ds ) vec(Y0)

∗
)

− E

(∫ h

0
(A ⊗ A)

(
(Ys− + C)1/2 ⊗ (Ys− + C)1/2)d vec([L,L]ds )

)
E(vec(Y0)

∗)

= var(vec(Y0)) +
∫ h

0
(B ⊗ Id + Id ⊗ B)E(vec(Ys)vec(Y0)

∗)ds

−
∫ t

0
(B ⊗ Id + Id ⊗ B)E(vec(Ys))ds E(vec(Y0)

∗)

+ σL

∫ h

0
(A ⊗ A)E

((
(Ys− + C)1/2 ⊗ (Ys− + C)1/2)vec(Id)vec(Y0)

∗)ds

− σL

∫ h

0
(A ⊗ A)E

((
(Ys− + C)1/2 ⊗ (Ys− + C)1/2)vec(Id)

)
dsE(vec(Y0)

∗)

= σL

∫ h

0
(A ⊗ A)E

(
vec(Ys + C)vec(Y0)

∗)ds
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− σL

∫ h

0
(A ⊗ A)E

(
vec(Ys + C)

)
E(vec(Y0)

∗)ds

+ var(vec(Y0)) +
∫ h

0
(B ⊗ Id + Id ⊗ B) acovY (s)ds

= var(vec(Y0)) +
∫ h

0
(B ⊗ Id + Id ⊗ B + σLA ⊗ A) acovY (s)ds,

where we have used a Fubini argument, Lemma 6.9 and E([L,L]d1 ) = σLId . Regarding the use
of Lemma 6.9, we observe that ‖(Ys− + C)1/2 ⊗ (Ys− + C)1/2‖2 = ‖Ys− + C‖2 and hence the
required local boundedness is ensured by the second-order stationarity of Y .

The ordinary differential equation (4.10) is now immediate and to conclude the proof, it suf-
fices to note that acovY (0) = var(vec(Y0)) and thus solving the ODE gives

acovY (h) = acovV (h) = e(B⊗Id+Id⊗B+σLA⊗A)h var(vec(Y0)), h ≥ 0. �

Proof of Lemma 4.14. Let ε be as in the definition of type G̃ and let νε be its Lévy measure.
Then, by [2], Proposition 3.1, L has Lévy density u(x) = ∫

R+ φd(x; τId)νε(dτ), where φd(·;�)

denotes the density of the d-dimensional normal distribution with variance �. Hence,

E([vec([L,L]d),vec([L,L]d)]d1 ) =
∫

Rd

(xx∗) ⊗ (xx∗)u(x)dx

=
∫

R+

∫
Rd

(xx∗) ⊗ (xx∗)φd(x; τId)dx νε(dτ)

=
∫

R+
τ 2νε(dτ)

(
Id2 + Kd + vec(Id)vec(Id)∗

)
,

using [30], Theorem 4.3. Now, set ρL := ∫
R+ τ 2νε(dτ) and note that the finiteness follows from

the definition of type G̃ and the assumed finiteness of the fourth moment of L. �

Proof of Theorem 4.15. Proposition 4.7 again ensures the existence and local boundedness of
the second moment needed in (i).

The definition of quadratic variation (see [5], Lemma 5.11, for a special version in the context
of matrix and vector multiplication) implies that

vec(Yt )vec(Yt )
∗ = vec(Y0)vec(Y0)

∗

+
∫ t

0

(
(B ⊗ Id + Id ⊗ B)vec(Ys−)vec(Ys−)∗

+ vec(Ys−)vec(Ys−)∗(B∗ ⊗ Id + Id ⊗ B∗)
)

ds

+
∫ t

0
(A ⊗ A)

(
(C + Ys−)1/2 ⊗ (C + Ys−)1/2)d vec([L,L]ds ) vec(Ys−)∗
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+
∫ t

0
vec(Ys−)d vec([L,L]ds )∗

(
(C + Ys−)1/2 ⊗ (C + Ys−)1/2)(A∗ ⊗ A∗)

+ [vec(Y ),vec(Y )]t .
Moreover, setting Vt = ((C + Yt )

1/2 ⊗ (C + Yt )
1/2) we obtain

[vec(Y ),vec(Y )∗]t =
∫ t

0
(A ⊗ A)Vs− d([vec([L,L]d),vec([L,L]d)]ds )Vs−(A∗ ⊗ A∗)

=
∫ t

0

∫
Rd

(A ⊗ A)Vs− vec(xx∗)vec(xx∗)∗Vs−(A∗ ⊗ A∗)μL(ds,dx),

since vec(Yt ) is the sum of an absolutely continuous component and a pure jump process of finite
variation.

Using a Fubini argument, the stochastic continuity, Lemma 6.9 and the Assumptions 4.2, 4.3
made on the moments of νL, we obtain

E(vec(Yt )vec(Yt )
∗)

= E(vec(Y0)vec(Y0)
∗)

+
∫ t

0

(
(B ⊗ Id + Id ⊗ B)E(vec(Ys)vec(Ys)

∗)

+ E(vec(Ys)vec(Ys)
∗)(B∗ ⊗ Id + Id ⊗ B∗)

)
ds

+ σL

∫ t

0
(A ⊗ A)E

(
vec(C + Ys)vec(Ys)

∗)ds

+ σL

∫ t

0
E

(
vec(Ys)vec(C + Ys)

∗)(A∗ ⊗ A∗)ds

+
∫ t

0
(A ⊗ A)E

(
Vs−ρL

(
Id2 + Kd + vec(Id)vec(Id)∗

)
Vs−

)
(A∗ ⊗ A∗)ds.

With the definition of Vt , it follows that

E(Vs−Id2 Vs−) = E(V 2
s ) = E

(
(C + Ys) ⊗ (C + Ys−)

)
= QE

(
vec(C + Ys)vec(C + Ys)

∗),
E(Vs− vec(Id)vec(Id)∗Vs−) = E

(
vec(C + Ys)vec(C + Ys)

∗),
E(Vs−Kd Vs−) = KdE

(
(C + Ys) ⊗ (C + Ys)

)
= KdQE

(
vec(C + Ys)vec(C + Ys)

∗),
using [30], Theorem 3.1 (xii), in the last identity. Inserting these formulae into the above result
and noting that in the stationary case, the integrands need to sum to zero gives (4.17). Vectorizing
then immediately establishes (4.18).
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Likewise, we obtain (4.16) in the non-stationary case by inserting the formulae above, vector-
izing and differentiating. �

Proof of Lemma 4.17. We have

ρL

∥∥vec
(
Id2 + Kd + vec(Id)vec(Id)∗

)∥∥
B̃,S

=
∥∥∥∥
∫

Rd

vec
(
(xx∗) ⊗ (xx∗)

)
νL(dx)

∥∥∥∥
B̃,S

(6.7)

≤
∫

Rd

∥∥vec
(
(xx∗) ⊗ (xx∗)

)∥∥
B̃,S

νL(dx) =
∫

Rd

‖vec(xx∗)‖2
B,SνL(dx)

since the definition of ‖ · ‖B̃,S implies that

∥∥vec
(
(xx∗) ⊗ (xx∗)

)∥∥
B̃,S

= ‖S −1(x ⊗ x) ⊗ (x ⊗ x)‖2

= ‖(S−1 ⊗ S−1)(x ⊗ x)‖2
2 = ‖vec(xx∗)‖2

B,S,

using the fact that ‖z ⊗ z‖2 = ‖z‖2
2 for all z ∈ Rd2

.
For k = 2, the condition (4.4) becomes

2‖S‖2
2‖S−1‖2

2K2,B‖A ⊗ A‖B,S

∫
Rd

‖vec(xx∗)‖B,SνL(dx)

+‖S‖4
2‖S−1‖4

2K
2
2,B‖A ⊗ A‖2

B,S

∫
Rd

‖vec(xx∗)‖2
B,SνL(dx) < −4λ.

Using (6.7) and results from the proof of Lemma 4.10 gives

2σL‖A ⊗ A‖B,S + K2
2,B‖A ⊗ A‖2

B,SρL

∥∥vec
(
Id2 + Kd + vec(Id)vec(Id)∗

)∥∥
B̃,S

< −4λ.

Combining ‖(A ⊗ A) ⊗ Id2 + Id2 ⊗ (A ⊗ A)‖B̃,S ≤ 2‖A ⊗ A‖B,S and ‖A ⊗ A ⊗ A ⊗ A‖B̃,S =
‖A⊗A‖2

B,S , which are elementary to prove, with (4.19) leads to ‖C −B ⊗ Id2 − Id2 ⊗B‖B̃,S <

−4λ.

Since S −1(B ⊗ Id2 + Id2 ⊗ B)S is diagonal and max(�(σ (B ⊗ Id2 + Id2 ⊗ B))) = 4λ, the
Bauer–Fike theorem (see [23], Theorem 6.3.2 and its proof) and arguments as in the proof of
Lemma 4.10 complete this proof. �

Proof of Lemma 4.18. That S is unitary implies that K2,B = 1 and all the norms used are
actually the Euclidean norm or the operator norm induced by it. Hence, we have to show that

‖Q + Kd Q + Id4‖2 ≤ ∥∥vec
(
Id2 + Kd + vec(Id)vec(Id)∗

)∥∥
2.

For d = 1, one calculates both sides to be equal to 3.
In general, we know from the fact that Kd and Q are permutation matrices that the operator

norms are 1. Hence, ‖Q + Kd Q +Id4‖2 ≤ 3. Furthermore, the entries of Kd and vec(Id)vec(Id)∗
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are either 1 or 0. Therefore, ‖vec(Id2 + Kd + vec(Id)vec(Id)∗)‖2 ≥ ‖vec(Id2)‖2 = d . This
shows the inequality for d ≥ 3.

In the remaining case d = 2, we have∥∥vec
(
Id2 + Kd + vec(Id)vec(Id)∗

)∥∥
2 ≥ ∥∥vec

(
Id2 + vec(Id)vec(Id)∗

)∥∥
2 = √

12 > 3,

which again establishes the claimed inequality. �

To prove the asymptotic second-order stationarity, we need the following general lemma on
differential equations which is elementary, but not to be found in the literature, to the best of our
knowledge.

Lemma 6.10. Let f : R+ → Rd be continuous and A ∈ Md(R) with σ(A) ⊂ (−∞,0) + iR.
If limt→∞ f (t) = ξ with ξ ∈ Rd , then, for any initial value x0 ∈ Rd , the solution x to the

differential equation

dx(t)

dt
= Ax(t) + f (t)

satisfies limt→∞ x(t) = −A−1ξ .

Proof. It holds that

x(t) = eAtx0 +
∫ t

0
eA(t−s)f (s)ds.

Since

lim
t→∞

∫ t

0
eA(t−s)ξ ds = −A−1ξ and lim

t→∞ eAtx0 = 0,

it suffices to show that limt→∞ ‖ ∫ t

0 eA(t−s)(f (s) − ξ)ds‖ = 0. Fix ε > 0. There exist t∗, t∗∗ > 0
with t∗ ≤ t∗∗ such that ‖f (t) − ξ‖ < ε for all t ≥ t∗ and∥∥∥∥

∫ t∗

0
eA(t−s)

(
f (s) − ξ

)
ds

∥∥∥∥ < ε for all t ≥ t∗∗.

Hence,∥∥∥∥
∫ t

0
eA(t−s)

(
f (s) − ξ

)
ds

∥∥∥∥ ≤
(

1 +
∫ t

t∗

∥∥eA(t−s)
∥∥ds

)
ε ≤

(
1 +

∫ ∞

0
‖eAs‖ds

)
ε ∀t ≥ t∗∗.

Since the last integral is finite and ε was arbitrary, this completes the proof. �

Proof of Theorem 4.20. (i) follows from Proposition 4.7 and Theorems 4.8, 4.11 and 4.15.
Regarding (ii), Proposition 4.7 ensures that E(‖Yt‖2) < ∞ for all t ∈ R+. The convergence

of the expectation has already been noted in Remark 4.9 and the convergence of the variance
follows from (4.16) and the previous lemma. (4.12) then implies the convergence of the autoco-
variance. �
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6.3. Proofs for Section 5

Proof of Proposition 5.2. Proposition 4.7 ensures that E(‖Yt‖) and hence E(‖Vt‖) is finite and
locally bounded. Since E(‖V 1/2

t ‖2
2) = E(‖Vt‖2), the standard L2-stochastic integration theory

(see [1], Section 4.2.1, for example) establishes that E(‖Gt‖2) < ∞ for all t ∈ R
+.

If we now let Assumptions 5.1 and 5.2 be satisfied, then (5.2) is clear and (5.5) is a straight-
forward consequence of the Itô isometry. The latter also implies that

var(G1) = E(G1G∗
1) = E

(∫ 


0
V

1/2
s− E(L1L

∗
1)V

1/2
s− ds

)
= (σL + σW)E

(∫ 


0
Vs− ds

)
= (σL + σW)
E(V0). �

Proof of Proposition 5.4. (i) We first show the finiteness of the moments. Using the Euclidean
norm and its operator norm, it is clear that E(‖Gt‖4) < ∞ if and only if E(‖GtG

∗
t ‖2) < ∞.

Denoting the d components of G by Gi with i = 1, . . . , d , we have that E(‖Gt‖4) < ∞ is equiv-
alent to E(|Gi,t |4) < ∞ for all i ∈ {1, . . . , d}. But the Burkholder–Davis–Gundy inequalities
(see [36], page 222) give that E(|Gi,t |4) < ∞ provided E([Gi,Gi]2

t ) < ∞. The latter is, in turn,
ensured by E(‖[G,G]t‖2) < ∞ simultaneously for all i ∈ {1, . . . , d}.

Next, we observe that [L,L]t = τLt + ∫ t

0 xx∗μL(ds,dx) with τL ∈ S
+
d and that, moreover,

[G,G]t = ∫ t

0 V
1/2
s− d[L,L]s V

1/2
s− or, equivalently, vec([G,G]t ) = ∫ t

0 V
1/2
s− ⊗V

1/2
s− d vec([L,L]s).

Since Proposition 4.7 ensures the finiteness and local boundedness of E(‖Vs‖2
2) = E(‖Vs ⊗

Vs‖2) and E(‖L1‖4) the finiteness of E(‖[L,L]1‖2), the standard L2-stochastic integration the-
ory immediately gives E(‖[G,G]t‖2) < ∞.

(ii) If we now let Assumptions 5.1 and 5.2 be satisfied, then (5.6) has already been shown in
the last proposition.

It thus remains to establish (5.7). Let h ∈ N. The definition of the quadratic (co)variation (see
[5], Lemma 5.11, in particular) implies that

Gh+1G∗
h+1 =

∫ (h+1)


h


V
1/2
s− dLs

(∫ s

h


dL∗
u V

1/2
u−

)
+

∫ (h+1)


h


(∫ s

h


V
1/2
u− dLu

)
dL∗

s V
1/2
s−

+
[∫ (h+1)


h


V
1/2
s− dLs,

∫ (h+1)


h


V
1/2
s− dLs

]

with [∫ (h+1)


h


V
1/2
s− dLs,

∫ (h+1)


h


V
1/2
s− dLs

]

=
∫ (h+1)


h


V
1/2
s− d[L,L]s V

1/2
s−

= σW

∫ (h+1)


h


Vs− ds +
∫ (h+1)


h


V
1/2
s− d[L,L]ds V

1/2
s− .
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We now condition upon F
 and denote by Y(y, (Lr − Lt0)r≥t0, t0, t) with t0 ∈ R
+ the solution

of

dYt = (BYt− + Yt−B∗)dt + A(Yt− + C)1/2 d[L,L]dt (Yt− + C)1/2A∗

for t ≥ t0 with Yt0 = y. Furthermore, we denote by EL,t0(·) the expectation taken with respect to
(Lr − Lt0)r≥t0 only. Using Theorem 4.4, E(L1) = 0 and the fact that the increments of (Lr)r≥


are independent of F
, one obtains

E

(∫ (h+1)


h


V
1/2
s− dLs

(∫ s

h


dL∗
uV

1/2
u−

)∣∣∣F


)

= E

(∫ (h+1)


h


V
1/2
s− dLs

(∫ s

h


dL∗
uV

1/2
u−

)∣∣∣Y


)

= EL,


(∫ (h+1)


h


∫ s

h


V
1/2
Y
,s− dLs dL∗

u V
1/2
Y
,u−

)
= 0,

where VY
,t := Y(Y
, (Lr − L
)r≥
,
, t) + C and, likewise,

E

(∫ (h+1)


h


(∫ s

h


V
1/2
u− dLu

)
dL∗

s V
1/2
s−

∣∣∣F


)
= 0.

Moreover, using the moment assumptions and the compensation formula, we have

E

(
σW

∫ (h+1)


h


Vs− ds +
∫ (h+1)


h


V
1/2
s− d[L,L]ds V

1/2
s−

∣∣∣F


)

= (σL + σW)

∫ (h+1)


h


EL,
(VY
,s)ds.

Equation (4.7) implies that∫ (h+1)


h


EL,
(vec(VY
,s))ds

=
∫ (h+1)


h


(
vec(C) + eB(s−
)

(
vec(Y
) + σLB−1(A ⊗ A)vec(C)

))
ds

−
∫ (h+1)


h


σLB−1(A ⊗ A)vec(C)ds

= 
vec(C) + B−1eB
h(Id2 − e−B
)
(
vec(Y
) − E(vec(Y0))

) + 
E(vec(Y0)).

Combining the above results, we get

E(vec(Gh+1G∗
h+1)(vec(G1G∗

1))
∗)

= E(E(vec(Gh+1G∗
h+1)|F
)(vec(G1G∗

1))
∗)
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= E(vec(G1G∗
1))(E(vec(G1G∗

1)))
∗ + (σL + σW)eB
hB−1(Id2 − e−B
)

× (
E(vec(Y
)(vec(G1G∗

1))
∗) − E(vec(Y0))(E(vec(G1G∗

1)))
∗).

Using the stationarity of Y , this establishes (5.7). �
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