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For a Markov chain X = {Xi, i = 1,2, . . . , n} with the state space {0,1}, the random variable S := ∑n
i=1 Xi

is said to follow a Markov binomial distribution. The exact distribution of S, denoted LS, is very com-
putationally intensive for large n (see Gabriel [Biometrika 46 (1959) 454–460] and Bhat and Lal [Adv.
in Appl. Probab. 20 (1988) 677–680]) and this paper concerns suitable approximate distributions for LS

when X is stationary. We conclude that the negative binomial and binomial distributions are appropriate
approximations for LS when VarS is greater than and less than ES, respectively. Also, due to the unique
structure of the distribution, we are able to derive explicit error estimates for these approximations.

Keywords: binomial distribution; coupling; Markov binomial distribution; negative binomial distribution;
Stein’s method; total variation distance

1. Introduction and the main results

Let X = {Xi, i = 1,2, . . . , n} be a Markov chain with the state space {0,1} and transition matrix

P =
(

p00 p01
p10 p11

)
=

(
1 − α α

1 − β β

)
, (1.1)

where α,β ∈ (0,1). The distribution of S := ∑n
i=1 Xi , denoted LS, is well known as the Markov

binomial distribution. When X is stationary and α = β , LS degenerates to a binomial distribu-
tion. Except for the case α = β , the exact distribution of S (see Gabriel (1959) and Bhat and
Lal (1988)) is very computationally intensive for large n and our interest is in investigating suit-
able approximate distributions for LS.

It appears that Koopman (1950) and Dobrushin (1961) were among the earliest in the study
of limit theory of Markov binomial distributions and the topic was then treated in many articles
including Serfling (1975), Wang (1981), Serfozo (1986), He and Xia (1997), Čekanavičius and
Mikalauskas (1999), Vellaisamy and Chaudhuri (1999), Barbour and Lindvall (2006), Čekanav-
ičius and Roos (2007). The approximate distributions considered are mostly normal, compound
Poisson, translated Poisson or binomial distributions. For instance, when nα/(1 − β + α) con-
verges, Wang (1981) proved that for any fixed k, P(S = k) converges to P(Y = k), where Y is a
compound Poisson variable. Barbour and Lindvall (2006) used a translated Poisson distribution
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to approximate the distribution of a sum of integer-valued random variables whose distribu-
tions depend on the state of an underlying Markov chain. Under an aperiodic condition, they
established error bounds with respect to the total variation distance, comparable to those found
for normal approximation with respect to the weaker Kolmogorov distance. On the other hand,
when the first two factorial cumulants of LS are matched by those of a binomial distribution,
Čekanavičius and Roos (2007) demonstrated that the binomial distribution is a suitable approxi-
mation for LS with an approximation error, measured in total variation norm, in the order of 1√

n
.

The error estimates in Barbour and Lindvall (2006) and Čekanavičius and Roos (2007) are of the
best possible order.

The main purpose of this paper is to find suitable approximate distributions for LS and provide
error bounds as explicit functions of the parameters of the Markov binomial distribution. We will
show that the negative binomial and binomial distributions are suitable approximations when
VarS is greater than and less than ES, respectively. We employ the celebrated Stein method for
binomial (Ehm (1991)) and negative binomial (Brown and Phillips (1999)) approximations and
use the unique structure of the Markov binomial distribution to construct a suitable coupling
which enables us to specify all of the constants involved in the estimates.

For convenience, from now on, we will assume that X is stationary. Direct computation ensures
that the stationary distribution π of X is

p := π(1) = α

1 − β + α
, π(0) = 1 − β

1 − β + α

and

ES = np,

VarS = np(1 − p) + nA0 − A1 + A1(β − α)n, (1.2)

where

A0 = 2α(1 − β)(β − α)

(1 − β + α)3
, A1 = 2α(1 − β)(β − α)

(1 − β + α)4
. (1.3)

Note that X is a stationary positive recurrent Markov chain.
To state the main result, we use Bi(m, θ) to stand for the binomial distribution with parameters

m and 0 < θ < 1. We say that Y follows the negative binomial distribution with parameters r > 0
and 0 < q < 1, denoted by NB(r, q), if

P(Y = k) = �(r + k)

�(r)k! qr(1 − q)k, k ∈ Z+ := {0,1,2, . . .}.

The metric we will use for measuring the approximation errors is the total variation distance
defined as

dTV(P,Q) := sup
A⊂Z+

|P(A) − Q(A)|

for probability distributions P,Q on Z+.



On approximation of Markov binomial distributions 1337

For the Markov chain X with transition matrix (1.1), we set

μ1 = 1 − α

α
, σ 2

1 = 1 − α

α2
, μ2 = β

1 − β
, σ 2

2 = β

(1 − β)2
,

C0 = |β − α|(5 + 43α ∨ β)

(1 − β ∨ α)2
, C1 = 10(β ∨ α)

1 − β ∨ α
, C2 = (1 − p)(5 + 23α ∨ β)

(1 − α ∨ β)2
,

K1 = √
5

√
μ1 + μ2 + 2

min(1 − α,β,1/2)
, K2 = 90(σ 2

1 + σ 2
2 )

μ1 + μ2 + 2
.

It is worthwhile to note that μ1 (resp., μ2) is the mean number of revisits of 0’s (resp., 1’s)
before the Markov chain moves to state 1 (resp., 0), and σ 2

1 and σ 2
2 are the variances of the

corresponding variables. The main result of the paper is as follows.

Theorem 1.1.

1. If VarS ≥ ES, then

dTV(LS,NB(r, q)) ≤ C0

[
2K1√

n
+ 4K2

n
+ β�n/4	

]
, (1.4)

where

r = (ES)2

VarS − ES
, q = ES

VarS

and NB(∞,1) is understood as the Poisson distribution with parameter ES.
2. If VarS < ES, then

dTV(L(S),Bi(m, θ))
(1.5)

≤
( |p − θ |

1 − θ
C1 + |β − α|

1 − θ
C2

)[
2K1√

n
+ 4K2

n
+ (β ∨ α)�n/4	

]
+ θ2(m̃ − m)

np(1 − θ)
,

where

m̃ = (ES)2

ES − VarS
, m = �m̃	, θ = np

m

and �m̃	 is the integer part of m̃.

Remark 1.1. In practical situations, α and β are usually fixed, so the bounds in Theorem 1.1 are
of order 1√

n
. The constants Ki and Ci are useful when both α and β are a reasonable distance

from 0 and 1. If α is close to 0 and β is close to 1, then LS is not unimodal, so one should not
expect good approximation by a negative binomial or binomial distribution. On the other hand,
when α is close to 1 and β is close to 0, ES is close to n

2 , but VarS will be close to 0 for even
n and 1

4 for odd n, meaning that we should not expect a good binomial approximation in this
case either since the accuracy of approximation is a function of VarS. If both α and β are close
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to 0, then Poisson approximation to LS (see Barbour et al. (1992), Theorem 8.H) is generally
sufficient. If both α and β are close to 1, one should consider approximating L(n − S) instead
of LS.

Remark 1.2. Except when both α and β are very small, Poisson approximation to LS (see Bar-
bour et al. (1992), Theorem 8.H) is inadequate since the error bound of Poisson approximation
will not become small when n becomes large.

Remark 1.3. Lemma 2.2, proved in the next section, states that a necessary condition for (1.4)
is that β > α.

Remark 1.4. It is easy to see that if A0 > p2, then VarS > ES for sufficiently large n. In this

case, as n → ∞, r ≈ np2

A0−p2 and q ≈ p

p+A0−p2 .

Remark 1.5. As n → ∞, m ≈ � np2

p2−A0
	 and θ ≈ p − A0

p
< 1. Note that if α = β , LS degenerates

to Bi(n,p) and m̃ = m, so the upper bound of (1.5) becomes 0.

Remark 1.6. Although the estimates in Theorem 1.1 are established for stationary X, since a
Markov chain with transition matrix (1.1) and any initial distribution converges exponentially
fast to the stationary distribution (see the coupling constructed in the proof of Lemma 2.4),
our bounds can be adapted for approximating a Markov binomial distribution with any initial
distribution, provided that an error estimate for the difference between the Markov binomial
distribution and LS is added to the upper bounds.

2. Preliminary studies of the Markov binomial distribution

To prove Theorem 1.1, we need the following preparation.

Lemma 2.1. Suppose {Yj : j ≥ 0} is a Markov chain with transition matrix (1.1) and Y0 = 0.
Define W = ∑n

i=1 Yi . We then have

dTV
(

L(W), L(W + 1)
) ≤ γ (n), (2.1)

where

γ (x) := K1√
x

+ K2

x
for x > 0,

and K1 and K2 are as given in Section 1.

Proof. We construct another version of the Markov chain {Yi}, denoted {Y ′
i }, such that P(W +

1 �= W ′) ≤ γ (n), where W ′ = ∑n
i=1 Y ′

i . To this end, let ρ0 = 0 and for j ≥ 1, let ρj = inf{t >

ρj−1 :Yt �= Yρj−1}. The {ρj } are then stopping times separating the Markov chain into blocks
of 0’s and 1’s. In other words, if we set ξj = ρj − ρj−1 − 1 for j ≥ 1, then ξ1 is the number of
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revisits of 0’s for the Markov chain before it moves to state 1, followed by ξ2 revisits of 1’s before
it moves to 0, etcetera. By the regenerative theory (see Thorisson (2000), page 53), {ξj : j ≥ 1}
are independent random variables, ξ2j−1 follows the geometric distribution with parameter α

and ξ2j has geometric distribution with parameter 1 − β for all j ≥ 1. We write

μ1 = Eξ1 = 1 − α

α
, μ2 = Eξ2 = β

1 − β
,

σ 2
1 = Var ξ1 = 1 − α

α2
, σ 2

2 = Var ξ2 = β

(1 − β)2
.

For fixed n, there are about n
μ1+μ2+2 blocks of 0’s and 1’s, so we let k = �cn	 + 1 with c

close to (μ1 + μ2 + 2)−1. On the other hand, to further simplify the estimate in (2.6) below, it
is convenient to take c = 4

5 (μ1 + μ2 + 2)−1. Let Tk = ∑k
j=1 ξ2j−1 and Lk = ∑k

j=1 ξ2j . Using
Barbour and Xia (1999), Proposition 4.6, we have

dTV
(

L(Tk), L(Tk + 1)
) ≤ 1√

cnmin(u1,1/2)
,

where u1 := 1−dTV(L(ξ1), L(ξ1 +1)) = 1−α. We then choose a maximal coupling (Tk, T
′
k +1)

of L(Tk) and L(Tk + 1) (Barbour et al. (1992), page 254) such that

dTV
(

L(Tk), L(Tk + 1)
) = P(Tk �= T ′

k + 1) ≤ 1√
cnmin(1 − α,1/2)

(2.2)

and write {ξ ′
2j−1,1 ≤ j ≤ k} for the i.i.d. random variables satisfying T ′

k = ∑k
j=1 ξ ′

2j−1. On the
other hand, since {ξ2j , j ≥ 1} play exactly the same role as {ξ2j−1, j ≥ 1} with 0 and 1 swapped,
there exists a maximal coupling (Lk + 1,L′

k) of L(Lk + 1) and L(Lk) such that (Lk,L
′
k) is

independent of (Tk, T
′
k) and

P(Lk + 1 �= L′
k) = dTV

(
L(Lk + 1), L(Lk)

) ≤ 1√
cnmin(β,1/2)

. (2.3)

We write {ξ ′
2j ,1 ≤ j ≤ k} for the i.i.d. random variables satisfying L′

k = ∑k
j=1 ξ ′

2j .

Define ρ′
0 = 0 and ρ′

j = ρ′
j−1 + ξ ′

j + 1, 1 ≤ j ≤ 2k. We now couple {Y ′
i } with {Yi} by setting

Y ′
i =

⎧⎨
⎩

0, for ρ′
2j−2 ≤ i < ρ′

2j−1,1 ≤ j ≤ k,
1, for ρ′

2j−1 ≤ i < ρ′
2j ,1 ≤ j ≤ k,

Yi, for i ≥ ρ′
2k .

Under the conditions that ρ2k ≤ n, Tk = T ′
k +1 and Lk +1 = L′

k , we have W ′ = W +1. Hence,

P(W + 1 �= W ′) ≤ P(ρ2k > n) + P(Tk �= T ′
k + 1) + P(Lk + 1 �= L′

k). (2.4)
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Without loss of generality, we may assume that cn > 8. In fact, if cn ≤ 8, then K1√
n

≥ 1 and (2.1)
clearly holds. Using Chebyshev’s inequality, we get

P(ρ2k > n) ≤ Var(ρ2k)

(n − Eρ2k)2
= k(σ 2

1 + σ 2
2 )

(n − k(μ1 + μ2 + 2))2

≤ (cn + 1)(σ 2
1 + σ 2

2 )

(n − (cn + 1)(μ1 + μ2 + 2))2
(2.5)

≤ 1.125cn(σ 2
1 + σ 2

2 )

(n − 1.125cn(μ1 + μ2 + 2))2
≤ K2

n
.

Finally, combining the estimates (2.2), (2.3) and (2.6) with (2.4) yields (2.1). �

Lemma 2.2. If VarS ≥ ES, then β > α.

Proof. By (1.2), we have

VarS − ES = −np2 + nA0 − A1
(
1 − (β − α)n

)
= −np2 + nA0 − A0

(
1 + (β − α) + (β − α)2 + · · · + (β − α)n−1)

= −np2 + A0
(
n − (

1 + (β − α) + (β − α)2 + · · · + (β − α)n−1)).
Clearly, n−(1+(β −α)+(β −α)2 +· · ·+(β −α)n−1) > 0. If β ≤ α, then A0 = 2α(1−β)(β−α)

(1−β+α)3 ≤
0, so VarS − ES < 0, contradicting the assumption. �

Lemma 2.3. If h is a bounded function on Z+, and V1, V2 and V are Z+-valued random vari-
ables coupled in such a way that V is independent of (V1,V2), then∣∣∣∣∣E

V2−1∑
j=0

[h(V1 + j + V ) − h(V )]
∣∣∣∣∣ ≤ 2εV ‖h‖E

[
V1V2 + 1

2
(V2 − 1)V2

]
,

where εV := dTV(L(V ), L(V + 1)).

Proof. We write �h(·) = h(· + 1) − h(·). Then,∣∣∣∣∣E
V2−1∑
j=0

[h(V1 + j + V ) − h(V )]
∣∣∣∣∣

=
∣∣∣∣∣
∑
i1,i2

E

(
i2−1∑
j=0

[h(i1 + j + V ) − h(V )]|(V1,V2) = (i1, i2)

)
P
(
(V1,V2) = (i1, i2)

)∣∣∣∣∣
≤

∑
i1,i2

i2−1∑
j=0

|E[h(i1 + j + V ) − h(V )]|P(
(V1,V2) = (i1, i2)

)
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=
∑
i1,i2

i2−1∑
j=0

∣∣∣∣∣E
i1+j−1∑

i=0

�h(V + i)

∣∣∣∣∣P(
(V1,V2) = (i1, i2)

)

≤ 2εV ‖h‖
∑
i1,i2

i2−1∑
j=0

i1+j−1∑
i=0

P
(
(V1,V2) = (i1, i2)

)

= 2εV ‖h‖E

[
V1V2 + 1

2
(V2 − 1)V2

]
. �

Lemma 2.4. Write L(S − Xi |Xi = j) := L(Si,j ) for 1 ≤ i ≤ n and j = 0,1. If h is a bounded
function on Z+, then

|Eh(Si,1) − Eh(S)| ≤ ‖h‖ 10α ∨ β

1 − α ∨ β

(
γ (n/4) + (α ∨ β)�n/4	), (2.6)

|E[h(Si,1) − h(Si,0)] − E(Si,1 − Si,0)E�h(S)|
(2.7)

≤ ‖�h‖ |α − β|(5 + 23α ∨ β)

(1 − α ∨ β)2

(
γ (n/4) + (α ∨ β)�n/4	).

Proof. We construct two copies of Markov chains having transition matrix (1.1), with one start-
ing at state 1 and the other at state 0 at time i in such a way that they can meet as soon as possible
in both directions and, once they meet, they stay together from then on. To this end, we define a
two-dimensional Markov chain {(Zi,1

l ,Z
i,0
l ), l ≥ i} with state space {(0,0), (0,1), (1,0), (1,1)},

initial state (Z
i,1
i ,Z

i,0
i ) = (1,0) and transition probabilities

p(1,0)(j2,j1) = p(0,1)(j1,j2) =
{

p0j ∧ p1j , if j1 = j2 = j ,
β − α, if β > α, j1 = 0, j2 = 1,
α − β, if β ≤ α, j1 = 1, j2 = 0;

(2.8)
p(i,i)(j,j) = pij for i, j = 0,1.

Since the reverse chain X̃ of X has the same transition matrix as that of X, we can construct a
reverse chain {(Zi,1

l ,Z
i,0
l ), l < i} of {(Zi,1

l ,Z
i,0
l ), l > i} in the same way as in (2.8).

As i is fixed, we drop the subindex i and define

ς = min{t − i > 0 :Zi,1
t = Z

i,0
t },

ς̃ = min{i − t > 0 :Zi,1
t = Z

i,0
t },

τ = min{t − i > 0 :Zi,1
t = Z

i,0
t = 0}

and

τ̃ = min{i − t > 0 :Zi,1
t = Z

i,0
t = 0}.
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ς and ς̃ then have the same distribution, as do τ and τ̃ . Moreover,

P(ς ≥ m) = |β − α|m−1, P(τ ≥ m) ≤ (β ∨ α)m−1, m ≥ 1,

E(τ̃ − 1) = E(τ − 1) ≤ β ∨ α

1 − β ∨ α
, (2.9)

E[(τ̃ − 1)2] = E[(τ − 1)2] ≤ (β ∨ α)(1 + β ∨ α)

(1 − β ∨ α)2
.

By (2.8) and the regenerative theory, the left range {(Zi,1
l ,Z

i,0
l ) : l < i − τ̃ }, the middle range

{(Zi,1
l ,Z

i,0
l ) : l ∈ [i − τ̃ , i + τ ]} and the right range {(Zi,1

l ,Z
i,0
l ) : l > i + τ } are independent. If

we stipulate
∑a

b = 0 for a < b and let

Si
l =

i−τ̃−1∑
j=1

Z
i,1
j , Si

r =
n∑

j=i+τ+1

Z
i,1
j ,

(2.10)

ζ i,1 =
(i+τ)∧n∑

j=(i−τ̃ )∨1,j �=i

Z
i,1
j , ζ i,0 =

(i+τ)∧n∑
j=(i−τ̃ )∨1,j �=i

Z
i,0
j ,

then we can write

Si,1 = Si
l + Si

r + ζ i,1, Si,0 = Si
l + Si

r + ζ i,0. (2.11)

Let Ui := Si
l +Si

r . We wish to estimate εi := dTV(L(Ui), L(Ui +1)). Due to the symmetry about
i of the Markov chain coupled, it suffices to estimate εi for i ≤ n

2 . By the definition of Si
r and

Lemma 2.1,

dTV
(

L(Si
r + 1), L(Si

r )
)

= dTV

(
L

(
n∑

j=i+τ+1

Z
i,1
j + 1

)
, L

(
n∑

j=i+τ+1

Z
i,1
j

))

≤
∑

a≤n/4

dTV

(
L

(
n∑

j=i+a+1

Z
i,1
j + 1

)
, L

(
n∑

j=i+a+1

Z
i,1
j

))
P(τ = a) + P(τ > n/4)

≤ γ (n/4) + P(τ > n/4),

which, because of the independence of Si
l and Si

r , ensures that

εi ≤ γ (n/4) + P(τ > n/4) ≤ γ (n/4) + (α ∨ β)�n/4	. (2.12)

To compare Si,1, Si,0 with S, we let {Y ′
l } = {Zi,1

l } with probability p and {Y ′
l } = {Zi,0

l } with
probability 1−p so that {Y ′

l : 0 ≤ l ≤ n} has the same distribution as X. Next, replace {Y ′
l : l ∈ [i−
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τ̃ , i + τ ]} with {Y ′′
l : l ∈ [i − τ̃ , i + τ ]}, which has the same distribution as {Y ′

l : l ∈ [i − τ̃ , i + τ ]},
but is independent of {(Zi,1

l ,Z
i,0
l ) : 1 ≤ l ≤ n}. Define

Z′
l =

{
Y ′′

l , l ∈ [i − τ̃ , i + τ ],
Y ′

l , l > i + τ or l < i − τ̃ ′ and ζ i =
(i+τ)∧n∑

l=(i−τ̃ )∨1

Z′
l

so that S′ := Si
l + Si

r + ζ i follows the distribution LS. By Lemma 2.3, we have

|E[h(Si,1) − h(S′)]|
≤ |E[h(Ui + ζ i,1) − h(Ui)]| + |E[h(Ui + ζ i) − h(Ui)]|
≤ 2εi‖h‖(Eζ i,1 + Eζ i).

However, it follows from (2.9) that

E(ζ i,1 ∨ ζ i,0) ≤ E(τ − 1) + E(τ̃ − 1) ≤ 2α ∨ β

1 − α ∨ β

and

Eζ i ≤ pE(τ + τ̃ − 1) + (1 − p)E(τ + τ̃ − 2) ≤ 2α ∨ β

1 − α ∨ β
+ p ≤ 3α ∨ β

1 − α ∨ β
. (2.13)

Therefore,

|E[h(Si,1) − h(S′)]| ≤ 10α ∨ β

1 − α ∨ β
‖h‖εi, (2.14)

which, together with (2.12), ensures (2.6).
To estimate (2.7), noting that β > α implies ζ i,1 ≥ ζ i,0, while β ≤ α gives ζ i,1 ≤ ζ i,0, and

swapping 0 and 1 in the superscripts, if necessary, we may assume without loss of generality that
ζ i,1 ≥ ζ i,0. Observing that Ui is independent of (ζ i,1 − ζ i,0, ζ i), we obtain from Lemma 2.3 that

|E[h(Si,1) − h(Si,0)] − E(Si,1 − Si,0)E�h(S)|
= |E[h(Ui + ζ i,1) − h(Ui + ζ i,0)] − E(ζ i,1 − ζ i,0)E�h(S′)|
≤ |E[h(Ui + ζ i,1) − h(Ui + ζ i,0)] − E(ζ i,1 − ζ i,0)E�h(Ui)|

(2.15)
+ E(ζ i,1 − ζ i,0)|E[�h(Ui) − �h(S′)]|

≤
∣∣∣∣∣E

ζ i,1−ζ i,0−1∑
j=0

[�h(Ui + ζ i,0 + j) − �h(Ui)]
∣∣∣∣∣ + 2εi‖�h‖E(ζ i,1 − ζ i,0)Eζ i

≤ 2εi‖�h‖
{

E

[
ζ i,0(ζ i,1 − ζ i,0) + 1

2
(ζ i,1 − ζ i,0)(ζ i,1 − ζ i,0 − 1)

]
+ E(ζ i,1 − ζ i,0)Eζ i

}
.
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Now, again using (2.9), we have

E(ζ i,1 − ζ i,0) ≤ E(ς − 1) + E(ς̃ − 1) = 2|α − β|
1 − |α − β| , (2.16)

E[(ζ i,1 − ζ i,0)(ζ i,1 − ζ i,0 − 1)] ≤ E[(ς + ς̃ − 2)(ς + ς̃ − 3)]
(2.17)

= 6|α − β|2
(1 − |α − β|)2

.

To estimate E(ζ i,0(ζ i,1 − ζ i,0)), for κ = 0,1, define

ζ i,κ,+ =
(i+τ)∧n∑
l=i+1

Z
i,κ
l , ζ i,κ,− =

i−1∑
l=(i−τ̃ )∨1

Z
i,κ
l

and τ1,0 = inf{l ≥ 1 :Zi,1
i+ς+l = 0}. The conditional distribution of τ1,0 given Z

i,1
i+ς = 1 is then

the same as L(ξ2 + 1). Since (ζ i,1,+, ζ i,0,+) and (ζ i,1,−, ζ i,0,−) are independent, and, for conve-
nience, we may assume that they are identically distributed, it follows that

E[ζ i,0(ζ i,1 − ζ i,0)] = E[(ζ i,0,− + ζ i,0,+)(ζ i,1,+ + ζ i,1,− − ζ i,0,+ − ζ i,0,−)]
(2.18)

= 2E(ζ i,0,+)E(ζ i,1,− − ζ i,0,−) + 2E[ζ i,0,+(ζ i,1,+ − ζ i,0,+)].
On the other hand,

E(ζ i,0,+) ≤ E(τ − 1) ≤ β ∨ α

1 − β ∨ α
, (2.19)

E(ζ i,1,− − ζ i,0,−) ≤ E(ς̃ − 1) = |α − β|
1 − |α − β| , (2.20)

E[ζ i,0,+(ζ i,1,+ − ζ i,0,+)] (2.21)

= E

{(
(i+ς−1)∧n∑

l=i+1

Z
i,0
l +

(i+τ−1)∧n∑
l=(i+ς)∧n

Z
i,0
l

)(
(i+ς−1)∧n∑

l=i+1

(Z
i,1
l − Z

i,0
l )

)}

≤ 1

4
E

{(
(i+ς−1)∧n∑

l=i+1

Z
i,1
l

)2}

+
∑

s=0,1

E

{(
(i+τ−1)∧n∑
l=(i+ς)∧n

Z
i,0
l

)(
(i+ς−1)∧n∑

l=i+1

(Z
i,1
l − Z

i,0
l )

)∣∣∣Zi,1
i+ς = s

}
P(Z

i,1
i+ς = s)

≤ 1

4
E[(ς − 1)2] + E[τ1,0(ς − 1)|Zi,1

i+ς = 1]P(Z
i,1
i+ς = 1)
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= 1

4
E[(ς − 1)2] + 1

1 − β
E[(ς − 1)|Zi,1

i+ς = 1]P(Z
i,1
i+ς = 1)

≤ 1

4
E[(ς − 1)2] + 1

1 − β
E(ς − 1)

≤ |α − β|(1.25 + 0.25α ∨ β)

(1 − α ∨ β)2
,

where 1
4 in the first inequality of (2.21) is due to the fact that a(b − a) ≤ b2

4 for all a and b.
Combining (2.18)–(2.21) yields

E[ζ i,0(ζ i,1 − ζ i,0)] ≤ 2.5|α − β|(1 + α ∨ β)

(1 − α ∨ β)2
. (2.22)

Therefore, collecting the estimates of (2.13), (2.16), (2.17) and (2.22), we obtain from (2.15) that

|E[h(Si,1) − h(Si,0)] − E(Si,1 − Si,0)E�h(S)| ≤ εi‖�h‖ |α − β|(5 + 23α ∨ β)

(1 − α ∨ β)2
,

which, together with (2.12), yields (2.7). �

3. Proofs of the main results

Proof of (1.4). Set a = r(1 − q) and b = 1 − q . Let

Bg(j) = (a + bj)g(j + 1) − jg(j)

be the Stein operator for the negative binomial distribution NB(r, q) (Brown and Xia (2001)).
For A ⊂ Z+, let gA : Z+ → R be the bounded solution of the Stein equation

Bg(j) = 1{j∈A} − NB(r, q)(A) for all j ≥ 0.

Then,

dTV(L(S),NB(r, q)) = sup
A⊂Z+

|E1{j∈A}(S) − NB(r, q)(A)| = sup
A⊂Z+

|EBgA(S)|.

It hence remains to show that |EBgA(S)| is bounded by the right-hand side of (1.4) for every
A ⊂ Z+. For convenience, we drop the subindex A and write g for gA, and define g′(·) = g(·+1).
Brown and Xia (2001), Theorem 2.10, states that

‖�g′‖ := sup
j∈Z+

|�g′(j)| ≤ 1

a
. (3.1)
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Direct computation gives

EBg(S) = aEg(S + 1) − (1 − b)p

n∑
i=1

Eg(Si,1 + 2) + p

n∑
i=1

E�g(Si,1 + 1)

= aEg′(S) − (1 − b)p

n∑
i=1

Eg′(Si,1 + 1) + p

n∑
i=1

E�g′(Si,1).

Let

a = n(1 − b)p. (3.2)

Then,

EBg(S) = (1 − b)p2
n∑

i=1

Eg′(Si,1 + 1) + (1 − b)p(1 − p)

n∑
i=1

Eg′(Si,0)

− (1 − b)p

n∑
i=1

Eg′(Si,1 + 1) + p

n∑
i=1

E�g′(Si,1)

= [p2 + bp(1 − p)]
n∑

i=1

E�g′(Si,1) − (1 − b)p(1 − p)

n∑
i=1

E[g′(Si,1) − g′(Si,0)].

Set

n[p2 + bp(1 − p)] = (1 − b)p(1 − p)

n∑
i=1

E(Si,1 − Si,0),

which is equivalent to

1 − b = ES

VarS
. (3.3)

Hence, we can write

EBg(S) = [p2 + bp(1 − p)]
n∑

i=1

E[�g′(Si,1) − �g′(S)]
(3.4)

− (1 − b)p(1 − p)

n∑
i=1

{E[g′(Si,1) − g′(Si,0)] − E(Si,1 − Si,0)E�g′(S)}.

Since α < β (see Lemma 2.2), we have

p + b(1 − p)

1 − b
= p + VarS − ES

ES
≤ 2(β − α)

1 − α ∨ β
,
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so (1.4) follows from applying Lemma 2.4 and (3.1) in (3.4) and then collecting like terms.
Finally, the constants a and b are determined by (3.2) and (3.3). �

The proof of (1.5) is based on the Stein operator for the binomial distribution Bi(m, θ),

Bg(j) = θ(m − j)g(j + 1) − (1 − θ)jg(j), j ∈ Z+

(see Ehm (1991) or Barbour et al. (1992), page 188). The idea of the proof is similar to that in
Soon (1996), but at the cost of a slight increase in complexity, we can achieve the better estimate
(1.5). As Bi(m, θ) has support on {0,1, . . . ,m} while S has support on {0,1, . . . , n} and it is
possible that n > m, in estimating the distance between LS and Bi(m, θ), one often needs to deal
with S on {S ≥ m + 1} separately. The following technical lemma helps us to avoid this issue.

Lemma 3.1. For each A ⊂ Z+, there exists a bounded function gA on Z+ such that

BgA(j) ≥ 1{j∈A} − Bi(m, θ)(A) for j ∈ Z+ (3.5)

and

‖�gA‖ ≤ 1

mθ(1 − θ)
. (3.6)

Proof. For 0 ≤ j ≤ m, define gA(j) as in Barbour et al. (1992), page 189, that is, gA(j),0 ≤
j ≤ m, is the solution to the Stein equation

BgA(j) = 1{j∈A} − Bi(m, θ)(A), 0 ≤ j ≤ m. (3.7)

For j ≥ m + 1, let

gA(j) =

⎧⎪⎪⎨
⎪⎪⎩

−1 − θ Bi(m, θ)(A)

mθ(1 − θ)
, if m /∈ A,

−1 + θ − θ Bi(m, θ)(A)

mθ(1 − θ)
, if m ∈ A.

Direct verification then ensures that

BgA(j)

{= 1{j∈A} − Bi(m, θ)(A), if 0 ≤ j ≤ m,

≥ 1 − Bi(m, θ)(A), if j ≥ m + 1,

which, in turn, implies (3.5). Using (3.7) with j = m, we conclude that

gA(m) =

⎧⎪⎪⎨
⎪⎪⎩

Bi(m, θ)(A)

m(1 − θ)
, if m /∈ A,

−1 + Bi(m, θ)(A)

m(1 − θ)
, if m ∈ A.
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Thus,

|�gA(j)| =
⎧⎨
⎩

1

mθ(1 − θ)
, if j = m,

0, if j ≥ m + 1.

The claim (3.6) follows easily from the proof of Lemma 9.2.1, Barbour et al. (1992). �

Proof of (1.5). Let A0 := {i : P(S = i) ≥ Bi(m, θ){i}} and abbreviate gA0 to g. From Lemma 3.1,
we have that

dTV(LS,Bi(m, θ)) = P(S ∈ A0) − Bi(m, θ)(A0) ≤ EBg(S). (3.8)

Therefore, it remains to show that EBg(S) is bounded by the right-hand side of (1.5). To this
end,

EBg(S) = θE[(m − S)g(S + 1)] − (1 − θ)E[Sg(S)]
= mθE[g(S + 1)] − θE[S�g(S)] − E[Sg(S)]

= p(p − θ)

n∑
i=1

E�g(Si,1 + 1) − p(1 − p)

n∑
i=1

E[g(Si,1 + 1) − g(Si,0 + 1)]

= p(p − θ)

n∑
i=1

[E�g(Si,1 + 1) − E�g(S + 1)] (3.9)

− p(1 − p)

n∑
i=1

{E[g(Si,1 + 1) − g(Si,0 + 1)] − E(Si,1 − Si,0)E�g(S + 1)}

+
(

np(p − θ) + p(1 − p)

n∑
i=1

E(Si,0 − Si,1)

)
E�g(S + 1)

:= I1 + I2 + I3.

By Lemma 2.4 and (3.6), we have

|I1| ≤ 10
|p − θ |
1 − θ

· β ∨ α

1 − β ∨ α

(
γ (n/4) + (α ∨ β)�n/4	)

and

|I2| ≤ 1 − p

1 − θ

|α − β|(5 + 23α ∨ β)

(1 − α ∨ β)2

(
γ (n/4) + (α ∨ β)�n/4	),

which, in turn, ensure that

|I1| + |I2| ≤
( |p − θ |

1 − θ
C1 + |α − β|

1 − θ
C2

)(
2K1√

n
+ 4K2

n
+ (β ∨ α)�n/4	

)
. (3.10)
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To estimate I3, setting ε = m̃ − m, we get∣∣∣∣∣np(p − θ) + p(1 − p)

n∑
i=1

E(Si,0 − Si,1)

∣∣∣∣∣
= |np(p − θ) + np(1 − p) − VarS|

=
∣∣∣∣ES − VarS − (ES)2

m

∣∣∣∣ = ε(ES − VarS)

m̃ − ε

= m

m̃
θ2ε.

Therefore, recalling ‖�g‖ ≤ 1
mθ(1−θ)

and m̃ ≥ m = np
θ

, we arrive at

|I3| ≤ m

m̃
‖�g‖θ2ε ≤ θε

m̃(1 − θ)
≤ θ2ε

np(1 − θ)
. (3.11)

The proof is completed by combining the estimates (3.8)–(3.11). �
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