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and the multi-type x logx condition
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We investigate the x logx condition for a general (Crump–Mode–Jagers) multi-type branching process with
a general type space by constructing a size-biased population measure that relates to the ordinary population
measure via an intrinsic martingale Wt . Sufficiency of the x logx condition for a non-degenerate limit of Wt

is proved and conditions for necessity are investigated.
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1. Introduction

The x logx condition is a fundamental concept for supercritical Galton–Watson branching
processes, being the necessary and sufficient condition for the process to grow as its mean. In a
Galton–Watson process with offspring mean m = E[X] > 1, let Zn denote the number of indi-
viduals in the nth generation and let Wn = Zn/mn. Then, Wn is a non-negative martingale and
hence Wn → W for some random variable W . The Kesten–Stigum theorem is given as follows.

Theorem 1.1. If E[X log+ X] < ∞, then E[W ] = 1; if E[X log+ X] = ∞, then W = 0 a.s.

Here, log+ x = max(0, logx). It can further be shown that P(W = 0) must either be 0 or
equal the extinction probability, hence E[X log+ X] < ∞ implies that W > 0 exactly on the set
of non-extinction (see, for example, Athreya and Ney (1972)).

The analog for general single-type branching processes appears in Jagers and Nerman (1984)
and a partial result (establishing sufficiency) for general multi-type branching processes appears
in Jagers (1989). Lyons, Pemantle and Peres (1995) give a slick proof of the Kesten–Stigum
theorem based on comparisons between the Galton–Watson measure and another measure, the
size-biased Galton–Watson measure, on the space of progeny trees. In Olofsson (1998), these
ideas were further developed to analyze general single-type branching processes and the current
paper considers general multi-type branching processes with a general type space. In addition
to providing a new proof of a known result, size-biased processes also provide tools to further
analyze necessity of the x logx condition.

A crucial concept for the Lyons–Pemantle–Peres (LPP) proof is that of size bias. If the off-
spring distribution is {p0,p1, . . .} and has mean m = E[X], then the size-biased offspring distri-
bution is defined as

p̃k = kpk

m
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for k = 0,1,2, . . . , where we note, in particular, that p̃0 = 0. A size-biased Galton–Watson tree
is constructed in the following way. Let X̃ be a random variable that has the size-biased offspring
distribution and let the ancestor v0 have a number X̃0 of children. Pick one of these at random,
call her v1, give her a number X̃1 of children and give her siblings ordinary Galton–Watson
descendant trees. Pick one of v1’s children at random, call her v2, give her a number X̃2 of chil-
dren, give her sisters ordinary Galton–Watson descendant trees and so on and so forth. With Pn

denoting the ordinary Galton–Watson measure restricted to the n first generations, P̃n denoting
the measure that arises from the above construction and Wn = Zn/mn, it can be shown that the
relation

dP̃n = Wn dPn (1.1)

holds. Hence, it is the martingale Wn that size-biases the Galton–Watson process. The construc-
tion of P̃ can also be viewed as describing a Galton–Watson process with immigration, where
the immigrants are the siblings of the individuals on the path (v0, v1, . . .). Thus, the measure P is
the ordinary Galton–Watson measure and the size-biased measure P̃ is the measure of a Galton–
Watson process with immigration, where the i.i.d. immigration group sizes are distributed as
X̃ − 1. The relation between P and P̃ on the space of family trees can now be explored using
results for processes with immigration and this provides the final key to the proof.

The general idea of using size-bias in branching processes appeared before LPP. One early
example is Joffe and Waugh (1982), where size-biased Galton–Watson processes show up in the
study of ancestral trees of randomly sampled individuals. This approach was further explored
by Olofsson and Shaw (2002) with a view toward biological applications. An approach similar
to LPP appeared in Waymire and Williams (1996), developed simultaneously with, and inde-
pendently of, LPP. Later applications and extensions of the powerful LPP method include Kurtz
et al. (1997), Geiger (1999), Athreya (2000), Biggins and Kyprianou (2004) and Lambert (2007).

To make this paper self-contained, we give a short review of general multi-type branching
processes and their x logx condition in the next section. As in the Galton–Watson case, branching
processes with immigration are crucial in the proof; for that purpose, we briefly discuss processes
with immigration in Section 3, following Olofsson (1996). The size-biased measure on the space
of population trees and its relation to the ordinary branching measure is investigated in Section 4
and, in Section 5, sufficiency of the x logx condition is proved. Finally, in Section 6, we discuss
various conditions for necessity.

2. The x logx condition for general branching processes

In a general branching process, individuals are identified by descent. The ancestor is denoted
by 0, the children of the ancestor by 1,2, . . . and so on, so that the individual x = (x1, . . . , xn) is
the xnth child of the xn−1th child of . . .of the x1th child of the ancestor. The set of all individuals
can thus be described as

I =
∞⋃

n=0

Nn.
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At birth, each individual is assigned a type s, chosen from the type space S, equipped with some
appropriate σ -algebra S . The type space can be quite general; usually, it is required to be a com-
plete, separable metric (that is, Polish) space. The type s determines a probability measure Ps(·),
the life law, on the life space �, equipped with some appropriate σ -algebra F . The information
provided by a life ω ∈ � may differ from one application to another, but it must at least give the
reproduction process ξ on S × R+. This process gives the sequence of birth times and types of
the children of an individual. More precisely, let (τ (k), σ (k)) be random variables on � denoting
the birth time (age of the mother) and type of the kth child, respectively, and define

ξ(A × [0, t]) = #{k :σ(k) ∈ A,τ(k) ≤ t}
for A ∈ S and t ≥ 0. We let τ(k) ≡ ∞ if fewer than k children are born. The population space
is defined as �I , an outcome ωI of which gives the lives of all individuals, together with the
σ -algebra F I . The set of probability kernels {Ps(·), s ∈ S} defines a probability measure on
(�I , F I ), the population measure Ps , where the ancestor’s type is s.

With each individual x ∈ I , we associate its type σx , its birth time τx and its life ωx , where σx

is inherited from the mother (a function of the mother’s life) and ωx is chosen according to the
probability distribution Pσx (·) on (�, F ). The birth time τx is defined recursively by letting the
ancestor be born at time τ0 = 0 and, if x is the kth child of its mother y, we let τx = τy + τ(k).
Note that τx and τy denote absolute time, whereas τ(k) is the mother’s age at x’s birth.

An important entity is the reproduction kernel, defined by

μ(s,dr × dt) = Es[ξ(dr × dt)],
the expectation of ξ(dr ×dt) when the mother is of type s. This kernel plays the role of m = E[X]
in the simple Galton–Watson process and determines the growth rate of the process as eαt ,
where α is called the Malthusian parameter. We assume throughout that the process is super-
critical, meaning that α > 0. The existence of such an α is not automatic; sufficient conditions
may be found in Jagers (1989, 1992). For the rest of this section, we leave out further technical
details and assumptions, instead focusing on the main definitions and results. The details can be
found in Jagers (1989, 1992) and we simply refer to a process that satisfies all of the conditions
needed as a Malthusian process.

Given μ and α, we define the kernel μ̂ as

μ̂(s,dr) =
∫ ∞

0
e−αtμ(s,dr × dt) (2.1)

which, under certain conditions, has eigenmeasure π and eigenfunction h given by

π(dr) =
∫

S

μ̂(s,dr)π(ds),

(2.2)

h(s) =
∫

S

h(r)μ̂(s,dr),

where both π and hdπ can be normed to probability measures. The measure π is called the
stable type distribution and h(s) is called the reproductive value of an individual of type s. The
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interpretation of π and h is that π is the limiting distribution of the type of an individual chosen
at random from a population and h(s) is a measure of how reproductive the type s tends to be,
in a certain average sense. Moreover, after suitable norming, it can be shown that hdπ is the
probability measure that is the limiting type distribution backward in the family tree from the
randomly sampled individual mentioned above. The mean asymptotic age of a random child-
bearing in this backward sense is denoted by β and satisfies

β =
∫

S×S×R+
te−αth(r)μ(s,dr × dt)π(ds) < ∞. (2.3)

To count, or measure, the population, random characteristics are used. A random characteristic
is a real-valued process χ , where χ(a) gives the contribution to the population of an individual
of age a. Thus, χ is a process defined on the life space and by letting χx be the characteristic
pertaining to the individual x, the χ -counted population is defined as

Z
χ
t =

∑
x∈I

χx(t − τx),

which is the sum of the contributions of all individuals at time t (when the individual x is of
age t − τx ). The simplest example of a random characteristic is χ(a) = IR+(a), the indicator for
being born, in which case Z

χ
t is simply the total number of individuals born up to time t .

To capture the asymptotics of Z
χ
t , the crucial entity is the intrinsic martingale Wt , introduced

by Nerman (1981) for single-type processes and generalized to multi-type processes in Jagers
(1989). For its definition, denote x’s mother by mx and let

It = {x : τmx ≤ t < τx}, (2.4)

the set of individuals whose mothers are born at, or before, time t , but who themselves are not
yet born at time t . The set It , sometimes referred to as the “coming generation”, generalizes the
concept of generation in the Galton–Watson process. Now, let

Wt = 1

h(σ0)

∑
x∈It

e−ατx h(σx), (2.5)

the individuals in It summed with time- and type-dependent weights, normed by the reproductive
value of the ancestor. It can be shown that Wt is a martingale with respect to the σ -algebra Ft

generated by the lives of all individuals born before t and that Es[Wt ] = 1 for all s ∈ S. Hence,
Wt plays the role that Wn = Zn/mn does in the Galton–Watson process and the limit of Z

χ
t turns

out to involve the martingale limit W = limt→∞ Wt . The main convergence result is of the form

e−αtZ
χ
t → Eπ [χ̂ (α)]

αβ
h(s)W

Ps -almost surely for π -almost all s ∈ S as t → ∞. Here, σ0 = s is the type of the ancestor,
Eπ [·] = ∫

S
Es[·]π(ds) and χ̂ (α) is the Laplace transform of χ(a) evaluated at the point α. As

in the Galton–Watson case, the question is when the martingale limit W is non-degenerate. As



The multi-type x logx condition 1291

Wt → W Ps -a.s. and Es[Wt ] = 1, L1-convergence with respect to Ps is equivalent to Es[W ] = 1
(Durrett (2005), page 258). Note that although it is the process Z

χ
t that is of interest and not

Wt itself, the asymptotics are determined by Wt , one of many examples in probability of the
usefulness of finding an embedded martingale.

We are ready to formulate the general x logx condition and the main convergence result. For
the reproduction process ξ , define the transform

ξ̄ =
∫

S×R+
e−αth(r)ξ(dr × dt) (2.6)

which plays the role of X in the Galton–Watson process (in fact, in that case, ξ̄ = X/m). For
future reference, let us also state an alternative representation of ξ̄ . Denote the sequence of birth
times and types in the process ξ by τ(1), σ (1), τ (2), σ (2), . . . and so on. Then,

ξ̄ =
∞∑
i=1

e−ατ(i)h(σ (i)). (2.7)

The x logx condition and convergence result are given in the following theorem from Jagers
(1989).

Theorem 2.1. Consider a general multi-type supercritical Malthusian branching process with

Eπ [ξ̄ log+ ξ̄ ] < ∞.

Then, Es[W ] = 1 for π -almost all s, from which it follows that

e−αtZ
χ
t → Eπ [χ̂ (α)]

αβ
h(s)W

in L1(Ps) for π -almost all s.

3. Processes with immigration

As mentioned in the Introduction, branching processes with immigration are crucial to our proof
and in this section, we state the main result for such processes. Consider a general branching
process where new individuals immigrate into the population according to some point process
η(dr ×dt) with points of occurrence and types (τ1, σ1), (τ2, σ2), . . . . The kth immigrant initiates
a branching process according to the population measure Pσk

. The immigration process has the
transform

η̄ =
∫ ∞

0
e−αth(r)η(dr × dt) =

∞∑
k=1

e−ατkh(σk)

and it can be shown that the process Wt is now a submartingale rather than a martingale (which is
intuitively clear because offspring of immigrants may be added to the set It ). The limit of Wt is
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therefore not automatically finite, but needs a condition on the immigration process, established
by the following lemma from Olofsson (1996).

Lemma 3.1. If η̄ < ∞ a.s., then Wt → W a.s. as t → ∞, where W < ∞ a.s.

4. The size-biased population measure

Recall that the LPP size-biased Galton–Watson measure was constructed from the size-biased
offspring distribution. General branching processes require a more general concept of size-bias.
In a general process, the offspring random variable X is replaced by the reproduction process ξ ,
the size of which is properly measured by the transform ξ̄ which leads to the following definition.

Definition 4.1. The size-biased life law P̃s is defined as

P̃s(dω) = ξ̄ (ω)

h(s)
Ps(dω).

From Jagers (1992), we know that the eigenfunction h is finite and strictly positive, so P̃ is
well defined. The following lemma follows immediately from the definition of P̃s .

Lemma 4.2. Let Ps and P̃s be as above and denote the set of realizations of reproduction
processes by �, equipped with a σ -algebra G . Then,

(i) for A ∈ F ,

P̃s(A) = Es[ξ̄ ;A]
h(s)

;
(ii) for every G -measurable function g :� → R,

Ẽs[g(ξ)] = Es[ξ̄ g(ξ)]
h(s)

.

Note that P̃s is indeed a probability measure for all s ∈ S because

P̃s(�) = 1

h(s)
Es[ξ̄ ] = 1,

where Es[ξ̄ ] = h(s) follows from the definition of ξ̄ in (2.6), together with (2.1) and (2.2). Also,
note that a size-biased reproduction process always contains points because

P̃s

(
ξ(S × R+) = 0

) = 1

h(s)
Es[ξ̄ ; ξ(S × R+) = 0] = 0,

in analogy with the size-biased offspring distribution in a Galton–Watson process (ξ(S × R+) is
the total number of offspring of an individual).
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To construct the size-biased population measure, let P̃ t
s and P t

s denote the restrictions of the
measures Ps and P̃s to the σ -algebra Ft . The goal is to construct a measure P̃s on (�I , F I ) that
is such that

P̃ t
s (dωI ) = Wt(ω

I )P t
s (dωI )

for all t , where Wt is the intrinsic martingale defined in (2.5). This measure is the direct extension
of the size-biased measures from Lyons et al. (1995) and Olofsson (1998). The construction also
involves the set It , defined in (2.4), whose individuals all have mothers that are born up to
time t . Thus, the type and birth time of an individual in It is measurable with respect to Ft ,
which implies that Wt is also measurable with respect to Ft .

The construction of the size-biased population measure extends the construction in Olofsson
(1998) as follows. Start with the ancestor, now called v0, and choose her life ω0 according to the

size-biased distribution P̃s(dω0) = ξ̄0
h(s)

Ps(dω0). Pick one of her children, born in the reproduc-

tion process ξ0, such that the ith child is chosen with probability e−ατi h(σi )

ξ̄0
. Call this child v1, let

her start a population according to the size-biased population law P̃σi
and give her sisters inde-

pendent descendant trees such that sister j initiates a branching process according to the regular
population law Pσj

. Continue in this way and define the measure P̃s to be the joint distribution of
the random tree and the random path (v0, v1, . . .). We shall borrow a term from Athreya (2000)
and refer to the path (v0, v1, . . .) of chosen individuals as the spine.

Now, fix an individual x in the set It defined in (2.4) and consider the probability P̃s , con-
strained by the individual x being chosen to be in the spine. Specifically, if S(x, t) denotes the
event that the individual x in Ft is chosen to be in the spine and A ∈ F I , then we consider the
measure P̃s(·;x) defined by

P̃ t
s (A;x) = P̃ t

s

(
A ∩ S(x, t)

)
. (4.1)

Denote by i the individual in the first generation from whom x stems, that is, x = (i, y) for
some y. Hence, if x is in the nth generation, then it is of the form x = (x1, x2, . . . , xn), where
x1 = i, and we let y = (x2, . . . , xn). In words, y is the same individual as x when i is viewed
as the ancestor. Let ω(j) denote the lives of all individuals when j is viewed as the ancestor to
obtain

P̃ t
s (dωI ;x) = ξ̄0

h(s)
Ps(dω0) · e−ατi h(σi)

ξ̄0
· P̃ t−τi

σi

(
dω(i);y) ·

∏
j 	=i

P
t−τj
σj

(
dω(j)

)
, (4.2)

where the first factor describes the size-biased choice of life of the ancestor. The second factor is
the probability that the individual i in the first generation is chosen to be in the spine and the third
factor describes the size-biased probability measure of the process starting from i, constrained
by the individual y being in the spine. Finally, the fourth factor describes the regular population
measures stemming from the individuals in the first generation who are not chosen to be in the
spine.

The following proposition states the desired relation between the size-biased measure P̃ t
s and

the regular population measure P t
s .
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Proposition 4.3. Let P̃ t
s and P t

s be the restrictions of P̃s and Ps to the σ -algebra Ft and let Wt

be as in (2.5). Then,

dP̃ t
s

dP t
s

= Wt.

Proof. Let P̃s(·;x) be as in (4.1). Then,

P̃ t
s (dωI ;x) = e−ατx h(σx)

h(s)
P t

s (dωI ).

Further, note that for the regular population measure, we have

P t
s (dωI ) = Ps(dω0)

ξ0(t)∏
j=1

P
t−τj
σj

(
dω(j)

)
= Ps(dω0)P

t−τi
σi

(
dω(i)

)∏
j 	=i

P
t−τj
σj

(
dω(j)

)
= ξ̄0Ps(dω0)

h(σi)

ξ̄0

1

h(σi)
P t−τi

σi

(
dω(i)

)∏
j 	=i

P
t−τj
σj

(
dω(j)

)
.

Now, let τy(i) and σy(i) denote the birth time and type of the individual y when i is viewed as

the ancestor. We then have τx = τi + τy(i) and σx = σy(i). Multiply P t
s (dωI ) by e−ατx h(σx)

h(s)
to

obtain

e−ατx h(σx)

h(s)
P t

s (dωI )

= ξ̄0

h(s)
Ps(dω0) · e−ατi h(σi)

ξ̄0
· e−ατy(i)h(σy(i))

h(σi)
· P t−τi

σi

(
dω(i)

) ·
∏
j 	=i

P
t−τj
σj

(
dω(j)

)
= ξ̄0

h(s)
Ps(dω0) · e−ατi h(σi)

ξ̄0
· P̃ t−τi

σi

(
dω(i);y) ·

∏
j 	=i

P
t−τj
σj

(
dω(j)

)
= P̃ t

s (dωI ;x),

by (4.2). Finally, sum over x ∈ It to get

P̃ t
s (dωI ) =

∑
x∈It

e−ατx h(σx)

h(s)
P t

s (dωI ) = WtP
t
s (dωI ),

where ωI is suppressed, but understood as the argument of τx , σx and Wt . �
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To summarize, restricted to the σ -algebra Ft , the size-biased population measure P̃s relates

to the regular population measure Ps via the Radon–Nikodym derivative Wt = dP̃ t
s

dP t
s

, a relation
that is a straightforward extension from Olofsson (1998), which, in turn, is the straightforward
extension of the original LPP method. This result is also similar in nature to Proposition 1 in
Athreya (2000), which deals with a different martingale.

The individuals v0, v1, . . . in the spine are of particular interest in our analysis. From now on,
we will use σ0, σ1, . . . to denote the types of the individuals in the spine. The inter-arrival times
are denoted T1, T2, . . . that is, Tk is the time between the appearances of the (k − 1)th and kth
individual. In the single-type case treated in Olofsson (1998), the individuals in the spine have
lives that are i.i.d., but the situation is now much different, with dependence between consecutive
individuals introduced via types. As we shall see later, this dependence is also what prevents the
proof of necessity of the x logx condition from carrying over from the single-type case.

We now state important properties of the sequences of types and inter-arrival times in two
lemmas. The first lemma deals solely with the type sequence. For the rest of this section, we use
the notation P̃ rather than P̃s since the conditional probabilities we consider do not depend on
the initial type.

Lemma 4.4. The sequence of types (σ0, σ1, . . .) in the spine is a homogeneous Markov chain
with transition probabilities

P̃ (σk+1 ∈ dr|σk = s) = h(r)

h(s)
μ̂(s,dr)

and stationary distribution ν(ds) = h(s)π(ds).

Proof. In a generic reproduction process ξ , denote the birth time and type of the ith offspring
by τ(i) and σ(i), respectively. Note the difference between σ(i) and σi , the latter being the type
of the ith individual in the spine. The transition probabilities satisfy

P̃ (σk+1 ∈ dr|σk = s)

=
∑

i

P̃ (σk+1 ∈ dr, vk+1 = i|σk = s) =
∑

i

Ẽs

[
e−ατ(i)h(σ (i))

ξ̄
δσ(i)(dr)

]

= 1

h(s)

∑
i

Es

[
e−ατ(i)h(σ (i))δσ(i)(dr)

] = 1

h(s)

∫ ∞

0
Es[e−αth(r)ξ(dr × dt)]

= h(r)

h(s)
μ̂(s,dr),

where we have used Lemma 4.2 applied to the function

g(ξ) =
∑

i

e−ατi h(σi)

ξ̄
.



1296 P. Olofsson

Next, let ν(ds) = h(s)π(ds). As ∫
S

μ̂(s,dr)π(ds) = π(dr),

we get ∫
s∈S

h(r)

h(s)
μ̂(s,dr)ν(ds) = ν(dr)

and thus the Markov chain of types in the spine has stationary distribution ν = hdπ . �

The second lemma deals with the sequence of types and inter-arrival times of the individuals
in the spine.

Lemma 4.5. The sequence of types and inter-arrival times (σ0, T1, σ1, T2, . . .) of the individuals
in the spine constitutes a Markov renewal process with transition kernel

P̃ (Tk+1 ∈ dt, σk+1 ∈ dr|σk = s) = h(r)

h(s)
e−αtμ(s,dr × dt)

and the expected value of Tk when σ0 ∼ ν is

Ẽν[Tk] = β < ∞,

where β was defined in (2.3).

Proof. Similarly to the proof of Lemma 4.4, we get

P̃ (Tk+1 ∈ dt, σk+1 ∈ dr|σk = s)

=
∑

i

P̃ (Tk+1 ∈ dt, σk+1 ∈ dr, vk+1 = i|σk = s)

= 1

h(s)
Es[e−αth(r)ξ(dr × dt)]

= h(r)

h(s)
e−αtμ(s,dr × dt)

and the expected value of Tk when σ0 is chosen according to the stationary distribution ν =
hdπ is

Ẽν[Tk] =
∫

S×[0,∞)

t
h(r)

h(s)
e−αtμ(s,dr × dt)h(s)π(ds)

=
∫

S×[0,∞)

te−αth(r)μ(s,dr × dt)π(ds) = β,

by (2.3). �
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There is an interesting connection between the size-biased measure and the stable population
measure from Jagers (1992). The latter is an asymptotic probability measure that is centered
around a randomly sampled individual as t → ∞. In such a stable population, the randomly
sampled individual is born in a point process that has the size-biased distribution, the asymptotic
type distribution as time goes backward through the individual’s line of descent is hdπ and the
asymptotic mean age at a random child-bearing is β . The transition probabilities in this backward
chain also involve μ̂(s,dr), but have weights that are expressed in terms of π rather than h, as
we have in the size-biased measure where time goes forward. This relation becomes clearer in a
finite-type Galton–Watson process where π and h are simply the left and right eigenvectors of
the mean reproduction matrix.

5. Sufficiency of the x logx condition

We will soon be ready to prove the general x logx theorem, Theorem 2.1, the key to which is the
relation between P̃s and Ps . Recall that the two are related through Wt , which is a martingale
under Ps and a submartingale under P̃s . The following lemma relates the limiting behavior of Wt

under Pπ(·) = ∫
S
Ps(·)π(ds) to its limiting behavior under P̃ν(·) = ∫

S
P̃s(·)h(s)π(ds).

Lemma 5.1. Let W = lim suptWt . Then,

(i) P̃ν(W = ∞) = 0 ⇒ Eπ [W ] = 1;
(ii) P̃ν(W = ∞) = 1 ⇒ Eπ [W ] = 0.

Proof. By Durrett (2005), page 239,

P̃ν(A) = Ẽν[W ;A] + P̃ν(A ∩ {W = ∞}).
If P̃ν(W = ∞) = 0, then we have P̃ν(A) = Ẽν[W ;A] and get

P̃ν(W = 0) = Ẽν[W ;W = 0] = 0.

Hence,

Ẽν[W ] = Ẽν[W :W > 0] = P̃ν(W > 0) = 1.

Moreover, as

1 = Ẽν[W ] =
∫

S

Ẽs[W ]ν(ds)

and as Fatou’s lemma implies that Ẽs[W ] ≤ 1 for all s, we must have Ẽs[W ] = 1 for ν almost
all s ∈ S. As π � ν, we also get Eπ [W ] = 1.

Next, suppose that P̃ν(W = ∞) = 1. As W is an a.s. finite martingale limit under Ps , for
π -almost all s ∈ S, we have

Pν(W = ∞) =
∫

S

Ps(W = ∞)h(s)π(ds) = 0.
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Hence, the measures P̃ν(·) and Eν[W ; ·] are mutually singular and, as P̃ν(W > 0) > 0, we get

Eν[W ] = Eν[W ;W > 0] = 0,

which implies that Eπ [W ] = 0 as well. The proof of the lemma is thus complete. �

Another connection between expected values under Pπ and P̃ν , directly involving the x logx

condition, is given by the following corollary to Lemma 4.2.

Corollary 5.2.

Eπ [ξ̄ log+ ξ̄ ] = Ẽν[log+ ξ̄ ].

Proof. Choose g(ξ) = log+ ξ̄ in Lemma 4.2 to obtain

Eπ [ξ̄ log+ ξ̄ ] =
∫

S

Es[ξ̄ log+ ξ̄ ]π(ds)

=
∫

S

h(s)Ẽs[log+ ξ̄ ]π(ds)

= Ẽν[log+ ξ̄ ]. �

The logical structure of the proof of Theorem 2.1 is as follows. Assume that Eπ [ξ̄ log+ ξ̄ ] <

∞. By Corollary 5.2, we then have Ẽν[log+ ξ̄ ] < ∞. If we can show that this, in turn, implies
that W < ∞ almost surely with respect to P̃ν , then we can invoke Lemma 5.1(i) to conclude that
Eπ [W ] = 1, after which the proof is more or less complete. The gap is filled by the next lemma,
which utilizes results for general branching processes with immigration. It has been mentioned
that such processes play a vital role in the LPP method and, in the current setting, we observe
that the individuals off the spine constitute a general branching process with immigration, the
immigrants being the siblings of the individuals v1, v2, . . . in the spine in an obvious extension
of the Galton–Watson case. To describe the immigration process formally, let Ij,k be the indicator
of the event that vj−1’s kth child is not chosen to become vj , denote the immigration time of
the j th immigrant by τj and denote the birth time and type of the kth individual in ξj by τk(j)

and σk(j), respectively. The immigration process η is

η(ds × dt) =
∑
j,k

δσk(j)(ds)δτk(j)(dt − τj )Ij,k,

which has

η̄ =
∑
j,k

h(σk(j))e−ατj e−ατk(j)Ij,k. (5.1)

We are now ready for the last lemma needed for the proof of Theorem 2.1.

Lemma 5.3. Consider a general branching process with immigration process η as above. If
Ẽν[log+ ξ̄ ] < ∞, then W = limt→∞ Wt exists and is finite P̃ν -a.s.
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Proof. First, note that

Ẽν[log+ ξ̄ ] < ∞ ⇒
∑
n

P̃ν(log+ ξ̄ > cn) < ∞ for all c > 0.

Now, consider the sequence ξ̄0, ξ̄1, . . . for the individuals in the spine. Recalling that ν is the
stationary distribution of the Markov chain of types in the spine, we conclude that P̃ν(log+ ξ̄ >

cn) = P̃ν(log+ ξ̄n > cn) for all n, which gives∑
n

P̃ν(log+ ξ̄n > cn) < ∞.

By the first Borel–Cantelli lemma, we get

P̃ν(log+ ξ̄n > cn i.o.) = 0, (5.2)

which, by (5.1), gives

η̄ ≤
∑
j,k

h(σk(j))e−ατj e−ατk(j)

=
∞∑

j=1

e−ατj ξ̄j < ∞ P̃ν-a.s.

since the τj are sums of the Tk , which, being the regeneration times in a Markov renewal process,
obey the strong law of large numbers (Alsmeyer (1994)) so that τj ∼ βj almost surely as j → ∞
(recall that Ẽν[Tk] = β < ∞). The last sum above is a.s. finite because of the subexponential
growth of the ξ̄n established in (5.2). By Lemma 3.1, we conclude that limt Wt exists and is
finite P̃ν -a.s. �

We now have in place all of the preliminaries needed to prove Theorem 2.1.

Proof of Theorem 2.1. As Eπ [ξ̄ log+ ξ̄ ] = Ẽν[log+ ξ̄ ] < ∞, Lemma 5.3(i) implies that P̃ν(W =
∞) = 0 and Lemma 5.1(ii) gives Eπ [W ] = 1. Moreover, as

Eπ [W ] =
∫

S

Es[W ]π(ds)

and as Fatou’s lemma implies that Es[W ] ≤ 1 for all s, we must have Es[W ] = 1 for π -almost
all s ∈ S. The proof is thus complete. �

6. Necessity of the x logx condition

For single-type processes, the condition of having a finite x logx moment is both sufficient and
necessary. Using the size-bias method, this can be established by using the first and second Borel–
Cantelli lemmas, respectively. However, in the multi-type setting, the main result in Jagers (1989)
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establishes only sufficiency and it is currently not known whether necessity holds. The method
of size-biased branching processes provides a way of investigating necessity and although the
second Borel–Cantelli lemma cannot be used due to dependence, more general versions can
be employed. This section is exploratory in nature and does not provide any definite solutions,
but rather outlines two different approaches to establish necessity under additional conditions
through the conditional Borel–Cantelli lemma and the Kochen–Stone lemma, respectively.

By “the x logx condition”, we mean the condition that Eπ [ξ̄ log+ ξ̄ ] < ∞. Hence, to establish
necessity, we need to assume that Eπ [ξ̄ log+ ξ̄ ] = ∞ and show that this assumption implies that
Eπ [W ] = 0, invoking Lemma 5.1(ii) in an intermediate step. The logical structure parallels that
of the proof of sufficiency: if Eπ [ξ̄ log+ ξ̄ ] = ∞, then Lemma 5.2 yields that Ẽν[log+ ξ̄ ] = ∞,
which implies that ∑

n

P̃ν(log+ ξ̄ > cn) = ∞.

Since ν is the stationary distribution for the types in the spine, this further implies that∑
n

P̃ν(log+ ξ̄n > cn) = ∞.

In the proof of sufficiency, this sum was finite and the first Borel–Cantelli lemma could be in-
voked to conclude that P̃ν(log+ ξ̄n > cn i.o.) = 0, leading to the rest of the proof. However, as
the reproduction process ξn+1 is chosen according to a probability distribution that depends on
the type σn which is determined by the parent reproduction process ξn, we cannot assume that the
ξ̄n are independent. Hence, we cannot invoke the second Borel–Cantelli lemma to conclude that,
almost surely, log+ ξ̄n > cn i.o. This constitutes a difference from the single-type case treated
in Olofsson (1998), where sufficiency and necessity were established using the first and second
Borel–Cantelli lemmas, respectively. Below, we establish necessity of the x logx condition under
various additional conditions.

The conditional Borel–Cantelli lemma states that if {Fn} is a filtration and {An} a sequence of
events with An ∈ Fn, then

{An i.o.} =
{ ∞∑

n=1

P(An|Fn−1) = ∞
}

;

see Durrett (2005). For us, An = {log+ ξ̄n > cn}, the σ -algebra Fn−1 gives the type σn of the nth
individual in the spine and we get

P̃s(log+ ξ̄n > cn|Fn−1) = P̃σn(log+ ξ̄ > cn).

The question then becomes under which conditions

∞∑
n=1

P̃σn(log+ ξ̄ > cn) = ∞ P̃ν-a.s.
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given that
∞∑

n=1

P̃ν(log+ ξ̄ > cn) = ∞.

One more step is necessary in order to invoke part (ii) of Lemma 5.1, namely, to argue that
log+ ξ̄n > cn i.o. implies that W = lim supt Wt = ∞ P̃ν -a.s. We state this as a lemma.

Lemma 6.1. If P̃ν(log+ ξ̄n > cn i.o.) = 1, then P̃ν(W = ∞) = 1.

Proof. Consider Wτn , the value of Wt at the time of the arrival of the nth immigrant vn. All of
the children of this immigrant except the one chosen to become vn+1 belong to Iτn , so these
children form a subset of Iτn . The kth child is born at time τn + τ(k) and has type σ(k), where
τ(k) and σ(k) are the points in the reproduction process ξn of vn. Let Ik be the indicator of the
event that the kth child of vn is not chosen to become vn+1 to obtain

Wτn = 1

h(σ0)

∑
x∈Iτn

h(σx)e
−ατx

≥ e−τn

h(σ0)

∞∑
k=1

h(σ (k))e−ατ(k)Ik

≥ e−τn

h(σ0)
(ξ̄n − C),

where C = sups h(s) < ∞ (Jagers (1989)) and we recall (2.7). Adjust the last part of the proof
of Lemma 5.3 to conclude that W = lim supt Wt = ∞ P̃ν -a.s. �

Our first result establishes necessity of the x logx condition under the additional assumption
that there is a type that is revisited infinitely often in the spine.

Proposition 6.2. If the Markov chain of types σ0, σ1, . . . in the spine has one positive recurrent
state r such that Er [ξ̄ log+ ξ ] = ∞ and if, for π -almost all starting types s, there exists k such
that σk = r a.s., then the x logx condition is necessary.

Note. The Markov chain is on a general state space, but here we use “positive recurrence” in its
elementary meaning, namely, that Ẽr [Tr ] < ∞, where Tr = inf{n > 0 :σn = r}.

Proof of Proposition 6.2. The result follows from the following observation regarding infinite
series. Let an ≥ 0 be a decreasing sequence of real numbers such that

∑
n an = ∞, let X1,X2, . . .

be i.i.d. non-negative and integer-valued random variables with finite mean μ and let Tn = X1 +
X2 + · · · + Xn. Then,

∞∑
n=1

aTn = ∞ a.s.
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This holds because if k ≥ μ is an integer, then aTn ≥ ank a.s. for large n, by the strong law of
large numbers, and, obviously,

∑
n ank = ∞ for all fixed k. Finally, apply this result to an =

P̃s(log+ ξ̄ > cn) with X1,X2, . . . being the consecutive inter-return times to the state s in the
Markov chain of types in the spine (that is, the Xk are i.i.d. copies of Tr above). �

One instance where the assumption of Proposition 6.2 follows from the x logx condition is if
the type space is finite. Indeed, if there are n types, we have

∞ = Eπ [ξ̄ log+ ξ ] =
n∑

k=1

Er [ξ̄ log+ ξ ]π(r),

which implies that we must have Er [ξ̄ log+ ξ ] = ∞ for at least one r . In particular, this estab-
lishes necessity of the x logx condition for the ordinary multi-type Galton–Watson process with
a finite type space (under the usual assumptions of positive regularity and non-singularity; see
Athreya and Ney (1972)).

Another approach is to consider the rate of convergence of the type chain σ0, σ1, . . . toward
its stationary distribution ν. To simplify the analysis, let Y = [log+ ξ̄ ], the integer part of log+ ξ̄ ,
which has finite mean under P̃ν if and only if log+ ξ̄ does. We then have the following.

Proposition 6.3. Suppose that

∑
n≥1

nẼν

∣∣∣∣∣1

n

n∑
k=1

P̃σk
(Y = n) − P̃ν(Y = n)

∣∣∣∣∣ < ∞.

The x logx condition is then necessary.

Proof. The condition in the proposition implies that

∑
n≥1

n

∣∣∣∣∣1

n

n∑
k=1

P̃σk
(Y = n) − P̃ν(Y = n)

∣∣∣∣∣ < ∞ P̃ν-a.s.,

which yields

∞∑
k=1

P̃σk
(Y > k) =

∞∑
k=1

∑
n>k

P̃σk
(Y = n)

=
∑
n>1

n

(
1

n

n∑
k=1

P̃σk
(Y = n)

)

≥
∑
n>1

nP̃ν(Y = n) −
∑
n≥1

n

∣∣∣∣∣1

n

n∑
k=1

P̃σk
(Y = n) − P̃ν(Y = n)

∣∣∣∣∣
= ∞
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since the first term equals Ẽν[Y ], which is infinite if Ẽν[log+ ξ̄ ] is infinite, this being the case if
the x logx condition does not hold. The second term is finite by assumption. �

Note that if {σn} is Harris recurrent (Alsmeyer (1994), Durrett (2005)) with stationary distrib-
ution ν, then the ergodic theorem yields

1

n

n∑
k=1

P̃σk
(Y = j) → P̃ν(Y = j) P̃ν-a.s.

for all j , so our condition means that this convergence is, in some vague sense, “fast enough”.
Another generalization of Borel–Cantelli is the Kochen–Stone lemma that states that if∑
n P (An) = ∞, then

P(An i.o.) ≥ lim sup
n

{∑n
k=1 P(Ak)}2∑

1≤j,k≤n P (Aj ∩ Ak)
.

We can apply this to prove the following result.

Proposition 6.4. Let An = {log+ ξ̄n > cn}. If the (indicators of the) An are pairwise negatively
correlated, then the x logx condition is necessary.

Proof. Because P̃ν(Aj ∩ Ak) ≤ P̃ν(Aj )P̃ν(Ak), we get

P̃ν(An i.o.) ≥ lim sup
n

{∑n
k=1 P̃ν(Ak)}2∑

1≤j,k≤n P̃ν(Aj ∩ Ak)
≥ 1.

�
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