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A note on the backfitting estimation of
additive models
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The additive model is one of the most popular semi-parametric models. The backfitting estimation (Buja,
Hastie and Tibshirani, Ann. Statist. 17 (1989) 453–555) for the model is intuitively easy to understand and
theoretically most efficient (Opsomer and Ruppert, Ann. Statist. 25 (1997) 186–211); its implementation
is equivalent to solving simple linear equations. However, convergence of the algorithm is very difficult
to investigate and is still unsolved. For bivariate additive models, Opsomer and Ruppert (Ann. Statist. 25
(1997) 186–211) proved the convergence under a very strong condition and conjectured that a much weaker
condition is sufficient. In this short note, we show that a weak condition can guarantee the convergence of
the backfitting estimation algorithm when Nadaraya–Watson kernel smoothing is used.
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1. Introduction

The additive model has been proven to be a very useful semi-parametric model and is popularly
used in practice. An intuitive implementation of the estimation is the backfitting approach (Buja,
Hastie and Tibshirani (1989), called BHT hereafter). It is noticed that the implementation can
be done easily by solving linear normal equations (page 476, BHT) if the backfitting algorithm
converges. However, to justify the convergence of the algorithm is not easy. BHT provided suffi-
cient conditions that guarantee the convergence of the backfitting algorithm or, equivalently, the
existence of the estimators. These conditions are only generally satisfied by regression splines
and other methods, but not by kernel smoothing. Some other approaches (e.g., Tjøstheim and
Auestad (1994); Linton and Nielsen (1995); Mammen, Linton and Nielsen (1999); Wang and
Yang (2007)) have been proposed to avoid difficult problems involving the convergence of the
algorithm and the asymptotics of estimators. However, the original backfitting of BHT is still one
of the most intuitive approaches.

Opsomer and Ruppert (1997), called OR hereafter, investigated the algorithm’s convergence
for the local polynomial kernel smoothing when the predictors are bivariate. Suppose that Y is
the response and (U,V ) are the bivariate predictor satisfying the additive model

Y = α + m1(U) + m2(V ) + ε, (1)

where E(ε|U,V ) = 0 almost surely. Constraints E{m1(U)} = E{m2(V )} = 0 are usually im-
posed for model identification; see, for example, OR. It is known (see, e.g., BHT) that the terms
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in the model are the solution to minimizing

min
m1∈L2,m2∈L2,

α∈R

E{Y − α − m1(U) − m2(V )}2, (2)

where L2 is the measurable functional space with finite second moments. Let f (u, v), f1(u)

and f2(v) be the joint density function and marginal density functions of (U,V ), U and V

respectively. OR required that

sup
u,v

∣∣∣∣ f (u, v)

f1(u)f2(v)
− 1

∣∣∣∣ < 1

to prove the convergence of the backfitting algorithm. This requirement is very stringent and
even excludes a significant amount of normal distributions. However, OR conjectured that the
algorithm convergence can be guaranteed under very weak conditions. Next, we shall prove that
their conjecture is correct when the Nadaraya–Watson kernel is used.

2. Main results

Suppose {(Yi,Ui,Vi) : i = 1, . . . , n} is a random sample from model (1). Following BHT, let
m1 = (m1(Ui), . . . ,m1(Un))

�, m2 = (m2(Vi), . . . ,m2(Vn))
� and Y = (Y1, . . . , Yn)

�. The es-
timators of functions m1 and m2 are determined by the estimation of function values at the
observed points, that is, m1 and m2. Let K(·) ≥ 0 be a kernel function and Kh(·) = K(·/h)/h

for any h > 0.
For the estimation of function values at Ui and Vi , we use (varying) bandwidths hi > 0 and

�i > 0 respectively and kernel weights �i = [Khi
(Ui − U1), . . . ,Khi

(Ui − Un)]�/
∑n

k=1 Khi
×

(Ui − Uk) and ωi = [K�i
(Vi − V1), . . . ,K�i

(Vi − Vn)]�/
∑n

k=1 K�i
(Vi − Vk). Let

S1 =
⎛
⎝

��
1
...

��
n

⎞
⎠ , S2 =

⎛
⎝

ω�
1
...

ω�
n

⎞
⎠ .

Corresponding to constraints E{m1(U)} = E{m2(V )} = 0, we introduce (In − 1n1�
n /n), where

In is the n × n identity matrix and 1n is the n × 1 vector with all entries 1. Let S∗
1 =

(In − 1n1�
n /n)S1 and S∗

2 = (In − 1n1�
n /n)S2. Using kernel smoothing, the backfitting estimation

procedure is iteratively

m̂new
1 := S∗

1{Y − m̂old
2 }, m̂new

2 := S∗
2{Y − m̂old

1 }.
As BHT pointed out, the final estimators m̂1 and m̂2 of the algorithm are equivalent to the
solution of

(
In S∗

1
S∗

2 In

)(
m̂1
m̂2

)
=

(
S∗

1
S∗

2

)
Y.
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The solution exists if the inverse of (In − S∗
2S∗

1) or (In − S∗
1S∗

2) exists. If the iteration converges,
then estimators of α, m̂1 and m̂2 are respectively α̂ = Ȳ ,

m̂1 = S∗
1(In − S∗

2S∗
1)

−1(In − S∗
2)Y

and

m̂2 = (In − S∗
2S∗

1)
−1S∗

2(In − S∗
1)Y

(the solutions can be rewritten in different forms). As we can see, the backfitting estimation is
very easy to implement and is equivalent to a one-step calculation, if it converges. Thus, conver-
gence of the algorithm is essential for the estimation of the additive model.

Theorem 1. Denote the order statistics of {U1, . . . ,Un} and {V1, . . . , Vn} by {U[1], . . . ,U[n]}
and {V[1], . . . , V[n]}, respectively, and their corresponding bandwidths by {h[1], . . . , h[n]} and
{�[1], . . . ,�[n]}, respectively. If kernel function K(·) and the bandwidths satisfy K(0) > 0,

Kh[i]
(
U[i] − U[i−1]

)
> 0, Kh[i]

(
U[i] − U[i+1]

)
> 0,

(3)
K�[i]

(
V[i] − V[i−1]

)
> 0, K�[i]

(
V[i] − V[i+1]

)
> 0

for 1 < i < n, and

Kh[1]
(
U[1] − U[2]

)
> 0, Kh[n]

(
U[n] − U[n−1]

)
> 0,

(4)
K�[1]

(
V[1] − V[2]

)
> 0, K�[n]

(
V[n] − V[n−1]

)
> 0,

then the backfitting algorithm converges.

Remark 1. Suppose that K(·) is a symmetric kernel function with K(v) > 0 for all |v| < 1
and that global (constant) bandwidths h and � are used. If h and � are greater than the largest
difference between any two nearest points respectively, that is,

h > max
{
U[i+1] − U[i], i = 1, . . . , n − 1

}
and

(5)
� > max

{
V[i+1] − V[i], i = 1, . . . , n − 1

}
,

then (3) and (4) hold. By Theorem 1, the convergence of the algorithm is guaranteed.

Corollary 1. Suppose U and V are distributed on compact intervals with density functions
bounded away from 0. If global (constant) bandwidths h and � are used with h,� → 0 and
nh/ log(n), n�/ log(n) → ∞, then the algorithm converges in probability for n sufficiently large.

Remark 2. It is remarkable that the range of bandwidths for the algorithm to converge is quite
wide, and that bandwidths h ∝ n−δ and � ∝ n−δ with 0 < δ < 1 satisfy the requirement in Corol-
lary 1. Thus, the algorithm converges. These bandwidths include the optimal bandwidths where
δ = 1/5 (see, e.g., OR).
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This short note only considers the bivariate case with Nadaraya–Watson kernel smoothing.
We conjecture that the backfitting estimation still converges under weak conditions for general
additive models and other kernel estimation methods, including local polynomial smoothing.
After the convergence is justified, asymptotics of the estimators can be obtained following exactly
the same arguments as Opsomer and Ruppert (1997). The details are omitted.

3. Proofs

The proof of Theorem 1 is based on the properties of the regular Markov chain and the Perron–
Frobenius theorem (see, e.g., Minc (1988)). The proof of Corollary 1 is based on the properties
of order statistics (see, e.g., David and Nagaraja (2003)).

Proof of Theorem 1. We first prove that the absolute eigenvalues of S1 are all smaller than 1,
with only one exception that equals 1. It is easy to see that S1 is a probability transition matrix
of the Markov chain. By conditions (3) and (4), S1 is irreducible and aperiodic. Therefore, it is a
regular transition probability matrix. There is an integer k such that all entries in Sk

1 are strictly
positive (see, e.g., Romanovsky (1970), Theorem 14.I). By the Perron–Frobenius theorem, there
is one (and only one) eigenvalue λ1 of multiplicity 1 such that all entries in its corresponding
eigenvector are positive. It is easy to see that this eigenvalue is λ1 = 1 and its eigenvector is
θ = 1n/

√
n, because the sum of any row in S1 is 1. Let λ2, . . . , λn be the other n − 1 eigen-

values of S1 (repeated eigenvalues are counted repeatedly). The Perron–Frobenius theorem also
indicates that 1 = λ1 > max{|λ2|, . . . , |λn|}.

Next, we show that the absolute eigenvalues of S∗
1 = (In − θθ�)S1 are all strictly smaller

than 1. Suppose that the eigenvalues λ2, . . . , λn of S1 are distinct and their corresponding eigen-
vectors are β2, . . . , βn, respectively (the general argument is similar, but needs more complicated
notation). It is easy to check that θ and (In − θθ�)βk, k = 2, . . . , n are the eigenvectors of S∗

1
with corresponding eigenvalues being 0 and λ2, . . . , λn, respectively, because

(In − θθ�)S1θ = (In − θθ�)λ1θ = 0

and

(In − θθ�)S1(In − θθ�)βk = (In − θθ�){S1βk − S1θθ�βk}
= (In − θθ�){λkβk − λ1θθ�βk}
= λk(In − θθ�)βk − λ1(In − θθ�)θθ�βk

= λk(In − θθ�)βk for k = 2, . . . , n.

Since the absolute values of 0, λ2, . . . , λn are all smaller than 1, we have proven that the absolute
eigenvalues of S∗

1 are smaller than 1. Applying the same argument to S∗
2, we have that the absolute

values of all eigenvalues of S∗
2 are smaller than 1.

Since the largest absolute eigenvalues of both S∗
1 and S∗

2 are smaller than 1, the absolute val-
ues of all eigenvalues of S∗

2S∗
1 and S∗

1S∗
2 are also smaller than 1. It follows that the inverses of

(In − S∗
2S∗

1) and (In − S∗
1S∗

2) exist and thus the algorithm converges. �
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Proof of Corollary 1. It is easy to check that

P
(
h > max

{
U[i+1] − U[i], i = 1, . . . , n − 1

}
,� > max

{
V[i+1] − V[i], i = 1, . . . , n − 1

})
≥ 1 − P

(
h ≤ max

{
U[i+1] − U[i], i = 1, . . . , n − 1

})
(6)

− P
(
� ≤ max

{
V[i+1] − V[i], i = 1, . . . , n − 1

})
.

Consider the second term above. We have

P
(
h ≤ max

{
U[i+1] − U[i], i = 1, . . . , n − 1

}) ≤
n−1∑
i=1

P
(
h ≤ U[i+1] − U[i]

)
. (7)

Let F be the cumulative probability function of U . Then U ′ = F(U) is uniformly distributed on
[0, 1]. Let U ′[i] = F(U[i]). By the joint distribution of (U ′[i],U ′[i+1]) (see, e.g., David and Nagaraja
(2003)) and simple calculation, we have, for any c > 0,

P
(
c ≤ U ′[i+1] − U ′[i]

) =
∫

ũ>u+c

n!
(i − 1)!(n − i − 1)!u

i−1(1 − ũ)n−i−1 dudũ

=
{

(1 − c)n, if 0 ≤ c ≤ 1,
0, if c > 1.

Let c0 = inf{f −1(u),0 ≤ u ≤ 1}, which is positive, by the assumption. Note that U[i] = G(U ′[i]),
where G is the inverse function of F . By the nature of inverse functions, we have U[i+1] −U[i] ≤
c0(U

′[i+1] − U ′[i]). Thus,

P
(
c0c ≤ U[i+1] − U[i]

)
< P

(
c ≤ U ′[i+1] − U ′[i]

) =
{

(1 − c)n−1, if 0 ≤ c ≤ 1,
0, if c > 1.

When n is large, we can assume h < 1. It follows that

n−1∑
i=1

P
(
h ≤ U[i+1] − U[i]

) ≤ n(1 − h)n−1 = n exp{(n − 1) log(1 − h)}

≤ n exp{(n − 1)(−h + h2/2)} ≤ n exp{−(n − 1)h/2} (8)

→ 0

as n → ∞. The condition nh/ log(n) → ∞ is used in the last step of (8). By (7) and (8), we have

P
(
h ≤ max

{
U[i+1] − U[i], i = 1, . . . , n − 1

}) → 0

as n → ∞. Similarly, we can show that

P
(
� ≤ max

{
V[i+1] − V[i], i = 1, . . . , n − 1

}) → 0
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as n → ∞. It follows from (6) and the two equations above that

P
(
h > max

{
U[i+1] − U[i], i = 1, . . . , n − 1

}
,� > max

{
V[i+1] − V[i], i = 1, . . . , n − 1

}) → 1

as n → ∞. By Remark 1 and (5), the algorithm converges in probability as n → ∞. �
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