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In this paper, we study the nonparametric maximum likelihood estimator (MLE) of a convex hazard func-
tion. We show that the MLE is consistent and converges at a local rate of n2/5 at points x0 where the true
hazard function is positive and strictly convex. Moreover, we establish the pointwise asymptotic distribu-
tion theory of our estimator under these same assumptions. One notable feature of the nonparametric MLE
studied here is that no arbitrary choice of tuning parameter (or complicated data-adaptive selection of the
tuning parameter) is required.
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1. Introduction

Information on the behavior of time to a random event is of much interest in many fields. The
random event could be failure of a material or machine, death, an earthquake or infection by a
disease, to name but a few examples. Frequently, this type of data is called lifetime data, and it
is natural to assume that it takes values in [0,∞). If the lifetime distribution F has a density f ,
then a key quantity of interest is the hazard (or failure) rate h(t) = f (t)/(1−F(t)). Heuristically,
h(t)dt is the probability that, given survival until time t , the event will occur in the next duration
of length dt . The hazard function is also known as the force of mortality in actuarial science or
the intensity function in extreme value theory.

Certain shape restrictions arise quite naturally for hazard rates. In this work, we are particularly
interested in the family of hazard functions which are convex. That is, we attach the additional
smoothness constraint of convexity to the more traditional assumption of a bathtub-shaped failure
rate (that is, first decreasing, then increasing). Heuristically, bathtub-shaped hazards correspond
to lifetime distributions with high initial hazard (or infant mortality), lower and often rather
constant hazard during the middle of life and then increasing hazard of failure (or wear-out) as
aging proceeds; see [20,23].

Many other estimators of hazard functions (and solutions to the closely related problem of
estimating the intensity of a Poisson process) with and without shape restrictions have been
considered in the literature; see [24] for a partial review up to 2002. In recent years, the focus has
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shifted to construction of “adaptive” estimators over large scales of smoothness classes; see, for
example, [5,6,25]. Virtually all of these other estimators require careful choice of penalty terms
or tuning parameters, and computation of the adaptive estimators typically involves methods
of combinatorial optimization. As far as we know, reliable algorithms for computing them are
not yet available. Our estimators avoid the choices of tuning parameters or penalty terms by
virtue of the shape constraint of convexity and are relatively straightforward to compute since
the corresponding optimization problems are convex.

Recall the definition of a convex function. Let C ⊂ R+ = [0,∞) be convex. Then h :C �→ R

is convex (on C) if it satisfies

h
(
λx + (1 − λ)y

) ≤ λh(x) + (1 − λ)h(y), 0 < λ < 1,

for all x, y ∈ C. Equivalently, a function is convex if its epigraph

{(x,μ) :x ∈ C,μ ∈ R,μ ≥ f (x)}
is a convex set in R

2 (see, for example, [27], Section 4). Thus, a convex function on C may be
extended to a convex function on R+ by setting h(x) = +∞ for x ∈ R+ ∩ Cc .

Suppose, then, that we observe i.i.d. variables X1, . . . ,Xn from a distribution F0 with density
f0 and hazard rate h0. We denote the true cumulative hazard function by H0(t) = ∫ t

0 h0(s)ds,
and the true survival function by S0 = 1 − F0. Also, 0 < X(1) < X(2) < · · · < X(n) denote the
order statistics corresponding to X1, . . . ,Xn.

To define the MLE of h0, ĥn, we first consider the likelihood in terms of the hazard,

L(h) =
n∏

i=1

h(Xi) exp{−H(Xi)} =
n∏

i=1

h
(
X(i)

)
exp

{−H
(
X(i)

)}
,

where H(t) = ∫ t

0 h(s)ds. This can be made arbitrarily large by increasing the value of h(X(n)).
We therefore find ĥn : [0,X(n)) �→ R+ by maximizing the modified likelihood

Lmod(h) =
n−1∏
i=1

h
(
X(i)

)
exp

{−H
(
X(i)

)} × exp
{−H

(
X(n)

)}
(1.1)

over K+, the space of non-negative convex functions on [0,X(n)). The full MLE is then found
by setting ĥn(x) = ∞ for all x ≥ X(n). This is the same approach as taken in [10]. Equivalently,
one could first impose the constraint that h ≤ M , and then let M → ∞ (see, for example, [26],
page 338).

To illustrate the proposed estimator, consider the distribution with density given by

f (t) = 1 + 2b

2A
√

b2 + (1 + 2b)t/A
on 0 ≤ t ≤ A.

This distribution was derived in [14] as a relatively simple model with bathtub-shaped hazards
which also has an adequate ability to model lifetime behavior. We will call this the HS distribu-
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Figure 1. Examples of the estimator. Left: Estimating the HS hazard with b = 0 and A = 1 for a sample
size of 100 (bold = true hazard, solid = MLE). Right: Estimation of the earthquake hazard from CPTI04
data (solid = MLE).

tion, after the authors. It has convex hazards for all values of b in the parameter space (b > −1/2).
Figure 1 shows the MLE for simulated data from this distribution with sample size n = 100.

We also applied our estimators to the earthquake data of the Appennino Abruzzese region of
Italy (Region 923) recently considered by [19], where Bayesian estimation methods are studied.
The data comes from the Gruppo di Lavoro CPTI (2004) catalog [9]. It consists of 46 inter-quake
times for Region 923, occurring after the year 1650 and with moment magnitude greater than 5.1
(details on the justification of these criteria is available in [19], page 14). Figure 1 shows the
resulting estimator.

The main results of this paper are the characterizations, consistency and asymptotic behavior
of the nonparametric MLE of a convex hazard function. The estimator is continuous and piece-
wise linear on [0,X(n)). Although we give a characterization of the MLE, the final form of the
estimator is not explicit. We therefore propose an algorithm (based on the support reduction al-
gorithm of [13]). This algorithm is discussed in a separate report, [16], and is available as the R
package convexHaz [17].

To describe the local asymptotics of the MLE, we introduce the following process.

Definition 1.1. Let W(s) denote a standard two-sided Brownian motion, with W(0) = 0, and
define Y(t) = ∫ t

0 W(s)ds + t4. The function {I(t) : t ∈ R}, the invelope of the process {Y(t) : t ∈
R}, is defined as follows:

the function I is above the function Y : I(t) ≥ Y(t) for all t ∈ R; (1.2)

the function I has a convex second derivative; (1.3)

the function I satisfies
∫

R
{I(t) − Y(t)}dI (3)(t) = 0. (1.4)

It was shown in [11] that the process I exists and is almost surely uniquely defined. Moreover,
with probability one, I is three times differentiable at t = 0. The asymptotic behavior of all of our
estimators may be described in terms of the derivatives of the invelope I at zero. The following
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theorem builds on the basic results in [12] concerning nonparametric estimation of a decreasing
convex density.

Theorem 1.2. Suppose that h0 is convex, x0 > 0 is a point which satisfies h0(x0) > 0 and
h′′

0(x0) > 0, and h′′
0(·) is continuous in a neighborhood of x0. Then

(
n2/5

(̂
hn(x0) − h0(x0)

)
n1/5

(̂
h′

n(x0) − h′
0(x0)

))
→d

(
c1 I (2)(0)

c2 I (3)(0)

)
,

where I (2)(0) and I (3)(0) are the second and third derivatives at 0, respectively, of the invelope
of Y(t) ≡ ∫ t

0 W(s)ds + t4 and where

c1 =
(

h2
0(x0)h

′′
0(x0)

24S2
0(x0)

)1/5

, c2 =
(

h0(x0)h
′′
0(x0)

3

243S0(x0)

)1/5

.

The key to this result lies in Lemma 5.3, where we establish that the “touchpoints” (defined
carefully in Section 2) cluster around x0 at a local scale of n−1/5. The assumption that h′′

0 is
strictly convex and continuous near x0 is crucial in this step. If h′′

0(x0) = 0 (and is continuous
in a neighborhood of x0), we conjecture that ĥn(x0) converges at the rate n1/2. Similar behavior
has been noted for monotone density estimators in [8]. If h′

0 is discontinuous at x0, unpublished
work of Cai and Low [7] suggests that ĥn(x0) converges to h0(x0) at rate n1/3. The behavior of
convex-constrained estimators in both of these situations remains unknown and is the subject of
current research.

The limiting distributions of ĥn(x0) and ĥ′
n(x0) involve the constants c1 and c2, which depend

on the (unknown) hazard function h0, as well as the random variables (I (2)(0), I (3)(0)) which
have a universal distribution free of the parameters of the problem. Thus, Theorem 1.2 can be
used, in principle, to form confidence intervals for h0(x0) and h′

0(x0). This would involve esti-
mation of the constants c1 = c1(h0, x0) and c2 = c2(h0, x0), respectively, both of which depend
on h′′

0(x0), and appropriate quantiles of the distributions of I (2)(0) and I (3)(0), respectively.
Although virtually nothing is known about the distribution of the invelope and its derivatives
analytically, the algorithms developed in [11] can easily be used to obtain simulated values of
the needed quantiles. Other possible approaches to confidence intervals in this problem involve
inversion of likelihood ratio tests (see [2–4] for this approach in the context of monotone or
U -shaped function estimation) or resampling methods as in [22] and as discussed in [4] in the
setting of nonparametric estimation of monotone functions. It should be noted that our Theo-
rem 1.2 verifies one of the key hypotheses needed for validity of the general subsampling theory
of [21,22], and therefore makes the subsampling approach to confidence intervals viable. The
details and properties of all these approaches remain to be investigated.

The outline of this paper is as follows. Section 2 is dedicated to the proof of characterizations,
existence and uniqueness of the MLE. Consistency is proved in Sections 3 and 4 establishes lower
bounds for the pointwise minimax risk of ĥn. Rates of convergence are established in Section 5,
with Section 5.3 containing proofs of our main results concerning the limiting distribution at a
fixed point. The companion technical report [15] also includes a detailed treatment of a least-
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squares estimator, as well as sketches of similar results for censored data and intensity functions
of Poisson processes.

2. Characterizations, uniqueness and existence

Proposition 2.1. The function ĥn which minimizes ϕn over K+ is piecewise linear. It has at
most one change of slope between observations, except perhaps in one such interval, where,
if the estimator touches zero, it may have two changes of slope (it is zero between these two
changes). Also, between zero and X(1), the minimizer may have at most one change of slope, but
this happens only if it touches zero, and in this case the estimator is increasing and equal to zero
before the first change of slope. Between X(n−1) and X(n), the minimizer will also have at most
one change of slope, and this only in the case where it is decreasing on [X(n−1),X(n)) and equal
to zero after the change.

Proof. Consider any h and choose a convex g such that h(Xi) = g(Xi) for i = 1, . . . , n − 1 and
h(x) ≥ g(x) ≥ 0 on [0,X(n)). It follows that ϕn(h) − ϕn(g) ≥ 0 if and only if H(Xi) ≥ G(Xi)

for i = 1, . . . , n. Hence, the smaller we make g on [0,X(n)), the smaller ϕn(g) will become. It is
not difficult to see that the smallest such g, with values of g(Xi) fixed, must have the prescribed
form. �

Since ĥn is piecewise linear, it may be expressed as

ĥn(t) = â +
k∑

j=1

ν̂j (τj − t)+ +
m∑

j=1

μ̂j (t − ηj )+, (2.1)

where ν̂j , â, μ̂j ≥ 0. We let τj denote the points of change of slope of ĥn where ĥn is decreasing
and let ηj > 0 denote the points of change of slope where ĥn is increasing. For simplicity, we
assume that these are ordered. Also, we have τk ≤ η1. As seen in the next lemma, the τj ’s and
ηj ’s correspond to “points of touch” or equality of processes defined on the one hand in terms of
ĥn and the data, and on the other hand just in terms of the data. We therefore also refer to them
as “touchpoints” repeatedly in the remainder of the paper.

It is convenient to define the MLE in terms of the minimization of the criterion function

ϕn(h) =
∫ ∞

0

{
H(t) − logh(t)1t �=X(n)

}
dFn(t),

where Fn denotes the empirical distribution function of the data,

Fn(t) = 1

n

n∑
i=1

1[0,t](Xi).

We will also use the notation Sn(t) = 1 − Fn(t) for the empirical survival function.
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Lemma 2.2. Let F̃n(t) = (1/n)
∑n−1

i=1 1[0,t](X(i)). A function ĥn minimizes ϕn over K+ (and
hence is the MLE) if and only if:∫ x

0

x − t

ĥn(t)
dF̃n(t) =

∫ x

0

∫ t

0
Sn(s)ds dt (2.2)

for all x ≥ 0with equality at τi for i = 1, . . . , k;∫ ∞

x

t − x

ĥn(t)
dF̃n(t) =

∫ ∞

x

∫ ∞

t

Sn(s)ds dt (2.3)

for all x ≥ 0with equality at ηj for j = 1, . . . ,m;∫ ∞

0

1

ĥn(t)
dF̃n(t) ≤

∫ ∞

0
Sn(t)dt, (2.4)

∫ ∞

0
Ĥn(t)dFn(t) = 1 − 1/n. (2.5)

Moreover, the minimizer ĥn satisfies∫ x

0
ĥn(t)Sn(t)dt = Fn(x) (2.6)

for x ∈ {τ1, . . . , τk, η1, . . . , ηm}.
Remark 2.3. As we assume a priori that ĥn(X(n)) = ∞, we may rewrite the left-hand side terms
in (2.2)–(2.4) via∫

A

x − t

ĥn(t)
dF̃n(t) =

∫
A

x − t

ĥn(t)
1t �=X(n)

dFn(t) =
∫

A

x − t

ĥn(t)
dFn(t),∫

A

1

ĥn(t)
dF̃n(t) =

∫
A

1

ĥn(t)
1t �=X(n)

dFn(t) =
∫

A

1

ĥn(t)
dFn(t)

for any set A. We will hereafter use this latter formulation.

Corollary 2.4. Let {τi}ki=1 and {ηj }mj=1 denote the change points of ĥn as in (2.1). It follows that∫ τi

0

1

ĥn(t)
dFn(t) =

∫ τi

0
Sn(u)du, (2.7)

∫ ∞

ηj

1

ĥn(t)
dFn(t) =

∫ ∞

ηj

Sn(u)du (2.8)

for i = 1, . . . , k and j = 1, . . . ,m.

Proof. The function

φ(x) ≡
∫ x

0

x − t

ĥn(t)
dFn(t) −

∫ x

0

∫ t

0
Sn(s)ds dt
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is maximized at τi for i = 1, . . . , k. Since it is also differentiable, (2.7) follows. A similar argu-
ment proves (2.8). �

Proof of Lemma 2.2. Consider any non-negative convex function h. It follows that there exists
a non-negative constant a and non-negative measures ν and μ (these measures have supports
with intersection containing at most one point) such that

h(t) = a +
∫ ∞

0
(x − t)+ dν(x) +

∫ ∞

0
(t − x)+ dμ(x).

For any function ĥ in K+, we calculate

ϕn(h) − ϕn(̂h) ≥
∫ ∞

0

{
H(t) − Ĥ (t) +

(
1 − h(t)

ĥ(t)

)
1t �=X(n)

}
dFn(t)

since − logx ≥ 1 − x. Plugging in the explicit form of h from above, we find that the right-hand
side is equal to

a

{∫
[0,∞)

(
t − 1

ĥ(t)
1t �=X(n)

)
dFn(t)

}
+

{
n − 1

n
−

∫ ∞

0
Ĥ (t)dFn(t)

}

+
∫ ∞

0

{∫ x

0

∫ t

0
Sn(s)ds dt −

∫ x

0

x − t

ĥ(t)
1t �=X(n)

dFn(t)

}
dν(x)

+
∫ ∞

0

{∫ ∞

x

∫ ∞

t

Sn(s)ds dt −
∫ x

0

t − x

ĥ(t)
1t �=X(n)

dFn(t)

}
dμ(x).

This is non-negative if ĥ is a function which satisfies conditions (2.2)–(2.5). It follows that these
conditions are sufficient to describe a minimizer of ϕn.

We next show that these conditions are necessary. To do this, we first define the directional
derivative

∂γ ϕn(h) ≡ lim
ε→0

ϕn(h + εγ ) − ϕn(h)

ε
=

∫ ∞

0

{
�(t) − γ (t)

h(t)
1t �=X(n)

}
dFn(t). (2.9)

If ĥn minimizes ϕn, then for any γ such that ĥn + εγ is in K+ for sufficiently small ε, we must
have ∂γ ϕn(̂hn) ≥ 0. If, however, ĥn ± εγ is in K+ for sufficiently small ε, then ∂γ ϕn(̂hn) = 0.

If we choose, respectively, γ (t) ≡ 1, (t − y)+, (y − t)+, then ĥn + εγ is in K+ and we obtain
the inequalities in conditions (2.2)–(2.4). Since (1 ± ε)̂hn is also in K+, for sufficiently small
ε, we obtain (2.5). Choosing γ = (τi − t)+, (t − ηj )+ yields the equalities in (2.2) and (2.3),
respectively, since for each of these functions, ĥn ± εγ is in K+.

Lastly, we prove (2.6). For any τi , define

γ (t) =
{

ĥn(t) − ĥn(τi), for t ∈ [0, τi],
0, otherwise.
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Since (1 ± ε)γ is also in K+, it follows that ∂γ ϕn(̂hn) = 0 and hence

0 =
{∫ τi

0
Ĥn(t)dFn(t) − Fn(τi) + Ĥn(τi)Sn(τi)

}

+ ĥn(τi)

{∫ τi

0

1

ĥn(t)
dFn(t) −

∫ τi

0
t dFn(t) − τiSn(τi)

}
.

Integration by parts and Corollary 2.4 yield (2.6) for x = τi . The case where x = ηj is obtained
in a similar manner, but using γ (t) = (̂hn(t) − ĥn(ηj ))1(ηj ,∞)(t) and (2.5). �

The next corollary allows us to extend the equalities of the characterization of the MLE to some
extra touchpoints. The significance of these equations will become clear in Section 5, where we
consider asymptotics of the estimator.

Corollary 2.5. Suppose that ĥn is strictly positive and recall the formulation given in (2.1). Then
we also have that ∫ η1

0

η1 − t

ĥn(t)
dFn(t) =

∫ η1

0

∫ s

0
Sn(u)duds, (2.10)

∫ ∞

τk

t − τk

ĥn(t)
dFn(t) =

∫ ∞

τk

∫ ∞

t

Sn(s)ds dt, (2.11)

∫ τi

0

1

ĥn(t)
dFn(t) =

∫ τi

0
Sn(u)du, (2.12)

∫ ∞

ηj

1

ĥn(t)
dFn(t) =

∫ ∞

ηj

Sn(u)du. (2.13)

Proof. The first two equalities follow by noting that if ĥn is strictly positive, then for ε suffi-
ciently small, ĥn ± εγ is in K+ for γ (t) = (t − τk)+, (η1 − t)+. Arguing as for Corollary 2.4
proves the remaining identities. �

Proposition 2.6. There exists a unique minimizer ĥn of ϕn over K+.

Proof. We will show that a minimizer exists by reducing the search to bounded positive con-
vex functions on a compact domain. As this is a compact set, under the topology of uniform
convergence, a minimizer of ϕn exists (see [27], Theorems 10.6, 10.8 and 27.3).

We must first handle the issue of a compact domain. As we assume a priori that ĥn(X(n)) = ∞,
we are really looking for the minimizer of the modified negative of the log-likelihood with do-
main [0,X(n)). However, we have also argued that the minimizer must have the specific func-
tional form as described in Proposition 2.1. Therefore, it is sufficient to reduce the domain to
[0,X(n−1) + δ], for any δ > 0, since ĥn is then extended linearly beyond X(n−1) + δ in a unique
manner. It will therefore be sufficient to show that we may reduce the search to functions bounded
on [0,X(n−1)], with a derivative at X(n−1) which is bounded above.
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Recall that the minimizer must satisfy (2.5). We therefore reduce our search to the class of
functions which satisfy this condition. For any such h, write h = h+ +h−, where h+ is increasing
and h− is decreasing. It follows that for any x,

1 ≥
∫ ∞

0
H(t)dFn(t) =

∫ ∞

0
h(t)Sn(t)dt ≥ h−(x)

∫ x

0
Sn(t)dt.

A similar bound for h+ yields

h(x) ≤
(∫ x

0
Sn(t)dt

)−1

+
(∫ ∞

x

Sn(t)dt

)−1

≡ Mn(x) (2.14)

for all x in (0,X(n)). Thus we know that h(x) must be bounded for x ∈ (0,X(n−1)].
To show that h is also bounded at zero, we need to show that h′(X(1)) is bounded from below.

Assuming that it is negative, we may write, for 0 < x ≤ X(1),

h
(
X(1)

) + h′(X(1)

)(
x − X(1)

) = h(x) ≤ Mn(x).

Fixing x∗ > 0 and less than X(1), we then obtain that

h′(X(1)

) ≥ (
Mn(x

∗) − h
(
X(1)

))/(
x∗ − X(1)

)
,

from which it follows that h must be bounded on the set [0,X(n−1)].
By (2.5), we also have that

n ≥ H
(
X(n)

) ≥
∫ X(n−1)+δ

X(n−1)

h(t)dt =
∫ X(n−1)+δ

X(n−1)

{
h
(
X(n−1)

) + h′(X(n−1)

)(
t − X(n−1)

)}
dt

if h is increasing on [X(n−1),X(n)). This implies that h′(X(n−1)) is bounded above, completing
the proof.

We now show uniqueness. Suppose that h1 and h2 both minimize ϕn. Then, by (2.5), ϕn(h1)

and ϕn(h2) differ only in the term − ∫ ∞
0 loghi(t)1(t �= X(n))dFn(t). However, this term is

strictly convex and it follows that h1(X(i)) = h2(X(i)) for all i = 1, . . . , n − 1.
Let h̄ = (h1 + h2)/2. By linearity, we have that ϕn(h1) = ϕ(h2) = ϕ(h̄), which implies that h̄

is also a minimizer. However, the only way that this is possible is if h̄ also satisfies the conditions
of Proposition 2.1. This implies that one of the following holds:

1. Both h1 and h2 are increasing and h1(0) = h2(0) = 0. In this case, they must have the same
locations for their changes of slope, as otherwise h̄ violates Proposition 2.1.

2. Point 1 above does not hold. Then, by the same argument as above, if h1 and h2 have at
least one change of slope in an interval between observations (or between zero and X(1)),
then these locations of change of slope must be equal.

If the first case holds, then it is not difficult to see that h1 ≡ h2 on [0,X(n)), as h1(t) = h1(t) =
0 on [0, τ1] and h1(Xi) = h2(Xi) for all observation points.
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In the second case, we use a different argument. We know that neither h1 nor h2 have touch-
points before X(1). Let t∗ denote the first touchpoint of h1 and (without loss of generality) assume
that the first touchpoint of h2 is greater than t∗. Hence, by (2.6),

h1
(
X(1)

) = h2
(
X(1)

)
,

∫ t∗

0
h1(t)dt = Fn(t

∗).

Now, h̄ = (h1 + h2)/2 and h2 are also minimizers of the MLE criterion function ϕn. Also, h̄ has
a touchpoint at t∗ and h̄(X(1)) = h2(X(1)).

Averaging h̄ with h2 yields the functions h̄l = 2−l(h1 − h2) + h2, which satisfy

h̄l

(
X(1)

) = h2
(
X(1)

)
,

∫ t∗

0
h̄l(t)dt = Fn(t

∗) for all l ≥ 1.

Since h̄l → h2 pointwise, it follows from the dominated convergence theorem that
∫ t∗

0 h2(t)dt =
Fn(t

∗). Therefore, since h1 and h2 are both linear on [0, t∗] with h1(X(1)) = h2(X(1)) and∫ t∗
0 h1(t)dt = ∫ t∗

0 h2(t)dt , they must have both the same value and slope at X(1). That is, both
h1(X(1)) = h2(X(2)) and h′

1(X(1)) = h′
2(X(2)) hold.

Now, write

h1(t) = a1 + b1t +
m1−1∑
i=1

νi,1(t − ti,1)+,

h2(t) = a2 + b2t +
m2−1∑
i=1

νi,2(t − ti,2)+,

where X(1) < t1,j < t2,j < · · · < tmj −1,j < X(n), j = 1,2, and where h1(X(i)) = h2(X(i)) for i =
1, . . . , n. We also assume that νi,j > 0 for i = 1, . . . ,mj −1, j = 1,2. This implies, in particular,
that hj (t) = aj + bj t for t ≤ t1,j , j = 1,2, and since X(1) < t1,j , j = 1,2, h1(X(1)) = h2(X(1)).

Thus a1 + b1X(1) = a2 + b2X(1). From the argument above, it follows that b1 = h′
1(X(1)) =

h′
2(X(1)) = b2. We conclude that a1 = a2 and b1 = b2 so that h1(t) = h2(t) for 0 ≤ t ≤ t∗. It also

follows that t1,1 = t1,2.
Repeating this argument on the interval [t∗, t∗∗] with t∗∗ = min{t2,1, t2,2} shows that ν1,1 =

ν1,2 or t2,1 = t2,2. Proceeding by induction yields νj,1 = νj,2 and tj+1,1 = tj+1,2 for j =
1, . . . ,m1 − 1 = m2 − 1, hence uniqueness. �

3. Consistency

Theorem 3.1. Suppose that X1, . . . ,Xn are i.i.d. random variables with convex hazard function
h0 and corresponding distribution function F0. Let T0 ≡ T0(F0) ≡ inf{t :F0(t) = 1}. The MLE
ĥn(t) is then consistent for all t ∈ (0, T0). Also, for all δ > 0,

sup
δ≤t≤T0−δ

|̂hn(t) − h(t)| → 0, almost surely,
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if T0 < ∞. If T0 = ∞, the above statement holds with T0 − δ replaced by any K < ∞.

Remark 3.2. If h0 is increasing at 0, then one can show that ĥn is not consistent at zero. This is
a frequently occurring difficulty of shape constrained estimators; see, for example, [1,12,30].

Proof. We first show that ĥn is bounded appropriately so that we can select convergent subse-
quences. Decompose ĥn into its decreasing and increasing parts: ĥn = ĥn,↓ + ĥn,↑. Then, arguing
as in (2.14), it follows from (2.5) that

ĥn,↓(x) ≤ 1∫ x

0 Sn(t)dt
, (3.1)

where the right-hand side is almost surely bounded and, in fact, converges almost surely to
1/

∫ x

0 S0(t)dt < ∞ for all x > 0. Also,

ĥn,↑(x) ≤ 1∫ x+δ

x
Sn(t)dt

, (3.2)

where the right-hand side is almost surely bounded for x ∈ (supp(F0))
◦ and converges almost

surely to 1/
∫ x+δ

x
S0(t)dt < ∞.

Now, take γ = h0 in the directional derivative (2.9). It follows that

0 ≤ lim
ε↓0

ϕn(̂hn + εh0) − ϕn(̂hn)

ε
=

∫ ∞

0

{
H0(t) − h0(t)

ĥn(t)

}
dFn(t),

noting that ĥn(X(n)) = ∞, and hence∫ ∞

0

h0(t)

ĥn(t)
dFn(t) ≤

∫ ∞

0
H0(t)dFn(t)→

a.s.

∫ ∞

0
H0(t)dF0(t) = 1.

Fix any 0 < a < b < ∞ such that a, b ∈ (supp(F0))
◦. It follows that limn X(n) > b with proba-

bility one (this can be shown using the Borel–Cantelli theorem). Also, sup |Fn(t)−F0(t)| →a.s. 0
by the Glivenko–Cantelli lemma. Both of these events occur on the set 
, with P(
) = 1. Fix
ω ∈ 
. We will show that ĥn → h0 for such an ω.

Let {n′} denote any subsequence of {n}. By the bounds in (3.1) and (3.2) (which are finite
for our choice of ω), using a classical diagonalization argument and the continuity of convex
functions, we may extract a further subsequence {n′′} such that ĥn′′ → ĥ pointwise on [a, b],
where the limit ĥ must be convex. We denote this subsequence {n} to simplify notation.

From Fatou’s lemma, it follows that

∫ b

a

h2
0(t)

ĥn(t)
S0(t)dt =

∫ b

a

h0(t)

ĥn(t)
f0(t)dt ≤ lim inf

n

∫ b

a

h0(t)

ĥn(t)
dFn(t)

≤ lim sup
n

∫ ∞

0

h0(t)

ĥn(t)
dFn(t) ≤ lim

n

∫ ∞

0
H0(t)dFn(t) ≤ 1.
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Note that this implies that if ĥ(t) = 0, then h0(t) = 0. By (2.5) and integration by parts, we see
that 1 ≥ ∫

[0,X(n))
ĥn(t)Sn(t)dt . Therefore, again applying Fatou’s lemma,

1 ≥
∫ b

a

ĥ(t)S0(t)dt.

It also follows that

0 ≤
∫ b

a

(̂h(t) − h0(t))
2

ĥ(t)
S0(t)dt

=
∫ b

a

ĥ(t)S0(t)dt − 2
∫ b

a

h0(t)S0(t)dt +
∫ b

a

h2
0(t)

ĥ(t)
S0(t)dt

≤ 2 − 2
∫ b

a

h0(t)S0(t)dt.

Define ĥ = h0 for t /∈ [a, b], which allows us to let both 1/a and b → ∞ in the above display.
Since

∫ ∞
0 h0(t)S0(t)dt = 1, it follows that

∫ ∞

0

(̂h(t) − h0(t))
2

ĥ(t)
S0(t)dt = 0

and this implies that ĥ(t) = h0(t) for all t ∈ [a, b].
We have thus shown that every subsequence {̂hn(x)} has a further subsequence which con-

verges to the true hazard function h0(x) pointwise, for all x ∈ (suppF0)
◦. It follows that {̂hn}

converges to h0 pointwise. By Theorem 10.8, page 90, [27], this implies that the claimed uni-
form convergence on [a, b] also holds. As this happens for any ω ∈ 
, and P(
) = 1, we have
proven the result. �

Corollary 3.3. Suppose that h′′
0 is continuous and strictly positive at x0 ∈ (suppF0)

◦. It follows
that there exist touchpoints τn ≤ x0 ≤ ηn such that τn, ηn → x0 in probability.

Proof. Let ηn, τn be touchpoints such that τn ≤ x0 ≤ ηn. If τn does not exist, then set τn = 0,
and ηn = ∞ otherwise. Suppose that it is not the case that τn, ηn →p x0. It then follows from
Theorem 3.1 that there exists an interval I = [a, b] such that x0 ∈ I for |I | > 0, lim supn τn ≤ a

and lim infn ηn ≥ b almost surely, and, lastly, lim ĥn(t) →a.s. h0(t) on I . However, this implies
that h0(t) is linear on I , which is a contradiction. �

From consistency of the estimator, we also obtain consistency of the derivatives.

Corollary 3.4. Suppose that x ∈ (a, b) and supa≤t≤b |̂hn(t) − h0(t)| →a.s. 0. Then ĥ′
n(x) →a.s.

h′
0(x) at all continuity points x of h′

0 on (a, b).
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This follows from the following simple result for convex functions, proved in [12].

Lemma 3.5. Suppose that h̄n is a sequence of convex functions satisfying supa≤x≤b |h̄n(t) −
h0(t)| → 0 with probability one. Then (also with probability one), for all x ∈ (a, b),

−∞ < h′
0(x

−) ≤ lim inf
n→∞ h̄′

n(x
−) ≤ lim sup

n→∞
h̄′

n(x
+) ≤ h′

0(x
+) < ∞.

4. Asymptotic lower bounds for the minimax risk

Define the class of densities C by

C =
{
f : [0,∞) → [0,∞) :

∫ ∞

0
f (x)dx = 1,

h(x) = f (x)/
(
1 − F(x)

)
is convex, h(x) > 0 for all x > 0

}
.

We want to derive asymptotic lower bounds for the local minimax risks for estimating the con-
vex hazard function h and its derivative at a fixed point. The L1-minimax risk for estimating a
functional T of f0 based on a sample X1, . . . ,Xn of size n from f0 which is known to be in a
subset Cn of C is defined by

MMR1(n,T , Cn) = inf
Tn

sup
f ∈Cn

Ef |Tn − Tf |, (4.1)

where the infimum ranges over all possible measurable functions Tn = tn(X1, . . . ,Xn) mapping
R

n to R. The shrinking classes Cn used here are Hellinger balls centered at f0,

Cn,τ =
{
f ∈ C :H 2(f,f0) ≡ 1

2

∫ ∞

0

(√
f (z) − √

f0(z)
)2 dz ≤ τ/n

}
.

Consider estimation of

T1(f ) = f (x0)

1 − F(x0)
= h(x0), T2(f ) = h′(x0). (4.2)

Let f0 ∈ C and x0 > 0 be fixed such that h0 is twice continuously differentiable at x0. Define, for
ε > 0, the functions hε as follows:

hε(z) =
⎧⎨
⎩

h0(x0 − εcε) + (z − x0 + εcε)h
′
0(x0 − εcε), z ∈ [x0 − εcε, x0 − ε],

h0(x0 + ε) + (z − x0 − ε)h′
0(x0 + ε), z ∈ [x0 − ε, x0 + ε],

h0(z), otherwise.

Here, cε is chosen so that hε is continuous at x0 − ε. Using continuity of hε and a second order
expansion of h0, it follows that cε = 3 + o(1) as ε → 0. Now, define fε by

fε(z) = exp
(−Hε(z)

)
hε(z),
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where Hε(z) ≡ ∫ z

0 hε(u)du. It follows easily that

T1(fε) − T1(f0) = 1
2h′′

0(x0)ε
2 + o(ε2), (4.3)

T2(fε) − T2(f0) = h′′
0(x0)ε + o(ε). (4.4)

Furthermore, the following lemma holds.

Lemma 4.1. Under the above assumptions,

H 2(fε, f0) = 2

5

h′′
0(x0)

2(1 − F(x0))

h0(x0)
ε5 + o(ε5) ≡ ν0ε

5 + o(ε5).

Proof. The lemma follows from Lemma 2 of [18] and∫
(fε(x) − f0(x))2

f0(x)
dx = 16

5

h′′
0(x0)

2(1 − F(x0))

h0(x0)
ε5 + o(ε5).

This is achieved by careful calculation. �

Combining (4.3) and (4.4) with the lemma, it follows that

∣∣T1
(
f(ε/ν0)

1/5

) − T1(f0)
∣∣ ≥

(h0(x0)

√
h′′

0(x0)

S0(x0)8
√

2

)2/5

ε2/5(1 + o(1)
)
,

∣∣T2
(
f(ε/ν0)

1/5

) − T2(f0)
∣∣ ≥

(
5h0(x0)h

′′
0(x0)

3

2S0(x0)

)1/5

ε1/5(1 + o(1)
)
.

From these calculations, together with Lemma 5.1 of [12], we have the following result. Along
with Theorem 1.2, it indicates that ĥn(x0) and ĥ′

n(x0) achieve optimal rates and also have the
correct dependence on the parameters h′′(x0) and h(x0) (up to absolute constants).

Theorem 4.2 (Minimax risk lower bound). For the functionals T1 and T2 as defined in (4.2),
and with MMR1(n,T , Cn,τ ) as defined in (4.1),

sup
τ>0

lim sup
n→∞

n2/5MMR1(n,T1, Cn,τ ) ≥ 1

4

(h0(x0)

√
h′′

0(x0)

S0(x0)e8
√

2

)2/5

and

sup
τ>0

lim sup
n→∞

n1/5MMR1(n,T2, Cn,τ ) ≥ 1

4

(
1

4e

h0(x0)h
′′
0(x0)

3

2S0(x0)

)1/5

.

In particular, Theorem 1.2 shows that the MLE achieves the optimal pointwise rate of con-
vergence, n2/5, at points x0 with h′′(x0) > 0. Convergence rates over the larger class of bathtub-
shaped functions would be slower: the MLE of a U -shaped hazard is known to converge locally
at rate n1/3; see, for example, [2].
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5. Rates of convergence

In this section, we identify the local rates of convergence of the MLE. Fix a point x0 ∈ (suppF0)
◦.

To obtain the results, we assume that h′′
0(·) is continuous and strictly positive in a neighborhood

of x0 and that h(x0) > 0.

5.1. Some useful estimates

For 0 < x ≤ y, define

Un(x, y) =
∫ y

x

{
z − (1/2)(x + y)

ĥn(z)

}
d(Fn − F0)(z).

Lemma 5.1. Let x0 ∈ (suppF0)
◦. Then, for each ε > 0, there exist constants δ, c0, n0 and (posi-

tive) random variables Mn (independent of x, y), of order Op(1), such that for each |x −x0| < δ,

|Un(x, y)| ≤ ε(y − x)4 + n−4/5Mn, 0 ≤ y − x ≤ c0, (5.1)

for all n ≥ n0.

Proof. Note that Un = (Pn − P0)(gx,y,̂hn
), where

gx,y,h(z) ≡ fx,y(z)

h(z)
1[x,y](z)

and, in view of the consistency established in Theorem 3.1, ĥn is a convex function uniformly
close to h0 on neighborhoods of x0. This leads to the consideration of the class of functions

Fx,R ≡
{

z �→ gx,y,h(z) :x ≤ y ≤ x + R,h convex,

‖h − h0‖x0+δ+c0
x0−δ ≤ γ

}

with γ ≡ infx0−δ≤x≤x0+δ+c0 h0(x)/2 and we define Gn ≡ {‖ĥn − h0‖x0+δ+c0
x0−δ ≤ γ }. The class

Fx,R has an envelope function Fx,R(z) = γ −1{(z − x)1[x,x+R](z) + 2−1R1[x,x+R](z)} and hence
the following second moment bound holds:

E{[Fx,R]2} = 1

γ 2

∫
[x,x+R]

[(z − x) + R/2]2f0(z)dz ≤ 13

12γ 2
‖f0‖x0+δ

x0−δR
3.

Furthermore, logN[](ε, Fx,R,L2(P0)) ≤ K/ε1/2 for some constant K by [29], Theorem 2.7.10,
page 159, and a straightforward bracketing argument. It then follows from [29], Theorems 2.14.2
and 2.14.5, pages 240 and 244, that

E
{(

sup
f ∈Fx,R

|(Pn − P0)(f )|
)2} ≤ 1

n
K ′E{[Fx,R(X1)]2} = O(n−1R3). (5.2)
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Define Mn(ω) as the infimum (possibly +∞) of those values such that (5.1) holds and define
A(n, j) to be the set [(j − 1)n−1/5, jn−1/5). Then, for m constant,

P(Mn > m) ≤ P([Mn > m] ∩ Gn) + P(Gc
n)

≤ P
([∃u : |Un(x, x + u)| > εu4 + n−4/5m] ∩ Gn

) + P(Gc
n)

≤
∑
j≥1

P
([∃u ∈ A(n, j) :n4/5|Un(x, x + u)| > ε(j − 1)4 + m] ∩ Gn

) + P(Gc
n).

The j th summand is hence bounded by

n8/5E
[

sup
u∈A(n,j)

|Un(x, x + u)m|21Gn

]/[m + ε(j − 1)4]2 ≤ C
j3

[m + ε(j − 1)4]2

due to (5.2). Thus it follows, using Theorem 3.1 to conclude that P(Gc
n) → 0, that

lim sup
n→∞

P(Mn > m) ≤ C

∞∑
j=1

j3

[m + ε(j − 1)4]2
,

where the sum in the bound is finite and converges to zero as m → ∞. This completes the proof
of the claim. �

A similar approach proves the following for the function

Vn(x, y) =
∫ y

x

{z − (x + y)/2}(Sn(z) − S0(z)
)

dz.

Lemma 5.2. Let x0 ∈ (suppF0)
◦. Then, for each ε > 0, there exist constants δ, c0 > 0 and (pos-

itive) random variables Mn (independent of x, y) of order Op(1) such that for each |x − x0| < δ,

|Vn(x, y)| ≤ εn−1/5(y − x)4 + n−1Mn, 0 ≤ y − x ≤ c0. (5.3)

5.2. Asymptotic behavior of touchpoints and resulting bounds

Lemma 5.3. Let x0 > 0 be a point at which h0 has a continuous and strictly positive second
derivative, and where h(x0) > 0. Let ξn be any sequence of numbers converging to x0 and define
τn and ηn to be the largest touchpoint of ĥn smaller than ξn and the smallest touchpoint larger
than ξn, respectively. Then

ηn − τn = Op(n−1/5).

Proof. By Theorem 3.1, we know that ĥn is positive near x0 for large enough n. Also, it is
either strictly increasing or strictly decreasing in a neighborhood of x0, or it is locally flat. If
ĥn is decreasing between τn and ηn, then (2.7) and (2.2) with equality at both ηn and τn hold.
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If, instead, ĥn is increasing, then (2.8) and (2.3) with equality at both ηn and τn hold. There is
only the potential for a problem in the locally flat case. However, since ĥn is strictly positive,
by Corollary 2.5, we can extend the necessary equalities to this case as well. Therefore, we need
only consider two cases, ĥn is either non-increasing or non-decreasing on [τn, ηn].

We first assume that ĥn is non-increasing on [τn, ηn]. Define

Ĥn,↓(z) =
∫ z

0

z − t

ĥn(t)
dFn(t) and An,↓(z) =

∫ z

0
Sn(t)dt, (5.4)

and let mn be the midpoint of [τn, ηn], mn = (τn + ηn)/2. We may then calculate

Ĥn,↓(mn) =
∫ ηn

mn

x − mn

ĥn(x)
dFn(x) + Ĥn,↓(ηn) − (ηn − mn)Ĥ′

n,↓(ηn)

=
∫ mn

τn

mn − x

ĥn(x)
dFn(x) + Ĥn,↓(τn) + (mn − τn)Ĥ′

n,↓(τn).

From (2.2), we know that 2Ĥn,↓(mn) ≤ 2
∫ mn

0 An,↓(t)dt . The equality in (2.2), together with
(2.7), allows us to rewrite this as 0 ≥ L1,↓ + L2,↓, where L1,↓ is equal to∫ ηn

mn

x − mn

ĥn(x)
dFn(x) +

∫ mn

τn

mn − x

ĥn(x)
dFn(x) − ηn − τn

4
{Ĥ′

n,↓(ηn) − Ĥ′
n,↓(τn)}

=
∫ ηn

mn

x − (1/2)(ηn + mn)

ĥn(x)
dFn(x) +

∫ mn

τn

(1/2)(τn + mn) − x

ĥn(x)
dFn(x)

and

L2,↓ =
∫ ηn

mn

An,↓(x)dx −
∫ mn

τn

An,↓(x)dx − 1

4
(ηn − τn){An,↓(ηn) − An,↓(τn)}

= −
{∫ ηn

mn

{
x − 1

2
(ηn + mn)

}
Sn(x)dx +

∫ mn

τn

{
1

2
(τn + mn) − x

}
Sn(x)dx

}
,

by integration by parts.
Now replace Fn by the true F0 in the definition of L1,↓ to obtain

L0
1,↓ ≡

∫ ηn

mn

x − (1/2)(ηn + mn)

ĥn(x)
dF0(x) +

∫ mn

τn

(1/2)(τn + mn) − x

ĥn(x)
dF0(x)

=
∫ ηn

mn

{
x − 1

2
(ηn + mn)

}{
1

ĥn(x)
− 1

h0(x)

}
dF0(x)

+
∫ mn

τn

{
1

2
(τn + mn) − x

}{
1

ĥn(x)
− 1

h0(x)

}
dF0(x) − L0

2,↓,

where

L0
2,↓ = −

∫ ηn

mn

{
x − 1

2
(ηn + mn)

}
S0(x)dx −

∫ mn

τn

{
1

2
(τn + mn) − x

}
S0(x)dx.
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Next, using a Taylor expansion of order 2 on the function 1/ĥn(x)− 1/h0(x) and about the point
mn, we obtain

L0
1,↓ + L0

2,↓ = 1

192

{
h′′

0(x0)

h2
0(x0)

f0(x0)

}
(ηn − τn)

4 + o
(
(ηn − τn)

4) (5.5)

since both ĥn and ĥ′
n are consistent by Theorem 3.1, ĥ′′

n(x) = 0 on (τn, ηn) and because τn −ηn =
op(1) by Corollary 3.3. Therefore, by Lemmas 5.1 and 5.2, together with the above calculations,
we may write

0 ≥ L1,↓ + L2,↓

= L0
1,↓ + L0

2,↓ + (L1,↓ − L0
1,↓) + (L2,↓ − L0

2,↓)

≥ L0
1,↓ + L0

2,↓ − ε(ηn − τn)
4 − Op(n−4/5) − εn−1/5(ηn − τn)

4 − Op(n−1)

= 1

192

{
h′′

0(x0)

h2
0(x0)

f (x0) − 192ε

}
(ηn − τn)

4 + o
(
(ηn − τn)

4) − Op(n−4/5).

We choose ε sufficiently small (so that the leading term in the last line of the above display is
positive) and hence conclude that (ηn − τn) = Op(n−1/5). A similar approach proves the non-
decreasing case. �

Lemma 5.4. Let ξn be a sequence converging to x0. Then, for any ε > 0, there exists an M > 1
and a c > 0 such that, with probability greater than 1 − ε, we have that there exist change points
τn < ξn < ηn of ĥn such that

inf
t∈[τn,ηn] |̂hn(t) − h0(t)| < cn−2/5

for all n sufficiently large.

Proof. Fix ε > 0. From Lemma 5.3, it follows that there exist touchpoints ηn and τn, and an
M > 1 such that ξn − Mn−1/5 ≤ τn ≤ ξn − n−1/5 ≤ ξn + n−1/5 ≤ ηn ≤ ξn + Mn−1/5.

Fix c > 0 and consider the event

inf
t∈[τn,ηn] |̂hn(t) − h0(t)| ≥ cn−2/5. (5.6)

First, assume that ĥn is non-increasing on [τn, ηn]. On this set, we have that

∣∣∣∣
∫ ηn

τn

(ηn − t)
ĥn(t) − h0(t)

ĥn(t)
S0(t)dt

∣∣∣∣
≥ Bcn−2/5(ηn − τn)

2 ≥ Bcn−4/5,
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where B is some constant depending on x0. Using the definitions in (5.4), as well as the equality
in condition (2.2) with (2.7), it follows that

0 = Ĥn,↓(ηn) −
∫ ηn

0
An,↓(t)dt − Ĥn,↓(τn) +

∫ τn

0
An,↓(t)dt

− (
Ĥ′

n,↓(τn) − An,↓(τn)
)
(ηn − τn)

=
∫ ηn

τn

ηn − t

ĥn(t)
dFn(t) −

∫ ηn

τn

(ηn − t)Sn(t)dt

=
∫ ηn

τn

(ηn − t)
ĥn(t) − h0(t)

ĥn(t)
S0(t)dt +

∫ ηn

τn

ηn − t

ĥn(t)
dF̆n(t) −

∫ ηn

τn

(ηn − t)S̆n(t)dt,

where F̆n(t) = Fn(t) − F0(t) and S̆n(t) = Sn(t) − S0(t). By the assumption on h0 and x0, and
arguments similar to those used for Lemmas 5.1 and 5.2, we can show that∫ ηn

τn

(ηn − t)
ĥn(t) − h0(t)

ĥn(t)
S0(t)dt = Op(n−4/5),

which is a contradiction to (5.6) if c is chosen large enough. A similar argument completes the
proof for the non-decreasing case. �

The next proposition is the key to proving tightness in the next section. The results follow from
the previous lemmas and make extensive use of the underlying convexity.

Proposition 5.5. Under the assumptions of this section, we have that, for each M > 0,

sup
|t |≤M

|̂hn(x0 + n−1/5t) − h0(x0) − n−1/5th′
0(x0)| = Op(n−2/5), (5.7)

sup
|t |≤M

|̂h′
n(x0 + n−1/5t) − h′

0(x0)| = Op(n−1/5). (5.8)

Proof. For M,ε > 0 fixed, define ηn,1 to be the first point of touch after x0 + Mn−1/5 and ηn,i

to be the first point of touch after ηn,i−1 + n−1/5, i = 2,3. Define the points ηn,−i for i = 1,2,3
similarly, but working to the left of x0. By Lemma 5.4, there exist points ξn,i ∈ (ηn,i , ηn,i+1),
i = 1,2,−2,−3, and a constant c > 0 such that with probability at least 1 − ε, we have that
|̂hn(ξn,i) − h0(ξn,i)| ≤ cn−2/5.

As ĥn is convex, it follows that for any t ∈ [x0 − Mn−1/5, x0 + Mn−1/5],

ĥ′
n(t) ≤ ĥ′

n(ξn,1) ≤ ĥn(ξn,2) − ĥn(ξn,1)

ξn,2 − ξn,1

≤ h0(ξn,2) − h0(ξn,1) + 2cn−2/5

ξn,2 − ξn,1

≤ h′
0(ξn,2) + 2cn−1/5
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since ξn,2 − ξn,1 ≥ n−1/5, where ĥ′
n(t) denotes the right derivative at t . Because of the continuity

of h′′
0(·) near x0, we may replace h′

0(ξn,2) with h′
0(x0) + c̃n−1/5 for some new constant c̃. The

result follows. A similar argument shows the lower bound.
We now consider (5.7). By Lemma 5.3, there exists a constant K > M such that there exist

two touchpoints in [x0 + Mn−1/5, x0 + Kn−1/5], n−1/5 apart with probability 1 − ε. The same
is the case in the interval [x0 − Mn−1/5, x0 − Kn−1/5]. From Lemma 5.4, it follows that there
exist points ξn,1 ∈ [x0 + Mn−1/5, x0 + Kn−1/5] and ξn,2 ∈ [x0 − Mn−1/5, x0 − Kn−1/5] such
that |̂hn(ξn,i) − h0(ξn,i)| ≤ cn−2/5, for i = 1,2, with probability at least 1 − ε and sufficiently
large n. Lastly, we have already shown that there exists a c′ such that with probability at least
1 − ε,

sup
t∈[x0−Kn−1/5,x0+Kn−1/5]

|̂h′
n(t) − h′

0(x0)| ≤ c′n−1/5.

Therefore, with probability at least 1−3ε, we have that for any t ∈ [x0 −Mn−1/5, x0 +Mn−1/5]
and sufficiently large n,

ĥn(t) ≥ ĥn(ξn,1) + ĥ′
n(ξn,1)(t − ξn,1)

≥ h0(ξn,1) − cn−2/5 + (
h′

0(x0) − c′n−1/5)(t − ξn,1)

= h0(x0) + h′(x0)(t − x0) + 1
2h′′(x∗

0 )(ξn,1 − x0)
2 − cn−2/5 − c′n−1/5(t − ξn,1)

≥ h0(x0) + h′(x0)(t − x0) − Bn−2/5

for some constant B > 0. A similar argument proves the other direction. �

5.3. Limit distribution theory at a fixed point

From Lemma 5.3, we know what rescaling is necessary to pick up a meaningful limit. The idea of
the proof is now to write carefully a local version of the characterization of the MLE, Lemma 2.2,
and to show that in the limit, these become the characterization of the invelope (Definition 1.1).
The invelope I(·) is described in terms of the “driving” process Y(·). Our goal will then be to
identify the two processes, one which converges to the invelope and another which converges to
the driving process Y .

Note that at x0 (where h′′(x0) > 0), we have three possibilities:

1. h′
0(x0) > 0: By continuity, h′

0(x) > 0 in a neighborhood of x0. It follows from the consis-
tency of the MLE derivatives that ĥ′

n > 0 for sufficiently large n and hence all touchpoints
to be considered are of the “increasing” kind.

2. h′
0(x0) < 0: By the same argument, all touchpoints are decreasing.

3. h′
0(x0) = 0: Since h(x0) > 0, by Corollary 2.5, there is always at least one touchpoint which

satisfies both the non-increasing and non-decreasing properties. The limiting process may
then be “stitched” together in an appropriate manner.
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Therefore, it will be sufficient to prove the asymptotic results for both types of touchpoints: non-
increasing and non-decreasing. For the sake of brevity, we outline the argument only for the
non-increasing setting.

For any interval [a, b] ⊂ R, let D[a, b] denote the space of cadlag functions from [a, b] into
R endowed with the Skorohod topology and C[a, b] the space of continuous functions endowed
with the uniform topology.

Driving process.

Define

Bn(t) ≡ √
n
(
Hn(t) − H0(t)

)
, (5.9)

where Hn is the empirical cumulative hazard function, defined by dHn(u) = (1 −
Fn(t−))−1 dFn(t). From [28], Chapter 7, Theorem 7.4.1, page 307, we know that for t ∈ (0, T0)

with T0 ≡ T0(F0) ≡ inf{x :F(x) = 1}, Bn(t) ⇒ B(C(t)) in D[0,M] for M < T0, where B de-
notes a standard Brownian motion on [0,∞) and C(t) = F0(t)/S0(t). Let xn(t) = x0 + n−1/5t

and define

Ỹ
loc
n (t) ≡ n4/5

∫ xn(t)

x0

{
Hn(v) − Hn(x0) −

∫ v

x0

(
h0(x0) + (u − x0)h

′
0(x0)

)
du

}
dv. (5.10)

It is not difficult to show that

Ỹ
loc
n (t) ⇒ √

C′(x0)

∫ t

0
W(s)ds + 1

24
h′′

0(x0)t
4,

(Ỹloc
n )′(t) ⇒ √

C′(x0)W(t) + 1

3!h
′′
0(x0)t

3

in D[−M,M] for each fixed 0 < M < ∞, where W is a two-sided Brownian motion process
starting at 0 and C′(t) = h0(t)/S0(t). Next, define

Ŷ
loc
n,↓(t) = n4/5 h0(x0)

S0(x0)

∫ xn(t)

x0

∫ v

x0

{
h0(u) − h0(x0) − (u − x0)h

′
0(x0)

ĥn(u)

}
Sn(u)dudv

+ n4/5 h0(x0)

S0(x0)

∫ x0+n−1/5t

x0

∫ v

x0

Sn(u)

ĥn(u)
d{H∗

n(u) − H0(u)}dv,

where dH
∗
n(u) = Sn(u−)

Sn(u)
dHn(u). The derivative (Ŷloc

n,↓)′(t) is not difficult to calculate. By consis-

tency of ĥn and since supt |Sn(t) − S0(t)| → 0 a.s., for any M > 0,

lim
n

sup
|t |≤M

|Ŷloc
n,↓(t) − Ỹ

loc
n (t)| = lim

n
sup

|t |≤M

|(Ŷloc
n,↓)′(t) − (Ỹloc

n )′(t)| = 0 a.s. (5.11)

Ŷ
loc
n,↓ is our driving process.
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Invelope process.

Recall definitions (5.4). Our initial candidate for the invelope is defined as

Î
loc
n,↓(t) = n4/5 h0(x0)

S0(x0)

∫ xn(t)

x0

∫ v

x0

{
ĥn(u) − h0(x0) − (u − x0)h

′
0(x0)

ĥn(u)

}
Sn(u)dudv

+ Ân,↓t + B̂n,↓,

where

Ân,↓ = −n3/5 h0(x0)

S0(x0)
{Ĥ′

n,↓(x0) − An,↓(x0)} and

B̂n,↓ = −n4/5 h0(x0)

S0(x0)

{
Ĥn,↓(x0) −

∫ x0

0
An,↓(v)dv

}
.

Notice that because of the presence of Sn(v) in its definition, Î
loc
n,↓(t) is not three times differen-

tiable. We therefore define

Î
∗,loc
n,↓ (t) = n4/5 h0(x0)

S0(x0)

∫ xn(t)

x0

∫ v

x0

{
ĥn(u) − h0(x0) − (u − x0)h

′
0(x0)

ĥn(u)

}
S0(u)dudv

+ Ân,↓t + B̂n,↓.

From Proposition 5.5, we have that for any M > 0,

lim
n

sup
|t |≤M

|̂I loc
n,↓(t) − Î

∗,loc
n,↓ (t)| = 0. (5.12)

The derivatives of Î
∗,loc
n,↓ will describe the limiting behavior of our estimators. First, though,

we must show that this process converges to the invelope. To do this, define the vector

Ẑn(t) = (
Ŷ

loc
n,↓(t), (Ŷloc

n,↓)′(t), Î
∗,loc
n,↓ (t), (̂I

∗,loc
n,↓ )′(t), (̂I ∗,loc

n,↓ )′′(t), (̂I ∗,loc
n,↓ )′′′(t)

)
(5.13)

and fix M > 0. We will show that Ẑn is tight in the product space

E[−M,M] ≡ C[−M,M] × D[−M,M] × C[−M,M]3 × D[−M,M].
This will be done last. We first assume that Ẑn has a weak limit and identify its unique limit. The
two arguments together prove that Ẑn, and hence Î

∗,loc
n,↓ , have the appropriate limiting distribu-

tion.

Identifying the limit.

It is sufficient to show that Î
∗,loc
n,↓ satisfies (1.2)–(1.4) in the limit.

For condition (1.2), calculate

Î
loc
n,↓(t) − Ŷ

loc
n,↓(t) = n4/5 h0(x0)

S0(x0)

{∫ x0+n−1/5t

0
An,↓(v)dv − Ĥn,↓(x0 + n−1/5t)

}
≥ 0, (5.14)
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with equality at the (non-increasing) touchpoints of ĥn, using (2.2). By (5.12), it follows that
Î
∗,loc
n,↓ satisfies (1.2) in the limit.

Next, the derivatives of Î
∗,loc
n,↓ (t) are calculated as follows:

(̂I
∗,loc
n,↓ )′(t) = n3/5 h0(x0)

S0(x0)

∫ xn(t)

x0

{
ĥn(u) − h0(x0) − (u − x0)h

′
0(x0)

ĥn(u)

}
S0(u)du + Ân,↓,

(̂I
∗,loc
n,↓ )′′(t) = n2/5 h0(x0)

S0(x0)

{
ĥn(xn(t)) − h0(x0) − n−1/5th′

0(x0)

ĥn(xn(t))

}
S0(x0 + n−1/5t).

Due to Theorem 3.1 and Proposition 5.5, we have that

lim
n

sup
|t |≤M

|(̂I ∗,loc
n,↓ )′′(t) − n2/5[̂hn(x0 + n−1/5t) − h0(x0) − n−1/5th′

0(x0)]| = 0, (5.15)

where n2/5 [̂hn(x0 + n−1/5t) − h0(x0) − n−1/5th′
0(x0)] is convex, and hence the limit of

(̂I
∗,loc
n,↓ )′′(t) will be convex. Thus, (1.3) is satisfied in the limit.

Let Bn(t) = (h0(x0)/S0(x0)) × (S0(t)/ĥn(t)). We may then write

(̂I
∗,loc
n,↓ )′′′(t) = n1/5 [̂h′

n(xn(t)) − h′
0(x0)]Bn(xn(t))

+ n1/5 [̂hn(xn(t)) − h0(x0) − n−1/5th′
0(x0)] × B ′

n(xn(t)).

Notice that sup|t |≤M |1 − Bn(x0 + n−1/5t)| →a.s. 0, with limn B ′
n(x0 + n−1/5t) bounded. There-

fore, from Proposition 5.5, it follows that

lim
n

sup
|t |≤M

|(̂I ∗,loc
n,↓ )′′′(t) − n1/5[̂h′

n(x0 + n−1/5t) − h′
0(x0)]| = 0, (5.16)

where n1/5 [̂h′
n(x0 + n−1/5t) − h′

0(x0)] is piecewise constant, with jumps at the touchpoints of
ĥn. By consistency of ĥn, we have

d(̂I
∗,loc
n,↓ )′′′(t) = Bn(x0 + n−1/5t)dĝn(t)

+ 2[̂h′
n(x0 + n−1/5t) − h′

0(x0)]B ′
n(x0 + n−1/5t)dt

+ n1/5 [̂hn(x0 + n−1/5t) − h0(x0) − n−1/5th′
0(x0)]dB ′

n(x0 + n−1/5t)

= {Bn(x0 + n−1/5t) + O∗
p(n−2/5)}dĝn(t) + O∗

p(n−1/5)dt,

where ĝn(t) = n1/5 [̂h′
n(x0 + n−1/5t) − h′

0(x0)]. We say that a process Xn(t) is O∗
p(1) if

sup|t |≤M |Xn(t)| is Op(1).
Next, fix a c > 0. Since ĥn is piecewise linear, it follows that dĝn puts mass only at the locations

of touchpoints of ĥn. However, at these locations, by (5.14), the process Î
loc
n,↓(t)−Ŷ

loc
n,↓(t) is equal

to zero. It follows that ∫ c

−c

(
Î

loc
n,↓(t) − Ŷ

loc
n,↓(t)

)
dĝn(t) = 0.
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Hence,∫ c

−c

(
Î

∗,loc
n,↓ (t) − Ŷ

loc
n,↓(t)

)
d(̂I

∗,loc
n,↓ )′′′(t) =

∫ c

−c

(
Î

∗,loc
n,↓ (t) − Ŷ

loc
n,↓(t)

)
d[(̂I ∗,loc

n,↓ )′′′ − ĝn](t)

+
∫ c

−c

(
Î

∗,loc
n,↓ (t) − Î

loc
n,↓(t)

)
dĝn(t) = op(1),

using Proposition 5.5, (5.12) and the fact that ĝn is increasing.
It remains to show that (1.4) is maintained under limits. This follows from the continuous

mapping theorem since for any element z = {z1, z2, z3, z4, z5, z6} ∈ E[−M,M],

ψ(z) =
∫ M

−M

(z3 − z1)dz6

is continuous in z for z6 increasing. We have thus shown that Î
∗,loc
n,↓ (t) satisfies the invelope

conditions (1.2)–(1.4) asymptotically. This shows that the only possible limit of Î
∗,loc
n,↓ (t) is the

process I .

Tightness.

We already know that Ŷ
loc
n,↓(t) and (Ŷloc

n,↓)′(t) are tight in C[−M,M] and D[−M,M], respec-
tively. To address tightness of the invelope processes, note that bounded and increasing functions
are compact in D[−M,M] and that bounded continuous functions with uniformly bounded
derivatives are compact in C[−M,M]. These two facts allow us to address only stochastic
boundedness of (̂I

∗,loc
n,↓ )(i)(t), i = 0, . . . ,3, to obtain tightness. Thus, Proposition 5.5, along with

(5.15) and (5.16), says that (̂I
∗,loc
n,↓ )′′(t) and (̂I

∗,loc
n,↓ )′′′(t) are tight. It remains to argue the same

for (̂I
∗,loc
n,↓ )′(t) and Î

∗,loc
n,↓ (t). However, this will follow by Proposition 5.5, and (5.12), if we can

show that both Ân,↓ and Ân,↓t + B̂n,↓ are tight.
Let τn be the largest touchpoint smaller than x0. By (2.7), and after careful calculations, we

have

−S0(x0)

h0(x0)
Ân,↓ = −n3/5

{∫ x0

τn

ĥn(u) − h0(x0) − h′
0(x0)(u − x0)

ĥn(u)
S0(u)du

}

+ n3/5
{∫ x0

τn

h0(u) − h0(x0) − h′
0(x0)(u − x0)

ĥn(u)
S0(u)du

}

+ n3/5
∫ x0

τn

1

ĥn(u)
d{Fn − F0}(u) + n3/5

∫ x0

τn

Sn(u) − S0(u)du.

By Proposition 5.5, Lemma 5.3 and Theorem 3.1, the first two terms are tight in C[−M,M].
Arguments similar to those used in the proof of Lemma 5.1, along with Lemma 5.3, may be used
to handle the remaining terms. Since Ĥn,↓(τn) = ∫ τn

0 An,↓(v)dv by Lemma 2.2, it follows that
B̂n,↓ is tight in C[−M,M], which, in turn, implies that Ẑn is tight in the space E[−M,M].
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From the invelope to Theorem 1.2.

By (5.15) and (5.16), the limiting behavior of n2/5(̂hn(x0) − h0(x0)) and n1/5(̂h′
n(x0) − h′

0(x0))

is the same as that of the second and third derivatives of Î
∗,loc
n,↓ , which converge to the invelope

of limn Ŷ
loc
n,↓. Define k1, k2 by

lim
n

Ŷ
loc
n,↓(t) = √

C′(x0)

∫ t

0
W(s)ds + 1

24
h′′

0(x0)t
4 ≡ k1

∫ t

0
W(s)ds + k2t

4.

For any a, b > 0, bY (at)
d= a3/2b

∫ t

0 W(s)ds + a4bt4. Therefore, choose a, b so that a4b = k2

and a3/2b = k1. It follows that

Ŷ
loc
n,↓(t) ⇒ bY (at).

Applying this rescaling to all processes shows that

(̂I
∗,loc
n,↓ )′′(0) ⇒ ba2 I ′′(0) and (̂I

∗,loc
n,↓ )′′′(0) ⇒ ba3 I ′′′(0).

It is now straightforward to calculate the correct constants, c1 and c2, of Theorem 1.2.
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