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We correct a condition in a result of Johnson and Samworth (Bernoulli 11 (2005) 829–845) concerning
convergence to stable laws in Mallows distance. We also give an improved version of this result, setting it
in the more familiar context of a Lindeberg-like condition.
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Theorem 5.2 of [1] considers a fixed parameter α ∈ (0,2), an independent sequence of random
variables X1,X2, . . . with Sn = (X1 + · · · + Xn)/n1/α and a random variable Y with an α-stable
distribution. Theorem 5.2 claims that if there exist (independent) copies Y1, Y2, . . . of Y satisfying

1

n

n∑
i=1

E{|Xi − Yi |α1(|Xi − Yi | > b)} → 0 (1)

as b → ∞, then Sn (possibly shifted) converges to Y in Mallows distance dα . The proof given
for Theorem 5.2 requires simultaneous control of b and n, which is not provided by (1) as stated.
Although the result could be corrected by adding “supn” to the beginning of (1) and with other
small modifications, we instead provide a more natural Lindeberg condition. We also change
the centering, providing explicit expressions for the centering sequence for the case α ∈ (1,2).
This is, in fact, a coupling theorem. Indeed, for α ∈ [1,2), if the Mallows distance between the
distributions FX and FY of X and Y is finite, then the random variables X and Y are highly
dependent, in the sense that dα

α (X,Y ) = E|X − Y |α provided the joint distribution of (X,Y )

is FX ∧ FY .

Theorem 1. Fix 0 < α < 2. Let (X1, Y1), (X2, Y2), . . . be a sequence of independent pairs such
that Y1, Y2, . . . are copies of an α-stable random variable Y , and such that for all b > 0, we have

lim
n→∞

1

n

n∑
i=1

E
{|Xi − Yi |α1

(|Xi − Yi | > bn(2−α)/2α
)} = 0. (2)
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Then, writing Sn = (X1 + · · · + Xn)/n1/α , there exists a sequence of constants (cn) such
that limn→∞ dα(Sn − cn,Y ) = 0. Moreover, when α ∈ (1,2), we may take cn = n−1/α ×∑n

i=1 EXi − EY .

Proof. By Corollary 1.2.9 of [2],

1

n1/α

n∑
i=1

Yi
d=

⎧⎨
⎩

Y + μn1−1/α − μ, if α �= 1,

Y + 2

π
σβ logn, if α = 1.

Here, the constants μ ∈ R, σ ≥ 0 and β ∈ [−1,1] are, respectively, the shift, scale and skewness
parameters of the stable law of Y (see, e.g., [2], page 5), so for α ∈ (1,2), we may take μ = EY .
We first treat the case α ∈ (1,2). With cn defined as in the statement of the theorem,

Sn − cn − Y
d= n−1/α

n∑
i=1

(Ui − EUi + Vi − EVi),

where, writing δ = 2−α
2α

,

Ui = (Xi − Yi)1(|Xi − Yi | ≤ bnδ),

Vi = (Xi − Yi)1(|Xi − Yi | > bnδ).

Using Lyapunov’s inequality and the fact that |Ui | ≤ bnδ , we have

E

{∣∣∣∣∣
n∑

i=1

(Ui − EUi)

∣∣∣∣∣
α}

≤
[

E

{∣∣∣∣∣
n∑

i=1

(Ui − EUi)

∣∣∣∣∣
2}]α/2

=
(

n∑
i=1

VarUi

)α/2

(3)
≤ bαn(1+2δ)α/2 = bαn.

Similarly, a von Bahr–Esseen moment bound given as equation (12) in [1] yields

E

{∣∣∣∣∣
n∑

i=1

(Vi − EVi)

∣∣∣∣∣
α}

≤ 2
n∑

i=1

E(|Vi − EVi |α) ≤ 2α+1
n∑

i=1

E(|Vi |α). (4)

Thus, by (3) and (4), we find that for α ∈ (1,2),

dα
α (Sn − cn,Y ) ≤ E{|Sn − cn − Y |α}

≤ 2α−1

n
E

{∣∣∣∣∣
n∑

i=1

(Ui − EUi)

∣∣∣∣∣
α}

+ 2α−1

n
E

{∣∣∣∣∣
n∑

i=1

(Vi − EVi)

∣∣∣∣∣
α}

≤ 2α−1bα + 22α

n

n∑
i=1

E{|Xi − Yi |α1(|Xi − Yi | > bnδ)}.
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We deduce from condition (2) that lim supn→∞ dα
α (Sn − cn,Y ) ≤ 2α−1bα . However, b > 0 was

arbitrary, so the result follows.
When α ∈ (0,1] and condition (2) holds, we can find a sequence (bn) converging to zero with

lim
n→∞

1

n

n∑
i=1

E
{|Xi − Yi |α1

(|Xi − Yi | > bnn
(2−α)/2α

)} = 0.

In this case, we should define

cn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n−1/α

n∑
i=1

E{(Xi − Yi)1(|Xi − Yi | ≤ bnn
δ)} + μn1−1/α − μ, for 0 < α < 1,

n−1/α

n∑
i=1

E{(Xi − Yi)1(|Xi − Yi | ≤ bnn
δ)} + 2

π
σβ logn, for α = 1.

Then, with the same definitions of Ui and Vi , except with b replaced by bn, we have

Sn − cn − Y
d= n−1/α

n∑
i=1

(Ui − EUi + Vi).

The argument now mimics the case α ∈ (1,2). Using analogues of the bounds (3) and (4), we
find

dα
α (Sn − cn,Y ) ≤ bα

n + 1

n

n∑
i=1

E
{|Xi − Yi |α1

(|Xi − Yi | > bnn
(2−α)/2α

)} → 0. �
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