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In this paper, we study the existence and uniqueness of a class of stochastic differential equations driven
by fractional Brownian motions with arbitrary Hurst parameter H ∈ (0,1). In particular, the stochastic
integrals appearing in the equations are defined in the Skorokhod sense on fractional Wiener spaces, and
the coefficients are allowed to be random and even anticipating. The main technique used in this work is an
adaptation of the anticipating Girsanov transformation of Buckdahn [Mem. Amer. Math. Soc. 111 (1994)]
for the Brownian motion case. By extending a fundamental theorem of Kusuoka [J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 29 (1982) 567–597] using fractional calculus, we are able to prove that the anticipating
Girsanov transformation holds for the fractional Brownian motion case as well. We then use this result to
prove the well-posedness of the SDE.
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Skorokhod integrals

1. Introduction

In this paper, we study the well-posedness of a class of stochastic differential equations driven by
fractional Brownian motions (fBM for short) with arbitrary Hurst parameter H ∈ (0,1) and with
random coefficients that are possibly anticipating. To be more precise, we consider the following
SDE:

Xt = X0 +
∫ t

0
σ(s,Xs)dBH

s +
∫ t

0
b(s,Xs)ds, (1.1)

where BH is a 1-dimensional fBM with parameter H and b, σ are measurable random fields
with appropriate dimensions. At this point, we do not assume that b and σ are progressively
measurable.

SDEs of this kind have been studied by many authors, mostly in the case where coefficients
are deterministic, or linear (that is, b(t, x) = b(t)x and σ(t, x) = σ(t)x, where b(·) and σ(·) are
deterministic functions). The main difficulty is due to the fact that an fBM is neither a Markov
process nor a semimartingale, except for H = 1

2 (in which case BH becomes a standard Brownian
motion), thus the usual stochastic calculus does not apply. As a consequence, the study of the
SDE depends largely on the definitions of the stochastic integrals involved and the results vary.

1350-7265 © 2009 ISI/BS

http://isi.cbs.nl/bernoulli/
http://dx.doi.org/10.3150/08-BEJ169
mailto:yjien@math.purdue.edu
mailto:jinma@usc.edu


SDE driven by fBM 847

We note that if σ(t, x) = σ is a constant, then the SDE is of the so-called additive noise type,
and the SDE involves only the Wiener integrals. In this case the path regularity of the solution
does not affect the solvability directly, and the SDE can be treated as an ODE with random
input. We refer to, for example, [13,15,18] for such case. The case where σ is not a constant,
however, is much more complicated, since the path regularity of the fBM varies with the Hurst
parameter H and the requirement for the path regularity of the solution varies accordingly. In
particular, if H > 1

2 , then the paths of BH are essentially β-Hölder continuous for all β < H ,
hence a pathwise stochastic integral approach is quite effective (see, for example, [5,12,16,17],
to mention just a few).

In the general case, especially when H < 1
2 , the path of fBM becomes rather “rough” and

the pathwise approach for stochastic integrals and the SDE becomes more difficult, therefore
other definitions of stochastic integrals have been introduced. Most notable is the divergence-type
integration (or Skorohod integral), which is based on the idea of Malliavin calculus for Brownian
motion cases. We note that these two definitions are essentially equivalent and exchangeable (see,
for example, [1,4,6,7] and references cited therein). However, similar to the Brownian case, one
of the main difficulties for the Skorokhod-type SDEs is that the traditional Picard iteration is no
longer effective and consequently the problem becomes rather subtle when the coefficients are
nonlinear and/or random. Several extended Skorokhod integrals have been defined to circumvent
such difficulties, with which some special forms of SDEs have been studied (see, for example,
[10,14,19]). However, in most of the existing literature, the diffusion coefficient σ has to be
very carefully specified so that the subtle restrictions on the stochastic integrals are satisfied.
For example, it is usually assumed that σ = σ(t, x) is deterministic or, even more explicitly, a
linear function. In fact, to the best of our knowledge, there has not been any study of the case
where both b and σ are allowed to be random and anticipating, and, at the same time, the Hurst
parameter is allowed to be arbitrary.

More specifically, let us consider the following form of the SDE (1.1):

Xt = X0 +
∫ t

0
σsXs dBH

s +
∫ t

0
b(s,Xs)ds, t ∈ [0,1]. (1.2)

In the above, the stochastic integral is defined in the Skorokhod sense, X0 is any Lp-random
variable and the coefficients σ and b can be random. Our main idea is to establish a generalized
version of the anticipating Girsanov theorem in the fBM setting and then to follow a scheme
developed by Buckdahn [3] to attack the well-posedness of (1.2).

A major component in this method is the generalization of a fundamental theorem by
Kusuoka [9] on anticipating Girsanov transformations. To be more precise, we study the fol-
lowing transformations {T H

t , t ∈ [0,1]} on fractional Wiener space W :

(T H
t ω)· = ω· +

∫ t

0
KH (·, s)σs(T

H
s ω)ds, ω ∈ W, t ∈ [0,1], (1.3)

where KH is the so-called reproducing kernel of the fBM BH . We prove that, with the right
choice of underlying canonical space, the probability measure induced by such a transforma-
tion is equivalent to the original one. Furthermore, similar to the Brownian case, one can also
explicitly identify the Radon–Nikodym derivative of the two equivalent probability measures.
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Consequently, one can solve the original SDE by solving a much simpler one on a new prob-
ability space. We should note that it is the fundamental nature of this method that restricts the
diffusion coefficient to being linear. However, such a restriction notwithstanding, the novelty
of our result lies in the fact that the diffusion coefficient can now be random and anticipating,
and the drift coefficient can even be nonlinear, which is an improvement, even compared to the
original result of Buckdahn [3] in the Brownian case.

The rest of the paper is organized as follows. In Section 2, we briefly revisit some basic facts re-
garding fractional Brownian motion, fractional Wiener space and the Skorokhod calculus with re-
spect to fBM. In Section 3, we study absolutely continuous transformations on fractional Wiener
space and present some of their properties, and in Section 4, we revisit the Girsanov theorem of
Kusuoka [9] and derive a variation of the theorem, as well as some related results. In Section 5,
we present the main result on anticipating Girsanov transformation (1.3) for fBM and, finally, in
Section 6, we apply these results to stochastic differential equation (1.2) and prove the existence
and uniqueness of the solution.

2. Preliminaries

Throughout this paper, we assume that (�, F ,P ) is a complete probability space and that for any
H ∈ (0,1), there exists an fBM {BH

t ; t ≥ 0}, that is, a centered Gaussian process with covariance
function:

RH (s, t)
�= E(BH

s BH
t ) = 1

2 {|s|2H + |t |2H − |s − t |2H }, s, t ≥ 0. (2.1)

In this paper, we assume that all processes are defined on a finite duration [0, T ] and, with-
out loss of generality, we assume that T = 1. We shall define I = [0,1] for simplicity. Let
W

�= C0(I ;R) be the Banach space of continuous functions defined on I , null at t = 0 and
equipped with the sup-norm. Let F �= B(W) be the topological σ -field on W and μH the unique
probability measure on W under which the canonical process BH

t (ω)
�= ωt , t ∈ I , is an fBM.

(W, F ,μH ) then form a canonical space.
It is well known that an fBM can be represented as a Volterra-type integral of a Brownian

motion. To be more precise, if BH is an fBM with H ∈ (0,1) on I , then it holds that

BH
t =

∫ t

0
KH (t, s)dB

1/2
s , t ∈ I, (2.2)

where KH (t, s) is a non-negative function defined on I 2 such that KH (t, s) = 0 when s ≥
t , and it can be written explicitly in terms of Gamma and Beta functions, as well as the
so-called Gaussian hypergeometric function (see [8] for details). It is clear that RH (s, t) =∫ 1

0 KH (t, r)KH (s, r)dr for s, t ∈ I .
Next, we define an operator KH on L2(I ) by

KH f (t)
�=

∫ 1

0
KH (t, s)f (s)ds, t ∈ I, f ∈ L2(I ), (2.3)
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and denote the adjoint operator of KH by KH∗. One can show that KH∗δ{t}(s) = KH (t, s),
s ∈ I , where δ{t} is the Dirac δ-function at t ∈ I .

Let W ∗ be the topological dual space of W and HH the associated Cameron–Martin space of
(W, B(W),μH ), that is, the unique Hilbert space which is identified with its dual and is densely
and continuously embedded in W such that, for any η ∈ W ∗,∫

W

ei〈η,ω〉 dμH (ω) = e
−1/2|η̄|2HH .

Here, 〈·, ·〉 is the dual product 〈·, ·〉W ∗,W and η̄ ∈ HH is the injective image of η on W ∗. Let
us denote by (·, ·)2 and | · |2 the inner product and norm of L2(I ), respectively. The following
relations among the spaces HH , L2(I ) and W ∗ are useful (see [6], Theorem 3.3):

(i) HH = KH (L2(I )). More precisely, there exists f ∈ L2(I ) for any f̃ ∈ HH such that

f̃ (t) = KH f (t) =
∫ 1

0
KH (t, s)f (s)ds. (2.4)

(ii) The scalar product on HH is given by

(f̃ , g̃)HH
= (KH f,KH g)HH

�= (f, g)2. (2.5)

(iii) The injection RH from W ∗ into HH can be decomposed as

RH η = KH (KH∗η), η ∈ W ∗. (2.6)

Since W ∗ is continuously and densely embedded into HH , we define ω(h̃)
�= limn〈ln,ω〉, where

{ln}n ⊂ W ∗ converges to h̃ in HH . By a slight abuse of notation, we also denote

ω(h)
�= ω(KH h), h ∈ L2(I ), (2.7)

when the context is clear. In what follows, we often denote HH simply by H for a fixed H .
The following facts on fractional stochastic calculus can be found in [6]. We list them only

for ready reference. To begin with, let X be a separable Hilbert space and S(X ) the class of all
smooth cylindrical functions G :W 	→ X of the form

G(ω) = g(〈l1,ω〉, . . . , 〈ln,ω〉)x, ω ∈ W, (2.8)

where n ∈ N, g ∈ C∞
b (Rn), lk ∈ W ∗ for k = 1, . . . , n and x ∈ X . We denote S �= S(R). Clearly,

for any G ∈ S , we can find n ∈ N and g ∈ C∞
b (Rn) such that

G(ω) = g(ωt1, . . . ,ωtn), ω ∈ W,0 < t1 < · · · < tn ≤ 1. (2.9)

We now define two derivatives of G ∈ S(X ) by

DHG(ω)
�=

n∑
i=1

∂ig(〈l1,ω〉, . . . , 〈ln,ω〉)RH (li) ⊗ x, ω ∈ W ;
(2.10)

DG(ω)
�=

n∑
i=1

∂ig(〈l1,ω〉, . . . , 〈ln,ω〉)KH∗(li) ⊗ x, ω ∈ W.
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Then, clearly, DHG ∈ H ⊗ X , but DG ∈ L2(I ) ⊗ X . Consequently, the directional derivatives
of G ∈ S(X ) on H and L2(I ) are defined by

DH
h̃

G
�= (DHG, h̃)H, h̃ ∈ H; DhG

�= (DG,h)2, h ∈ L2(I ).

Furthermore, from (2.6) and (2.5), we have, for ω ∈ W ,

DHG(ω) = (KH D)G(ω) and DH
h̃

G(ω) = DhG(ω), if h̃ = KH h. (2.11)

We now introduce two norms in S(X ) (denoting ‖ · ‖2 to be the norm of L2(W)),

‖G‖H
1,2

�= (‖|G|X ‖2
2 + ‖|DHG|H⊗X ‖2

2)
1/2 and ‖G‖1,2

�= (‖|G|X ‖2
2 + ‖|DG|2⊗X ‖2

2)
1/2,

and denote the closure of S(X ) with respect to ‖·‖H
1,2 (resp., ‖·‖1,2) by D

1,2
H (X ) (resp., D

1,2(X )).

The (Sobolev) spaces D
1,2
H (X ) and D

1,2(X ) are then the domains of DH and D, respectively. In

fact, one can check that D
1,2
H (X ) = D

1,2(X ) from (2.11) and (2.5). Finally, we define D
1,∞(X )

to be the space of all G ∈ D
1,2(X ) such that

‖G‖1,∞
�= ‖|G|X ‖∞ ∨ ‖|DG|2⊗X ‖∞ < ∞.

The following facts about the derivative D are worth noting:

(i) Chain rule. For any random vector G = (G1, . . . ,Gn), n ∈ N, where {Gi}ni=1 ⊂ D
1,2, and

g ∈ C1
b(Rn), one has g(G) ∈ D

1,2 and

Dt [g(G)] =
n∑

i=1

∂ig(G)DtGi, t ∈ I. (2.12)

(ii) ([2], Proposition 2.5) If G ∈ D
1,∞ ⊂ D

1,2, then for any ε > 0, there exists a sequence
{Gn}n ⊂ S ⊂ D

1,∞ which approximates G in D
1,2 and which satisfies, for any n,

‖Gn‖∞ ≤ ‖G‖∞ and ‖|DGn|2‖∞ ≤ ε + ‖|DG|2‖∞. (2.13)

As in the Brownian case, the Skorokhod integral with respect to an fBM is defined as the
adjoint operator of the derivative operator. Namely, the integral δH(ũ) (resp., δ(u)) is defined as
the element in L2(W) such that for any G ∈ S ,

EμH
[GδH(ũ)] = EμH

[(DHG, ũ)H], ũ ∈ S(H),(
resp., EμH

[Gδ(u)] = EμH
[(DG,u)2], u ∈ S(L2(I ))

)
.

From (2.11), δH(ũ) = δ(u) if ũ = KH u, hence, in what follows, we often consider only δ. As
usual, we denote the domain of δ by Dom(δ). Then Dom(δ) ⊂ L2(W ;L2(I )) and a process
u ∈ Dom(δ) if, for any G ∈ S , it holds that |EμH

[(DG,u)2]| ≤ c‖G‖2, where c is a constant
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depending on H and u. It can be shown that D
1,2(L2(I )) ⊂ Dom(δ). We note that the spaces

L
1,2 �= L2(I ;D

1,2) and L
1,∞ �= L2(I ;D

1,∞) are useful. They are isomorphic to D
1,2(L2(I ))

and D
1,∞(L2(I )), respectively. Thus, L

1,2 ⊂ Dom(δ) and one can show that

‖δ(u)‖2
2 ≤ ‖u‖2

1,2 =
∫ 1

0
‖ut‖2

1,2 dt, u ∈ L
1,2. (2.14)

We end this section by introducing an important dense subspace of L
1,2: the space of all

smooth real-valued step processes, denoted by L
S , whose generic element is of the form

ut (ω) = gt (ωt1, . . . ,ωtn), 0 < t1 < · · · < tn ≤ 1, (t,ω) ∈ I × W,

where g : I × R
n 	→ R is a bounded measurable function such that gt (·) ∈ C∞

b (Rn) for each
t ∈ I . Similar to the space D

1,2, the following counterpart of (2.13) holds (see, for example, [2],
Proposition 2.6): For each u ∈ L

1,∞ ⊂ L
1,2 and any ε > 0, there exists a sequence {un}n ⊂ L

S

which approximates u in L
1,2 and is such that, for any n,∫ 1

0
‖un

s ‖2∞ ds ≤
∫ 1

0
‖us‖2∞ ds and

∫ 1

0
‖|Dun

s |2‖2∞ ds ≤ ε +
∫ 1

0
‖|Dus |2‖2∞ ds. (2.15)

3. Absolutely continuous transformations on Wiener spaces

In light of the anticipating Girsanov transformation in the Brownian case, we now introduce
the notion of absolutely continuous transformations on fractional Wiener spaces, this being an
important component of the fractional Girsanov transformation. The difference here is that in
a fractional Wiener space, such a transformation naturally involves the reproducing kernel. We
shall verify that all the desired properties in [3] still hold.

Consider the fractional Wiener space (W, H,μ) = (C0(I ;R), HH ,μH ) with a fixed Hurst
parameter H ∈ (0,1). We say that a transformation T :W 	→ W is absolutely continuous if the
image measure μ ◦ T −1 is absolutely continuous with respect to μ. The transformation T is
called invertible if there exists a transformation A such that T (Aω) = A(T ω) = ω for all ω ∈ W .
Central to this paper is the transformation

T ω = T H ω
�= ω + (KH u)(ω) = ω· +

∫ ·

0
KH (·, r)ur (ω)dr, (3.1)

where u ∈ L2(W ;L2(I )) is often called the shift process of transformation T . We first state two
basic properties of the transformation T .

Proposition 3.1 (Lipschitz condition). Let T 1 and T 2 be transformations with shift pro-
cesses u1 and u2, respectively. Assuming that either G ∈ S , or G ∈ D

1,∞ and T 1, T 2 are ab-
solutely continuous, it holds that

|G(T 1ω) − G(T 2ω)| ≤ ‖|DG|2‖∞
(∫ 1

0
|u1

s (ω) − u2
s (ω)|2 ds

)1/2

, μ-a.e. (3.2)
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Proof. We first note that if G ∈ S , then the result (3.2) can be obtained directly by using the
definition of derivative D and (2.9).

We thus consider the case where G ∈ D
1,∞ and T i , i = 1,2, are absolutely continuous with

Radon–Nikodym derivatives (or densities) Li, i = 1,2, respectively. By virtue of (2.13), there
exists a sequence {Gn}n ⊂ S such that {Gn}n converges to G, μ-a.e. Thus,

Eμ{|Gn(T i) − G(T i)|} = Eμ{|Gn − G|Li} → 0 as n → ∞, i = 1,2.

By choosing a subsequence if necessary, we assume that the sequence {Gn(T i)}n converges to
G(T i) μ-a.e., i = 1,2. On the other hand, since Gn ∈ S for every n, using (3.2) and (2.13), we
see that for any ε > 0 and μ-a.e. ω ∈ W , it holds that

|Gn(T 1ω) − Gn(T 2ω)| ≤ (ε + ‖|DG|2‖∞)

(∫ 1

0
|u1

s (ω) − u2
s (ω)|2 ds

)1/2

.

It follows that for any ε > 0 and μ-a.e. ω ∈ W , one can choose n large enough such that

|G(T 1ω) − G(T 2ω)|
≤ |G(T 1ω) − Gn(T 1ω)| + |Gn(T 1ω) − Gn(T 2ω)| + |Gn(T 2ω) − G(T 2ω)|

≤ (ε + ‖|DG|2‖∞)

(∫ 1

0
|u1

s (ω) − u2
s (ω)|2 ds

)1/2

+ ε, μ-a.e.

The result follows by letting ε → 0 in the above. �

Proposition 3.2 (Chain rule). Let G ∈ D
1,∞ and T be a transformation with shift process u ∈

L
1,∞. Assume that either G ∈ S or T is absolutely continuous. Then G(T ) ∈ D

1,∞ and, for any
s ∈ I ,

Ds[G(T ω)] = (DsG)(T ω) +
∫ 1

0
(DrG)(T ω)(Dsur)(ω)dr, μ-a.e. (3.3)

Proof. We begin by assuming that G ∈ S is as in (2.9). Then

G(T ω) = g((T ω)t1, . . . , (T ω)tn) = g(G1(ω), . . . ,Gn(ω)), ω ∈ W,

where Gi(ω) = (T ω)ti , i = 1, . . . , n. By (3.1), (2.10) and the property of KH∗, we have

DsGi(ω) = Ds[(T ω)ti ] = Ds

[〈
δ{ti },ω

〉 + 〈
δ{ti }, (KH u)(ω)

〉]
= KH∗δ{ti }(s) + Ds

[(
KH∗δ{ti }, u(ω)

)
2

]
= KH (ti, s) +

∫ ti

0
KH (ti, r)Dsur(ω)dr, s ∈ I,ω ∈ W.
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Thus, Gi ∈ D
1,∞, i = 1, . . . , n, since u ∈ L

1,∞. Now, applying the chain rule (2.12), we have

Ds[G(T ω)] = Ds[g(G1(ω), . . . ,Gn(ω))]

=
n∑

i=1

∂ig(G1(ω), . . . ,Gn(ω))

(
KH (ti, s) +

∫ ti

0
KH (ti, r)Dsur(ω)dr

)

= (DsG)(T ω) +
∫ 1

0
(DrG)(T ω)Dsur(ω)dr, s ∈ I,ω ∈ W.

Hence (3.3) holds when G ∈ S .
To show that G(T ) ∈ D

1,∞, we integrate the squares of both sides of equation (3.3) and then
take the L∞(W)-norm. Letting Cu = ∫ 1

0 ‖ur‖2
1,∞ dr = ‖u‖2

1,∞, we have

∥∥∥∥
∫ 1

0
|Ds[G(T )]|2 ds

∥∥∥∥∞

≤ 2

∥∥∥∥
∫ 1

0
|(DsG)(T )|2 ds

∥∥∥∥∞
(3.4)

+ 2

∥∥∥∥
∫ 1

0
|(DrG)(T )|2 dr ·

∫ 1

0

∫ 1

0
|Dsur |2 dr ds

∥∥∥∥∞

≤ 2(1 + Cu)

∥∥∥∥
∫ 1

0
|(DsG)(T )|2 ds

∥∥∥∥∞
= 2(1 + Cu)

∥∥∥∥
∫ 1

0
|DsG|2 ds

∥∥∥∥∞
< ∞.

Note also that since ‖G(T )‖∞ = ‖G‖∞ < ∞, it follows that G(T ) ∈ D
1,∞.

Now consider the general case G ∈ D
1,∞, but assume that T is absolutely continuous with

density L. We choose a sequence {Gn}n ⊂ S satisfying (2.13) with ε = 1. Since Gn(T ) ∈ D
1,∞

for any n by the previous part, using a similar argument as for (3.4) and (2.13) with ε = 1, we
obtain that for any n,

∥∥∥∥
∫ 1

0
|Ds[Gn(T )]|2 ds

∥∥∥∥∞
≤ 2(1 + Cu)

(
1 +

∥∥∥∥
∫ 1

0
|DsG|2 ds

∥∥∥∥∞

)
.

Hence {Gn(T )}n is bounded in D
1,∞. Next, since Gm − Gn ∈ S for any m,n ∈ N, replacing G

by Gm − Gn and taking expectation instead of L∞(W)-norm in (3.4), it follows that

E

{∫ 1

0
|Ds[Gm(T ) − Gn(T )]|2 ds

}
≤ 2(1 + Cu)E

{∫ 1

0
|Ds(G

m − Gn)(T )|2 ds

}
.

Therefore, recalling that {Gn}n converges in D
1,2 and letting m,n → ∞, we see that

‖Gm(T ) − Gn(T )‖2
1,2 ≤ E|L(Gm − Gn)|2 + 2(1 + Cu)E

{
L

∫ 1

0
|Ds(G

m − Gn)|2 ds

}
→ 0.
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In other words, the sequence {Gn(T )}n converges in D
1,2 and is bounded in D

1,∞, which implies
that {Gn(T )}n converges to G(T ) ∈ D

1,∞. Consequently, by first setting Gn ∈ S in (3.3) and then
letting n → ∞, we see that (3.3) holds for G ∈ D

1,∞, proving the proposition. �

To end this section, we present the following proposition concerning the limiting behavior of
the random transformation T .

Proposition 3.3. Let {T n}n be a sequence of absolutely continuous transformations with respec-
tive shift processes {un}n ⊂ L2(W ;L2(I )) and densities {Ln}n. Assume that

(i) {Ln}n are uniformly integrable;
(ii) {un}n converges to u in L2(W ;L2(I )).

The limiting transformation T defined by T ω
�= ω + KH u(ω) is then also absolutely continuous

and its density L is the limit of {Ln}n in L1(W). Furthermore, if {Gn}n is a sequence of uni-
formly bounded random variables which converges to G ∈ L2(W), then the sequence {Gn(T n)}n
converges to G(T ) in L2(W) as well.

Proof. Let {T n} and T be as defined. Applying the Cauchy–Schwarz inequality on the sup-norm
of W and using assumption (ii), we have, for μ-a.e. ω,

|T nω − T ω|W �= sup
s∈I

∣∣∣∣
∫ s

0
KH (s, r)

(
un

r (ω) − ur(ω)
)

dr

∣∣∣∣
≤ sup

s∈I

[(∫ s

0
KH (s, r)2 dr

)1/2]
·
(∫ s

0
|un

r (ω) − ur(ω)|2 dr

)1/2

→ 0, n → ∞.

That is, {T n}n converges to T . Hence the sequence of measures {μ ◦ (T n)−1}n converges to
μ ◦ T −1, T is absolutely continuous and L is the limit of {Ln}n under the assumption (i).

To see the second half of the proposition, note that for any n,

E|Gn(T n) − G(T )|2 ≤ 2E|Gn(T n) − Gn(T )|2 + 2E|Gn(T ) − G(T )|2
≤ 2E|Gn(T n − T )|2 + 2E|(Gn − G)L|2.

Applying the result of the first part and using the fact that {Gn}n is uniformly bounded, the result
follows immediately. �

4. Kusuoka’s theorem revisited

In this section, we turn our attention to the Girsanov transformation on fractional Wiener spaces.
In light of the Brownian case, an important tool for studying such a transformation is a general
theorem by Kusuoka [9]. We shall first revisit this theorem and establish some basic characteri-
zations of the operators involved, in the context of fractional Wiener spaces.
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First, let X , X ′ be two separable Hilbert spaces and let L2(X , X ′) denote the space of all
Hilbert–Schmidt operators from X into X ′.

Definition 4.1. Let F be an X -valued function defined on W . F is called an H-C1 map if for
μ-a.e. ω ∈ W , the map h 	→ F(ω + h) is a continuous Fréchet differentiable function on H and
its Fréchet derivative DHF(ω + ·) : H 	→ L2(H, X ) is continuous.

It is known that any H-C1 map belongs to Dom(δH) (see the corollary to Theorem 5.2 in [9]).
For a generic space V , let IV be the identity map on space V and define the Carleman–Fredholm
determinant of IX + B for B ∈ L2(X , X ) by

dc(IX + B) =
∞∏

j=1

(1 + λj )e
−λj , (4.1)

where the λj ’s are the non-zero eigenvalues of B , counting multiplicities. Note that dc(·) : L2(X ,

X ) 	→ R is continuous. Moreover, if B is a nuclear operator, then

dc(IX + B) = det(IX + B) exp(− traceB). (4.2)

The following result of Kusuoka [9], Theorem 6.4, is crucial.

Theorem 4.2 (Kusuoka). Let K be an H-C1 map from W to H. Assume that for μ-a.e. ω ∈ W ,
the mapping IW + K :W 	→ W is bijective and IH + DHK(ω) : H 	→ H is invertible. Then
(IW + K)−1μ(dω) = |d(ω;K)|μ(dω), for μ-a.e. ω ∈ W , where

d(ω;K) = dc

(
IH + DHK(ω)

)
exp

{−δHK(ω) − 1
2 |K(ω)|2H

}
. (4.3)

That is, Eμ[G(IW + K)|d(·;K)|] = Eμ[G] for any random variable G on W .

From the theorem, we see that the transformation involves the Carleman–Fredholm determi-
nant of L2(H, H), as well as the H-norm of the map. A more convenient version, which we now
present, recasts the theorem in terms of L2(I ) instead of H.

Theorem 4.3. Let u :W 	→ L2(I ) be a measurable mapping and T a transformation defined by

T ω = ω + (KH u)(ω) = ω· +
∫ 1

0
KH (·, r)ur (ω)dr, ω ∈ W.

Assume that the following conditions hold for μ-a.e. ω ∈ W :

(i) T is bijective.
(ii) There exists Du(ω) ∈ L2(I 2) such that for any h ∈ L2(I ),

(1) h 	→ Du(ω + KH h) is continuous from L2(I ) into L2(I 2);
(2) |u·(ω + KH h) − u·(ω) − (D·u(ω),h)2|2 = o(|h|2) as |h|2 → 0;
(3) the mapping IL2(I ) + Du(ω) :h 	→ h + (Du·(ω),h(·))2 is invertible.
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The measures μ and μ ◦ T −1 are then equivalent and A
�= T −1 has the density

d[μ ◦ A−1]
dμ

(ω) = ∣∣dc

(
IL2(I ) + Du(ω)

)∣∣
(4.4)

× exp

{
−δu(ω) − 1

2
|u(ω)|22

}
, μ-a.e.,ω ∈ W.

Proof. We shall check that Ku
�= KH u :W 	→ H satisfies the hypotheses in Theorem 4.2. To see

this, for any h̃ ∈ H, let h ∈ L2(I ) be such that h̃ = KH h and |h̃|H = |KH h|H = |h|2, by virtue
of (2.4) and (2.5). Hence the mapping h̃ = KH h 	→ DHKu(ω+ h̃) = (KH D)(KH u)(ω+KH h)

is continuous under condition (ii)(1). Moreover, by the definition of the H-norm, one has

|Ku(ω + h̃) − Ku(ω) − DHKu(ω)(h̃)|H = |u(ω + KH h) − u(ω) − (D·u(ω),h(·))2|2.

Therefore, Ku = KH u is an H-C1 map, thanks to assumption (ii)(2). Next, note that T =
IW + Ku is bijective by assumption (i). Finally, observe that if h′ = (IL2(I ) + Du(ω))(h) =
h + (Du(ω),h)2 for a fixed ω, then

(
IH + DHKu(ω)

)
(h̃)

�= h̃ + (DHKu(ω),KH h)H = KH h + (D(KH u)(ω),h)2 = KH h′.

Thus, assumption (ii)(3) implies that IH + DHKu(ω) is invertible on H.
We can now apply Theorem 4.2 to conclude that the measures μ and μ ◦ T −1 are equivalent.

In order to verify the density (4.4), we first note that the operators DHKu(ω) and Du(ω) have
the same eigenvalues, so dc(IL2(I ) + Du(ω)) = dc(IH + DHKu(ω)) by definition (4.1) of the
Carleman–Fredholm determinant. It therefore follows from (4.3) that

|d(ω;Ku)| =
∣∣dc

(
IH + DHKu(ω)

)∣∣ exp
{−δH(KH u)(ω) − 1

2 |KH u(ω)|2H
}
,

proving (4.4), and hence the theorem. �

Now, for a given H > 0 and σ ∈ L
1,∞, we consider the following family of transformations

{T H
t , t ∈ I } on W :

(T H
t ω)s

�= ωs + (
KH

(
1[0,t](·)σ·(T H· ω)

))
s

(4.5)

= ωs +
∫ t∧s

0
KH (s, r)σr (T

H
r ω)dr, s ∈ I.

In what follows, for notational simplicity, we often drop the index H from T H and AH , if there
is no danger of confusion. We note that the family {Tt } is defined via differential equation (4.5)
and therefore the following well-posedness result is important.
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Proposition 4.4. Assume σ ∈ L
S . Then (4.5) defines a unique family of transformations {Tt }t∈I .

Moreover, Tt is bijective for each t ∈ I .

Proof. We assume that σ ∈ L
S takes the form σt (ω) = ft (ωt1, . . . ,ωtn), where 0 = t0 < t1 <

· · · < tn ≤ 1 is any partition of [0,1] and f : I × R
n 	→ R is bounded and measurable such that

ft ∈ C∞
b (Rn) for each t ∈ I . There then exists Cσ > 0 such that for all t ∈ I ,

|σt (ω)| ≤ Cσ and |σt (ω) − σt (ω
′)| ≤ Cσ |ω − ω′|W, ω,ω′ ∈ W. (4.6)

Consider now the following differential equation of Volterra type:

ξ t
s (ω) = ωs +

∫ t∧s

0
KH (s, r)σr (ξ

r· (ω))dr, s, t ∈ I. (4.7)

We show that this equation has a unique solution and that the mapping t 	→ ξ t (ω) is continuous
in W for all ω ∈ W . To this end, let ω ∈ W be given and define the Picard iteration as follows.
For each t ∈ I , we define ξ

t,0
s (ω) = ωs for s ∈ I , and for n ≥ 1, we define

ξ t,n
s (ω)

�= ωs +
∫ t∧s

0
KH (s, r)σr (ξ

r,n−1(ω))dr, s, t ∈ I. (4.8)

It is obvious that for fixed t ∈ I , ξ t,n(ω) ∈ W for all n. Moreover, for t < t ′, one has

|ξ t ′,n(ω) − ξ t,n(ω)|W ≤ Cσ sup
s∈I

∣∣∣∣
∫ t ′∧s

t∧s

KH (s, r)dr

∣∣∣∣,
thanks to (4.6). Consequently, the mapping t 	→ ξ t,n(ω) is continuous in W . This, together with
the Lipschitz condition on σ in (4.6), implies that the mapping t 	→ σt (ξ

t,n−1(ω)) is also con-
tinuous and hence the iteration in (4.8) is well defined. Furthermore, applying (4.6) and the
Cauchy–Schwarz inequality, one can prove by induction that

|ξ t,n(ω) − ξ t,n−1(ω)|W ≤ Cn
σ tn/2

√
n! ≤ Cn

σ√
n! , n ∈ N.

The existence and uniqueness of the family of pathwise W -valued solutions {Ttω, t ∈ I } �=
{ξ t (ω), t ∈ I } of (4.5) for ω ∈ W then follow from some standard argument for ordinary dif-
ferential equations.

To prove the bijectiveness of T , we first note that an argument similar to that above also shows
the well-posedness of the family {Av,t ,0 ≤ v ≤ t} defined by

(Av,tω)s = ωs −
∫ t∧s

v∧s

KH (s, r)σr (Ar,tω)dr

(4.9)

= ωs −
∫ t∧s

0
KH (s, r)σr (Ar,tω)dr +

∫ v∧s

0
KH (s, r)σr (Ar,tω)dr, ω ∈ W.
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On the other hand, by (4.5), we have, for 0 ≤ v ≤ t and ω ∈ W ,

(Tv(A0,tω))s = (A0,tω)s +
∫ v∧s

0
KH (s, r)σr (TrA0,tω)dr (4.10)

= ωs −
∫ t∧s

0
KH (s, r)σr (Ar,tω)dr +

∫ v∧s

0
KH (s, r)σr (TrA0,tω)dr.

Comparing equations (4.9) and (4.10), we see that Av,t = Tv(A0,t ), 0 ≤ v ≤ t ≤ 1, thanks to the
uniqueness of T and A. Similarly, it can be shown that Av,t (Tt ) = Tv , 0 ≤ v ≤ t ≤ 1. We now

define At
�= A0,t , t ∈ I . Then Tt (Atω) = Tt (A0,tω) = ω and At(Ttω) = A0,t (Ttω) = ω for any

ω ∈ W . To wit, Tt is bijective for any t ∈ I and At is the corresponding inverse transformation. �

It is worth noting that if σ ∈ L
S , then the families {Tt }t∈I , {Av,t }0≤v≤t≤1 and {At }t∈I satisfy

the following relations:

TvAt = TvA0,t = Av,t and Av,tTt = Tv, 0 ≤ v ≤ t ≤ 1. (4.11)

We now show that T and A satisfy the rest of the conditions of Theorem 4.3.

Proposition 4.5. Assume that σ ∈ L
S . The families {Tt } and {At }, defined by (4.5) and (4.9),

respectively, then satisfy condition (ii) of Theorem 4.3.

Proof. We first rewrite (4.9) as

(Av,tω)s = ωs − (
KH

(
1[v,t](·)σ·(A·,tω)

))
s
, ω ∈ W,0 ≤ v ≤ t ≤ 1, s ∈ I. (4.12)

We show that, for fixed 0 ≤ v ≤ t ≤ 1, the mappings u1(ω)
�= 1[0,t]σ(T ω) and u2(ω)

�=
1[v,t](·)σ·(A·,tω), satisfy the respective conditions for ω ∈ W . We shall prove this only for u1

(hence T ) since the argument is similar for u2 (or A).
Assume that σ ∈ L

S takes the form σt (ω) = ft (ωt1, . . . ,ωtn), 0 = t0 < t1 < · · · < tn ≤ 1,
as in the proof of Proposition 4.4, with ft ∈ C∞

b (Rn) for each t ∈ I . We choose a complete
orthonormal basis {ei}i∈N in L2(I ) such that for i = 1, . . . , n,

ei(s) = (ti − ti−1)
−H [KH (ti, s) − KH (ti−1, s)].

Next, we define a function g on I × R
n such that for each i = 1, . . . , n,

gt (. . . , xi, . . .) = ft

(
. . . ,

i∑
k=1

(tk − tk−1)
H xk, . . .

)
, t ∈ I. (4.13)

It is obvious that gt ∈ C∞
b (Rn) for any t ∈ I and ∂ig is bounded for any i. Using the nota-
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tion ω(ei) for ω ∈ W as in (2.7), we deduce from (4.13) that

σt (ω) = ft (ωt1, . . . ,ωtn) = gt

(
. . . , (ti − ti−1)

−H (ωti − ωti−1), . . .
)

= gt (. . . , 〈(KH∗)−1ei,ω〉, . . .) = gt (ω(e1), . . . ,ω(en)).

Substituting Ttω for ω in the above, we have

σt (Ttω) = ft ((Ttω)t1 , . . . , (Ttω)tn) = gt ((Ttω)(e1), . . . , (Ttω)(en)). (4.14)

By the definition of Tt (4.5), we see that for any i ∈ N,

(Ttω)(ei) = ω(ei) + KH
(
1[0,t]σ(T ω)

)
(ei)

= ω(ei) + 〈
(KH∗)−1ei,K

H
(
1[0,t]σ(T ω)

)〉
(4.15)

= ω(ei) + (
ei,1[0,t]σ(T ω)

)
2

= ω(ei) +
∫ t

0
ei(s)gs((Tsω)(e1), . . . , (Tsω)(en))ds.

Since (Ttω)(ei) = ω(ei) when i > n, the mapping ω 	→ (Ttω)(ei) belongs to S for any t ∈
I and i ∈ N. Therefore, σ(T ) = {σs(Ts), s ∈ I } ∈ L

S from (4.14) and consequently u1(ω) =
1[0,t]σ(T ω) satisfies both parts (1) and (2) of condition (ii) of Theorem 4.3.

It remains to check condition (ii)(3). First, for each h ∈ L2(I ), applying the chain rule (2.12)
and taking directional derivatives on both sides of equation (4.16), we have, for fixed t ∈ I and
i ∈ N,

Dh[(Ttω)(ei)]
(4.16)

= (ei, h)2 +
∫ t

0
ei(s)

n∑
k=1

∂kgs((Tsω)(e1), . . . , (Tsω)(en))Dh[(Tsω)(ek)]ds.

Since σ(T ) is of the form (4.14), equation (4.16) can be written as

Dh[(Ttω)(ei)] = (
ei, h + (

D
[
1[0,t]σ(T ω)

]
, h

)
2

)
2, h ∈ L2(I ), i ∈ N. (4.17)

Now, if h ∈ L2(I ) is such that h + (D[1[0,t]σ(T ω)], h)2 = 0, then Dh[(Ttω)(ei)] = 0 for any
i in (4.17). Therefore, (h, ei)2 = 0 for any i, from (4.16), and hence h = 0. In other words,
the mapping IL2(I ) + D[1[0,t]σ(T ω)] :L2(I ) 	→ L2(I ) is injective, and consequently bijective,
which is condition (ii)(3) of Theorem 4.3. This concludes the proof. �

The following proposition will play an important role in the subsequent proofs.

Proposition 4.6. Assume that σ ∈ L
S , and let T and A be families of transformations of the

form (4.5) and (4.12), respectively. Then
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(i) for 0 ≤ v ≤ t ≤ 1, s ∈ I and μ-a.e. ω ∈ W ,

Ds[σt (Ttω)] = (Dsσt )(Ttω) +
∫ t

0
(Drσt )(Ttω)Ds[σr(Trω)]dr,

Ds[σv(Av,tω)] = (Dsσv)(Av,tω) −
∫ t

v

(Drσv)(Av,tω)Ds[σr(Ar,tω)]dr;

(ii) for μ-a.e. ω ∈ W , the Carleman–Fredholm determinants of IL2(I ) + D[1[0,t]σ(T ω)] and
IL2(I ) − D[1[v,t](·)σ·(A·,tω)], 0 ≤ v ≤ t ≤ 1, are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dc

(
IL2(I ) + D

[
1[0,t]σ(T ω)

])
= exp

{
−

∫ t

0

∫ s

0
(Drσs)(Tsω)Ds[σr(Trω)]dr ds

}
,

dc

(
IL2(I ) − D

[
1[v,t](·)σ·(A·,tω)

])
= exp

{
−

∫ t

v

∫ t

s

(Drσs)(As,tω)Ds[σr(Ar,tω)]dr ds

}
.

(4.18)

Proof. (i) It again suffices to prove the result for T . Recall that in the proof of Proposition 4.5,
we actually proved that {σt (Tt ), t ∈ I } ∈ L

S , provided σ ∈ L
S . Hence σt ∈ S and σt (Tt ) ∈ S for

any fixed t . The conclusion (i) then follows easily from Proposition 3.2.
(ii) Let σ ∈ L

S and the orthonormal basis {ei} of L2(I ) be as in the proof of Proposition 4.5.
σ(T ) is then of the form (4.14). Since D[1[0,t]σ(T )] ∈ L2(L

2(I ),L2(I )) is a nuclear operator,

using (4.2) and the notation Di
�= Dei

, for any N ≥ n, we have that

dc

(
IL2(I ) + D

[
1[0,t]σ(T ω)

])
�= det

(
IL2(I ) + D

[
1[0,t]σ(T ω)

])
exp

(− traceD
[
1[0,t]σ(T ω)

])
= det

[
(ei, ej )2 + (

ei,Dj

[
1[0,t]σ(T ω)

])
2

]N
i,j=1 (4.19)

× exp

{
− trace

[∫ t

0
Dj [σs(Tsω)]ei(s)ds

]N

i,j=1

}

= det[Dj [(Ttω)(ei)]]Ni,j=1 exp

{
−

∫ t

0
Ds[σs(Tsω)]ds

}
,

where the last equality is obtained by substituting ej for h in (4.17) and using the definition of
derivative.

Let us now define, for each i, j, k = 1, . . . ,N , Pij (t)
�= Dj [(Ttω)(ei)] and

Uik(s,ω)
�=

{
ei(s) ∂kgs((Tsω)(e1), . . . , (Tsω)(en)), 1 ≤ i ≤ N,1 ≤ k ≤ n,

0, 1 ≤ i ≤ N,n + 1 ≤ k ≤ N,



SDE driven by fBM 861

and denote the matrices P = [Pij ]Ni,j=1 and U = [Uik]Ni,k=1. Substituting ej for h in (4.16), we
derive that for 1 ≤ i, j ≤ N ,

Pij (t) = (ei, ej )2 +
∫ t

0

N∑
k=1

ei(s) ∂kgs((Tsω)(e1), . . . , (Tsω)(en))Dj [(Tsω)(ek)]ds, t ∈ I.

That is, P(t) = IN + ∫ t

0 [UP ](s)ds, t ∈ I , where IN is the N × N identity matrix. Hence

det[Dj [(Ttω)(ei)]]Ni,j=1 = det(P (t)) = exp

{∫ t

0
traceU(s)ds

}

= exp

{∫ t

0

N∑
i=1

ei(s)∂igs((Tsω)(e1), . . . , (Tsω)(en))ds

}
(4.20)

= exp

{∫ t

0
(Dsσs)(Tsω)ds

}
.

Therefore, combining (4.20) and Proposition 4.6(i), the determinant (4.19) becomes

dc

(
IL2(I ) + D

[
1[0,t]σ(T ω)

]) = exp

{∫ t

0
(Dsσs)(Tsω)ds

}
exp

{
−

∫ t

0
Ds[σs(Tsω)]ds

}

= exp

{
−

∫ t

0

∫ s

0
(Drσs)(Tsω)Ds[σr(Trω)]dr ds

}
,

proving (ii), and hence the lemma. �

5. An anticipating Girsanov theorem for fBM

We are now ready to prove the main result of this paper: the anticipating Girsanov theorem for
fractional Brownian motions, which can be stated as follows.

Theorem 5.1. Assume that σ ∈ L
1,∞. There then exists a unique family of absolutely continuous

transformations {Tt , t ∈ I } such that (4.5) holds and the process σ(T ) = {σt (Tt ), t ∈ I } belongs
to L

1,∞. Moreover, the transformation Tt is invertible for each t ∈ I and its inverse transforma-
tion At has density, for μ-a.e. ω ∈ W ,

Lt (ω)
�= d[μ ◦ A−1

t ]
dμ

(ω)

= exp

{
−δ

(
1[0,t]σ(T ω)

) − 1

2

∫ t

0
|σs(Tsω)|2 ds (5.1)

−
∫ t

0

∫ s

0
(Drσs)(Tsω)Ds[σr(Trω)]dr ds

}
.
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Remark 5.2. (i) By applying Propositions 4.4–4.6 and Theorem 4.3, we can show that Theo-
rem 5.1 holds for σ ∈ L

S ⊂ L
1,∞.

(ii) Theorem 5.1 also shows that there exists a unique family of absolutely continuous trans-
formations {Av,t ,0 ≤ v ≤ t ≤ 1} satisfying (4.9) with their inverse densities

Lv,t (ω) = exp

{
δ
(
1[v,t](·)σ·(A·,tω)

) − 1

2

∫ t

v

|σs(As,tω)|2 ds

(5.2)

−
∫ t

v

∫ t

s

(Drσs)(As,tω)Ds[σr(Ar,tω)]dr ds

}
, μ-a.e.

In other words, the density of Tt , the inverse of At , is

Lt(ω)
�= d[μ ◦ T −1

t ]
dμ

(ω) = L0,t (ω), μ-a.e.,ω ∈ W. (5.3)

Before we prove Theorem 5.1, let us carry out a quick analysis. First, recall from (2.15) that
there is a sequence {σn}n ⊂ L

S such that {σn}n approximates σ in L
1,2 and {‖σn‖1,∞}n is

bounded by ‖σ‖1,∞
�= Cσ . By Remark 5.2(i), we can find a family of invertible, absolutely

continuous transformations {T n
t , t ∈ I }n satisfying

(T n
t ω)s = ωs +

∫ t∧s

0
KH (s, r)σn

r (T n
r ω)dr, ω ∈ W,s ∈ I.

Furthermore, the transformations {T n
t , t ∈ I }n and their inverses {An

t , t ∈ I }n have densities
{Ln

t }n and {Ln
t }n, respectively. In the following discussion, we shall focus only on the particular

sequences {σn}, {T n}, {Ln}, {An} and {Ln} for the given σ ∈ L
1,∞ and we collect some impor-

tant properties of the “shift processes” {σn(T n)} and densities {Ln} in the following lemma.

Lemma 5.3. (i) The sequence of processes {σn(T n)} is bounded in L
1,∞;

(ii) the family of densities {Ln
t = dμ◦(T n

t )−1

dμ
, t ∈ I } is uniformly integrable;

(iii) the sequence {σn(T n)} = {σn
t (T n

t ), t ∈ I } is convergent in L2(W ;L2(I )).

Proof. (i) We first verify the boundedness of the derivatives of {σn(T n)}. To this end, we apply
Proposition 4.6 to σn and T n to obtain

Ds[σn
t (T n

t )] = (Dsσ
n
t )(T n

t ) +
∫ t

0
(Drσ

n
t )(T n

t )Ds[σn
r (T n

r )]dr, μ-a.e., s, t ∈ I.

It then follows from the Cauchy–Schwarz inequality and Gronwall’s lemma that

∫ 1

0
‖|D[σn

t (T n
t )]|22‖∞ dt ≤ 2C2

σ exp

{
2
∫ 1

0
‖|Dσn

t |22‖∞ dt

}
≤ 2C2

σ exp{2C2
σ }. (5.4)
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Combining (5.4) with the fact that
∫ 1

0 ‖σn
t (T n

t )‖2∞ dt ≤ C2
σ for every n, we have

∫ 1

0
‖σn

t (T n
t )‖2

1,∞ dt ≤ C2
σ + 2C2

σ exp{2C2
σ }, n ∈ N, (5.5)

proving (i).
To see (ii), we choose φ(x) = x| lnx|. It then suffices to show that

sup
t∈I,n∈N

E{φ(Ln
t )} = sup

t∈I,n∈N

E{Ln
t | lnLn

t |} < ∞. (5.6)

From the definition of density, we have (Ln
t )

−1 = Ln
t (A

n
t ), t ∈ I , for any n ∈ N. Therefore,

E{Ln
t | lnLn

t |} = E{Ln
t | ln Ln

t (A
n
t )|} = E{| ln Ln

t (A
n
t T

n
t )|} = E{| ln Ln

t |}.
Using (5.1), we obtain

E{| ln Ln
t |} ≤ E

{∣∣δ(1[0,t]σn(T n)
)∣∣} + E

{
1

2

∫ t

0
|σn

s (T n
s )|2 ds

}

+ E

{∣∣∣∣
∫ t

0

∫ s

0
(Drσ

n
s )(T n

s )Ds[σn
r (T n

r )]dr ds

∣∣∣∣
}

�= I1 + I2 + I3.

We shall find the upper bounds for Ii , i = 1,2,3. First, note that for each n, and t ∈ I ,

I1 ≤ ∥∥δ
(
1[0,t]σn(T n)

)∥∥
2 ≤ ‖σn(T n)‖1,2 ≤ ‖σn(T n)‖1,∞ ≤ (C2

σ + 2C2
σ exp{2C2

σ })1/2,

where the second inequality is obtained by applying (2.14) and the last inequality by apply-
ing (5.5). Next, since ‖|σn|2‖∞ ≤ Cσ for any n, I2 ≤ 1

2C2
σ for all t . Finally, applying the Cauchy–

Schwarz inequality, we have

I3 ≤
(∫ 1

0

∫ 1

0
‖(Drσ

n
s )(T n

s )‖2∞ dr ds

)1/2(∫ 1

0

∫ 1

0
‖Ds[σn

r (T n
r )]‖2∞ dr ds

)1/2

≤ Cσ · √2Cσ exp{C2
σ } = √

2C2
σ exp{C2

σ }, t ∈ I,

where the last inequality is due to (5.4). Consequently, E{| ln Ln
t |} = E{Ln

t | lnLn
t |} is bounded,

uniformly in t ∈ I and n, and (5.6) (and hence (ii)) follows.
It remains to prove (iii). By using the Cauchy–Schwarz inequality and applying Proposi-

tion 3.1, we see that for m,n ∈ N,

E

{∫ t

0
|σm

s (T m
s ) − σn

s (T n
s )|2 ds

}

≤ 2E

{∫ t

0
|σm

s (T m
s ) − σn

s (T m
s )|2 ds

}
+ 2E

{∫ t

0
|σn

s (T m
s ) − σn

s (T n
s )|2 ds

}

≤ 2E

{∫ t

0
|σm

s − σn
s |2Lm

s ds

}
+ 2E

{∫ t

0

(
‖|Dσn

s |22‖∞
∫ s

0
|σm

r (T m
r ) − σn

r (T n
r )|2 dr

)
ds

}
.
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First applying Gronwall’s lemma, then letting t = 1 (noting that {Ln} is uniformly integrable,
thanks to part (ii) above) we obtain that

E

{∫ 1

0
|σm

s (T m
s ) − σn

s (T n
s )|2 ds

}

≤ 2E

{∫ 1

0
|σm

s − σn
s |2Lm

s ds

}
exp

{
2
∫ 1

0
‖|Dσn

s |22‖∞ ds

}

≤ 2 exp{2C2
σ }E

{∫ 1

0
|σm

s − σn
s |2Lm

s ds

}
−→ 0

as m,n → ∞ since {σn} converges in L
1,2. Thus, {σn(T n)} is a Cauchy sequence and it con-

verges in L2(W ;L2(I )). This completes the proof. �

Proof of Theorem 5.1. First, we recall from Lemma 5.3(i) and (iii) that the sequence {σn(T n)}
is bounded in L

1,∞ and convergent in L
1,2. Let σ̄ ∈ L

1,∞ be the limit process of shift processes
{σn(T n)} and define the family of transformations {Tt , t ∈ I } by

(Ttω)s
�= ωs +

∫ t∧s

0
KH (s, r)σ̄r (ω)dr, μ-a.e. (5.7)

Proposition 3.3, together with Lemma 5.3(ii), then shows that Tt is absolutely continuous and
{σn

t (T n
t )} converges to σt (Tt ) in L2(W) for t ∈ I . In other words, σ̄t = σt (Tt ), μ-a.e., for any

t ∈ I and {Tt , t ∈ I } satisfies

(Ttω)s = ωs +
∫ t∧s

0
KH (s, r)σr (Trω)dr, μ-a.e. (5.8)

The uniqueness of {Tt , t ∈ I } can be obtained easily by using Gronwall’s lemma.
Next, recall from Remark 5.2(ii) that there exist transformations {An

v,t ,0 ≤ v ≤ t ≤ 1} satisfy-
ing

(An
v,tω)s = ωs −

∫ t∧s

v∧s

KH (s, r)σn
r (An

r,tω)dr, μ-a.e.

for every n. Following an argument similar to that of Lemma 5.3(ii), one can show that the family

of densities {Ln
v,t

�= dμ◦(An
v,t )

−1

dμ
,0 ≤ v ≤ t ≤ 1} is uniformly integrable. Hence, using the same

argument as was used for (5.7), one can show that the limit of {σn
v (An

v,t )} in L
1,2 exists for any

t ∈ I and denote this by {σ̄v,t ,0 ≤ v ≤ t} ∈ L
1,∞. Furthermore, similar to (5.8), one can also

argue that the transformations defined by

(Av,tω)s
�= ωs −

∫ t∧s

v∧s

KH (s, r)σ̄r,t (ω)dr, μ-a.e. (5.9)
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are unique and absolutely continuous, and that {Av,t ,0 ≤ v ≤ t ≤ 1} satisfy

(Av,tω)s = ωs −
∫ t∧s

v∧s

KH (s, r)σr (Ar,tω)dr, μ-a.e.

We now check that for each t ∈ I , the transformation At
�= A0,t is the inverse of Tt . Note

that the σn(T n)’s are bounded in L
1,∞ by Lemma 5.3. Applying Proposition 3.3 to {σn

v (T n
v )}

and {An
t }, and using (5.7) as well as (4.11), we conclude that {σn

v (An
v,t ) = σn

v (T n
v An

t ),0 ≤ v ≤ t}
converges to σ̄v(At ) for any t ∈ I . As a result, σ̄v,t = s̄iv(At ) in L2(W), 0 ≤ v ≤ t ≤ 1. By setting
v = 0 and substituting Ttω for ω in (5.9), we have

(At (Ttω))s = (Ttω)s −
∫ t∧s

0
KH (s, r)σ̄r,t (Ttω)dr

= (Ttω)s −
∫ t∧s

0
KH (s, r)σ̄r (AtTtω)dr = ωs, μ-a.e.

Similarly, one shows that Tt (Atω) = ω, μ-a.e. To wit, At is the inverse of Tt for any t ∈ I .
It remains to compute the densities of the transformations {At, t ∈ I }. From Remark 5.2(i), we

see that for any n,

Ln
t (ω) = exp

{
−δ

(
1[0,t]σn(T nω)

) − 1

2

∫ t

0
|σn

s (T n
s ω)|2 ds

−
∫ t

0

∫ s

0
(Drσ

n
s )(T n

s ω)Ds[σn
r (T n

r ω)]dr ds

}
, μ-a.e.

Since the sequence {Ln
t , t ∈ I } is uniformly integrable, by Proposition 3.3, it converges to the

right-hand side of (5.1), which is the density of {At, t ∈ I }. This completes the proof. �

6. Stochastic differential equations driven by fBM

In this section, we fix the Hurst parameter H ∈ (0,1) and denote BH by B for simplicity. Also,
we will use the conventional notation

∫ t

0 us dBs to denote δ(1[0,t]u) if 1[0,t]u ∈ Dom(δ) for t ∈ I .
Note that since H can be arbitrary, the Skorokhod integral should often be understood in the
general sense defined by [11].

We consider the stochastic differential equation in the Skorokhod sense

Xt = X0 +
∫ t

0
σsXs dBs +

∫ t

0
b(s,Xs)ds, t ∈ I, (6.1)

where X0 ∈ Lp(W) for some p ≥ 2, σ ∈ L
1,∞ and b : I × R × W 	→ R is a measurable function

satisfying the following condition for μ-a.e. ω ∈ W :
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H1. There exist an integrable function γt ≥ 0 on I and a constant M > 0 such that

(i)
∫ 1

0 γt dt ≤ M and |b(t,0,ω)| ≤ M for any t ∈ I ;
(ii) |b(t, x,ω) − b(t, y,ω)| ≤ γt |x − y| for all x, y ∈ R, t ∈ I .

Our plan of attack is as follows. Since σ ∈ L
1,∞, by Theorem 5.1, we know that the family of

transformations on W defined by

(Ttω)s
�= ωs +

∫ t∧s

0
KH (s, r)σr (Trω)dr, s, t ∈ I,μ-a.e.,

exists and is unique. Also, there is a corresponding family of inverse transformations {At, t ∈ I }.
Using the transformations T and A, we can define a change of probability measure using the
density of T , and we show that the SDE becomes a much simpler one under the new proba-
bility measure. To carry out this scheme, we need the following lemma regarding the temporal
derivatives of the image processes under transformations T and A.

Lemma 6.1. (i) Suppose that F = {Ft , t ∈ I } ∈ L
S and the mapping t 	→ Ft (·) is differentiable.

Then {Ft(Tt ), t ∈ I } is differentiable with respect to t and it holds that

d

dt
[Ft(Tt )] =

(
d

dt
Ft

)
(Tt ) + σt (Tt )(DtFt )(Tt ), μ-a.e. (6.2)

(ii) For any G ∈ S , the mapping t 	→ G(At) is differentiable and it holds that

d

dt
G(At ) = −σtDt [G(At)], μ-a.e. (6.3)

Proof. Assume that F ∈ L
S takes the form Ft(ω) = gt (〈δ{t1},ω〉, . . . , 〈δ{tn},ω〉), 0 < t1 < · · · <

tn ≤ 1, where g is a bounded measurable function on I × R
n with gt ∈ C∞

b (Rn) for each t ∈ I

and δ{·} is the Dirac δ-function. Since Ft(Ttω) = gt (〈δ{t1}, Ttω〉, . . . , 〈δ{tn}, Ttω〉), we need only
check the differentiability of 〈δ{ti }, Ttω〉 for any i. Indeed,

d

dt

〈
δ{ti }, Ttω

〉 = d

dt

[
ωti +

∫ t∧ti

0
KH (ti, r)σr(Trω)dr

]

= KH (ti, t)σt (Ttω) = KH∗(δ{ti }
)
(t)σt (Ttω), μ-a.e.

Now applying the chain rule (2.12) and the definition of derivative operator (2.10), we have

d

dt
[Ft (Ttω)] =

(
d

dt
Ft

)
(Ttω) +

n∑
i=1

∂igt

(〈
δ{t1}, Ttω

〉
, . . . ,

〈
δ{tn}, Ttω

〉)
KH∗(δ{ti }

)
(t)σt (Ttω)

=
(

d

dt
Ft

)
(Ttω) + (DtFt )(Ttω)σt (Ttω), μ-a.e.,
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proving (i). To prove (ii), we first note that by following the same argument as was used for
Proposition 4.5, one can show that the process {G(At), t ∈ I } ∈ L

S for G ∈ S . Therefore, from
part (i) above, we obtain

0 = d

dt
G = d

dt
G(AtTt ) =

(
d

dt
G(At )

)
(Tt ) + σt (Tt )Dt [G(At)](Tt ), μ-a.e.

Thus, part (ii), and hence the lemma, follows. �

As in Theorem 5.1, we denote the densities of At and Tt by Lt and Lt , respectively. Let us
now consider the following ordinary differential equation for any fixed ω ∈ W :

Zt(ω,x) = x +
∫ t

0
L−1

s (Tsω)b(s,Ls(Tsω)Zs(ω,x), Tsω)ds, x ∈ R, t ∈ I. (6.4)

It is known from ODE theory that under Assumption (H1), the unique solution Zt(ω,x), t ≥ 0,
depends continuously on the initial state x. Thus, the mapping (t,ω) 	→ Zt(ω,X0(ω)) defines a
measurable process. Let us now set

Xt = LtZt (At ,X0(At )), t ∈ I. (6.5)

The main result of this paper is the following theorem.

Theorem 6.2. The process {Xt, t ∈ I } in (6.5) satisfies 1[0,τ ]σX ∈ Dom(δ) for all τ ∈ I and
X ∈ L2(W ;L2(I )) is the unique solution of the SDE (6.1).

Proof. Existence. We will show that 1[0,τ ]σX ∈ Dom(δ) for τ ∈ I and that SDE (6.1) holds. To
this end, let G ∈ S and denote Zt(·,X0(·)) by Zt(X0). Using (6.5), we have

E

{
G

∫ 1

0
1[0,τ ](t)σtXt dBt

}
= E

{∫ τ

0
σtXtDtGdt

}

= E

{∫ τ

0
σtLtZt (At ,X0(At ))DtGdt

}
(6.6)

= E

{∫ τ

0
σt (Tt )Zt (X0)DtG(Tt )dt

}
.

Applying Lemma 6.1(i) and integration by parts, (6.6) becomes

E

{∫ τ

0
σt (Tt )Zt (X0)DtG(Tt )dt

}
= E

{∫ τ

0
Zt(X0)

d

dt
G(Tt )dt

}

= E

{
Zτ (X0)G(Tt ) − Z0(X0)G (6.7)

−
∫ τ

0

(
d

dt
Zt (X0)

)
G(Tt )dt

}
.
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Next, using ODE (6.4) as well as the fact that L−1
t (Tt ) = Lt is the density of At , (6.7) yields that

E

{
Zτ (X0)G(Tτ ) − Z0(X0)G −

∫ τ

0
L−1

t (Tt )b(t,Lt (Tt )Zt (X0), Tt )G(Tt )dt

}

= E{LτZτ (Aτ ,X0(Aτ ))G} − E{Z0(X0)G} − E

{∫ τ

0
b(t,LtZt (At ,X0(At )))Gdt

}

= E{XτG} − E{X0G} − E

{∫ τ

0
b(t,Xt )Gdt

}
= E

{
G

(
Xτ − X0 −

∫ τ

0
b(t,Xt )dt

)}
.

This, together with (6.6), leads to the fact that for any G ∈ S ,

E

{
G

∫ 1

0
1[0,τ ](t)σtXt dBt

}
= E

{
G

(
Xτ − X0 −

∫ τ

0
b(t,Xt )dt

)}
.

Since Xτ − X0 − ∫ τ

0 b(t,Xt )dt is square-integrable, we deduce that {1[0,τ ]σX, τ ∈ I } belong to
Dom(δ) and X satisfies (6.1).

Uniqueness. Let Y ∈ L2(W ;L2(I )), where 1[0,t]σY ∈ Dom(δ) for all t ∈ I , be any solution
of equation (6.1), that is,

Yt = X0 +
∫ t

0
σsYs dBs +

∫ t

0
b(s,Ys)ds, t ∈ I. (6.8)

We consider a fixed t ∈ I and a random variable G ∈ S . Multiplying both sides of (6.8) by G(At)

and taking expectations, it becomes

E{YtG(At )} = E{Y0G(At)} + E

{∫ t

0
Ds[G(At)]σsYs ds

}
+ E

{∫ t

0
b(s,Ys)G(At )ds

}
.

Since G(At) = G(As) − ∫ t

s
σrDr [G(Ar)]dr for any s ∈ [0, t] by Lemma 6.1(ii), we obtain

E{YtG(At )} = E{Y0G} − E

{
Y0

∫ t

0
σrDr [G(Ar)]dr

}

+ E

{∫ t

0
Ds[G(As)]σsYs ds

}
− E

{∫ t

0
Ds

[∫ t

s

σrDr [G(Ar)]dr

]
σsYs ds

}

+ E

{∫ t

0
b(s,Ys)G(As)ds

}
− E

{∫ t

0
b(s,Ys)

∫ t

s

σrDr [G(Ar)]dr ds

}
(6.9)

= E{Y0G} + E

{∫ t

0
Ds[G(As)]σsYs ds

}
+ E

{∫ t

0
b(s,Ys)G(As)ds

}

− E

{∫ t

0
σrDr [G(Ar)]Y0 dr

}
− E

{∫ t

0

∫ r

0
Ds[σrDr [G(Ar)]]σsYs ds dr

}

−E

{∫ t

0
σrDr [G(Ar)]

∫ r

0
b(s,Ys)ds dr

}
.
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Here, the last equality is due to Fubini’s theorem. Now, by definition of the Skorokhod integral,

E

{∫ t

0

∫ r

0
Ds[σrDr [G(Ar)]]σsYs ds dr

}
= E

{∫ t

0
σrDr [G(Ar)]

∫ r

0
σsYs dBs dr

}
.

Note that because the density of At is Lt = L−1
t (Tt ) and Y satisfies (6.8), (6.9) can be rewritten

as

E{L−1
t (Tt )Yt (Tt )G} = E{Y0G} + E

{∫ t

0
Ds[G(As)]σsYs ds

}

+ E

{∫ t

0
b(s,Ys)G(As)ds

}
− E

{∫ t

0
σrDr [G(Ar)]Yr dr

}

= E{Y0G} + E

{∫ t

0
b(s,Ys)G(As)ds

}

= E{Y0G} + E

{∫ t

0
L−1

s (Ts)b(s, Ys(Ts))Gds

}
.

Since the smooth random variable G is arbitrary, we have

L−1
t (Tt )Yt (Tt ) = Y0 +

∫ t

0
L−1

s (Ts)b(s, Ys(Ts))ds

= Y0 +
∫ t

0
L−1

s (Ts)b(s,Ls(Ts)L
−1
s (Ts)Ys(Ts))ds, μ-a.e.

That is, L−1
t (Tt )Yt (Tt ) is a solution of equation (6.4). By the uniqueness of the ODE, we must

have L−1
t (Tt )Yt (Tt ) = Zt(·, Yt ). Consequently,

Yt = LtZt (At , Y0(At )) = Xt, μ-a.e.,

which is the unique solution of SDE (6.1). This completes the proof. �

Acknowledgments

The second author was supported in part by NSF Grants #0505427 and #0835051.

References

[1] Alòs, E., Mazet, O. and Nualart D. (2001). Stochastic calculus with respect to Gaussian processes.
Ann. Probab. 29 766–801. MR1849177

[2] Buckdahn, R. (1991). Anticipative Girsanov transformations. Probab. Theory Related Fields 89 211–
238. MR1110539

http://www.ams.org/mathscinet-getitem?mr=1849177
http://www.ams.org/mathscinet-getitem?mr=1110539


870 Y.-J. Jien and J. Ma

[3] Buckdahn, R. (1991). Linear Skorohod stochastic differential equations. Probab. Theory Related
Fields 90 223–240. MR1128071

[4] Carmona, P., Coutin, L. and Montseny, G. (2003). Stochastic integration with respect to fractional
Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 39 27–68. MR1959841

[5] Dai, W. and Heyde, C.C. (1996). Itô’s formula with respect to fractional Brownian motion and its
application. J. Appl. Math. Stoch. Anal. 9 439–448. MR1429266

[6] Decreusefond, L. and Üstünel, A.S. (1999). Stochastic analysis of the fractional Brownian motion.
Potential Anal. 10 177–214. MR1677455

[7] Duncan, T.E., Hu, Y. and Pasik-Duncan, B. (2000). Stochastic calculus for fractional Brownian mo-
tion. I. Theory. SIAM J. Control Optim. 38 582–612 (electronic). MR1741154

[8] Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. (1953). Higher Transcendental Func-
tions. Vol. I. New York: McGraw-Hill. (Based, in part, on notes left by Harry Bateman.) MR0698779

[9] Kusuoka, S. (1982). The nonlinear transformation of Gaussian measure on Banach space and absolute
continuity. I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 567–597. MR0687592

[10] León, J.A. and San Martin, J. (2006). Linear stochastic differential equations driven by a fractional
Brownian motion with Hurst parameter less than 1/2. Stoch. Anal. Appl. 25 105–126. MR2284483

[11] León, J.A. and Nualart, D. (2005). An extension of the divergence operator for Gaussian processes.
Stochastic Process. Appl. 115 481–492. MR2118289

[12] Lin, S.J. (1995). Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55
121–140. MR1382288

[13] Mishura, Y. and Nualart, D. (2004). Weak solutions for stochastic differential equations with additive
fractional noise. Statist. Probab. Lett. 70 253–261. MR2125162

[14] Nourdin, I. and Tudor, C.A. (2006). Some linear fractional stochastic equations. Stochastics 78 51–65.
MR2236631

[15] Nualart, D. and Ouknine, Y. (2003). Stochastic differential equations with additive fractional noise
and locally unbounded drift. In Stochastic Inequalities and Applications. Progr. Probab. 56 353–365.
Basel: Birkhäuser. MR2073441
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