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Let {(Yi,Xi), i ∈ Z
N } be a stationary real-valued (d + 1)-dimensional spatial processes. Denote by x �→

qp(x), p ∈ (0,1), x ∈ R
d , the spatial quantile regression function of order p, characterized by P{Yi ≤

qp(x)|Xi = x} = p. Assume that the process has been observed over an N -dimensional rectangular domain
of the form In := {i = (i1, . . . , iN ) ∈ Z

N |1 ≤ ik ≤ nk, k = 1, . . . ,N}, with n = (n1, . . . , nN ) ∈ Z
N . We

propose a local linear estimator of qp . That estimator extends to random fields with unspecified and possibly
highly complex spatial dependence structure, the quantile regression methods considered in the context of
independent samples or time series. Under mild regularity assumptions, we obtain a Bahadur representation
for the estimators of qp and its first-order derivatives, from which we establish consistency and asymptotic
normality. The spatial process is assumed to satisfy general mixing conditions, generalizing classical time
series mixing concepts. The size of the rectangular domain In is allowed to tend to infinity at different
rates depending on the direction in Z

N (non-isotropic asymptotics). The method provides much richer
information than the mean regression approach considered in most spatial modelling techniques.

Keywords: Bahadur representation; local linear estimation; random fields; quantile regression

1. Introduction

Since the pathbreaking paper by Koenker and Basset [29], quantile regression and autoregression
methods have attracted considerable interest in all domains of statistics, ranging from time se-
ries to survival analysis and growth charts; see [28] for a review. Most surprisingly, they seldom
have been considered in a spatial context, although their potential applications to spatial data
clearly are without number. Very recently, Koenker and Mizera [30] made a first step towards a
spatial quantile-based analysis by proposing, under the name of penalized triograms, a penalized
spline method based on adaptively selected triangulations of the plane that allows for computing
conditional quantiles over a two-dimensional domain. Their method, however, does not incorpo-
rate covariates, and hence is a spatial smoothing technique rather than a spatial (auto)regression
one.

Let Z
N,N ≥ 1, denote the integer lattice points in the N -dimensional Euclidean space. A point

i = (i1, . . . , iN ) in Z
N will be referred to as a site, but also may include a time component. Spatial

data are modelled as finite realizations of vector stochastic processes indexed by i ∈ Z
N , also

1350-7265 © 2009 ISI/BS

http://isi.cbs.nl/bernoulli/
http://dx.doi.org/10.3150/08-BEJ168
mailto:mhallin@ulb.ac.be
mailto:Z.Lu@curtin.edu.au
mailto:Keming.Yu@brunel.ac.uk


660 M. Hallin, Z. Lu and K. Yu

called random fields. In this paper, we will consider strictly stationary (d + 1)-dimensional real
random fields of the form

{(Yi,Xi); i ∈ Z
N }, (1.1)

where Yi, with values in R, and Xi, with values in R
d , are defined over some probability space

(�, F ,P). Such spatial data arise in a variety of fields, including econometrics, environmental
sciences, image analysis, oceanography, geostatistics and many others. The statistical treatment
of such data is the subject of an abundant literature that cannot be reviewed here; for background
reading, we refer the reader to the monographs [2,11,21,42,43].

In a number of applications, a crucial problem consists in describing and analyzing the influ-
ence of a vector Xi of covariates on some real-valued response Yi. In the spatial context, this study
is particularly difficult due to the possibly highly complex spatial dependence among the various
sites – a dependence that typically has to be treated as a nuisance. The traditional approach to this
problem consists in assuming that Yi has finite expectation, so that the spatial mean regression
function g : x �→ g(x) := E[Yi|Xi = x] is well defined and clearly carries relevant information on
the dependence of Y on X. This approach has been successfully considered in several papers,
among which are [19,24]. However, (conditional) expectations may not exist. Even when they
do, they only carry limited information on the dependence under study. In most practical cases,
we would expect different structural relationships for the higher- (lower-) order quantiles than
for the central ones, and the conditional distribution of Y (asymmetry, spread, . . .) is likely to
depend on X as well. A regression analysis based on conditional means ignores such essential
features of the dependence of Y on X, which can be taken care of by Koenker and Bassett’s more
general conditional quantile analysis only.

In this paper, instead of spatial mean regression, we thus consider the spatial quantile re-
gression functions qp : x �→ qp(x), 0 < p < 1, characterized by P{Yi ≤ qp(x)|Xi = x} = p. Al-
though qp (just as g) is only defined up to a P-null set of x values, we treat it, for the sake of
simplicity, as a well-defined, real-valued, x-measurable function, which has no implication on
the probabilistic statements of this paper. In the particular case under which Xi itself is measur-
able with respect to a subset of Yj’s, with j ranging over some neighbourhood of i, qp is called a
spatial quantile autoregression function. Parametric (linear) spatial mean autoregression models
were considered as early as 1954 by [51]; see [3,52] for further developments in this approach.
Contrary to [51], we adopt a nonparametric point of view, as in [24], avoiding any parametric
specification, both for qp as for the possibly extremely complex spatial dependence structure of
the data.

For N = 1, our problem reduces to the classical one of quantile (auto)regression for inde-
pendent or serially dependent observations and has received extensive attention in the literature;
see, for instance, [7,14,17,27,29,31–33,41,50,53–55]. Quite surprisingly, despite its obvious im-
portance for applications, the spatial version (N > 1) of the same problem remains essentially
unexplored. Several recent papers (among which [8,22,23,48,49] deal with the related problem
of estimating the density f of a random field of the form {Xi; i ∈ Z

N }, whereas [19,24,35,36]
consider the estimation of spatial mean regression functions). To the best of our knowledge, no
attempt has been made so far to estimate spatial quantile regression functions.

Being of a nonparametric nature, our estimators of spatial quantile regression functions nat-
urally involve some smoothing techniques. With the functions qp to be estimated being defined
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over the d-dimensional space of covariates, smoothing naturally is over the X values, not (as
in spatial smoothing methods) over the sites i. Among all smoothing techniques, the Nadaraya–
Watson method, in the traditional serial case (N = 1), is probably the most standard one; it has
been well documented, however – see, for instance, [16] – that it suffers from several severe
drawbacks, such as poor boundary performances, excessive bias and low efficiency, and that the
local polynomial fitting methods developed in [10,46] are generally preferable. Such local poly-
nomial methods, and more particularly local linear fitting, have become increasingly popular in
the light of recent works; see [15,16,34,45,53,54]. For N = 1, [27,37] delineate the asymptotics
of local polynomial fitting for quantile regression under general mixing conditions. In this pa-
per, we extend this approach to the context of spatial quantile regression (N > 1) by defining an
estimator of qp based on local linear regression quantiles.

Extending classical time series asymptotics (N = 1) to spatial asymptotics (N > 1), however,
is far from trivial. Due to the absence of a canonical ordering in the space, there is no obvious
definition of tail σ -fields, ergodicity, mixing and other traditional time-domain concepts. Little
seems to exist about this in the literature, where only central limit results are well documented;
see, for example, [5,39]. Even the simple idea of a sample size n going to infinity (the sample
size here is a domain in Z

N ) has to be clarified in this setting. Assumptions (A3), (A3′) and (A3′′)
are reasonable and flexible generalizations of traditional time series concepts.

The stationary assumption we are making throughout plays a fundamental role. Its main conse-
quence is that conditional densities (of Yi conditional on Xi = x) – hence the conditional quantile
functions qp – only depend on x, not on i. The regressors Xi and Xj may be strongly dependent
(at neighbouring sites i ∼ j) or nearly independent (at distant sites i and j). If they take similar
values, they will yield similar conditional Y -quantiles: qp(Xi) ∼ qp(Xj). Local linear fitting here
means local in the regressor’s space. Note, however, that when the regressors Xi contain neigh-
bouring values of Yi (quantile autoregression), the analysis automatically recovers some spatial
smoothing flavor.

Depending on the context, all assumptions can be criticized, and so can the assumption of
spatial stationarity – no more so, however, than the time series assumption of stationarity over
time. In the time series context, whenever stationarity definitely cannot be assumed, two major
remedies are considered (still, in a nonparametric perspective). The most sophisticated one is
based on Dahlhaus’ idea of locally stationary processes [12], and relies on an infill asymptotics
scheme. Extending this approach to quantiles and the spatial context, however, is well beyond
the scope of this paper, and should be left for future research.

A much simpler and less formal method, which is of daily practice in time series analysis,
consists in a preliminary detrending of the observations. Transposed to a spatial setting, this
idea implicitly relies on a model of the form (Ỹi, X̃′

i)
′ = (μY (si),μ

′
X(si))

′ + (Yi,X′
i)

′, where
si := (i1/n1, . . . , iN/nN), 1 ≤ ik ≤ nk , k = 1,2, . . . ,N . Here s �→ (μY (s),μ′

X(s))′ is an unspec-
ified non-random spatial trend (defined over (0,1)N ) and (Yi,X′

i)
′ is an unobservable stationary

random field with unconditional mean or median zero. The analysis then proceeds in two steps.
First (detrending), an estimation (μ̂Y (si), μ̂

′
X(si)

′) of the spatial trend is removed via some ade-
quate spatial smoothing method (that is, smoothing with respect to si); see [1,6,56] for recent dis-
cussion. In the second step, the detrended data is supposed to satisfy the stationarity assumption
and subjected to the estimation method proposed, yielding for the detrended Y ’s and detrended



662 M. Hallin, Z. Lu and K. Yu

X’s an estimated conditional p-quantile function q̌p . At site i, the estimated p-quantile of Ỹi

conditional on X̃i then is obtained as μ̂Y (si) + q̌p(X̃i − μ̂X(si)).
In most references, including the traditional time series ones, no formal justification is given

for this two-step strategy. A more formal approach is developed in Section 3, where we show
that, under adequate assumptions, preliminary detrending does not affect the asymptotic results
of Section 2.

The paper is organized as follows: In Section 2.1 we provide the notation and main assump-
tions. Sections 2.2 and 2.3 introduce the main ideas underlying local linear regression in the
context of random fields and sketch the main steps of the proofs to be developed in the sequel.
Section 2.4, where asymptotic normality is stated under various types of asymptotics and var-
ious mixing assumptions, is the main theoretical section of the paper. Section 3 extends those
results to the case of a random field with spatial trend. In Section 4, the method is applied to an
environmental data set. Proofs and technical lemmas are concentrated in an Appendix.

2. Local linear estimation of spatial quantile regression

2.1. Notation and main assumptions

For the sake of convenience, we are summarizing here the main assumptions we are making on
the random field (1.1) and the kernel K to be used in the estimation method. Assumptions (A1)–
(A3) are related to the random field itself.

(A1) (Densities) The process (1.1) is strictly stationary; (Yi,Xi) has density f and, denoting
by fX the marginal density of X, by fY |X=x the density of Y conditional on X = x and
by fi,j(x, x̃) the joint density of (Xi,Xj) at (x, x̃),

(i) x �→ fX(x) is strictly positive and continuous for all x;
(ii) for all x, there exist a neighbourhood B of y = qp(x) and a neighbourhood B of

x such that y �→ fY |X=x(y) > 0 is continuous over B , uniformly in x ∈ B, while
x �→ fY |X=x(y) is continuous over B for all y ∈ B;

(iii) supi,j∈ZN supx,x̃∈Rd fi,j(x, x̃) ≤ C for some C > 0.
(A2) (Spatial quantile regression functions) The function x �→ qp(x) is twice continuously

differentiable. Denoting by q̇p(x) its gradient and by q̈p(x) the matrix of its second
derivatives (at x), x �→ q̈p(x) is continuous at all x.

Conditions similar to Assumption (A1) have been considered in the literature, in the i.i.d. setting
(cf. [17]). Assumption (A2) is standard.

Besides Assumptions (A1) and (A2), we need some appropriate assumption of spatial mixing.
For any collection S ⊂ Z

N of sites, denote by B(S) the σ -field generated by {(Yi,Xi)|i ∈ S}.
Let d(S ′, S ′′) := min{‖i′ − i′′‖|i′ ∈ S ′, i′′ ∈ S ′′} be the distance between S ′ and S ′′, where ‖i‖ :=
(i2

1 + · · · + i2
N)1/2 stands for the Euclidean norm. Finally, write Card(S) for the cardinality of S .

As in [24], two distinct forms (either (A3) and (A3′) or (A3) and (A3′′)) of spatial mixing are
considered.
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(A3) (Spatial mixing) There exist two functions, ϕ : R+ → R
+ such that ϕ(t) ↓t→∞ 0, and

ψ : N2 → R
+ symmetric and decreasing in its two arguments, such that

α(B(S ′), B(S ′′)) := sup{|P(AB) − P(A)P(B)|,A ∈ B(S ′),B ∈ B(S ′′)}
(2.1)

≤ ψ(Card(S ′),Card(S ′′))ϕ(d(S ′, S ′′));
for any S ′, S ′′ ⊂ Z

N . The function ϕ, moreover, is such that

lim
m→∞ma

∞∑
j=m

jN−1{ϕ(j)} = 0 for some constant a > N .

The assumptions we are making on the function ψ are either

(A3′) ψ(n′, n′′) ≤ min(n′, n′′)

or (throughout we denote by C a generic positive constant, the value of which may vary according
to the context)

(A3′′) ψ(n′, n′′) ≤ C(n′ + n′′ + 1)κ for some C > 0 and κ > 1.

In case (2.1) holds with ψ ≡ 1, the random field {(Yi,Xi)} is called strongly mixing. In the
serial case (N = 1), many stochastic processes and time series are known to be strongly mix-
ing; cf. [18]. It is shown in [20] that, under certain conditions, linear random fields of the form
Xn = ∑

j∈ZN gjZn−j, where the Zj’s are independent random variables, are strongly mixing. As-
sumptions (A3′) and (A3′′) are the same as the mixing conditions used in [40,47], respectively,
and are weaker than the uniform strong mixing condition considered in [39]. Such assumptions
are the price to be paid for the presence of an unspecified spatial dependence structure.

Throughout, we assume that the random field (1.1) is observed over a rectangular region of the
form In := {i = (i1, . . . , iN ) ∈ Z

N |1 ≤ ik ≤ nk, k = 1, . . . ,N}, for n = (n1, . . . , nN) ∈ Z
N with

strictly positive coordinates n1, . . . , nN . The total sample size is thus n̂ := ∏N
k=1 nk . We write

n → ∞ as soon as min1≤k≤N {nk} → ∞. A more demanding way for n to tend to infinity is the
following one, where all components of n tend to infinity at the same rate. As in [48], we write
n �⇒ ∞ if n → ∞ and |nj/nk| < C for some 0 < C < ∞, 1 ≤ j, k ≤ N .

Assumption (A4) deals with the kernel function K : Rd → R, and Assumptions (B1)–(B2)
with the bandwidth hn to be used in the estimation method. For any c := (c0, c′

1)
′ ∈ R

d+1, define
Kc(u) := (c0 + c′

1u)K(u), u ∈ R
d .

(A4) (Kernels) (i) For any c ∈ R
d+1, |Kc(u)| is uniformly bounded by some constant K+

c and
is integrable, that is,

∫
Rd+1 |Kc(x)|dx < ∞;

(ii) For any c ∈ R
d+1, |Kc| has an integrable second-order radial majorant, that is,

QK
c (x) := sup‖y‖≥‖x‖[‖y‖2Kc(y)] is integrable;

(iii) The kernel function K is a continuously differentiable and bounded density func-
tion with compact support CK ⊂ R

d such that
∫

uK(u)du = 0 and
∫

uu′K(u)du
is positive definite.

(B1) (Bandwidths) The bandwith is such that limn→∞ hn = 0 and limn→∞ n̂hd
n = ∞.

(B2) (Bandwidths) Same as (B1), but n̂h4+d
n = O(1) as n → ∞.
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Finally, write fY |X(y|x) for fY |X=x(y) and FY |X(y|x) := P(Yi < y|Xi = x) for the correspond-
ing conditional distribution function. Primes denote transposes.

2.2. Local linear fitting of the spatial quantile regression function

In this section we extend traditional local linear fitting ideas to the context of spatial quantile re-
gression. Write q̇p(x) = (∂qp(x)/∂x1, . . . , ∂qp(x)/∂xd)′ for the gradient at x = (x1, . . . , xd)′ ∈
R

d of x �→ qp(x). The basic idea of local linear fitting (see [16,17,34,54]) consists in approx-
imating in a neighbourhood of x the unknown quantile regression function qp(z) by a linear
function:

qp(z) ≈ qp(x) + (q̇p(x))′(z − x) =: a0 + a′
1(z − x). (2.2)

Therefore, estimating (qp(x), q̇p(x)) is locally equivalent to estimating (a0,a1) = (a0(x),a1(x)).
The classical theory of quantile regression suggests the estimators

(̂a0, â1) := arg min
(a0,a1)

∑
i∈In

ρp

(
Yi − a0 − a′

1(Xi − x)
)
Kh(Xi − x), (2.3)

where ρp(y) := y(p − I{y<0}) stands for the traditional check function, IA is the indicator
function of set A and Kh(x) := h−d

n K(x/hn), with a kernel function K defined on R
d and a

bandwidth h = hn > 0 tending to 0 as n → ∞. This motivates the choice of q̂p(x) := â0 and̂̇qp(x) := â1 as estimators of qp(x) and q̇p(x), respectively. Note that (2.3) does not require the
regular grid structure we are assuming throughout. It seems intuitively clear that “nearly regular
grids” will not harm the results of this paper. However, the asymptotic treatment of irregular
grids (essentially, a definition of a “nearly regular grid”) is a delicate and problematic issue that
we will not consider here.

2.3. Bahadur representation

The definition (2.3) looks simple, but unlike the local linear fitting estimator for spatial mean
regression proposed in [24], it does not allow for an explicit solution, which creates additional
difficulties in developing the asymptotic theory. We overcome these difficulties by obtaining a
Bahadur representation for q̂p and ̂̇qp .

Since the first Bahadur representation for regression quantiles was obtained in [44] (under i.i.d.
errors), several results of that type have been proposed in the literature; see [4,9,26,31]. The result
by Chaudhuri [9], who establishes a Bahadur representation for quantile regression functions
and their derivatives of arbitrary orders, is particularly remarkable. The context, however, is
a nonparametric regression model of the form Yi = θ(Xi) + εi , where the errors εi are i.i.d.
and independent of the regressors Xi ; the influence on quantiles of the Xi ’s thus is limited to
conditional shifts, which precludes all forms of conditional heteroskedasticity. Our result is more
general, as it allows for complex spatial dependencies, and does not put any restriction on the
influence of regressors on the conditional distribution of Y – as long as mixing assumptions are
satisfied. On the other hand, our Bahadur representation is a weak one (with oP remainder –
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which is all we need for asymptotic normality), whereas Chaudhuri’s is a strong one (with a.s.
convergence), addressing first-order derivatives only. The proof of Theorem 2.1 is postponed to
Section A.2.

Theorem 2.1 (Bahadur representation). Let Assumptions (A1), (A3), (A4) and (B1) hold, and
assume that x �→ qp(x) is continuously differentiable at x, with gradient q̇p(x). Then,

(̂nhd
n)1/2

(
q̂p(x) − qp(x)

hn
(̂
q̇p(x) − q̇p(x)

))
= ηp(x)√

n̂hd
n

∑
i∈In

ψp(Y ∗
i )

(
1

Xi − x
hn

)
K

(
Xi − x

hn

)
+ oP(1),

as n → ∞, where ψp(y) := p − I{y<0}, Y ∗
i := Y ∗

i (p) := Yi − qp(x) − (q̇p(x))′(Xi − x), and
ηp(x) := (fY |X(qp(x)|x)fX(x))−1.

2.4. Asymptotic normality

Using the powerful tool of the Bahadur representation, we can establish the consistency and
derive the asymptotic distribution of the local linear quantile regression estimates under weak
conditions. First, we consider the case where the sample size tends to ∞ in the manner of [48],
that is, n �⇒ ∞. Assuming now that (A2) holds, so that x �→ qp(x) is twice differentiable, let

B0(x) := {fX(x)}−1 tr

[
q̈p(x)

∫
uu′K(u)du

]
and B1(x) := (B11(x), . . . ,B1d(x))′,

with

B1j (x) := f −1
X (x) tr

[
q̈p(x)

∫
uu′ujK(u)du

]
, j = 1, . . . , d,

σ 2
0 (x) := η∗(x)

∫
K2(u)du, and σ 2

1(x) := η∗(x)

∫
uu′K2(u)du,

where η∗(x) := η2
p(x)p(1 − p)fX(x) = p(1 − p)/fX(x)f 2

Y |X(qp(x)|x).

Theorem 2.2. Let Assumptions (A1), (A2), (A3′), (A4) (with ϕ(x) = O(x−μ) as x → ∞ for
some μ > 2N ) and (B2) hold. Suppose that there exists a sequence of positive integers qn such
that qn → ∞, qn = o((̂nhd

n)1/2N), and n̂q
−μ
n → 0 as n �⇒ ∞. Moreover, let the bandwidth hn

tend to zero in such a manner that

lim inf
n�⇒∞ qnh

d/a
n > 1 for some N < a < μ − N. (2.4)

Then, for any x and 0 < p < 1, as n �⇒ ∞,√
n̂hd

n

[(
q̂p(x) − qp(x)

hn
(̂
q̇p(x) − q̇p(x)

))
− 1

2

(
B0(x)

B1(x)

)
h2

n

]
L−→ N

(
0,

(
σ 2

0 (x) 0
0 σ 2

1(x)

))
,

so that q̂p(x) and ̂̇qp(x) are asymptotically independent.
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The asymptotic normality results in Theorem 2.2 are stated for q̂p(x) and ̂̇qp(x) at a given x.
They are easily extended, via the traditional Cramér–Wold device, into a joint asymptotic nor-
mality result for any couple (x1,x2) (or any finite collection of x values); the asymptotic covari-
ance terms (between q̂p(x1) and q̂p(x2), q̂p(x1) and ̂̇qp(x2), etc.) all are equal to zero (cf. [24],
page 2478). The same remark also holds for Theorems 2.3–2.6 below.

An important advantage of local polynomial (and linear) fitting over the Nadaraya–Watson
approach is its much better boundary behavior. This advantage often has been emphasized in the
usual regression and time series settings when the regressors take values on a compact subset
of R

d . For example, considering a univariate (d = 1) regressor X with bounded support ([0,1],
say), it can be proved, using an argument similar to the one developed in the proof of Theorem 3.1
of [24], that asymptotic normality still holds at boundary points of the form chn, c ∈ R

+, but with
asymptotic bias and variances

B0 = {fX(0+)}−1
[
q̈p(0+)

∫ ∞

−c

u2K(u)du

]
and σ 2

0 = η∗(0+)

∫ ∞

−c

K2(u)du,

and

B1 = {fX(0+)}−1
[
q̈p(0+)

∫ ∞

−c

u3K(u)du

]
and σ 2

1 = η∗(0+)

∫ ∞

−c

u2K2(u)du,

respectively, where η∗(0+) = η2
p(0+)p(1 − p)fX(0+) = p(1 − p)/fX(0+)f 2

Y |X(qp(0+)|0+);
similar results can be found in [16,18] for mean regression. As pointed out in [24], this advantage
is likely to be more substantial as N grows.

In the important particular case under which ϕ(x) tends to zero at an exponential rate, the
same results are obtained under milder conditions.

Theorem 2.3. Let Assumptions (A1), (A2), (A3′) and (A4) hold, with ϕ(x) = O(e−ξx) as
x → ∞ for some ξ > 0. Then, if hn → 0 as n �⇒ ∞ in such a manner that (̂nh

d(1+2N/a)
n )1/2N ×

(log n̂)−1 → ∞ for some a > N , the conclusions of Theorem 2.2 still hold.

Note that, for N = 1 and “large” values of a, this condition is “close” to the classical one (for
independent observations) that nhd

n → ∞. Next, we consider the situation under which n tends
to ∞ in the “weak” sense (n → ∞ instead of n �⇒ ∞).

Theorem 2.4. Let Assumptions (A1), (A2), (A3′) and (A4) hold, with ϕ(x) = O(x−μ) as
x → ∞ for some μ > 2N . Let qn be a sequence of positive integers such that qn → ∞ as
n → ∞, and assume that the bandwidth hn factorizes into hn := ∏N

i=1 hni
, with n̂q

−μ
n → 0,

qn = o((min1≤k≤N(nkh
d
nk

))1/2), and lim infn→∞ qnh
d/a
n > 1 for some N < a < μ−N . Then the

conclusions of Theorem 2.2 hold as n → ∞.

For ϕ(x) → 0 at an exponential rate, parallel to Theorem 2.3, we have the following:

Theorem 2.5. Let Assumptions (A1), (A2), (A3′) and (A4) hold, with ϕ(x) = O(e−ξx) as
x → ∞ for some ξ > 0. Let the bandwidth hn factorize into hn := ∏N

i=1 hni
in such a way that
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min1≤k≤N {(nkh
d
nk

)1/2}hd/a
n (log n̂)−1 → ∞ for some a > N as n → ∞. Then the conclusions of

Theorem 2.2 hold as n → ∞.

Under (A3′′), we then have the following counterpart of Theorem 2.2:

Theorem 2.6. Let Assumptions (A1), (A2), (A3′′) and (A4) hold, with ϕ(x) = O(x−μ) as
x → ∞ for some μ > 2N . Denote by qn a sequence of positive integers such that qn → ∞,
qn = o((̂nbd

n)1/2N) and n̂κ+1q
−μ−N
n → 0 as n �⇒ ∞. Assume that the bandwidth hn tends to

zero in such a manner that (2.4) is satisfied as n �⇒ ∞. Then the conclusions of Theorem 2.2
hold as n �⇒ ∞.

See Section A.3 for the proofs. Analogues of Theorems 2.3, 2.4 and 2.5 can also be obtained
under Assumption (A3′′); details are left to the reader.

3. Random fields with a spatial trend

In Section 2, the observed process {Yi,Xi} was assumed to be stationary – an assumption that is
often violated in practice. As a reasonable alternative, we can assume that non-stationarity is due
to the presence of a spatial trend and that, instead of the stationary process {Yi,Xi}, we actually
observe {Ỹi, X̃i}, with

Ỹi = μY (si) + Yi, X̃i = μX(si) + Xi, i ∈ In, (3.1)

where si = (si1 , . . . , siN ) := (i1/n1, . . . , iN/nn) and s ∈ [0,1]N �→ (μY (s),μX(s)) is some de-
terministic but unknown trend function. The procedure described in Section 2 then is applied
to the residuals {(Ŷi, X̂i) := (Ỹi − μ̂Y (si), X̃i − μ̂X(si))} of some preliminary spatial smoothing
(μ̂Y (s), μ̂X(s)) of the original {Ỹi, X̃i}.

For the sake of simplicity, we assume throughout this section that N = 2, which is also the
most frequent case in practice. Letting

w(si, s) := W
(
(si − s)/g

)/[∑
j∈In

W
(
(sj − s)/g

)]
,

where g = gn is some bandwidth tending to 0, a simple smoothing is obtained as

μ̂Y (s) =
∑
i∈In

Ỹiw(si, s), μ̂X(s) =
∑
i∈In

X̃iw(si, s). (3.2)

A sufficient technical requirement for the convergence of this kernel smoothing is the following
set of assumptions (inspired by Theorem 2 in [25]).

(C0) (i) {Xi, Yi} is a stationary spatial process with the spatial mixing coefficient specified
in Assumption (A3) with ϕ(m) ≤ Cm−β , where 0 < C < ∞ and β > {1 + (s −
1)(1 + N)}/(s − 2);
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(ii) For some s > 2, E|Yi|s < ∞ and E‖Xi‖s < ∞;
(iii) For θ = {β − 1 − N − (1 + β)/(s − 1)}/{β + 3 − N − (1 + β)/(s − 1)},

(ln n̂/n̂θgN
n ) = o(1).

The local linear estimators of the quantile regression are defined as in (2.3),

(ǎ0, ǎ1) := arg min
(a0,a1)

∑
i∈In

ρp

(
Ŷi − a0 − a′

1(X̂i − x)
)
Kh(X̂i − x), (3.3)

yielding the estimators q̌p(x) := ǎ0 and ˇ̇qp(x) := ǎ1 of qp(x) and q̇p(x), respectively.
In order to study the asymptotic behavior of these estimators, we need some additional regu-

larity conditions.

(C1) s �→ μY (s) and s �→ μX(s) are r times differentiable with bounded derivatives on S :=
[0,1]2, where r is some positive integer.

(C2) There exists a continuous sampling intensity (density) function f defined on S such that
0 < c0 ≤ f (s) ≤ c1 < ∞ for any s ∈ S and n̂−1 ∑

i∈In
I (si ∈ A) → ∫

A
f (s)ds for any

measurable set A ⊂ S , as n → ∞.

Assumption (C1) is a classical smoothness assumption on spatial trend functions; Assump-
tion (C2) is mentioned for the sake of generality, and is trivially satisfied in the case of a regular
grid. Depending on r in Assumption (C1), we require the following conditions on the kernel W

and the bandwidth gn.

(C3) The kernel W(·), defined on R
2, has bounded support with Lipschitz property, that is

|W(u) − W(u′)| ≤ C‖u − u′‖ for all u,u′ ∈ R
2, where C > 0 is a generic constant, and

satisfies (u⊗k stands for the kth Kronecker power of u)∫
W(u)du = 1,

∫
u⊗kW(u)du = 0, k = 1,2, . . . , r − 1,

∫
u⊗rW(u)du �= 0.

(C4) As n → ∞, gn → 0 and n̂g2
nhn → ∞; moreover, gr

n/hn → 0, hd+2
n /(n̂g4

n) → 0,
hd

n ln n̂/g2
n → 0, and n̂hd

ng2r
n → 0.

Assumption (C3) requires a higher order kernel function W(·) of order r , which ensures that the
bias term of the smoothing estimators of the spatial trends is of order O(gr

n) (the same objective
could be achieved through a local polynomial fitting of order (r − 1)). Assumption (C4) on the
bandwidths gn and hn is satisfied, for instance, if we let hn = n̂−1/(d+4), which is optimal under
Assumption (A2), with n̂g

2(d+4)
n → ∞ and n̂g

r(d+4)/2
n → 0, which holds for r > 4.

Theorem 3.1 (Bahadur representation). Let Assumptions (A1), (A3), (A4), (B1) and (C0)–
(C4) hold. Assume that x �→ qp(x) is continuously differentiable at x, with gradient q̇p(x). Then,
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as n → ∞,

(̂nhd
n)1/2

(
q̌p(x) − qp(x)

hn
( ˇ̇qp(x) − q̇p(x)

))
= ηp(x)√

n̂hd
n

∑
i∈In

ψp(Y ∗
i )

(
1

Xi − x
hn

)
K

(
Xi − x

hn

)
+ oP(1).

The proof of Theorem 3.1 is postponed to Section A.4.
It readily follows from this theorem that the asymptotic normality results of Section 2.4 still

hold true for q̌p(x) and ˇ̇qp(x). Details are left to the reader.

4. An application to environmental data

The data set we are analyzing here was collected as part of a project entitled “Geostatistical
Analysis of Plant Community Transitions in the Outer Hebrides”, led by Martin Kent (Univer-
sity of Plymouth), and was kindly provided by his colleague and coauthor Rana Moyeed. This
project aims at a better understanding of the endangered coastal ecosystems in the Outer He-
brides of Scotland known as machairs. Of particular interest in that context are the rates of spatial
change in plant species composition, and the environmental and biotic factors across landscape
boundaries as well as within landscape patches.

Machair is a Gaelic word that describes a distinctive type of coastal grassland found in the
north and west of Scotland, and in western Ireland. It is associated with calcareous sand blown
inland by very strong prevailing winds from beaches and mobile dunes. Machair grassland plains
are a complex mosaic of wet and dry grassland communities and ecosystems. Machair systems
have high conservation value related to their rarity on a global scale, their species composition
and botanical significance, in addition to their geomorphological, archaeological and landscape
importance.

One of the major threats on the fragile equilibrium of the machair ecosystem is the increase of
soil acidity induced, mainly, by an excess of organic matter, possibly related with intensive use
of fertilizers containing ammonium or urea. One way of balancing the observed increase of soil
acidity consists in replacing the lost cation nutrients, particularly calcium. A better understanding
of the interaction between organic matter and Ca concentrations on one hand, soil acidity on the
other hand, is thus crucial, and spatial quantile regression is particularly well adapted for an in-
depth analysis of said interaction. The instance we are treating here is a good example of what
would go unnoticed in a traditional regression/correlation approach but can be detected by our
method.

The analysis we are conducting is deliberately simple, with a minimal number of two covari-
ates (N = d = 2). Data were collected as explained, over a grid of 217 sites. The covariates X1
and X2 are densities of Ca (in mg/kg) and organic matter (in %), respectively. The response Y

is a measure of soil acidity (pH) – a pH less than (resp., greater than) seven is considered acidic
(resp., basic or alkaline), seven being the pH of pure water at 25◦C. Figure 1 presents a spatial
plot of raw data.

As a preliminary step, the data were “detrended” via the standard R function ‘sm.regression’ in
the R library ‘sm’ (see [6] for details). A direct regression of Y against X1 and X2 indeed could
lead to spurious relations induced by spatial trend (hence, spatial non-stationarity). We then apply
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Figure 1. Componentwise spatial perspectives of the machairs data set: (a) Ca density (mg/kg), (b) organic
matter concentration (in %) and (c) soil acidity (pH).

our methods to the resulting residuals, for q = 0.12 (bandwidth 1.7), 0.50 (bandwidth 1.3) and
0.88 (bandwidth 1.5). This yields the conditional regression quantile surfaces shown in Figure 2.

Due to the impossibility of plotting three q-values in one figure, these figures, however, are not
easily readable, and we therefore also provide, in Figure 3, simultaneous plots of the same quan-
tiles, (a) against (detrended) Ca density for three chosen values of organic matter concentration,
and (b) against (detrended) organic matter concentration for three chosen values of Ca density –
along with the corresponding estimated conditional mean. These graphs clearly show that the
(positive) dependence of soil pH on Ca density and its (negative) dependence on organic matter
concentrations are not linear. For low Ca densities (irrespective of organic matter concentrations)
and high organic matter concentrations (irrespective of Ca densities), pH is uniformly low (i.e.,
the soil is rather acid), with pretty limited impact of the covariates. In particular, a minimal Ca
density apparently is required, whatever the organic matter concentration, for inducing any no-
ticeable acidity reduction effect (see Figure 3(a) for this threshold effect); on the other hand,
median pH values are pretty stable (low pH values, hence high acidity) for high organic matter
concentrations (see Figure 3(b)). Conditional pH distributions moreover look highly asymmetric
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Figure 2. Estimated conditional quantiles of order q for soil acidity (pH), conditional on Ca density
(mg/kg) and organic matter concentration (in %) for (a) q = 0.12, (b) q = 0.50 and (c) q = 0.88 (all
variables detrended).

and highly “heteroskedastic”, with much higher spread in right-hand tails (higher uncertainty on
alkalinity) than in the left-hand ones (less uncertainty on acidity). Such facts could not be re-
vealed by a traditional study of conditional means; neither would they be revealed by a simpler
LAD estimation of conditional location. For a localized interpretation at given site i, however,
the estimated trend also should be taken into account, as explained at the end of Section 1.

Asymmetry of the densities involved is confirmed by Figure 4, where kernel estimates of
marginal densities (after preliminary detrending) are provided. Those estimates indicate that pH
measurements exhibit a strongly bimodal profile, meaning that a simple study of conditional
means or conditional medians, contrary to our method, is bound to miss some of the essential
features of the data set.

In this analysis, we restricted ourselves to conditioning on the two covariates, treating the spa-
tial dependence as a nuisance. Further analysis of the data set might be carried out by introducing
neighbouring observations into the set of covariates, which is made possible by our theoretical
results. This is likely to improve the results, but also would increase the dimension of the covari-
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Figure 3. Estimated conditional quantiles of order q = 0.03 and 0.97 (black), q = 0.12 and 0.88 (red) and
q = 0.50 (blue) and estimated conditional mean (solid green) for soil acidity (pH), (a) conditional on Ca
density (mg/kg) and organic matter concentrations −28.5, 0.0 and 39.6, and (b) conditional on organic
matter concentration and Ca densities −0.82, 0.00 and 0.67 (all variables detrended).

ate space. Semi-parametric dimension-reduction techniques then should be considered, as in [19]
and [38]. Our purpose here was voluntarily limited to a simple illustration of the spatial regression
quantile methods described in Section 2. Limited as it is, we hope this short study provides a good
picture of how our method may provide a better understanding of complex spatial processes.
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Figure 4. Kernel estimates of the marginal densities of soil acidity (pH), organic matter concentration
(in %) and Ca density (mg/kg) (after preliminary detrending).

Appendix: Proofs

A.1. A preliminary lemma

The following lemma is an improved version of the cross-term inequality of Lemma 5.2 of [24],
adapted to the quantile regression context, and plays a crucial role in the subsequent sections.
For the sake of generality, and in order for this lemma to apply beyond the specific framework
of this paper, we do not necessarily assume that the mixing coefficient take the form imposed in
Assumption (A3). Let {(Yj,Xj); j ∈ Z

N } denote a stationary spatial process with general mixing
coefficient

ϕ(j) = ϕ(j1, . . . , jN) := sup
{|P(AB) − P(A)P(B)| :A ∈ B({Yi,Xi}),B ∈ B({Yi+j,Xi+j})

}
.

Let (y,x) �→ b̃(y,x) be a bounded measurable function defined on R
1 × R

d . Set

ηj(x) := b̃(Yj,Xj)K
(
(x − Xj)/hn

)
, �j(x) := ηj(x) − Eηj(x),

and R̃(x) := (̂nhd
n)−1 ∑

i�=j∈In
E[�i(x)�j(x)]. For any cn := (cn1, . . . , cnN) ∈ Z

N with 1 <

cnk < nk for all k = 1, . . . ,N , define J̃1(x) := h2d
n

∏N
k=1(nkcnk) and

J̃2(x) := n̂
N∑

k=1

ns∑
|js |=1

s=1,...,k−1

nk∑
|jk |=cnk

ns∑
|js |=1

s=k+1,...,N

ϕ(j1, . . . , jN ).
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Lemma A.1 (Cross-term lemma). Under Assumptions (A1), (A2) and (A4), there exists a con-
stant C > 0 such that |R̃(x)| ≤ C(̂nhd

n)−1[J̃1(x) + J̃2(x)]. If, furthermore, ϕ(j1, . . . , jN ) takes

the form ϕ(‖j‖), then J̃2(x) ≤ Cn̂
∑N

k=1
∑‖n‖

t=cnk
tN−1ϕ(t).

Proof. The main idea of the proof is similar to that of Lemma 5.2 of [24], though details are
different. We only briefly sketch it here. Writing Zj for b̃(Yj,Xj), we have ηj(x) = ZjK((x −
Xj)/hn), where |Zj| is bounded by some L > 0. For i �= j, letting Kn(x) := (1/hd

n)K(x/hn),

h−d
n [�j(x)�i(x)] = hd

n

∫ ∫
Kn(x − u)Kn(x − v)

× {
g1ij(u,v)fi,j(u,v) − g

(1)
1 (u)g

(1)
1 (v)f (u)f (v)

}
du dv,

where g1ij(u,v) := E(ZiZj|Xi = u,Xj = v), and g
(1)
1 (u) := E(Zi|Xi = u). Since |Zi| is bounded

by L, we have that |g1ij(u,v)| ≤ L2 and |g(1)
1 (u)g

(1)
1 (v)| ≤ L2. Thus,∣∣g1ij(u,v)fi,j(u,v) − g

(1)
1 (u)g

(1)
1 (v)f (u)f (v)

∣∣ ≤ L2|fi,j(u,v) − f (u)f (v)| + 2L2f (u)f (v).

It then follows from Assumption (A1) and the Lebesgue density Theorem (see Chapter 2 of [13])
that

h−d
n |E�j(x)�i(x)| ≤ hd

n

∫ ∫
Kn(x − u)Kn(x − v)L2|fi,j(u,v) − f (u)f (v)|du dv

+ 2hd
n

∫ ∫
Kn(x − u)Kn(x − v)L2f (u)f (v)}du dv (A.1)

≤ Chd
nL2 = Chd

n.

Let cn = (cn1, . . . , cnN) ∈ R
N be a sequence of vectors with positive components. Define

S1 := {i �= j ∈ In : |jk − ik| ≤ cnk, for all k = 1, . . . ,N}
and

S2 := {i, j ∈ In : |jk − ik| > cnk, for some k = 1, . . . ,N}.
Clearly, Card(S1) ≤ 2N n̂

∏N
k=1 cnk . Splitting R̃(x) into (̂nhd

n)−1(J1 + J2), with J� :=∑
i,j∈S�

E�j(x)�i(x), � = 1,2, it follows from (A.1) that

|J1| ≤ Ch2d
n Card(S1) ≤ 2NCh2d

n n̂
N∏

k=1

cnk. (A.2)

Turning to J2, we have |J2| ≤ ∑
i,j∈S2

|E�j(x)�i(x)|. Davydov’s inequality (cf. Lemma 2.1
of [48]) and the boundedness of �i(x) yield |E�j(x)�i(x)| ≤ Cϕ(j − i). Hence,

|J2| ≤ C
∑

i,j∈S2

ϕ(j − i) =: C�2, say.
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We now analyze �2 in detail. For any N -tuple 0 �= � = (�1, . . . , �N) ∈ {0,1}N , set

S(�1, . . . , �N) := {i, j ∈ In : |jk − ik| > cnk if �k = 1

and |jk − ik| ≤ cnk if �k = 0, k = 1, . . . ,N}
and

V (�1, . . . , �N) :=
∑

i,j∈S(�1,...,�N )

ϕ(j − i).

Then,

�2 =
∑

i,j∈S2

ϕ(j − i) =
∑

0�=�∈{0,1}N
V (�1, . . . , �N)

where, as in equation (5.11) of [24],

V (�1, �2, . . . , �N) ≤ n̂
∑
|j1|

· · ·
∑
|jk |

· · ·
∑
|jN |

ϕ(j1, . . . , jN ),

with the sums
∑

|jk | running over all jk’s such that 1 ≤ |jk| ≤ nk when �k = 0, such that cn1 ≤
|jk| ≤ nk when �k = 1. Since all terms are non-negative, for 1 ≤ cnk ≤ nk , sums of the form∑nk|jk |=cnk

· · · are smaller than those of the form
∑nk

|jk |=1 · · · , and

|J2| ≤ Cn̂
N∑

k=1

n1∑
|j1|=1

· · ·
nk−1∑

|jk−1|=1

nk∑
|jk |=cnk

nk+1∑
|jk+1|=1

· · ·
nN∑

|jN |=1

ϕ(j1, . . . , jN ). (A.3)

The first part of the lemma is a consequence of (A.2) and (A.3). The second part follows from
the fact that, if ϕ(j1, . . . , jN ) depends on ‖j‖ only,

n1∑
|j1|=1

· · ·
nk−1∑

|jk−1|=1

nk∑
|jk |=cnk

nk+1∑
|jk+1|=1

· · ·
nN∑

|jN |=1

ϕ(‖j‖) ≤
‖n‖∑

t=cnk

t∑
|j1|=1

· · ·
t∑

|jN−1|=1

ϕ(t)

≤
‖n‖∑

t=cnk

tN−1ϕ(t).
�

A.2. Proof of the Bahadur representation result

We first introduce some notation. Throughout, let C > 0 denote a generic constant. Let Xhi :=
(Xi − x)/hn, X hi := (1,X′

hi)
′, Ki := K(Xhi), Hn = (̂nhd

n)1/2,

θ := Hn
(
a0 − qp(x), hn

(
a1 − q̇(x)

)′)′
, θn := Hn

(̂
a0 − qp(x), hn

(̂
a1 − q̇(x)

)′)′

and θ̃ := Hn(ã0 − qp(x), hn(ã1 − q̇(x))′)′, where (a0,a′
1)

′, (ã0, ã′
1)

′ ∈ R
1+d . With Y ∗

i defined in
Theorem 2.1, put Y ∗

ni(θ) := Y ∗
i − θ ′X hi/Hn, Tni := (q̇p(x))′Xhihn and Uni := Uni(θ) = Tni +
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θ ′X hi/Hn. With this notation, Y ∗
i = Yi − qp(x) − Tni and Y ∗

ni(θ) = Yi − qp(x) − Uni(θ) = Yi −
a0 − a′

1(Xi − x). Since K is a bounded function with bounded support,

‖Xhi‖ ≤ C and ‖X hi‖ ≤ C when Ki > 0. (A.4)

When ‖θ‖ ≤ M and Ki > 0, |Tni| ≤ Chn and |Uni| ≤ Chn +CH−1
n → 0 as n → ∞. It follows

from (2.3) that

θn = arg min
θ∈R1+d

∑
i∈In

ρp(Y ∗
ni(θ))Ki. (A.5)

Finally, define Vn(θ) := H−1
n

∑
i∈In

ψp(Y ∗
ni(θ))X hiKi. The following lemma provides an as-

ymptotic representation result for sequences θn of solutions of Vn(θ) = 0 or, more generally, for
any sequence θn such that Vn(θ) = oP(1) as n → ∞. This spatial version of Lemma A.4 of [32]
plays a key role in the proof of Theorem 2.1.

Lemma A.2. Let δ �→ Vn(δ) satisfy (i) δ′Vn(λδ) ≤ δ′Vn(δ) for all λ ≥ 1 and
(ii) sup‖δ‖≤M ‖Vn(δ) + fY |X(qp(x)|x)Dδ − An‖ = oP(1) as n → ∞, where ‖An‖ is OP(1),
0 < M < ∞, fY |X(qp(x)|x) > 0 and D is a positive definite matrix. Suppose that δn is such that
‖Vn(δn)‖ = oP(1). Then, ‖δn‖ = OP(1) and δn = [fY |X(qp(x)|x)]−1D−1An + oP(1) as n → ∞.

Proof. The proof follows along the same lines as in [32], page 809; details are left to the
reader. �

In order to establish the Bahadur representation result of Theorem 2.1, it is now sufficient to
check that the assumptions of Lemma A.2 are satisfied. To do this, we repeatedly use the next
lemma, the proof of which is essentially the same as in the time series case (cf. [37]), and hence
is omitted.

Lemma A.3. Let Assumptions (A1)(ii)–(iii) and (A2) hold. Then, for n large enough,

E[|ψp(Y ∗
ni(θ)) − ψp(Y ∗

ni(θ̃))|Ki] ≤ CE
[
I
(|Y ∗

ni(θ̃)|<C‖θ−θ̃‖/Hn)
Ki

] ≤ C‖θ − θ̃‖hd
n/Hn,

E[|ψp(Y ∗
ni(θ)) − ψp(Y ∗

ni(θ̃))|2K2
i ] ≤ CE

[
I
(|Y ∗

ni(θ̃)|<C‖θ−θ̃‖/Hn)
K2

i

] ≤ C‖θ − θ̃‖hd
n/Hn

for any θ , θ̃ ∈ {θ :‖θ‖ ≤ M}.

Lemma A.4. Under the conditions of Theorem 2.1,

sup
‖θ‖≤M

∥∥Vn(θ) − Vn(0) − E
(
Vn(θ) − Vn(0)

)∥∥ = oP(1).

Proof. The proof is divided into two steps. The first step consists in proving that∥∥Vn(θ) − Vn(0) − E
(
Vn(θ) − Vn(0)

)∥∥ = oP(1). (A.6)
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for any fixed θ such that ‖θ‖ ≤ M . Note that

Vn(θ) − Vn(0) = H−1
n

∑
i∈In

[ψp(Y ∗
ni(θ)) − ψp(Y ∗

i )]X hiKi =: H−1
n

∑
i∈In

Vni(θ), (A.7)

where Vni(θ) := (V 0
ni(θ), (V1

ni(θ))′)′, with

V 0
ni(θ) := [ψp(Y ∗

ni(θ)) − ψp(Y ∗
i )]Ki and V1

ni(θ) = [ψp(Y ∗
ni(θ)) − ψp(Y ∗

i )]XhiKi.

Then, from (A.7), the left-hand side of (A.6) is bounded by

H−1
n

∣∣∣∣∑
i∈In

(
V 0

ni(θ) − EV 0
ni(θ)

)∣∣∣∣ + H−1
n

∥∥∥∥∑
i∈In

(
V1

ni(θ) − EV1
ni(θ)

)∥∥∥∥ =: V 0
n + V 1

n . (A.8)

It follows from stationarity together with Lemma A.1 that

E(V 0
n )2 = (̂nhd

n)−1
[∑

i∈In

var(V 0
ni(θ)) +

∑
i�=j∈In

cov(V 0
ni(θ),V 0

nj(θ))

]
(A.9)

≤ h−d
n var(V 0

n1(θ)) + (̂nhd
n)−1[J̃1(x) + J̃2(x)],

where J̃1(x) ≤ Cn̂h2d
n

∏N
k=1 cnk and J̃2(x) ≤ Cn̂

∑N
k=1

∑‖n‖
t=cnk

tN−1ϕ(t), as implied by Lem-
ma A.1. Here cnk , k = 1, . . . ,N , are positive integers depending on n, to be specified later on. In
order to bound (A.9), we apply Lemma A.3 with θ̃ = 0; for ‖θ‖ ≤ M , var(V 0

n1(θ)) ≤ E[(V 0
n1)

2] =
E[|ψp(Y ∗

ni(θ)) − ψp(Y ∗
i )|2K2

i ] ≤ Chd
n/Hn. Then it follows from (A.9) with cnk = h

−d/a
n for

k = 1, . . . ,N , that

E[(V 0
n )2] ≤ CH−1

n + Ch
(1−N/a)d
n + C

N∑
k=1

ca
nk

∞∑
t=cnk

tN−1ϕ(t) = o(1), (A.10)

in view of Assumption (A3) and the fact that hn → 0, n̂hd
n → ∞ and a > N . Similar to (A.10),

we have E(V 1
n )2 = o(1) which, with (A.8) and (A.10), implies (A.6).

The second step consists in establishing the uniform consistency with respect to ‖θ‖ ≤ M

by a chaining argument. Decompose {θ :‖θ‖ ≤ M} into cubes based on the grid (j1γM, . . . ,

jd+1γM), ji = 0,±1, . . . ,±[1/γ ] + 1, where [1/γ ] denotes the integer part of 1/γ and γ is a
small positive number that does not depend on n. Let R(θ) be the lower vertex of the cube that
contains θ . Clearly, ‖R(θ) − θ‖ ≤ Cγ and the number of elements of {R(θ) :‖θ‖ ≤ M} is finite.
Then

sup
‖θ‖≤M

∥∥Vn(θ) − Vn(0) − E
(
Vn(θ) − Vn(0)

)∥∥ ≤ V ∗
n1 + V ∗

n2 + V ∗
n3 (A.11)

where, following (A.6), V ∗
n1 := sup‖θ‖≤M ‖Vn(R(θ))−Vn(0)−E(Vn(R(θ))−Vn(0))‖ is oP(1),

V ∗
n2 := sup‖θ‖≤M ‖Vn(θ) − Vn(R(θ))‖, and V ∗

n3 := sup‖θ‖≤M ‖E(Vn(θ) − Vn(R(θ)))‖. Us-
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ing (A.4) and, for ‖θ‖ ≤ M , applying Lemma A.3 with θ̃ = R(θ) for n large enough,

V ∗
n3 ≤ CH−1

n n̂ sup
‖θ‖≤M

E[|ψp(Y ∗
ni(θ)) − ψp(Y ∗

ni(R(θ)))|Ki]

≤ C sup
‖θ‖≤M

‖θ − R(θ)‖ ≤ Cγ.

Therefore, letting n → ∞ and γ → 0, we have V ∗
n3 = o(1).

Let Bi(θ) := I(|Y ∗
ni(θ)|<Cγ/Hn)‖X hi‖Ki. Since |I(y<a) − I(y<0)| ≤ I(|y|≤|a|),

V ∗
n2 ≤ sup

‖θ‖≤M

‖Vn(θ) − Vn(R(θ))‖ ≤ C sup
‖θ‖≤M

H−1
n

∑
i∈In

Bi(R(θ)) ≤ Bn1 + Bn2,

where, by the same argument as above, Bn1 := C sup‖θ‖≤M H−1
n

∑
i∈In

EBi(R(θ)) = o(1),
and, similar to (A.10), Bn2 := C sup‖θ‖≤M |H−1

n
∑

i∈In
(Bi(R(θ)) − EBi(R(θ)))| = oP(1). Thus,

V ∗
n2 = oP(1), and Lemma 4.4 follows from (A.11). �

Lemma A.5. Let D := fX(x)diag(1,
∫

uu′K(u)du). Under Assumptions (A1)(iii) and (A2),
sup‖θ‖≤M ‖E(Vn(θ) − Vn(0)) + fY |X(qp(x)|x)Dθ‖ = o(1).

Proof. The proof again is similar to that in the time series case (see [37]). �

Lemma A.6. Denote by θn the minimizer in (A.5). Then, ‖Vn(θn)‖ is oP(H−1
n ).

Proof. The proof is similar to that of Lemma A.2 of [44]. �

Lemma A.7. Under Assumptions (A1) and (A2), if a ≥ N and hn → 0,

E
[(

c′Vn(0) − c′EVn(0)
)2] → p(1 − p)fX(x)

∫
(c0 + c′

1u)2K2(u)du

as n → ∞, where c = (c0, c′
1)

′ ∈ R
1+d .

Proof. Let vi := ψp(Y ∗
i )(c0 + c′

1Xhi)Ki. Lemma A.1 with cnk = h
−d/a
n for k = 1, . . . ,N yields

E
[(

c′Vn(0) − c′EVn(0)
)2] = (̂nhd

n)−1
[∑

i∈In

var(vi) +
∑

i�=j∈In

cov(vi, vj)

]
(A.12)

= h−d
n var(v1) + O(1)h

(1−N/a)d
n

+ O(1)

N∑
k=1

ca
nk

∞∑
t=cnk

tN−1ϕ(t)

=: vn1 + vn2 + vn3. (A.13)
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Theorem 3 of [13] (page 8) entails

E
[
I(Y ∗

1 <0)(c0 + c′
1Xh1)

2K2
1

] = E
[
FY |X

(
qp(x) + q̇p(X1 − x)|X1

)
(c0 + c′

1Xh1)
2K2

1

]
−→ pfX(x)

∫
(c0 + c′

1u)2K2(u)du

and E[I(Y ∗
1 <0)(c0 + c′

1Xh1)K1] −→ pfX(x)
∫
(c0 + c′

1u)K(u)du. This in turn implies

h−d
n E[v2

1] = E
[(

p2 − 2pI(Y ∗
1 <0) + I(Y ∗

1 <0)

)
(c0 + c′

1Xh1)
2K2

1

]
−→ p(1 − p)fX(x)

∫
(c0 + c′

1u)2K2(u)du,

and

h−d
n E[v1] = E

[(
p − I(Y ∗

1 <0)

)
(c0 + c′

1Xh1)K1
]

−→ (p − p)fX(x)

∫
(c0 + c′

1u)K(u)du = 0.

Hence, vn1 = h−d
n E[v2

1] − h−d
n (Ev1)

2 −→ p(1 − p)fX(x)
∫
(c0 + c′

1u)2K2(u)du. On the other
hand, it clearly follows from the fact that hn → 0 and Assumption (A3) with a > N , that |vn2 +
vn3| = O(1)h

(1−N/a)d
n + O(1)

∑N
k=1 ca

nk

∑∞
t=cnk

tN−1ϕ(t) −→ 0. The result follows. �

Proof of Theorem 2.1. As already mentioned, it is sufficient to check that the condi-
tions of Lemma A.2 are fulfilled. First we note that Lemmas A.4 and A.5 lead to (ii) of
Lemma A.2. Also, it follows from Lemma A.6 together with Assumptions (A2) and (A3)
that ‖Vn(θn)‖ = oP(1). Take An = Vn(0). Then it is clear from Lemma A.7 that An = OP(1).
Since y �→ ψp(y) is monotone increasing, the function λ �→ −θ ′Vn(λθ) = H−1

n
∑

i∈In
ψp(y∗

i −
λθ ′Xhi/Hn)(−θ ′X hi)Ki also is. Therefore, condition (i) of Lemma A.2 holds. The theorem
follows. �

A.3. Proof of asymptotic normality

On the basis of the Bahadur representation of Theorem 2.1, the asymptotic normality of our esti-
mators in Theorems 2.2–2.6 follows exactly as in the corresponding proofs for mean regression
in [24], with the “cross-term” Lemma A.1 replacing the corresponding Lemma A.2 in that paper,
yielding the asymptotic normality with the bias (i.e., the expectation) of the first term on the
right-hand side of (2.5) as

E

⎡⎣ ηp(x)√
n̂hd

n

∑
i∈In

ψp(Y ∗
i )

(
1

Xi − x
hn

)
K

(
Xi − x

hn

)⎤⎦
= ηp(x)√

n̂hd
n

n̂E

[
ψp(Y ∗

i )

(
1

Xi − x
hn

)
K

(
Xi − x

hn

)]



680 M. Hallin, Z. Lu and K. Yu

= ηp(x)

√
n̂hd

nh−d
n E

[(
FY |X(qp(Xi)|Xi) − FY |X

(
qp(x) + (q̇p(x))′(Xi − x)|Xi

))
×

(
1

Xi − x
hn

)
K

(
Xi − x

hn

)]

=
√

n̂hd
n

[(
1 + o(1)

)1

2

(
B0(x)

B1(x)

)
h2

n

]
,

where the last equality is derived via a first-order Taylor expansion of y �→ FY |X(y|·) and a
second-order Taylor expansion of x �→ qp(x) (these expansions exist in view of Assumptions
(A1)(ii) and (A2)). The (1 + o(1)) factor is eliminated in Theorems 2.2–2.6 by using Assump-
tion (B2). Details are omitted.

A.4. Proof Theorem 3.1

Recall that N = 2 has been assumed throughout this section. Following Hansen [25], μ̂Y (s) and
μ̂X(s) are such that

sup
s∈[0,1]2

|μ̂Y (s) − μY (s)| = OP(εn) and sup
s∈[0,1]2

‖μ̂X(s) − μX(s)‖ = OP(εn),

with εn = (ln n̂/(n̂g2))1/2 + gr =: ε1
n + ε2

n, where ε1
n is obtained as in the proof of Theorem 2

of Hansen [25] under Assumptions (C0), (C1), (C3) and (A3), while ε2
n readily follows from

Assumptions (C1) and (C3). Therefore, we have

max
i

|Ŷi − Yi| = OP(εn) and max
i

‖X̂i − Xi‖ = OP(εn). (A.14)

Hence ϒn := max{maxi |Ŷi − Yi|,maxi ‖X̂i − Xi‖} = OP(εn), that is, P[ϒn > Cεn] → 0 as
n̂ → ∞ and C → ∞. Thus we can assume that, with probability arbitrarily close to one,
ϒn ≤ Cεn for some C and n sufficiently large. Let

V̂n(θ) := H−1
n

n1∑
i1=1

n2∑
i2=1

ψp(Ŷ ∗
ni(θ))X̂hiK̂i

with

Ŷ ∗
ni(θ) = Ŷi − a0 − a′

1(X̂i − x), X̂hi = (1, X̂′
hi)

′,

X̂hi = X̂i − x
h

, K̂i = K

(
X̂i − x

h

)
.
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We only need to show that sup|θ |≤M |V̂n(θ) − Vn(θ)| = oP(1), since Lemma A.3 with V̂n(θ)

instead of Vn(θ) still applies. Now,

V̂n(θ)−Vn(θ) = H−1
n

n1∑
i1=1

n2∑
i2=1

[ψp(Ŷ ∗
ni(θ))X̂hiK̂i −ψp(Y ∗

ni(θ))XhiKi] = Bn3 +Bn,4, (A.15)

where

Bn3 := H−1
n

n1∑
i1=1

n2∑
i2=1

[ψp(Ŷ ∗
ni(θ)) − ψp(Y ∗

ni(θ))]X̂hiK̂i

and

Bn4 := H−1
n

n1∑
i1=1

n2∑
i2=1

ψp(Y ∗
ni(θ))[X̂hiK̂i − XhiKi].

Proceeding as in the proof of Lemma A.4 (from equation (A.11) on), by noting that
|ψp(Ŷ ∗

ni(θ)) − ψp(Y ∗
ni(θ))| ≤ I{|Y ∗

ni(θ)|≤ϒn}, we obtain, since ϒn ≤ Cεn,

|c′Bn3| ≤ CH−1
n

n1∑
i1=1

n2∑
i2=1

I{|Y ∗
ni(θ)|≤ϒn}|Kc(X̂hi)|

≤ C
(
1 + oP(1)

)
H−1

n

n1∑
i1=1

n2∑
i2=1

I{|Y ∗
ni(θ)|≤Cεn}|Kc(Xhi)|.

In view of (A.14), the oP(1) quantity here is uniform in i. Since E[I{|Y ∗
ni(θ)|≤Cεn}|Kc(Xhi)|] is

O(εnhd
n) uniformly with respect to θ , it follows that

H−1
n

n1∑
i1=1

n2∑
i2=1

E
[
I{|Y ∗

ni(θ)|≤Cεn}|Kc(Xhi)|
] = H−1

n n̂O(εnhd
n)

= O(Hnεn) = O
(
(hd

n ln n̂/g2)1/2 + (n̂hd
ng2r )1/2).

Therefore |c′Bn3| = oP(1), and Bn3 = oP(1) uniformly with respect to θ .
On the other hand, Kc(x) is continuously differentiable since K(x) is, so that

c′[X̂hiK̂i − XhiKi] = Kc(X̂hi) − Kc(Xhi) = (
1 + oP(1)

)
h−1(K̇c(Xhi))

′(X̂i − Xi),

where K̇c(x) denotes the gradient of Kc(x) with respect to x; from (A.14), the oP(1) quantity
here is uniform with respect to i. Then,

Bn4 = (
1 + oP(1)

)
H−1

n

n1∑
i1=1

n2∑
i2=1

ψp(Y ∗
ni(θ))h−1K̇c(Xhi)(X̂i − Xi).
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Note that, by (3.2) and (3.1),

X̂i − Xi = μX(si) − μ̂X(si) = μX(si) −
n1∑

j1=1

n2∑
j2=1

X̃jw(sj, si) = w̃(si) −
n1∑

j1=1

n2∑
j2=1

Xjw(sj, si),

where w̃(si) = ∑
j∈In

(μX(si) − μX(sj))w(sj, si) = O(gr) uniformly, under Assumptions (C1)–
(C3), with respect to i. It easily follows that

Bn4 = (
1 + oP(1)

)[
Bn41 −

∑
j∈In

X(sj)Bn42j

]
, (A.16)

where

Bn41 := Bn41(θ) := H−1
n

n1∑
i1=1

n2∑
i2=1

ψp(Y ∗
ni(θ))h−1K̇c(Xhi)w̃(si),

and

Bn42j := Bn42j(θ) := H−1
n

n1∑
i1=1

n2∑
i2=1

ψp(Y ∗
ni(θ))h−1K̇c(Xhi)w(sj, si).

Along the same lines as in the proof of Lemma A.4, it can be shown that, since w̃(si) = O(gr)

uniformly in si,

E
[∣∣Bn41(θ) − Bn41(0) − (

EBn41(θ) − EBn41(0)
)∣∣2]

= H−2
n

[
n̂(hd

n/Hn)(gr/h)2 + n̂
2∏

k=1

cnkh
2d
n (gr/h)2 + n̂(gr/h)2

‖n‖∑
t=cnk

tϕ(t)

]

= H−1
n (gr/h)2 + h

(1−2/a)d
n (gr/h)2 + (gr/h)2ca

nk

‖n‖∑
t=cnk

tϕ(t) = o(1).

Similarly, taking cnk = [h−d
n ]1/a → ∞, and since w(sj, si) = O((n̂g2)−1) uniformly in si and sj,

E
∣∣Bn42j(θ) − Bn42j(0) − (

EBn42j(θ) − EBn42j(0)
)∣∣2

= Hn
−1(1/(n̂g2)h

)2 +
2∏

k=1

cnkh
d
n
(
1/(n̂g2)h

)2 + h−d
n

(
1/(n̂g2)h

)2
‖n‖∑

t=cnk

tϕ(t)

= Hn
−1(1/(n̂g2)h

)2 + h
(1−2/a)d
n

(
1/(n̂g2)h

)2 + (
1/(n̂g2)h

)2
ca

nk

‖n‖∑
t=cnk

tϕ(t) = o(1),



Spatial quantile regression 683

uniformly with respect to j. Thus, applying the chaining argument as in the proof of Lemma A.4,
it follows that

sup
‖θ‖≤M

∥∥Bn41(θ) − Bn41(0) − (
EBn41(θ) − EBn41(0)

)∥∥ = oP(1), (A.17)

sup
‖θ‖≤M

∥∥Bn42j(θ) − Bn42j(0) − (
EBn42j(θ) − EBn42j(0)

)∥∥ = oP(1), (A.18)

uniformly with respect to j. Further, it is easily shown that

Bn41(0) − EBn41(0) = oP(1), Bn42j(0) − EBn42j(0) = oP(1) (A.19)

uniformly with respect to j, while (the last step follows from integration by parts)

En41(θ) = H−1
n n̂Eψp(Y ∗

ni(θ))h−1K̇c(Xhi)w̃(si)

= H−1
n n̂E

[
F(qp(Xi)|Xi) − F

(
qp(x) + Uni(θ)|Xi

)]
h−1K̇c(Xhi)w̃(si)

= H−1
n n̂

(
1 + o(1)

)
fY |X(qp(x)|x) (A.20)

× E
[ 1

2 (Xi − x)′q̈p(x)(Xi − x) + θ ′XhiH
−1
n

]
K̇c(Xhi)(g

r/h)

= O
(
(n̂hd+2

n g4)1/2 + gr/h
)

uniformly with respect to θ . Similarly,

EBn42j(θ) = H−1
n n̂E

[
F(qp(Xi)|Xi) − F

(
qp(x) + Uni(θ)|Xi

)]
h−1K̇c(Xhi)w(si, sj)

(A.21)
= (

1 + o(1)
)
w(si, sj)[(n̂hd+2

n )1/2A(x) + h−1θ ′B(x)]
uniformly with respect to ‖θ‖ ≤ M , i and j, where

A(x) := fY |X(qp(x)|x)fX(x) tr

(
q̈p(x)

∫
uu′K̇c(u)du

)
and B(x) := fY |X(qp(x)|x)fX(x)

∫
(1,u′)′K̇c(u)du. Then, (A.17)–(A.21) imply that

Bn41(θ) = O
(
(n̂hd+2

n g4)1/2 + gr/h
)

(A.22)

uniformly with respect to θ , and that

Bn42j(θ) = (
1 + o(1)

)
w(si, sj)[(n̂hd+2

n )1/2A(x) + h−1θ ′B(x)] (A.23)

uniformly with respect to θ , i and j. Since Xi is α-mixing and stationary, with EXi = 0 and
w(si, sj) = O(1/n̂g2) uniformly in i and j, we easily show that

E

∥∥∥∥∑
j∈In

Xjw(si, sj)

∥∥∥∥2

= E[X′
jXj]

∑
j∈In

W 2((si − sj)/g)

(
∑

j∈In
W((si − sj)/g))2

+
∑

j1 �=j2

E[X′
j1

Xj2]w(si, sj1)w(si, sj2)

= O(1)
(
(1/n̂g2) + (1/n̂g2)2) = O(1/n̂g2)
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uniformly with respect to i. Hence, in view of (A.23), we obtain∑
j∈In

XjBn42j = (
1 + o(1)

)(
(n̂hd+2

n )1/2A(x) + h−1θ ′B(x)
) ∑

j∈In

Xjw(si, sj)

= (
1 + o(1)

)(
(n̂hd+2

n )1/2A(x) + h−1θ ′B(x)
)
O(1/n̂g2) (A.24)

= OP
(
(hd+2

n /n̂g4)1/2 + (1/n̂hg2)
) = oP(1)

uniformly with respect to θ , ‖θ‖ ≤ M ; (A.16), (A.22) and (A.24) thus imply that Bn4 is oP(1),
uniformly over ‖θ‖ ≤ M and, in view of (A.15), we have that V̂n(θ) − Vn(θ) = Bn3 + Bn4 =
oP(1) uniformly over |θ | ≤ M , which completes the proof.
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