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Increasing practical interest has been shown in regression problems where the errors, or disturbances, are
centred in a way that reflects particular characteristics of the mechanism that generated the data. In eco-
nomics this occurs in problems involving data on markets, productivity and auctions, where it can be natural
to centre at an end-point of the error distribution rather than at the distribution’s mean. Often these cases
have an extreme-value character, and in that broader context, examples involving meteorological, record-
value and production-frontier data have been discussed in the literature. We shall discuss nonparametric
methods for estimating regression curves in these settings, showing that they have features that contrast so
starkly with those in better understood problems that they lead to apparent contradictions. For example,
merely by centring errors at their end-points rather than their means the problem can change from one with
a familiar nonparametric character, where the optimal convergence rate is slower than n−1/2, to one in the
super-efficient class, where the optimal rate is faster than n−1/2. Moreover, when the errors are centred in a
non-standard way there is greater intrinsic interest in estimating characteristics of the error distribution, as
well as of the regression mean itself. The paper will also address this aspect of the problem.

Keywords: bandwidth; curve estimation; extreme-value theory; jump discontinuity; kernel; local linear
methods; local polynomial methods; nonparametric regression; smoothing; super efficiency

1. Introduction

The problem of estimating the end-point and tail shape of a distribution has a distinguished his-
tory, not least because it provides important examples of non-regular behaviour for various types
of inference. See, for example, Harter and Moore (1965) and Smith (1985). The problem also has
important practical motivations, arising in part from the prevalence of power-law distributions;
see Zipf (1941, 1949). More recently, end-point and tail shape problems have been studied in
regression settings; for example, in econometric models for auctions.

The importance of end-point estimation to auction models and the consequent fact that statis-
tical inference in such models is non-regular were first noted by Paarsch (1992) and Donald and
Paarsch (1993). The end-point problem arises there because the distribution of bid price gener-
ally depends on all the parameters of the model, for instance, on parameters that determine the
costs of bidders. For particular examples of auction models, see Paarsch (1992) and Donald and
Paarsch (2002).

Similar phenomena occur in truncated- or censored-regression models (e.g., Breen (1996);
Long (1997)), market-structure analysis (e.g., Robinson and Chiang (1996)) and inference for

1350-7265 © 2009 ISI/BS

http://isi.cbs.nl/bernoulli/
http://dx.doi.org/10.3150/08-BEJ173
mailto:halpstat@ms.unimelb.edu.au
mailto:ingrid.vankeilegom@uclouvain.be


Nonparametric “regression” when errors are positioned at end-points 615

production frontiers in econometrics (e.g., Aigner et al. (1977); Park and Simar (1994); Hall and
Park (2004)). There is a strong association between these fields and those where extreme-value
methods are used; for example, the successful bid at an auction is the extremum of all bids.

Although the term “regression” is commonly used in these settings, strictly speaking it is not
correct. Since the error distribution is not centred at its expectation then the “regression mean” no
longer admits its conventional definition as the average of the response variable given the value
of the covariate, or explanatory, variable. This apparently minor distinction can have a major
impact, and, for example, can lead to an intriguing paradox, as we shall show shortly.

In the context of auction models, Hirano and Porter (2003), Jofre-Bonet and Pesendorfer
(2003) and Chernozhukov and Hong (2004) studied parametric approaches to inference about
distribution end-points and jump heights. Campo et al. (2002) suggested a semi-parametric tech-
nique. Related statistical work tends to be in the setting of parametric regression; see, for exam-
ple, Koenker et al. (1994), Smith (1994), Jurec̆ková (2000), Portnoy and Jurec̆ková (2000) and
Knight (2001a). Knight (2001b) generalised several of the contributions of Smith (1994). In par-
ticular, in the context of curve estimation, he sketched the derivation of properties of estimators
similar to those that we propose, although in cases where bias can be neglected and the shape
parameter is fixed.

However, it is feasible to take a nonparametric view of this problem, permitting a greater
degree of flexibility and generality. For example, Korostelev and Tsybakov (1993) treated a va-
riety of boundary estimation problems from a nonparametric viewpoint. However, their work
was generally in settings where information was available on both sides of the boundary and
where data did not become relatively sparse as the boundary was approached. Therefore, the
convergence rates derived by Korostelev and Tsybakov (1993) were faster than those that we
give in the present paper. Chernozhukov (1998) addressed properties of nonparametric estima-
tors alternative to ours, and derived upper bounds to convergence rates. Chernozhukov (2005)
discussed a related problem, where a concise linear model, rather than a relatively unspecified
smooth function, supplied the basis for inference. Among the contributions made here, over and
above Chernozhukov’s work, we give (for the somewhat different estimators proposed here) the
structure of limiting distributions, provide a concise first-order description of the bias-variance
trade-off, discuss empirical choice of bandwidth, and give a detailed account of statistical issues,
such as convergence rate paradoxes, for alternative, readily computable estimators.

The present paper suggests nonparametric methodology, and describes its properties, in the
context of inference about end-point and tail shape functions in nonparametric regression. In this
case the errors, or disturbances, in the nonparametric model are centred at their end-points, rather
than at their means. The end-points may be assumed to take a convenient value such as zero.
Thus, the problem of estimating the nonparametric regression mean becomes that of adaptively
estimating the centring function.

Estimation of characteristics of the error distribution is sometimes also of practical interest.
This problem can have several forms, depending on the extent of generality required. For exam-
ple, if the error distribution has a jump discontinuity at its end-point then the height of the jump
can be treated nonparametrically, or modelled parametrically, as a function of the explanatory
variable. The end-point might be approached in a polynomial way, and then the exponent, or
degree, may be one of the subjects of inference. This paper will address those issues, too.

The problem of nonparametric regression with end-point-centred errors also has significant
theoretical motivation. In particular, depending on the way in which the end-point is approached,
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substantially faster convergence rates can be achieved than in conventional settings. For example,
suppose we observe Yi = a(Xi) + εi for 1 ≤ i ≤ n, where the errors εi are independent and
identically distributed with a distribution that has a jump discontinuity at one of its end-points
and finite variance and a denotes a twice-differentiable function. The estimator of a given in
this paper has root-mean-square convergence rate n−2/3, which beats even the rate n−1/2 for a
parametric setting, let alone the rate n−2/5 for standard nonparametric regression with twice-
differentiable functions. We shall show that the rate n−2/3 is minimax optimal.

However, it is well known that the rate n−2/5 is also minimax optimal for estimating the same
function. How can this be? This paradox can be resolved by noting that the two functions being
estimated are not quite identical. They differ by a constant equal to the difference, δ, between the
mean and the end-point of the error distribution. The constant cannot be estimated at a faster rate
than n−2/5. However, this explanation is not without its own element of surprise, since it might
be thought that estimation of δ would be a semi-parametric rather than a nonparametric problem;
if we could observe the errors directly then we could estimate their end-point at rate n−1 and
their mean at rate n−1/2, both expressed in root-mean-square terms.

2. Methodology

2.1. Model

Assume that data (X1, Y1), . . . , (Xn,Yn) are generated by the model

Yi = a(Xi) + εi, (2.1)

where a denotes a smooth function, each Xi is a p-vector and each Yi is a scalar. It is supposed
that the distribution of the error, or disturbance, εi , conditional on Xi = x, has density f (·|x)

with the property that f (u|x) = 0 for u < 0 and

f (u|x) = b(x)c(x)uc(x)−1 + O
(
uc(x)+d−1) as u ↓ 0, (2.2)

where 0 < d < ∞. The quantities b and c are smooth, strictly positive functions from R
p to R.

We wish to estimate a, and sometimes also b and c.
Taking the view that the locus of points (x, a(x)) represents a boundary, models similar to

(2.1) and (2.2) have been treated before, although, with the exception of literature discussed in
Section 1, generally only when p = 1. In the latter case, and in the context of statistics, con-
tributions include those of Härdle et al. (1995), Hall et al. (1997, 1998), and especially Gijbels
and Peng (2000). There is also a vast econometrics literature in the case p = 1, often including a
shape constraint, such as convexity, in addition to smoothness of a. See, for example, Korostelev
et al. (1995a, 1995b), Kneip et al. (1998) and Gijbels et al. (1999).

2.2. Nonparametric estimation of a

Let h > 0 denote a bandwidth. Given x ∈ R
p , let S(x,h) be the set of pairs (α,β), where α is a

scalar and β is a p-vector, such that Yi ≥ α + βT(Xi − x) for all indices i with ‖Xi − x‖ ≤ h.
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Our initial estimator of a(x) is

ã(x) = sup{α : (α,β) ∈ S(x,h)}. (2.3)

Should there be very few or no indices such that ‖Xi − x‖ ≤ h, locally increase h so that a
moderate number of Xi ’s lie in this range.

The one-sided nature of inference in this problem raises interesting issues connected with
existence of the estimator and edge effects. To appreciate why, consider the case where the points
Xi , for 1 ≤ i ≤ n, all lie in a p-variate half-space defined by an infinite plane passing through x.
Then there exists β such that βT(Xi − x) < 0 for 1 ≤ i ≤ n. Since the length of β can be chosen
arbitrarily large without altering the sign property, ã(x) as defined at (2.3) equals +∞.

Let R denote the support of the common density, gX , of the Xi ’s, and write ∂R for the bound-
ary of R. If gX is continuous and positive in R, and if x is distant at least sh (where s > 0) from
∂R, then the probability that ã(x) = +∞ converges to zero exponentially fast, as a function
of n, as the latter increases. See Section 5.1. However, if x lies exactly on ∂R, then, depending
on the shape of the boundary, the probability can equal 1, even for finite n. Details are given in
Section 3.1.

Arguably the simplest way of overcoming these difficulties is to set an upper bound, B , on the
largest value that a(x) can take and estimate a(x) by averaging ã(u) over all values of u for which
|x−u| ≤ h1 and |ã(u)| ≤ B , where h1 is another bandwidth. We shall discuss this approach in the
next paragraph. Another method, more difficult to implement, is to distort the region of radius h

centred at x, within which Xi must lie in order for (Xi, Yi) to be used to construct ã(x), so that
the region includes values of Xi that are further than h from x and appropriately complement the
values of Xi that are within h of x.

One form that the averaging of ã(u) can take is based on local linear smoothing. There we
choose α̂1 = α1 ∈ R and β1 ∈ R

p to minimise∫
{ã(x + h1u) − α1 − βT

1 h1u}2I {|ã(x + h1u)| ≤ B}K(u)du, (2.4)

where K is a bounded, spherically symmetric probability density supported on the p-variate unit
sphere centred at the origin and h1 is another bandwidth. Then we put â(x) = α̂1.

Alternatively, we may define

ǎ(x) =
∫

R(x)
ã(x + h1u)I {|ã(x + h1u)| ≤ B}K(u)du∫

R(x)
I {|ã(x + h1u)| ≤ B}K(u)du

, (2.5)

where R(x) denotes the set of points u ∈ R
p such that x + h1u ∈ R, and B is chosen suffi-

ciently large to ensure that the denominator in (2.5) is non-vanishing. Both these approaches also
overcome problems caused by discontinuities in the function ã. While both address the issue
of boundary effects, the estimator â suffers less from boundary bias than ǎ. In both â and ǎ

we may use a soft thresholding approach to inclusion of values of u for which |ã(x + u)| ≤ B ,
rather than the hard thresholding suggested by (2.4) and (2.5). Since â and ǎ are based on local
linear rather than local constant smoothing, they enjoy good performance near boundaries; our
theoretical analysis in Section 3 will demonstrate this feature. General polynomial optimisation
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methods can also be employed to estimate a, although at the expense of greater computational
labour.

Plug-in methods can be used to choose the bandwidth, h, empirically. However, motivation for
that technique requires theory about large sample properties of ã, and so discussion of empirical
bandwidth selection is deferred to Sections 2.4 and 3.2.

The local linear estimator introduced in the first paragraph of this section can be viewed as
based on a local, functional version of a linear programming algorithm. See Smith (1994) and
Portnoy and Jurec̆ková (2000) for related methodologies. The more general estimator, introduced
in the paragraph above, requires polynomial programming for implementation.

If c(x) lies in the interval (0,2) then the rate of convergence of the estimator at (2.3) cannot
be improved. If c(x) ≥ 2 then the rate of convergence can be enhanced by using unboundedly
many order statistics, where the number employed is a second smoothing parameter (in addition
to the bandwidth h) and its optimal choice depends on knowing, or estimating, the main features
of the remainder term in (2.2). See, for example, Hall (1982) and Smith (1985). However, when
c(x) ≥ 2 the data are very sparse in the neighbourhood of the boundary, and so inference about
the remainder in (2.2) is especially difficult. Therefore, the empirical challenges posed by this
approach usually outweigh any performance gains that might be achieved in practice, and so we
shall not pursue such methods.

2.3. Nonparametric estimation of b and c

In principle, completely nonparametric methods may be used to estimate the functions b and c,
although in practice one would often take c to be a constant, rather than a non-degenerate function
of x.

When estimating b and c we need not use the numerical value of h employed for ã. However,
in the brief account below we shall continue to use the notation h. Define the residuals ε̃i =
Yi − ã(Xi), and let T (x,h) denote the set of ε̃i ’s for which ε̃i > 0 and ‖Xi − x‖ ≤ h. Put
N1 = #T (x,h), and rank the elements of T (x,h) as 0 < ε̂(1)(x,h) ≤ · · · ≤ ε̂(N1)(x,h). Put

ĉ(x) =
{

log ε̂(r+1)(x,h) − 1

r

r∑
i=1

log ε̂(i)(x, h)

}−1

, b̂(x) = (r/N1)
{
ε̂(r+1)(x,h)

}−ĉ(x)
,

where r , another smoothing parameter, denotes a threshold. Optimal choice of bandwidth for
estimating b and c is a highly complex matter, and will not be treated here. The estimators b̂

and ĉ can be thought of as local function versions of conditional maximum likelihood estimators
suggested by Hill (1975).

2.4. Outline of theoretical properties

We shall show in Section 3 that, when constructing the local linear estimator ã and its smoothed
versions â and ǎ, it is generally optimal to choose h ∼ const.n−1/(p+2c). In this case the estima-
tors have root-mean-square convergence rate n−2/(p+2c), when applied to cases where a has two
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derivatives. For very general choices of the error distribution, this rate is optimal when 0 < c < 2.
Even if the functions b and c ∈ (0,2) take known, constant values, and we know the error distri-
bution exactly (e.g., that it is gamma or Weibull), the rate n−2/(p+2c) cannot be improved upon.

However, when c ≥ 2, and we have sufficient information about the error distribution, the
convergence rate of estimators of a can be improved by using other approaches. For instance,
if b and c are constant, and if the error density f is known, then an estimator of a that is based
on maximising a “local” version of log-likelihood can produce an estimator that converges to a

at rate n−2/(p+4), rather than n−2/(p+2c), when p > 2 and a has two derivatives.
The problem is more awkward when the error distribution is not known. There, the conver-

gence rate n−2/(p+2c) can be close to optimal. In particular, if we know only that the errors have a
common density f , with f (u) = bcuc−1 + O(uc+d) as u ↓ 0, where b, c > 0 are fixed constants,
then the minimax optimal convergence rate of estimators of a is n−2/(p+2c)−δ(d), where δ(d) > 0
converges to zero as d ↓ 0.

3. Theoretical properties

3.1. Convergence rates of estimators of a

Assume that data (Xi, Yi) are generated by the model at (2.1), where

the pairs (X1, ε1), (X2, ε2), . . . are independent and identically distributed
as (X, ε); the density of X is supported in a compact region, R ⊆ R

p, and
is continuous and non-zero there; P(ε > 0) = 1; the distribution of ε, con-
ditional on X = x, is absolutely continuous with a density, f (·|x), which
satisfies (2.2) and, in the notation there, d > 0 is fixed, b and c are Hölder-
continuous functions satisfying C1 ≤ b(x), c(x) ≤ C2 for all x ∈ R, C1 and
C2 are constants satisfying 0 < C1 < C2 < ∞ and the remainder in (2.2) is
of the order stated there, uniformly in x ∈ R; and supx E(ε2+η|X = x) < ∞
for some η > 0.

(3.1)

Recall from Section 2 that the one-sided nature of the inference problem means that the estimator
ã will often tend not to be defined at the boundary. However, ã may be well-defined very close
to the boundary. To elucidate this behaviour we shall consider two types of x, described in (3.2)
below. By way of notation, given a point x0 in the boundary ∂R of R, let v(x0) denote the inward-
pointing normal to the tangent plane at x0, which is well defined if ∂R has a continuously turning
tangent in a neighbourhood of x0. Then we ask that:

Either x is fixed as an interior point of R, or x = x(n) is within order h

of ∂R, in the following sense: Suppose that for some x0 ∈ ∂R, ∂R is of
codimension 1 and has a continuously turning tangent in a neighbourhood
of x0, and that for some sufficiently small δ > 0, x1 +v(x1)t ∈ R for all x1 ∈
∂R with ‖x0 − x1‖ ≤ δ and all 0 ≤ t ≤ δ. Define x = x(n) = x0 + v(x0)sh,
where x0 ∈ ∂R, s > 0 and x0 and s are held fixed.

(3.2)
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If x ∈ R is an interior point, or if x = x(n) = x0 + v(x0)sh where x0 ∈ ∂R and s ≥ 1, let U (x)

denote the closed, p-variate sphere of unit radius centred at x. If x = x(n) = x0 + v(x0)sh with
x0 ∈ ∂R and 0 < s < 1, take U (x) to be the larger of the two parts of the just-mentioned sphere
that are obtained by cutting it by the plane that is perpendicularly distant s from the origin and
has its normal in the direction v(x), pointing towards the centre to the sphere.

Let ȧ and ä denote the p-vector of first derivatives and p × p matrix of second derivatives of
the function a and suppose that

the function a has two continuous derivatives in R, and if x = x0+ v(x0)sh

then ∂R has a continuously turning tangent plane at x0.
(3.3)

Assume, too, that

for some 0 < η < 1/(2p) and all sufficiently large n, nη−(1/p) < h < n−η. (3.4)

Given x ∈ R, let E1,E2, . . . denote independent, exponentially distributed random variables
(all with unit mean), write γ for Euler’s constant and define

Zj (x) = exp

[
−c(x)−1

{ ∞∑
i=j

(Ei − 1)i−1 + γ −
j−1∑
i=1

i−1

}]
, j ≥ 1. (3.5)

Given x ∈ R, let U1(x),U2(x), . . . be independent and identically distributed random p-vectors,
independent of the Zj (x)’s and uniformly distributed on U (x). For c1, c2 ≥ 0, define

Q1(c1, c2|x) = sup
β∈Rp

inf
1≤i<∞

[
c1

{
βTUi(x) + 1

2Ui(x)Tä(x)Ui(x)
} + c2b(x)−1/c(x)Zi(x)

]
.

Note that Q(1,0|x) is a constant. In Theorem 1, below, this degenerate distribution is a limit in
the case where ã(x) − a(x) is asymptotically dominated by bias.

In the statement of Theorem 1 we let x1 denote x if x is an interior point of R, and x1 = x0 if
x = x(n) = x0 + v(x0)sh. Let w(p) be the content of the p-variate unit sphere (thus, w(1) = 2,
w(2) = π), let gX(x) represent the value of the density of the distribution of X at x and put
wx = w(p)gX(x1). (To simplify notation we suppress the role of x1 here.) We use a simpler rule
than that in Section 2.2 to take care of cases where ã(x) is infinite. However, the last sentence
in the theorem remains true if we define ã(x) to equal zero whenever |ã(x)| > B , provided
B > |a(x)|.

Theorem 1. Assume (3.1)–(3.4). (a) If (wxnhp)1/c(x1)h2 → ρ, where ρ ∈ [0,∞), then
(wxnhp)1/c(x1){ã(x) − a(x)} → Q1(ρ,1|x1) in distribution. (b) If (nhp)1/c(x1) × h2 → ∞ then
h−2{ã(x)−a(x)} → Q1(1,0|x1) in distribution. Furthermore, if we take the precaution of defin-
ing ã(x) to equal an arbitrary but fixed constant in cases where it would otherwise be infinite,
then second moments converge to those of the limiting distributions.

Proofs of Theorems 1–3 will be given in Section 5. It is crucial, in condition (3.2), that we take
s > 0 rather than s ≥ 0. If s = 0 then x lies right on the boundary of R, and in such cases the
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theorem is false. For example, if R is a convex region with a smooth boundary, such as a sphere,
then with probability 1, ã(x0) = ∞ for all x0 ∈ ∂R. However, it follows from the theorem that
for points x that are arbitrarily close to ∂R, on the scale of the bandwidth, without being right
on the boundary, the probability that ã(x) is finite converges to 1, and in fact the estimator ã(x)

attains optimal convergence rates. The main impact of the boundary is to reduce the number of
design points used to construct the estimator. This tends to inflate estimator variance, although
only by a constant factor (determined by the geometry of the boundary in the vicinity of x). The
difficulty can be alleviated by increasing the bandwidth in such places.

Asymptotic properties of â and ǎ are similar, except that the limiting distribution of â is more
tedious to define. Therefore we shall confine ourselves to ǎ. To further abbreviate our treatment
we shall restrict attention to the case where

x is an interior point of R, h1 = th for a fixed constant t > 0, and
(wxnhp)1/c(x)h2 → ρ ∈ [0,∞).

(3.6)

Let Z1,Z2, . . . be as at (3.5); for simplicity we drop the argument x. Re-define U1,U2, . . . to be
independent of one another and of the Zj ’s and uniformly distributed in the p-variate sphere of
radius t + 1 centred at x. Given a p-vector u with ‖u‖ ≤ t , let (S1(u), T1(u)), (S2(u), T2(u)), . . .

denote the values (Ui1(u),Zi1(u)), (Ui2(u),Zi2(u)), . . . of (Ui,Zi) = (Ui,Zi(x)) for which ‖Ui −
u‖ ≤ h, ordered such that Zi1(u) < Zi2(u) < · · · . With κ = p−1

∫ ‖u‖2K(u)du, ∇2 denoting the
Laplacian operator and ρ ≥ 0 as in (3.6), define

Q2(u|x) = sup
β∈Rp

inf
1≤i<∞

[
ρ
{
βTSi(u) + 1

2Si(u)Tä(x)Si(u)
}

+ {(t + 1)pb(x)}−1/c(x)Ti(u)
]
,

Q3(x) = 1

2
ρt2κ(∇2a)(x) +

∫
Q2(u|x)K(u)du.

Under conditions (3.1)–(3.6), and taking B > |a(x)| in (2.5), it can be shown that with proba-
bility 1 − O(n−C) for all C > 0, the estimator ǎ(x) at (2.5) satisfies

ǎ(x) =
∫

ã(x + h1u)K(u)du. (3.7)

Theorem 2 applies with equal validity to the estimators at (2.5) and (3.7). Nevertheless, the
estimator on the right-hand side of (3.7) does not enjoy the boundedness property that partly
motivated ǎ at (2.5).

Theorem 2. Assume (3.1)–(3.6), and that the kernel K used to define ǎ(x) is a bounded, spher-
ically symmetric probability density supported on the unit sphere centred at the origin. Then
(wxnhp)1/c(x){ǎ(x) − a(x)} → Q3(x) in distribution. Furthermore, if in the integrand at (3.7)
we take the precaution of defining ǎ(x + h1u) to equal an arbitrary but fixed constant in cases
where it would otherwise be infinite, then the second moment converges to that of the limiting
distribution.



622 P. Hall and I. Van Keilegom

3.2. Choice of bandwidth

Theorems 1 and 2 imply that, except in pathological cases where ä(x) = 0, the optimal conver-
gence rate of ã(x) and ǎ(x) to a(x) is achieved by choosing the bandwidth h so that (nhp)−1/c(x)

and h2 are of the same size and, in particular, h ∼ const.n−1/{p+2c(x)}. If x does not lie on the
boundary of R, and if (wxnhp)1/c(x)h2 → ρ ∈ [0,∞), then the asymptotic mean squared error
of ã(x) is given by

τ(ρ|x) = E
{

sup
β∈Rp

inf
1≤i<∞

[
ρ
{
βTUi + 1

2UT
i ä(x)Ui

} + b(x)−1/c(x)Zi(x)
]}2

, (3.8)

where U1,U2, . . . are uniformly distributed on the unit sphere centred at x, Z1(x),Z2(x), . . .

are defined at (3.5) and the Ui ’s and Zi(x)’s are completely independent. Therefore, if h =
w

−1/{p+2c(x)}
x ρ1/{2+p/c(x)}n−1/{p+2c(x)} then ρ should ideally be chosen as

ρ0(x) = arg min
ρ

τ (ρ|x). (3.9)

One technique for estimating ä(x) is to twice numerically differentiate a heavily smoothed
version of ã. A simpler approach, if we may make the assumption (A), say, that, for each i,
the distribution of εi does not depend on Xi , is to pass a traditional smoother through the data
(Xi, Yi) estimates the value of μ(x) = E(Y |X = x). Under (A), this quantity differs from a

only by a constant, and so ä = μ̈. The latter function can be estimated using conventional cubic
smoothing. This approach is attractive even if the distribution of εi depends to some extent on
Xi , since it gives a working empirical approximation to ä.

Methods for estimating b(x) and c(x) were discussed in Section 2.3. Substituting these esti-
mators for the true values of ä(x), b(x), c(x) and ρ(h, x) in (3.8), we may compute an estimator
τ̂ (ρ|x) of τ(ρ|x) using a Monte Carlo simulation, which leads to an estimator ρ̂0(x) of ρ0(x) at
(3.9). The density of X at x, that is, gX(x), can be estimated more conventionally, and thus an
estimator ŵx of wx = w(p)gX(x) can be constructed. An empirical bandwidth selector is then
given by

h(x) = ŵ
−1/{p+2ĉ(x)}
x ρ̂0(x)1/{2+p/ĉ(x)}n−1/{p+2ĉ(x)}. (3.10)

In many circumstances it is feasible to take c(x) to be a constant, not depending on x.
Then a global approach to bandwidth choice is possible, as follows: We shall proceed as
though the density gX is constant; if it is not, using its average value rather than attempt-
ing to accommodate its variation greatly simplifies matters. Thus, we take ŵ to be an esti-
mator of the average value of wx . The mean integrated squared error of ã(x) is asymptotic
to τ(ρ) = ∫

R τ(ρ|x)dx, of which an estimator is τ̂ (ρ) = ∫
R τ̂ (ρ|x)dx, leading to an estima-

tor ρ̂0 = arg minρ τ̂ (ρ) of ρ0 = arg minρ τ (ρ). A global bandwidth for constructing ã is thus

h = ŵ−1/(p+2ĉ)ρ̂
1/(2+p/ĉ)

0 n−1/(p+2ĉ).
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3.3. Optimality

We shall show in this section that the convergence rates implied by Theorems 1 and 2, and also
lower bounds of the same orders, are available uniformly over classes A of functions a with two
bounded derivatives. The possibility that either the proportionality constant, b, or the exponent, c,
varies with the design variable, Xi , is not relevant to discussion of the lower bound, and for this
reason, for simplicity, and since our lower bound results are stronger if we narrow the class of
error distributions for which worst-case performance is achieved, we shall take the distribution
of ε = εi to be a single, specific one, say the gamma:

f (u) = fi(u) = 1

�(c)
uc−1e−u, where c > 0 is fixed. (3.11)

In the lower bound calculations, c > 0 will be assumed known.
Likewise, we shall treat just one distribution of X = Xi and one region R. In particular, writing

V (x, r) for the closed sphere centred at x and of radius r > 0, we shall assume that

R = V (x0,1) and X is uniformly distributed on R. (3.12)

Given C > 0, let A = A(C) denote the class of functions a for which first and second derivatives
exist and are bounded absolutely by C, let Ā denote the class of bounded functions ā of the data
(X1, Y1), . . . , (Xn,Yn) (the latter generated as at (2.1)) and let Rh be the set of all points in R
that are distant at least h from ∂R.

Theorem 3. Assume (3.11) and (3.12) and, when constructing ã(x), let h = const.n−1/(p+2c),
except that we take ã(x) equal to an arbitrary but fixed constant in cases where it would otherwise
be infinite. Then,

sup
x∈Rh

sup
a∈A

E{ã(x) − a(x)}2 = O
(
n−2/(p+2c)

)
(3.13)

as n → ∞. Furthermore, if 0 < c < 2,

lim inf
n→∞ n2/(p+2c) inf

ā∈Ā
sup
a∈A

E{ā(x) − a(x)}2 > 0 for each x ∈ R \ ∂R, (3.14)

lim inf
n→∞ n2/(p+2c) inf

ā∈Ā
sup
a∈A

∫
Rh

E{ā(x) − a(x)}2 dx > 0. (3.15)

Together, (3.13)–(3.15) imply that the estimator ã achieves the minimax optimal rate,
n−2/(p+2), uniformly over all functions a ∈ A, and that the optimality can be expressed in ei-
ther a local or a global sense. Similarly, it may be proved that if Aq is taken to be the class
of functions a with q + 1 (rather than 2) bounded derivatives, then the qth degree local poly-
nomial approach discussed in Section 2.2 achieves the minimax optimal convergence rate of
n−2q/(p+2cq) uniformly over functions in Aq . The upper bound (3.13) continues to hold if the
class A is increased to include a range of distributions of ε for which the lower tail of the distrib-
ution function decreases like uc as u ↓ 0, and a range of distributions of design points for which
the density is bounded away from zero on R.
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4. Numerical properties

4.1. Simulations

Consider independent and identically distributed data (Xi,Yi ) (1 ≤ i ≤ n) satisfying the model
Yi = a(Xi) + εi given in (2.1). The covariate Xi has a uniform distribution on the interval [0,1].
We consider three models for a(x) (0 ≤ x ≤ 1):

Model 1 :a(x) = 10(x − a0)
3, a0 = 0.25,0.5,

Model 2 :a(x) = exp(−a0x
2), a0 = 1,2, (4.1)

Model 3 :a(x) = a0 cos(πx), a0 = 0.25,0.5.

Figure 1 shows the graphs of these six frontier functions. The error εi is taken from a Gamma
distribution:

f (u|x) = 1

s(x)c�(c)
uc−1 exp{−u/s(x)}

(u ≥ 0), where c > 0 and s(x) = 1 + 2x. Note that this density is of the general type (2.2), with
b(x) = {cs(x)c�(c)}−1.

We carry out two simulation studies. In the first study, we investigate the performance of the es-
timator â(x) and of its data-driven bandwidth selector described in Section 3.2. The simulations
are executed based on 100 arbitrary samples of size n = 200 and n = 400. For each sample we
estimate a(x) at x = 0.5. The scaling parameter c is chosen to be 0.5, 1 or 1.5. These three values
of c are such that, as u ↓ 0, f (u|x) → ∞, f (u|x) → s(x)−1 and f (u|x) → 0, respectively. We
use local linear smoothing to obtain both ã(x) and â(x). The bandwidth h is calculated from for-
mula (3.10) and we have taken h1 = h. To estimate ä(x) we work (as explained in Section 3.2)

Figure 1. Graphs of the functions a(x) given in (4.1): the left figure shows a(x) for Model 1 (a0 = 0.25
(thin curve) and a0 = 0.50 (thick curve)), the right figure shows a(x) for Model 2 (a0 = 1 (thin solid curve)
and a0 = 2 (thick solid curve)) and Model 3 (a0 = 0.25 (thin dashed curve) and a0 = 0.50 (thick dashed
curve)).



Nonparametric “regression” when errors are positioned at end-points 625

under the working model that the distribution of εi does not depend on Xi , in which case ä(x)

equals the second derivative of the regression function E(Y |X = x). This second derivative is es-
timated using local cubic smoothing, with bandwidth 0.25. The functions b(x) and c(x) ≡ c are
estimated employing the procedure explained in Section 2.3, where r equals the smallest integer
larger than 0.90N1 and the bandwidth for estimating b(x) and c(x) is chosen as 0.25. The kernel
used throughout is the biquadratic kernel, K(u) = (15/16)(1 − u2)2 I (|u| ≤ 1).

Tables 1 and 2 show the estimated bias, variance and mean square error (MSE) of â(x) at
x = 0.5 for each of the considered models as well as the average value of the bandwidth h

over the 100 simulation runs obtained using a Monte Carlo simulation of formula (3.10). Note
that the functions a(x) considered in this simulation study are neither convex nor concave. In
fact, our method imposes neither condition in contradistinction to, for instance, the DEA (data
envelopment analysis) estimator, which requires the function a(x) to be convex.

The tables show that the MSE increases when c increases, which is to be expected since the
higher the value of c, the smaller the density f (·|x) of the error close to the frontier, and so
the harder the estimation of the frontier. These findings also agree with the theoretical results of
Section 3. This sparsity of data close to the frontier affects especially the bias of the estimator,
since it is clear that the estimator ã(x) tends to overestimate a(x) whenever there are few obser-
vations near the boundary. It also affects, as would be expected, the performance of the empirical
bandwidth selector. The higher the value of c, the harder it becomes to estimate in an accurate

Table 1. Monte Carlo simulations for n = 200, with optimal bandwidth given by (3.10)

Model a0 c Mean(h) 10 Bias 100 Var 100 MSE

1 0.25 0.5 0.045 0.156 0.073 0.098
1 0.071 1.408 1.244 3.226
1.5 0.096 3.177 1.905 11.995

0.5 0.5 0.067 −0.169 0.049 0.078
1 0.094 0.798 0.707 1.344
1.5 0.120 2.389 1.832 7.540

2 1 0.5 0.064 −0.010 0.023 0.023
1 0.087 0.899 0.812 1.619
1.5 0.119 2.406 1.954 7.741

2 0.5 0.051 0.079 0.033 0.039
1 0.079 1.072 1.032 2.181
1.5 0.111 2.551 1.795 8.300

3 0.25 0.5 0.062 0.009 0.022 0.022
1 0.086 0.933 0.908 1.778
1.5 0.113 2.534 1.899 8.319

0.5 0.5 0.059 −0.041 0.031 0.033
1 0.083 1.002 1.093 2.098
1.5 0.111 2.542 1.924 8.388
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Table 2. Monte Carlo simulations for n = 400, with optimal bandwidth given by (3.10)

Model a0 c Mean(h) 10 Bias 100 Var 100 MSE

1 0.25 0.5 0.033 0.019 0.029 0.029
1 0.057 0.799 0.365 1.003
1.5 0.087 2.175 0.838 5.566

0.5 0.5 0.053 −0.208 0.053 0.097
1 0.097 0.233 0.429 0.483
1.5 0.111 1.573 0.944 3.417

2 1 0.5 0.047 −0.039 0.012 0.013
1 0.089 0.446 0.373 0.572
1.5 0.108 1.657 0.927 3.674

2 0.5 0.036 0.018 0.017 0.017
1 0.075 0.561 0.366 0.680
1.5 0.105 1.723 0.856 3.823

3 0.25 0.5 0.047 −0.029 0.011 0.012
1 0.084 0.485 0.360 0.595
1.5 0.107 1.691 0.921 3.782

0.50 0.5 0.045 −0.087 0.027 0.034
1 0.078 0.478 0.384 0.613
1.5 0.106 1.674 0.909 3.712

way the optimal bandwidth. Finally, comparing Tables 1 and 2 we see that both the bias and the
variance decrease as the sample size increases.

In the second simulation study, the estimator â(x) is compared with

ã#(x) = sup{Yi :‖Xi − x‖ ≤ h}.
This estimator has the advantage of being simpler than that developed in Section 2, although it
can be shown to have the inferior convergence rate of n−1/(p+c), rather than n−2/(p+2c). As for
the first study, 100 arbitrary samples of size n = 200 and n = 400 are generated. We set x = 0.5
and c = 0.5,1 or 1.5. In order to make a fair comparison of the two competitors, the bandwidth h

of either method is selected by minimising in a deterministic way (i.e., minimising over the 100
samples) the MSE of each estimator. When constructing â(x), the choice of h1 and K and the
estimation of ä(x), b(x) and c are done as for the first study. It is found that, in 29 out of the 36
cases treated in Tables 1 and 2, the mean square error of â(x) is less than that of ã#(x), and that
the median value of the ratio of mean square errors equals 0.21.

4.2. Data analysis

We consider data on 123 American electric utility companies, studied by Christensen and Greene
(1976), Greene (1990) and Hall and Simar (2002), among others. We focus here on the relation
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between Yi = − log(Ci/Pi) and Xi = log(Qi), where Ci is the cost, Qi the output and Pi the
price of fuel for each company. We fit the model

Yi = a(Xi) + εi,

where it is assumed that the conditional density of the errors εi satisfies relation (2.2). The scat-
terplot of the data, together with the estimated frontier curve â(x), is shown in Figure 2. We
restrict the region of estimation to [4.6,11.2], to avoid estimation in sparse areas of X. Both the
estimation of ã(x) and â(x) is done using local linear smoothing. At each point of an equispaced
grid of 34 values between 4.6 and 11.2 we estimate the bandwidth h = h1 from formula (3.8),
yielding values in the range from 0.77 to 1.31. The bandwidth for estimating ä(x), b(x) and c(x)

is chosen as one-fifth of the total range, namely 1.32, whereas to estimate the design density we
use kernel estimation based on the normal reference rule. The kernel used throughout is again
the biquadratic kernel.

Figure 2 suggests that a linear model is appropriate for these data. However, it is particularly
satisfying to reach that conclusion using a highly adaptive method that does not impose linearity,
or even convexity, as a prior assumption.

Figure 2. Scatterplot of the American Electric Utility Data. The observations are represented by circles,
the solid curve is the estimated ‘regression’ (frontier) curve.
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5. Technical arguments

5.1. Proof of Theorem 1

To simplify notation we shall assume that wx = 1 throughout; this can always be achieved via a
change of scale. For brevity we shall deal only with the case where x is an interior point of R.
Put γα(x) = a(x) − α, a scalar, and γβ(x) = h−1{ȧ(x) − β}, a p-vector. Let I(x,h) denote the
set of indices i such that ‖Xi − x‖ ≤ h and for i ∈ I(x,h) define Vi = h−1(Xi − x). In this
notation,

Yi − α − βT(Xi − x) = γα(x) + h2{γβ(x)TVi + 1
2V T

i äVi

} + h2Ri(x) + εi,

where the remainder, Ri(x), has the property that

sup
x∈R

sup
i∈I(x,h)

|Ri(x)| ≤ R(h)

(5.1)
≡ h−2 sup

x∈R
sup

u:‖u‖≤1,x+hu∈R

∣∣a(x + hu) − a(x) − huTȧ(x) − 1
2h2uTä(x)u

∣∣,
and R(h) → 0 as h → 0.

In particular, asking that Yi ≥ α + βT(Xi − x) for all indices i ∈ I(x,h) is equivalent to
insisting that

γα + inf
i∈I(x,h)

{
h2(γ T

β Vi + 1
2V T

i äVi

) + h2Ri + εi

} ≥ 0, (5.2)

where we have dropped the argument from γα(x), γβ(x), ä(x) and Ri(x). Let S1(x,h) denote
the set of pairs (γα, γβ) such that (5.2) holds, and let γ̃1 denote the infimum of γα over (γα, γβ) ∈
S1(x,h). Then, ã(x) = a(x) − γ̃1.

It follows from this result and (5.1) that, defining

γ̃2 = γ̃2(x) = sup
γβ

inf
i∈I(x,h)

{
h2(γ T

β Vi + 1
2V T

i äVi

) + εi

}
(5.3)

and noting that, for any random variable A, essupA is the infimum of constants C for which
P(A ≤ C) = 1, we have:

h−2 essup sup
x∈R

|ã(x) − a(x) − γ̃2| → 0. (5.4)

Defining N = N(x,h) = #I(x,h), we may write γ̃2 equivalently as

γ̃2 = (nhp)−1/c(x) sup
γβ

inf
1≤i≤N

{
ρ1

(
γ T
β V(i) + 1

2V T
(i)äV(i)

) + ξ(i)

}
,

where ρ1 = (nhp)1/c(x)h2, ξ(1) < ξ(2) < · · · are the ordered values of (nhp)1/c(x)εi for i ∈ I and
V(1), V(2), . . . denote the concomitant values of V1,V2, . . . . The factor (nhp)1/c(x) here reflects
the fact that the expected number of values Xi that lie within h of x is asymptotic to a constant
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multiple of nhp . The power, 1/c(x), is appropriate because it is the power applied to sample size
to describe the scale of the largest value when the sample is drawn from a Pareto-type distribution
with exponent c(x).

For each r ≥ 1,

the limiting joint distribution of ξ(1), . . . , ξ(r) and V(1), . . . , V(r) is the dis-
tribution of b(x)−1/c(x)(Z1, . . . ,Zr) and U1, . . . ,Ur , where the sequence
Z1,Z2, . . . is as defined at (3.5) and, independently of the Zj ’s, the Uj ’s are
uniformly distributed in the unit p-variate sphere.

(5.5)

(See Hall (1978).) Moreover, with probability 1, for any interval [a, b] where 0 < a < b < ∞,
the suprema over ρ1 ∈ [a, b] of the values of ‖γ ‖ and i ≥ 1 at which the extremum

sup
γ∈Rp

inf
1≤i<∞

[
ρ1

{
γ TUi + 1

2UT
i ä(x)Ui

} + b(x)−1/c(x)Zi

]
is achieved are finite and, using (5.5), the same can be proved of the extremum

sup
γ∈Rp

inf
1≤i<∞

{
ρ1

(
γ TV(i) + 1

2V T
(i)äV(i)

) + ξ(i)

}
.

These properties and (5.5) imply that, if ρ1 → ρ ∈ (0,∞) as n → ∞,

(nhp)1/c(x)γ̃2 → sup
β∈Rp

inf
1≤i<∞

[
ρ
{
βTUi + 1

2UT
i ä(x)Ui

} + b(x)−1/c(x)Zi

]
in distribution. The part of Theorem 1 pertaining to ρ1 → ρ ∈ (0,∞) follows from this property
and (5.4).

If ρ1 → 0 then, since ξ(1) → b(x)−1/c(x)Z1 in distribution, we have (nhp)1/c(x)γ̃2 →
b(x)−1/c(x)Z1 in distribution. And if ρ1 → ∞ then

h−2γ̃2 → sup
β∈Rp

inf
1≤i<∞

{
βTUi + 1

2UT
i ä(x)Ui

} = sup
β∈Rp

inf‖u‖≤1

{
βTu + 1

2uTä(x)u
}
,

a constant. Parts (a) and (b) of Theorem 1 are consequences of these properties.
To establish convergence of second moments it suffices, in view of (5.4), to prove that for

some η1 > 0,

there exist random variables A1 and A2 such that A1 ≤ (nhp)1/c(x)γ̃2 ≤ A2
with probability 1, and E(|Aj |2+η1) is uniformly bounded for j = 1,2.

(5.6)

A proof of (5.6) is given in a longer version of this paper, obtainable from the authors.

5.2. Proof of Theorem 2

(Recall that we assume that wx = 1.) We shall work with the definition (3.7) of ǎ(x). Defining
γ̃2(x) as at (5.3), and noting (5.4), we have:

ǎ(x) =
∫

a(x + h1u)K(u)du +
∫

γ̃2(x + h1u)K(u)du + op(h2). (5.7)
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The first integral on the right-hand side, I1(x), equals a(x) + h2g(x) + o(h2), where g(x) =
1
2 t2κ(∇2a)(x), whence it follows that (nhp)1/c(x){I1(x) − a(x)} → ρg(x). The stochastic
process S(u) = (nhp)1/c(x)γ̃2(x + h1u) converges weakly to Q2(u) ≡ Q2(u|x) (see below),
whence it follows that the second integral, I2(x) on the right-hand side of (5.7), satisfies
(nhp)1/c(x)I2(x) → ∫

Q2(u)K(u)du.
To appreciate why the finite-dimensional distributions of S converge to those of Q2, consider

the marked point process in R
d , where the ith point is Vi = h−p(Xi −x) and the associated mark

is ζi = {nhp(t + 1)p}1/c(x)εi . Only the marked points that lie in the disc of radius t + 1, centred
at x, contribute to ǎ(x), and so we confine attention to those. Define ζ(1) < ζ(2) < · · · to be the
ordered values of ζ1 < ζ2 < · · ·, and let V(1), V(2), . . . be the concomitant values of V1,V2, . . . .

In this new notation, (5.5) continues to hold. From that result it follows, using the argument in
the paragraph containing (5.5), that for each finite set u1, . . . , uk in the sphere of radius t + 1,
centred at x, the joint distribution of S(u1), . . . , S(uk) converges to that of Q2(u1), . . . ,Q2(uk).
Tightness of the stochastic process S can be proved using the fact that, defining

D(u, j0) = sup
γβ

inf
1≤j≤j0

{
ρ1

(
γ T
β V(ij (u)) + 1

2V T
(ij (u))äV(ij (u))

) + (1 + p)−p/c(x)ζ(ij (u))

}
,

where the ordering j1(u), j2(u), . . . is such that V(i1(u)) < V(i2(u)) < · · · among all indices i(u)

such that ‖V(i(u)) − u‖ ≤ 1, the process D(·, j0) decreases with increasing j0.

5.3. Proof of Theorem 3

Derivation of (3.13) is similar to that of the last part of Theorem 1, and so will not be given here.
We shall outline proofs of (3.14) and (3.15).

In the case of (3.14), take a(x) = δ2ψ(x/δ) where δ = n−1/(p+2c) and ψ is a spherically
symmetric function supported on V (0, 1

2 ) with bounded derivatives of first and second orders,
all of them dominated by 1

2C. Then, a ∈ A. Consider the problem of discriminating between
the models (a) Yi = εi and (b) Yi = a(Xi) + εi using only the data (X1, Y1), . . . , (Xn,Yn). The
likelihood-ratio approach, which in view of the Neyman–Pearson lemma is optimal, is to decide
in favour of model (b) if and only if the ratio

L =
n∏

i=1

[f {Yi − a(Xi)}/f (Yi)]

exceeds an appropriate critical point. Here, f is the density at (3.11). If Yi = Ia(Xi) + εi , where
I = 0 or 1 in cases (a) or (b), respectively, then

logL = (c − 1)

n∑
i=1

log{1 − Y−1
i a(Xi)} +

n∑
i=1

a(Xi).

Hence, the likelihood-ratio rule involves deciding in favour of (b) if and only if the sum � =∑
i log{1 − Y−1

i a(Xi)} exceeds a critical point.
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Asymptotically correct discrimination is readily seen to be impossible if ν ≡ nδp is bounded;
this quantity is of the same order as the number of pairs (Xi, Yi) for 1 ≤ i ≤ n that contain
information about a. The theorem will follow if we show that, when ν ≡ nδp → ∞ but δ =
o(n−2/(p+2c)) along a subsequence, the probability of correct discrimination using the likelihood-
ratio rule when cases (a) and (b) above both have prior probability 1

2 converges to 1
2 ; it is assumed

that all calculations are done for the subsequence.
We may Taylor-expand �, showing that �/δ2 = �1 + (I − 1

2 )�2 + �3, where �1 = −∑
i ε

−1
i ψi ,

�2 = δ2 ∑
i ε

−2
i ψ2

i , ψi = ψ(Xi/δ) and, when ν → ∞ and δ = o(n−1/(p+2c)), the remainder,
�3, equals op(|�1| + |�2|). Using the fact that 0 < c < 2 it may be proved that ν−1/c�1 has a
limiting, symmetric, non-degenerate stable distribution with exponent c, and δ−2ν−2/c�2 has a
limiting, positive, non-degenerate stable law with exponent c/2. Therefore, if δ = o(n−1/(p+2c))

then �2 = op(�1), from which it follows that the probability of correct classification using the
likelihood-ratio rule converges to 1

2 .
To obtain (3.15), let W denote the cube of diameter 2 inscribed within V (0,1), with its

sides parallel to the coordinate axes. Place into W a rectangular grid of points, x1, . . . , xN

with nearest neighbours exactly δ apart and no point distant less than 1
2δ from the boundary

of V (0,1). We may take N ∼ const.δ−p as δ → 0. Define aI (x) = δ2 ∑
i Iiψ{(x −xi)/δ}, where

I = (I1, . . . , IN ) is a vector of 0’s and 1’s. Then aI ∈ A for each choice of I . Since ψ vanishes
outside radius 1

2 from the origin, for each x no more than one term in this series is non-zero.
Treating the problem of estimating aI on Rh as one of discriminating between Ii = 0 and Ii = 1
for each i such that the sphere of radius 1

2δ centred at xi intersects Rh and arguing as in the proof
of (3.14) we may derive (3.15).

6. Conclusion

We have shown that an alternative “regression” problem, where errors are “positioned” at their
end-points, leads to estimators with properties quite different from their counterparts in conven-
tional problems. In particular, if the error density is bounded away from zero then relative fast
convergence rates are possible, even if the regression mean is known only up to smoothness
conditions. Results of this type can be compared with their counterparts in L1 or L2 regression,
where convergence rates using either method can be faster depending primarily on properties
of the error distribution. Particularly if the main object were to obtain an idea of the shape of
the regression mean, rather than for formal prediction, it would be appropriate to exploit these
dissimilarities and construct a function estimator that enjoyed good convergence rates. Potential
future problems of interest include developing adaptive methods for choosing among different
regression methods, suitable for different error types, so as to ensure good empirical performance.
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