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Test for tail index change in stationary time
series with Pareto-type marginal distribution
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The tail index, indicating the degree of fatness of the tail distribution, is an important component of extreme
value theory since it dominates the asymptotic distribution of extreme values such as the sample maximum.
In this paper, we consider the problem of testing for a change in the tail index of time series data. As a test,
we employ the cusum test and investigate its null limiting distribution. Further, we derive the null limiting
distribution of the cusum test based on the residuals from autoregressive models. Simulation results are
provided for illustration.
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1. Introduction

The parameter change problem in time series models has attracted much attention from re-
searchers since time series often experience changes in the underlying models due to the changes
of monetary policies and critical social events. Since Page (1955), a large number of studies
have been devoted to the theory and its applications on the change point analysis in various
fields. For a general review of the change point analysis, we refer to Csörgő and Horváth (1997).
Among the existing methods, the cusum test has long been popular for its ease of usage in actual
practice. Compared to the likelihood method, the cusum method has an advantage that the null
limiting distribution is free from the underlying distribution. For relevant references, we employ
the following articles and the literatures cited therein: Brown, Durbin and Evans (1975); Tang
and MacNeil (1993); Inclán and Tiao (1994); Lee and Park (2001); Lee, Ha, Na and Na (2003);
Berkes, Horváth and Kokoszka (2004); Lee and Na (2005); and Lee, Nishiyama and Yoshida
(2006).

Statistical modeling and analysis for extremal phenomena is very crucial in that the potential
risk of disasters and panic events such as floods, large earthquakes and stock market crashes can
be determined a priori, thereby allowing them to be adequately managed or prevented. On the
other hand, it is well known that structural changes in the underlying models can lead to false
conclusions as frequently observed in the financial time series analysis. Motivated by this, we
are led to study the change point test in the extreme value theory. In particular, we focus on the
change point test for the tail index of distributions since the tail index represents the degree of
fatness of distributions and determines the shape of the asymptotic distribution of extreme values
such as the sample maximum.

1350-7265 © 2009 ISI/BS

http://isi.cbs.nl/bernoulli/
http://dx.doi.org/10.3150/08-BEJ157
mailto:mooseob@hanmail.net
mailto:sylee@stats.snu.ac.kr


326 M. Kim and S. Lee

The estimation problem for the tail index has been a core issue for several decades in sta-
tistics, finance, reliability and teletraffic engineering. Among others, Hill’s estimator (cf. Hill
(1975)) has been playing an important role in this context and its properties are well developed
in various respects. In fact, one of the crucial issues with regard to Hill’s estimator is how to se-
lect the tail sample fraction since a large sample fraction yields more bias in Hill’s estimator. For
a general review of the extreme value theory and its statistical applications, we refer to Leadbet-
ter, Lindgren and Rootzén (1983); Embrechts, Küppelberg and Mikosch (1999); and Reiss and
Thomas (2001). Further, for the references relevant to Hill’s estimator, we refer to Hall (1982);
Mason (1982); Cs̈orgő, Deheuvels and Mason (1985); Smith (1987); Hsing (1991); and Resnick
and Stǎricǎ (1995, 1997a, 1997b).

For performing the change point test, here we employ the cusum test based on Hill’s esti-
mator. In particular, we concentrate on the cusum test for the β-mixing process that includes a
broad class of stationary processes such as the autoregressive (AR), generalized autoregressive
conditional heteroscedastic (GARCH) and threshold AR (TAR) processes (cf. Doukhan (1994)).
Further, for the AR process, we consider the residual-based cusum test since the tail index of the
error distribution coincides with that of the AR process itself (cf. Datta and McCormick (1998)).
In general, the residual-based test is more stable compared to those based on the observations
themselves due to the elimination of the correlation effects (see Resnick and Stǎricǎ (1997a)
for Hill’s estimator case). In order to construct the cusum test, we consider the tail sequential
process in light of the testing procedure proposed by Lee, Ha, Na and Na (2003), and verify that
the tail sequential process converges weakly to a Brownian motion under the null hypothesis
under which the tail index is assumed to remain as a constant. In this case, the asymptotic null
distribution appears to be the sup of a Brownian bridge.

This paper is organized as follows: In Section 2, we introduce the cusum test and derive its
asymptotic null distribution. Further, we discuss the estimation procedure for the location of
change points. In Section 3, we perform a simulation study to evaluate our tests. In Section 4, we
provide the proofs for the results presented in Section 2.

2. Main results

2.1. Cusum test in β-mixing processes

In this subsection, we consider the problem of testing for the change of the tail index in a class
of β-mixing processes. In what follows, we assume that all r.v.’s are defined on the probability
space (�, F ,P ). Let {Xi} be a sequence of non-negative r.v.’s. Suppose that one wishes to test
the following hypotheses:

H0 : {Xi} is stationary and the tail index does not vary over X1, . . . ,Xn vs.

H1 : not H0.

Under H0, we assume that {Xi} satisfies the β-mixing condition:

β(l) = sup
m

E

{
sup

A∈F ∞
m+l+1

|P(A|F m
1 ) − P(A)|

}
→ 0 as l → ∞, (2.1)
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where F m
l = σ {Xi : i = l, . . . ,m} and F ∞

m = σ {Xi : i = m,m + 1, . . .}. Further, we assume that
the common marginal distribution F of {Xi} has the tail index α−1 > 0, namely,

lim
x→∞

F̄ (λx)

F̄ (x)
= λ−α for each λ > 0, (2.2)

where F̄ = 1 − F . In this case, F̄ is said to be regularly varying at ∞ with the exponent −α (ab-
breviated as F̄ ∈ RV−α). According to Theorem 1.6.2 of Leadbetter et al. (1983), F̄ is regularly
varying at ∞ if and only if F lies in the domain of attraction of the Fréchet distribution. Owing
to (2.2), we can express F̄ (x) = x−αl(x), where l is slowly varying at ∞, namely,

lim
x→∞

l(λx)

l(x)
= 1 for every λ > 0. (2.3)

For performing a test for H0 and H1, we employ the cusum test based on Hill’s estimator:

1

k

n∑
i=1

(
logXi − logX(k+1)

)
+, (2.4)

where x+ = max{x,0}, X(j), j = 1, . . . , n, denotes the j th largest r.v. in X1, . . . ,Xn, and k is
a positive integer much less than n. According to Lee, Ha, Na and Na (2003), the cusum test is
constructed based on the following tail sequential process:

Mn(t) := 1√
k

[nt]∑
i=1

{
ϕ
(
logXi − logb(n/k)

)−Eϕ
(
logXi − logb(n/k)

)}
, 0 ≤ t ≤ 1, (2.5)

where ϕ is a real-valued function with ϕ(x) = 0 for every x < 0, b(x) = inf{y :F(y) ≥ 1 −x−1},
and k = kn is a sequence of positive integers satisfying

k → ∞ and k = o(n) (2.6)

as n → ∞. In this study, we particularly concentrate on the two cases:

ϕ1(x) := I (x > 0) and ϕ2(x) := x+.

In order to investigate the limiting behavior of Mn, we assume that the following regularity
conditions hold:

(A1) There exists a sequence {rn} of positive integers such that

lim
n→∞

n

rn
β([εrn]) = 0 for every ε > 0, (2.7)

and

r2
n = o(k). (2.8)



328 M. Kim and S. Lee

(A2) There exist κ(x) = K
∫ x

1 tγ−1 dt , where K ∈ R, and a positive measurable function
g ∈ RVγ with γ ≤ 0, such that for all λ > 0,

lim
x→∞

l(λx)/l(x) − 1

g(x)
= κ(λ).

Further,
√

kg(b(n/k)) converges to a real number A as n → ∞.
(A3) There exist non-negative numbers χ and ω such that for every 0 < ε < 1,

χ = lim
n→∞

2α2n

[εrn]k
(2.9)

×
∑

1≤i<j≤[εrn]
Cov

{(
logXi − logb(n/k)

)
+,

(
logXj − logb(n/k)

)
+
}

and

ω = lim
n→∞

2n

[εrn]k
∑

1≤i<j≤[εrn]
Cov

{
I
(
Xi > b(n/k)

)
, I

(
Xj > b(n/k)

)}
. (2.10)

Condition (A2) is referred to as the second-order regularly varying condition and γ is called the
second-order regularly varying parameter. This condition plays a crucial role in the derivation of
the asymptotic properties for tail index estimators. For the details concerning (A2), readers are
referred to Bingham et al. (1987) and Goldie and Smith (1987). In fact, it can be easily seen that
Condition (A3) is satisfied for a large class of short memory processes.

According to our analysis, it is revealed that under the regularity conditions Mn(t) divided
by a constant converges weakly to a standard Brownian motion and, subsequently, the following
random sequence:

T ◦
n (ϕ) := 1√

k
max

1≤l≤n

∣∣∣∣∣
l∑

i=1

ϕ
(
logXi − logb(n/k)

) − l

n

n∑
i=1

ϕ
(
logXi − logb(n/k)

)∣∣∣∣∣ (2.11)

converges weakly to the sup of a Brownian bridge multiplied by a constant. Since b(n/k) is
unknown, we replace it with X(k) and finally employ the cusum test statistic:

Tn(ϕ) := 1√
k

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

ϕ
(
logXi − logX(k)

) − l

n

n∑
i=1

ϕ
(
logXi − logX(k)

)∣∣∣∣∣. (2.12)

In particular, we can express

Tn(ϕ1) = 1√
k

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

I
(
Xi > X(k)

) − l

n

n∑
i=1

I
(
Xi > X(k)

)∣∣∣∣∣, (2.13)

which measures the discrepancy between the observed number of the excesses over the high
threshold X(k) and the expected number of excesses in each partial time range. Therefore, we
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reject H0 if Tn is large. Our analysis shows that Tn has the same limiting distribution as T ◦
n .

Based on this, we obtain the result as follows:

Theorem 1. Recall that ϕ1(x) = I (x > 0) and ϕ2(x) = x+. Then if the conditions (A1)–(A3)
hold, we have that under H0,

1√
1 + ω

Tn(ϕ1) ⇒ sup
0≤t≤1

|B◦(t)|, (2.14)

where B◦ stands for a Brownian bridge.
In addition, if

(k ∨ r3
n)e−ε

√
k/rn = o(1) for every ε > 0, (2.15)

we have that under H0,

α√
2 + χ

Tn(ϕ2) ⇒ sup
0≤t≤1

|B◦(t)|. (2.16)

Corollary 1. Suppose that under H0, {Xi} is an i.i.d. sequence. Then, under (A2),

Tn(ϕ1) ⇒ sup
0≤t≤1

|B◦(t)|

and
α√
2
Tn(ϕ2) ⇒ sup

0≤t≤1
|B◦(t)|.

2.2. Cusum test in AR processes

In this subsection, we study the change point test for AR processes. As mentioned earlier in the
Introduction, we consider the cusum test based on residuals rather than observations themselves.
Let {Xi} be an AR(p) process satisfying the equation:

Xi =
p∑

j=1

φjXi−j + ξi,

where the characteristic polynomial φ(z) := 1 − φ1z − · · · − φpzp has no zeros inside the unit
circle in the complex plane, and ξi are error terms. Suppose that one wishes to test

H∗
0 : ξi are i.i.d. and the tail index of ξi remains the same as for i = 1, . . . , n vs.

H∗
1 : not H∗

0.

Under H∗
0, we assume that {Xi} has a common distribution F and Zi := |ξi | has the distribu-

tion G. Further, we assume that
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(B1) Ḡ := 1 − G is regularly varying at ∞, namely,

Ḡ(x) = x−αl∗(x) for some α > 0, (2.17)

where l∗ is slowly varying at ∞.
(B2) There exist κ(x) = Kκ

∫ x

1 tγ−1 dt (Kκ is finite) and a positive measurable function
g ∈ RVγ , γ ≤ 0, such that for all λ > 0,

lim
x→∞

l∗(λx)/l∗(x) − 1

g(x)
= κ(λ).

(B3)
√

kg(b∗(n/k)) → 0 as n → ∞, where b∗(x) = inf{y :G(y) ≥ 1 − x−1}.
For performing a test, we obtain the residuals ξ̂i = Xi − ∑p

j=1 φ̂Xi−j , where φ̂ := φ̂n is an
estimator of φ = (φ1, . . . , φp)′ that satisfies the following condition:

(B4) There exists a sequence of positive real numbers {d(n)} such that

d(n) → ∞ and

√
kb∗(n/

√
k)

b∗(n/k)
= o(d(n)) (2.18)

and

d(n)(φ̂ − φ) = OP (1) as n → ∞. (2.19)

Typical examples of such φ̂ are the Yule–Walker, linear programming (cf. Feigin and Resnick
(1994)), and least gamma deviation (cf. Davis et al. (1992)) estimators.

Then, based on Hill’s estimator:

1

k

n∑
i=1

(
log Ẑi − log Ẑ(k+1)

)
+, (2.20)

where Ẑi = |ξ̂i | and Ẑ(j) is the j th largest r.v. in Ẑ1, . . . , Ẑn, we employ the cusum test

T ∗
n (ϕ) := 1√

k
max

1≤l≤n

∣∣∣∣∣
l∑

i=1

ϕ
(
log Ẑi − log Ẑ(k)

) − l

n

n∑
i=1

ϕ
(
log Ẑi − log Ẑ(k)

)∣∣∣∣∣. (2.21)

The following is the main result of this subsection.

Theorem 2. Suppose that conditions (B1)–(B4) hold. Then, under H∗
0, we have

T ∗
n (ϕ1) ⇒ sup

0≤t≤1
|B◦(t)|. (2.22)

In addition, if

k1/α+1/2

d(n)
= o(n−ν) for some ν > 0, (2.23)



Test for tail index change 331

we have that under H∗
0,

α√
2
T ∗

n (ϕ2) ⇒ sup
0≤t≤1

|B◦(t)|. (2.24)

2.3. Estimation of the change point under a single abrupt change

In this subsection, we consider the estimating procedure of the location of a change when an
abrupt change occurs in the observed time range. We assume that the change point is located
at [nτ ] (0 < τ < 1), and denote the observations by a double array of r.v.’s Xn,i , i = 1, . . . , n.
The common marginal distribution function in time interval Ipre = {1,2, . . . , [nτ ]} is denoted by
Fpre and that in time interval Ipost = {[nτ ] + 1, . . . , n} is denoted by Fpost. It is assumed that
F̄pre ∈ RV−αpre and F̄post ∈ RV−αpost .

We set bpre(x) = inf{y :Fpre(y) ≥ 1 − x−1}, bpost(x) = inf{y :Fpost(y) ≥ 1 − x−1}, F m
l =

σ(Xn,l, . . . ,Xn,m) and

βn(l) = sup
m∈N

sup{|P(A ∩ B) − P(A)P (B)| :A ∈ F n
m+l+1,B ∈ F m

1 }.

Here, we focus on the case that Fpost has a heavier tail than Fpre. The following is the main result
of this subsection.

Theorem 3. Suppose that both the {Xi = Xn,i : i ∈ Ipre} and {Xi = Xn,i : i ∈ Ipost} are row-wise
stationary. Further, suppose that both the F̄pre and F̄post are regularly varying at ∞ and there
exists a sequence of positive integers {rn} such that

mnβn(rn) = o(1) and rn = o(k), (2.25)

where mn = [n/rn]. Then if there exists c > 1 such that

lim inf
x→∞

bpost(x)

bpre(x)
> c, (2.26)

we have Tn(ϕ1)
P−→ ∞; further, if there exists d ∈ (1,∞] such that

lim
x→∞

bpost(x)

bpre(x)
= d, (2.27)

then Tn(ϕ2)
P−→ ∞ and τ̂n := l̂n/n with

l̂n := arg max
1≤l≤n

∣∣∣∣∣
l∑

i=1

ϕ
(
logXi − logX(k)

) − l

n

n∑
i=1

ϕ
(
logXi − logX(k)

)∣∣∣∣∣
is a consistent estimator of τ , namely,

τ̂n
P−→ τ. (2.28)
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3. Simulation study

In this section, we evaluate the performance of the proposed tests through a simulation study.
Here, we employ the decision rule: At the nominal level 0.05

we reject H0 if the scaled Tn(ϕ) is greater than 1.35,

the scaling constant of which depends on ϕ and the dependency of data. Given any signifi-
cance levels, the critical values can be obtained from a Monte Carlo simulation (cf. Lee et al.
(2003)). In what follows, we briefly explain how to obtain those. We generate the random num-
bers ε1, . . . , εN , N = 10 000, following the standard normal distribution, and calculate

L := 1√
N

max
1≤l≤N

∣∣∣∣∣
l∑

i=1

εi − l

N

N∑
i=1

εi

∣∣∣∣∣.
Then we determine the critical value at the nominal level 0.05 as the 0.95-quantile from such
10 000 L’s. Table 1 presents the critical values for the nominal levels 0.01, 0.05 and 0.1.

In our simulation study, we consider the following distributions:

• Burr distribution for the i.i.d. sample:

F̄ (x) =
(

β

β + x−γ

)λ

(λ > 0, β > 0, γ < 0).

Its tail index is the reciprocal of α = −γ λ and the second-order regularly varying exponent
is γ . This is mainly used to investigate the effect of the second-order regularly varying
exponent γ on the tests.

• t distribution with the ν degrees of freedom for AR and moving average (MA) models.
Its tail index is ν−1, that is, α = ν and the second-order regularly varying exponent is
γ = −2/ν. This is used to generate the innovations of the moving average and autoregres-
sive processes.

We first consider the i.i.d. case with the Burr distribution. In this case, we reject H0 if
Tn(ϕ1) ≥ 1.35, and also if α̂√

2
Tn(ϕ2) ≥ 1.35 with

α̂ =
{

1

k

n∑
i=1

(
logXi − logX(k+1)

)
+

}−1

.

Tables 2 and 3 show that the empirical sizes of Tn(ϕ1) are closer to the nominal level than Tn(ϕ2),
which means the former is more stable than the latter. This phenomenon can be seen in all other

Table 1. Critical values

Nominal level 0.9 0.95 0.99
Critical value 1.22 1.35 1.60
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Table 2. Empirical sizes of Tn(ϕ1) in the i.i.d. case

k

n α γ 10 20 30 40 50 60 70 80 90 100

1000 2 −2.0 0.035 0.040 0.035 0.037 0.035 0.037 0.033 0.032 0.034 0.033
2 −0.5 0.030 0.041 0.039 0.035 0.038 0.035 0.037 0.036 0.032 0.031
1 −2.0 0.035 0.040 0.037 0.041 0.036 0.033 0.033 0.033 0.031 0.028
1 −0.5 0.030 0.036 0.038 0.038 0.037 0.036 0.034 0.029 0.031 0.032

k

n α γ 25 50 75 100 125 150 175 200 225 250

3000 2 −2.0 0.033 0.048 0.043 0.044 0.038 0.033 0.024 0.043 0.037 0.039
2 −0.5 0.031 0.047 0.038 0.040 0.035 0.033 0.033 0.035 0.044 0.038
1 −2.0 0.045 0.047 0.031 0.046 0.035 0.035 0.042 0.043 0.029 0.037
1 −0.5 0.033 0.041 0.040 0.034 0.056 0.038 0.048 0.034 0.046 0.039

cases considered in this simulation. From Table 2, it can be seen that α and γ do not affect the
performance of Tn(ϕ1) much. On the other hand, from Table 3, it can be seen that γ affects the
performance of Tn(ϕ2) to certain degree; the empirical size becomes smaller as γ gets close to 0
while this phenomenon is not elaborate with the change in α. In fact, Tn(ϕ1) depends on the rank
and observed time of observations but not on their magnitude.

Next, we deal with the MA(1) process Xi = ξi + θξi−1, where ξi are i.i.d. innovations follow-
ing a t distribution with the ν degrees of freedom. To perform a test, we estimate χ and ω (cf.

Table 3. Empirical sizes of the Tn(ϕ2) in the i.i.d. case

k

n α γ 10 20 30 40 50 60 70 80 90 100

1000 2 −2.0 0.011 0.021 0.029 0.028 0.029 0.032 0.029 0.028 0.027 0.032
2 −0.5 0.009 0.017 0.022 0.021 0.023 0.021 0.019 0.021 0.018 0.019
1 −2.0 0.012 0.023 0.029 0.029 0.030 0.031 0.031 0.032 0.035 0.031
1 −0.5 0.009 0.019 0.025 0.027 0.023 0.025 0.024 0.026 0.024 0.023

k

n α γ 25 50 75 100 125 150 175 200 225 250
3000 2 −2.0 0.023 0.033 0.033 0.041 0.037 0.032 0.029 0.039 0.020 0.039

2 −0.5 0.025 0.027 0.031 0.034 0.037 0.030 0.031 0.021 0.027 0.030
1 −2.0 0.031 0.026 0.032 0.039 0.044 0.040 0.043 0.034 0.035 0.029
1 −0.5 0.029 0.031 0.041 0.038 0.035 0.032 0.038 0.029 0.028 0.035
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Table 4. Empirical sizes of the Tn(ϕ1) for the MA(1) model

k

n α γ 10 20 30 40 50 60 70 80 90 100

1000 2 0.1 0.030 0.031 0.028 0.026 0.030 0.016 0.021 0.019 0.021 0.015
2 0.5 0.031 0.030 0.032 0.030 0.025 0.028 0.023 0.021 0.024 0.019
2 1.0 0.031 0.026 0.026 0.030 0.026 0.025 0.029 0.024 0.022 0.022

k

n α θ 25 50 75 100 125 150 175 200 225 250

3000 2 0.1 0.047 0.038 0.032 0.027 0.024 0.039 0.025 0.026 0.013 0.019
2 0.5 0.034 0.039 0.034 0.036 0.039 0.035 0.020 0.042 0.030 0.022
2 1.0 0.025 0.043 0.046 0.044 0.034 0.034 0.032 0.035 0.024 0.032

Theorem 1) by the estimators

χ̂ = 2α̂

k

n−1∑
i=1

(
logXi − logX(k)

)
+
(
logXi+1 − logX(k)

)
+

and

ω̂ = 2

k

n−1∑
i=1

I
(
Xi > X(k),Xi+1 > X(k)

)

(cf. Hsing (1991)). In this case, we reject H0 if 1√
1+ω̂

Tn(ϕ1) ≥ 1.35, and also if α̂√
2+χ̂

Tn(ϕ2) ≥
1.35. Tables 4 and 5 exhibit the empirical sizes of Tn(ϕ1) and Tn(ϕ2), respectively. Although
some size distortions exist, particularly when n is 1000, this size distortion effect seems to be
soothed as n increases.

Now, we turn our attention to the AR(1) process Xi = φXi−1 + ξi , where ξi are identical to
those in the previous case. In order to perform the tests based on residuals, we employ φ = 0.5
and 0.9 and obtain the residuals ξ̂i = Xi − φ̂Xi−1 by using the least squares estimator. According
to Theorem 2, the decision rules are the same as those in the i.i.d. case, but Tn(ϕ) and H0 are
replaced by T ∗

n (ϕ) and H∗
0, respectively. Tables 6 and 7 show that the empirical sizes are as good

as those in the i.i.d. case regardless of the value of φ’s.
So far, we have investigated the stability of the tests. In what follows, we examine the power

of Tn(ϕ1) for the MA(1) and AR(1) processes and the associated MSE of τ̂n for the MA(1)

process; Tn(ϕ2) is not considered here since its performance has a pattern similar to that of
Tn(ϕ1) and is not so good compared to Tn(ϕ1). To task this, we take account of the MA(1)

process Xi = ξi + 0.5ξi−1 and the AR(1) process Xi = 0.5Xi−1 + ξi . Under the alternative
hypothesis, it is assumed that ξi ∼ t (3) for i ≤ [nτ ] and ξi ∼ t (1) for i > [nτ ] (i.e., ν changes
from 3 to 1) with τ = 0.25,0.5,0.75. Tables 8 and 9 exhibit the empirical powers of Tn(ϕ1) and
T ∗

n (ϕ1), respectively, and show that these tests produce reasonably good powers. As might be
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Table 5. Empirical sizes of the Tn(ϕ2) for the MA(1) model

k

n α γ 10 20 30 40 50 60 70 80 90 100

1000 2 0.1 0.004 0.022 0.018 0.023 0.019 0.017 0.022 0.018 0.011 0.016
2 0.5 0.004 0.010 0.015 0.017 0.017 0.019 0.020 0.022 0.015 0.019
2 1.0 0.002 0.012 0.016 0.021 0.017 0.018 0.019 0.022 0.013 0.019

k

n α θ 25 50 75 100 125 150 175 200 225 250

3000 2 0.1 0.030 0.022 0.029 0.035 0.028 0.033 0.029 0.021 0.029 0.031
2 0.5 0.007 0.015 0.029 0.025 0.022 0.034 0.026 0.032 0.028 0.029
2 1.0 0.020 0.030 0.023 0.030 0.033 0.038 0.033 0.028 0.027 0.016

Table 6. Empirical sizes of T ∗
n (ϕ1) for the AR(1) model

k

n α φ 10 20 30 40 50 60 70 80 90 100

1000 2 0.5 0.034 0.037 0.037 0.039 0.035 0.035 0.033 0.035 0.030 0.030
2 0.9 0.032 0.035 0.037 0.036 0.036 0.039 0.036 0.033 0.036 0.033

k

n α φ 25 50 75 100 125 150 175 200 225 250

3000 2 0.5 0.045 0.046 0.037 0.049 0.044 0.043 0.033 0.046 0.034 0.043
2 0.9 0.031 0.049 0.046 0.039 0.039 0.040 0.037 0.032 0.041 0.039

Table 7. Empirical sizes of T ∗
n (ϕ2) for the AR(1) model

k

n α φ 10 20 30 40 50 60 70 80 90 100

1000 2 0.5 0.012 0.021 0.026 0.024 0.028 0.029 0.024 0.026 0.028 0.022
2 0.9 0.010 0.022 0.026 0.023 0.024 0.026 0.028 0.029 0.024 0.021

k

n α φ 25 50 75 100 125 150 175 200 225 250

3000 2 0.5 0.024 0.034 0.034 0.033 0.024 0.033 0.027 0.039 0.029 0.032
2 0.9 0.031 0.032 0.037 0.039 0.040 0.032 0.030 0.027 0.027 0.019
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Table 8. Empirical powers of Tn(ϕ1) for the MA(1) model

k

n τ 10 20 30 40 50 60 70 80 90 100

1000 0.25 0.06 0.15 0.29 0.46 0.71 0.81 0.85 0.84 0.84 0.84
0.50 0.44 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99
0.75 0.93 0.97 0.97 0.97 0.95 0.94 0.93 0.89 0.85 0.82

k

n τ 25 50 75 100 125 150 175 200 225 250

3000 0.25 0.24 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

anticipated, the tests have a tendency to produce the best powers when τ = 0.5. Table 10 also
shows that the same phenomenon is true for the MSE of τ̂n.

From Tables 2–9, it can be seen that the performance of the tests does not much depend on the
tail sample fraction k. Our simulation result indicates that it is not an easy task to build up a rule
to choose an optimal tail sample fraction unlike the case of Hill’s estimator since we cannot see
an obvious trend from our results. Our findings only enable us to recommend the use of k within
a reasonable range, say, k = 50–100 when n = 1000 and k = 100–200 when n = 3000. Due to
its importance, we leave the issue of finding an optimal k as a task for future study.

Table 9. Empirical powers of T ∗
n (ϕ1) for the AR(1) model

k

n τ 10 20 30 40 50 60 70 80 90 100

1000 0.25 0.11 0.34 0.75 0.86 0.90 0.89 0.90 0.89 0.86 0.83
0.50 0.94 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.97
0.75 0.94 0.97 0.98 0.96 0.95 0.92 0.91 0.87 0.83 0.78

k

n τ 25 50 75 100 125 150 175 200 225 250

3000 0.25 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 10. MSE of τ̂n of Tn(ϕ1) for the MA(1) model

k

n τ 10 20 30 40 50 60 70 80 90 100

1000 0.25 0.090 0.056 0.036 0.034 0.024 0.024 0.019 0.017 0.018 0.016
0.50 0.019 0.007 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002
0.75 0.003 0.001 0.002 0.002 0.003 0.003 0.003 0.005 0.007 0.007

k

n τ 25 50 75 100 125 150 175 200 225 251

3000 0.25 0.047 0.025 0.016 0.010 0.007 0.006 0.005 0.005 0.004 0.004
0.50 0.005 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.75 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4. Proofs

Lemma 1. Under Condition (A2), we have that for every 0 < v < 1 < u < ∞,

lim
x→∞ sup

λ∈[v,u]\{1}

∣∣∣∣ l(λx)/l(x) − 1

κ(λ)g(x)
− 1

∣∣∣∣ = 0. (4.1)

Proof. According to Theorem 2.3 of Hsing (1991), we have

lim
x→∞ sup

λ∈(1,u∨v−1]

∣∣∣∣ l(λx)/l(x) − 1

κ(λ)g(x)
− 1

∣∣∣∣ = 0. (4.2)

Further, by (4.2) and the fact that λ−γ κ(λ) = −κ(λ−1),

lim
x→∞ sup

λ∈[v,1)

∣∣∣∣ l(λx)

l(x)
− 1

∣∣∣∣ = 0,

and

lim
x→∞ sup

λ∈[v,1)

∣∣∣∣ g(λx)

λγ g(x)
− 1

∣∣∣∣ = 0

(cf. Theorem 1.2.1 in Bingham et al. (1987)), we have

lim
x→∞ sup

λ∈[v,1)

∣∣∣∣ l(λx)/l(x) − 1

g(x)κ(λ)
− 1

∣∣∣∣ = lim
x→∞ sup

λ∈[v,1)

∣∣∣∣ l(λx)

l(x)

g(λx)

λγ g(x)

l(x)/l(λx) − 1

g(λx)κ(λ−1)
− 1

∣∣∣∣ = 0.

Combining this and (4.2), we assert (4.1). �
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Lemma 2. Under Condition (A2),

F̄ (eζ/
√

kb(n/k)) = k

n

(
1 − αζ√

k
+ o

(
1√
k

))
(4.3)

uniformly on every compact ζ -set in R. Further, for any r > 0,

E

∣∣∣∣
(

logX1 − logb(n/k) + ζ1√
k

)
+

−
(

logX1 − logb(n/k) + ζ2√
k

)
+

∣∣∣∣
r

(4.4)

≤
∣∣∣∣ζ1 − ζ2√

k

∣∣∣∣
r
k

n

(
1 + O

(
1√
k

))

uniformly on every compact (ζ1, ζ2)-set in R
2.

Proof. We first verify (4.3). According to the arguments in the proof of Theorem 2.4 of Hsing
(1991), we can express

F̄ (b(n/k)) = k

n

(
1 + o

(
1√
k

))
.

Hence, we can express that for ζ ∈ [−K,K], K > 0,

F̄ (eζ/
√

kb(n/k)) = F̄ (b(n/k))
F̄ (eζ/

√
kb(n/k))

F̄ (b(n/k))

= k

n

(
1 + o

(
1√
k

))
e−αζ/

√
k l(eζ/

√
kb(n/k))

l(b(n/k))

= k

n

(
1 + o

(
1√
k

))(
1 − αζ√

k
+ �n,1(ζ )

)
l(eζ/

√
kb(n/k))

l(b(n/k))
,

where

lim
n→∞ sup

ζ∈[−K,K]
∣∣√k�n,1(ζ )

∣∣ = 0.

Due to Lemma 1, we have

l(eζ/
√

kb(n/k))

l(b(n/k))
= 1 + κ(eζ/

√
k)g(b(n/k))

(
1 + �n,2(ζ )

)
,

where

lim
n→∞ sup

ζ∈[−K,K]
max{|�n,2(ζ )|, |κ(eζ/

√
k)|} = 0.
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Henceforth, since limn→∞
√

kg(b(n/k)) < ∞, we have

lim
n→∞ sup

ζ∈[−K,K]

√
k

∣∣∣∣ l(eζ/
√

kb(n/k))

l(b(n/k))
− 1

∣∣∣∣ = 0,

which asserts (4.3). Now that (4.4) can be proven by using (4.3), the inequality: |x+−y+|r ≤ |x−
y|r I (max{x, y} > 0), and the fact that P(logX1 − logb(n/k) + ζ√

k
> 0) = F̄ (e−ζ/

√
kb(n/k)),

the lemma is established. �

For ζ ∈ R, we set

Ai(ζ ) := Ani(ζ,ϕ) := ϕ

(
logXi − logb(n/k) + ζ√

k

)

and

Mn(t, ζ ) := Mn(t, ζ,ϕ) := 1√
k

[nt]∑
i=1

{Ai(ζ ) − EA1(ζ )}.

Note that Mn(t) in Section 2.1 is identical to Mn(t,0).

Lemma 3. Suppose that conditions (A1)–(A3) hold. Then, for every ζ ∈ R and t ∈ [0,1],
Mn(t, ζ ) − Mn(t,0) = oP (1). (4.5)

Further,

sup
0≤t≤1

|Mn(t, ζ ) − Mn(t,0)| = oP (1). (4.6)

Proof. In order to verify (4.5), it suffices to show that for any real ζ and t ∈ (0,1),

1√
k

[nt]∑
i=1

{
Ai(0) − Ai(ζ ) − E

(
A1(0) − A1(ζ )

)} = oP (1). (4.7)

Let {rn} be a sequence that satisfies Condition (A1), and let mn be the integer part of [nt]/rn. To
show (4.7), we express the left-hand side of (4.7) as

∑mn

i=1 Sni + Rn, where

Sni = 1√
k

irn∑
j=(i−1)rn+1

{
Aj(0) − Aj(ζ ) − E

(
A1(0) − A1(ζ )

)}

and

Rn = 1√
k

[nt]∑
j=mnrn+1

{
Aj(0) − Aj(ζ ) − E

(
A1(0) − A1(ζ )

)}
.
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We first verify that ∑
i∈On

Sni = oP (1) as n → ∞, (4.8)

where On denotes the set of the odd numbers in {1,2, . . . ,mn}. Let {S̃ni : i ∈ On} be i.i.d. copies
of Sn1. Note that for each ε > 0,

P

(∣∣∣∣∣
∑
i∈On

S̃ni

∣∣∣∣∣ > ε

)
≤ 1

ε2

∑
i∈On

VarSni ≤ [nt]rn
2kε2

E
(
A1(0) − A1(ζ )

)2 = o(1)

owing to (2.8) and the fact that nE(A1(0) − A1(ζ ))2 = O(
√

k) (cf. Lemma 2). This implies∑
i∈On

S̃ni = oP (1) as n → ∞. (4.9)

Further, according to Lemma 2 of Billingsley (1995), page 365 and (2.7), it can be yielded that
for each s ∈ R,∣∣∣∣∣E exp

{
si

∑
i∈Oni

Sni

}
−

∏
i∈Oni

E exp{siSni}
∣∣∣∣∣ ≤ 16mnβ(rn) → 0 as n → ∞.

Thus, from this and (4.9), (4.8) is obtained. In fact, a similar result can be obtained for the
summation of Sni ’s over En := {1, . . . ,mn}\On. Therefore, we have

∑mn

i=1 Sni = oP (1). Since
Rn is also oP (1) by the fact:

ER2
n ≤ r2

n

k
E
(
A1(0) − A1(ζ )

)2 = o(1),

which is due to (2.8) and Lemma 2, (4.5) is asserted.
Now, to verify (4.6) we only need to show that

lim
ρ→0

lim sup
n

P

(
sup

|t1−t2|<ρ

|Mn(t1, ζ ) − Mn(t1,0) − {Mn(t2, ζ ) − Mn(t2,0)}| > ε

)
= 0 (4.10)

owing to (4.5). To task this, note that for ζ ∈ R, ρ > 0 and 0 ≤ t1 ≤ t2 ≤ 1,

sup
|t1−t2|<ρ

|Mn(t1, ζ ) − Mn(t1,0) − {Mn(t2, ζ ) − Mn(t2,0)}|

= sup
|t1−t2|<ρ

1√
k

∣∣∣∣∣
[nt2]∑

i=[nt1]+1

(
Ai(0) − Ai(ζ ) − E{A1(0) − A1(ζ )})

∣∣∣∣∣
≤ sup

|t1−t2|<ρ

1√
k

[nt2]∑
i=[nt1]+1

|Ai(0) − Ai(ζ )| + sup
|t1−t2|≤ρ

[nt2] − [nt1]√
k

E|A1(0) − A1(ζ )|

= In(ρ) + IIn(ρ).
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It can be seen that

In(ρ) ≤ max
0≤j≤[ρ−1]−1

1√
k

[nsj+2]∑
i=[nsj ]+1

|Ai(0) − Ai(ζ )|,

where sj = jρ ∧ 1, and thus, for any ε > 0,

P
(
In(ρ) ≥ ε

) ≤ 1

ρ
P

(
1√
k

[2ρn]+1∑
i=1

|Ai(0) − Ai(ζ )| > ε

)
.

According to Lemma 2, we can choose a sufficiently small ρ0 > 0 such that

lim sup
n→∞

[2ρ0n] + 1√
k

E|A1(0) − A1(ζ )| < ε/2.

Therefore, due to (4.5), for any ρ ≤ ρ0,

lim sup
n→∞

P

(
1√
k

[2ρn]+1∑
i=1

|Ai(0) − Ai(ζ )| > ε

)

≤ lim sup
n→∞

P

(
1√
k

[2ρn]+1∑
i=1

{|Ai(0) − Ai(ζ )| − E|A1(0) − A1(ζ )|} >
ε

2

)
= 0,

which yields limρ→0 lim supn P (In(ρ) > ε) = 0. Since IIn(ρ) ≤ ρO(1) as n → ∞, (4.6) is as-
serted. This completes the proof. �

Lemma 4. Suppose that conditions (A1)–(A3) hold. Then, for every ε > 0 and K > 0,

lim
ρ→0

lim sup
n

P

(
sup

|ζ1−ζ2|<ρ

1√
k

n∑
i=1

|Ai(ζ2) − Ai(ζ1)| > ε

)
= 0 (4.11)

and

lim
ρ→0

lim sup
n

sup
|ζ1−ζ2|<ρ

n√
k

E|A1(ζ2) − A1(ζ1)| = 0, (4.12)

where both ζ1 and ζ2 are numbers in [−K,K].

Proof. Since (4.12) can be directly obtained from Lemma 2, we only prove (4.11). For simplicity,
we assume that 2K/ρ is an integer. Note that for ζ1 and ζ2 ∈ [−K,K],

sup
|ζ1−ζ2|<ρ

1√
k

n∑
i=1

|Ai(ζ2) − Ai(ζ1)| ≤ max
l

1√
k

n∑
i=1

{
Ai

(
(l + 2)ρ

) − Ai(lρ)
}
, (4.13)
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where the maximum is taken over the integers l such that [lρ, (l + 2)ρ] ⊂ [−K,K]. From (4.5),
it can be easily seen that

1√
k

n∑
i=1

{
Ai

(
(l + 2)ρ

) − Ai(lρ) − E
(
A1

(
(l + 2)ρ

) − A1(lρ)
)} = oP (1).

By using this, (4.12) and (4.13), we can verify (4.11) similarly to Lemma 3. �

Lemma 5. Suppose that conditions (A1)–(A3) hold. Then, for every K > 0,

sup
ζ∈[−K,K]

sup
0≤t≤1

|Mn(t, ζ ) − Mn(t,0)| = oP (1).

Proof. Let ε > 0. Note that for ζ1 and ζ2 ∈ [−K,K],
sup

|ζ1−ζ2|<ρ

sup
0≤t≤1

|Mn(t, ζ1) − Mn(t, ζ2)|

= sup
|ζ1−ζ2|<ρ

sup
0≤t≤1

∣∣∣∣∣ 1√
k

[nt]∑
i=1

{Ai(ζ1) − EA1(ζ1)} − 1√
k

[nt]∑
i=1

{Ai(ζ2) − EA1(ζ2)}
∣∣∣∣∣

≤ sup
|ζ1−ζ2|<ρ

1√
k

n∑
i=1

|Ai(ζ2) − Ai(ζ1)| + sup
|ζ1−ζ2|<ρ

n√
k

E|A1(ζ2) − A1(ζ1)|,

so that, due to Lemma 4,

lim
ρ→0

lim sup
n

P

(
sup

|ζ1−ζ2|<ρ

sup
0≤t≤1

|Mn(t, ζ1) − Mn(t, ζ2)| > ε

)
= 0. (4.14)

Then, since

P

(
sup

ζ∈[−K,K]
sup

0≤t≤1
|Mn(t, ζ ) − Mn(t,0)| > ε

)

≤ P

(
max
j∈Z

sup
0≤t≤1

|Mn(t, jρ) − Mn(t,0)| > ε

2

)

+ P

(
sup

|ζ1−ζ2|<ρ

sup
0≤t≤1

|Mn(t, ζ1) − Mn(t, ζ2)| > ε

2

)
,

where the maximum is taken over j ’s with jρ ∈ [−K,K], the lemma is asserted by (4.6)
and (4.14). �

Lemma 6. Suppose that conditions (A1)–(A3) hold. If ϕ(x) = ϕ1(x) := I (x > 0), then

1√
1 + ω

Mn(·) ⇒ B(·) in D[0,1].
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If ϕ(x) = ϕ2(x) := x+ and (2.15) holds, then

α√
2 + χ

Mn(·) ⇒ B(·) in D[0,1].

Proof. We first prove the theorem for the case ϕ(x) = I (x > 0). Let mn = [n/rn]. For 0 < ε < 1,
we set Ij = Inj (ε) = {(j −1)rn +1, . . . , (j −1)rn +[(1−ε)rn]} and Jj = Jnj (ε) = {(j −1)rn +
1, . . . , jrn} ∩ I c

j . Further, we set mn(t) as the integer part of [nt]/rn. Then we can express

1√
1 + ω

Mn(t,0) = 1√
k(1 + ω)

{
mn(t)∑
j=1

∑
i∈Ij

{Ai(0) − EAi(0)} +
mn(t)∑
j=1

∑
i∈Jj

{Ai(0) − EAi(0)}
}

+ Zn(t),

where

Zn(t) = 1√
k(1 + ω)

[nt]∑
i=rnmn(t)+1

{Ai(0) − EAi(0)}.

Owing to (2.8) and the fact that |Ai(0)| ≤ 1, we can see that

‖Zn‖ := sup
t∈[0,1]

|Zn(t)| = oP (1). (4.15)

Set

Ln,ε(t) := 1√
k(1 + ω)(1 − ε)

mn(t)∑
j=1

Yj ,

where Yj := ∑
i∈Ij

{Ai(0) − EAi(0)} is {Xi : i ∈ Ij }-measurable. Let D denote a space of cadlag
functions on [0,1] endowed with Skorokhod’s metric (cf. Billingsley (1999)) and let D be its
Borel σ -field. Define

M̃n(t;x1, x2, . . . , xmn) := 1√
k(1 + ω)(1 − ε)

mn(t)∑
i=1

xi .

Since M̃n : (Rmn, Rmn) → (D, D) is measurable, owing to (2.7), we have that for H ∈ D,

P(Ln,ε ∈ H) = P
(
(Y1, . . . , Ymn) ∈ M̃−1

n (H)
)

= P̃
(
(Ỹ1, . . . , Ỹmn) ∈ M̃−1

n (H)
) + o(1) (4.16)

= P̃ (L̃n,ε ∈ H) + o(1),

where

L̃n,ε(t) := 1√
k(1 + ω)(1 − ε)

mn(t)∑
j=1

Ỹj ,
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and Ỹj , j = 1, . . . ,mn, are i.i.d. copies of Y1 (cf. Eberlein (1984)). Since by (2.8) and (2.10),

L̃n,ε ⇒ B in D[0,1] (4.17)

(cf. Theorem 18.2 of Billingsley (1999)), in view of (4.16), we have

Ln,ε ⇒ B in D[0,1]. (4.18)

Similarly, it can be verified that

Nn,ε(t) := 1√
k(1 + ω)ε

mn(t)∑
j=1

∑
i∈Jj

(
Ai(0) − EAi(0)

) ⇒ B in D[0,1]. (4.19)

Now, if we set Vn,ε := (
√

1 − ε − 1)Ln,ε + √
εNn,ε + Zn, we can express

1√
1 + ω

Mn = Ln,ε + Vn,ε,

and thus, for any closed set H ⊂ D and δ > 0,

lim sup
n

P

(
1√

1 + ω
Mn ∈ H

)
≤ lim sup

n
P (Ln,ε ∈ H̄ δ) + lim sup

n
P (‖Vn,ε‖ ≥ δ),

where ‖Vn,ε‖ = supt∈[0,1] |Vn,ε(t)| and H̄ δ is the closure of Hδ . From (4.18) and (4.19), we have

lim
ε→0

lim sup
n

P
((

1 − √
1 − ε

)‖Ln,ε‖ ≥ δ
) = 0

and

lim
ε→0

lim sup
n

P
(√

ε‖Nn,ε‖ ≥ δ
) = 0,

which, together with (4.15), yields that

lim
ε→0

lim sup
n

P (‖Vn,ε‖ ≥ δ) = 0.

Thus, by letting ε → 0, we get

lim sup
n

P

(
1√

1 + ω
Mn ∈ H

)
≤ P(B ∈ H̄ δ).

Further, by letting δ ↓ 0, we have

lim sup
n

P

(
1√

1 + ω
Mn ∈ H

)
≤ P(B ∈ H),

which entails (1 + ω)−1/2Mn ⇒ B in D[0,1] due to Portmanteau’s theorem.
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Next, we deal with the case that ϕ(x) = x+. We first demonstrate that (4.15) still holds for this
case. Note that∣∣∣∣∣ 1√

k

[nt]∑
i=rnmn(t)+1

{Ai(0) − EAi(0)}
∣∣∣∣∣ ≤ 1√

k

[nt]∑
i=rnmn(t)+1

Ai(0) + 1√
k

[nt]∑
i=rnmn(t)+1

EAi(0)

(4.20)

≤ 1√
k

[nt]∑
i=rnmn(t)+1

Ai(0) + rn√
k
,

and

sup
t∈[0,1]

1√
k

[nt]∑
i=rnmn(t)+1

Ai(0) ≤ max
1≤j≤mn+1

1√
k

jrn∑
i=(j−1)rn+1

Ai(0). (4.21)

We have that for every η > 0,

P

(
max

1≤j≤mn+1

1√
k

jrn∑
i=(j−1)rn+1

Ai(0) > η

)
≤ (mn + 1)P

(
1√
k

rn∑
i=1

Ai(0) > η

)
,

and further, for sufficiently large n,

P

(
1√
k

rn∑
i=1

(
logXi − logb(n/k)

)
+ > η

)
≤ rnP

(
logX1 − logb(n/k) >

η
√

k

rn

)

= rnF̄ (eη
√

k/rnb(n/k))
(4.22)

∼ rnk

n
e−αη

√
k/rn

l(eη
√

k/rnb(n/k))

l(b(n/k))

≤ rn

n
· Cke−(α−δ)η

√
k/rn

for some 0 < δ < α and C > 1, where we have used Potter’s theorem (cf. Bingham et al. (1987)).
Thus, by (2.15), we get

max
1≤j≤mn+1

1√
k

jrn∑
i=(j−1)rn+1

Ai(0) = oP (1),

which, together with (4.20) and (4.21), entails (4.15).
Next, we verify that

α√
k(2 + χ)(1 − ε)

mn(·)∑
j=1

∑
i∈Ij

{Ai(0) − EAi(0)} ⇒ B(·) in D[0,1], (4.23)
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which corresponds to (4.17) in the case of ϕ(x) = I (x > 0). Let

ξnj = α√
k(2 + χ)(1 − ε)

∑
i∈Ij

{Ai(0) − EA1(0)} and σ 2
nj = Var(ξnj ).

Since n
k

E(logX1 − logb(n/k))2+ ∼ 2α−2, by (2.9), we have

[mnt]∑
j=1

σ 2
nj −→ t as n → ∞.

Further, since n
k

E(logX1 − logb(n/k))4+ ∼ 4!α−4, we have that for some K1 > 0,

mnE(ξ4
n1) ≤ n

rn
K1

r4
n

k2

k

n
≤ K1

r3
n

k
.

Henceforth, by using (4.22) and the Schwarz inequality, for each η > 0, there exist some c,
K > 0, such that

mn∑
j=1

E[ξ2
nj I (|ξnj | ≥ η)] = mnE[ξ2

n1I (|ξn1| ≥ η)] ≤ mn

√
E(ξ4

n1)P (|ξn1| ≥ η)

=
√

mnE(ξ4
n1)mnP (|ξn1| ≥ η) ≤

√
Kr3

ne−c
√

k/rn ,

where the last term is o(1) by (2.15). By the same reasoning as in the derivation of (4.16), we can
view {ξnj : j = 1, . . . ,mn,n = 1,2, . . .} as a row-wise independent double array of zero-mean
r.v.’s. Therefore, by Theorem 18.2 of Billingsley (1999), we can obtain (4.23). Since the rest of
the proof essentially follows the same lines below (4.17), we omit it for brevity. �

Proof of Theorem 1. According to Lemma 6, (2.14) and (2.16) are asserted if we verify that

1√
1 + ω

Tn(ϕ1) = 1√
k(1 + ω)

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

I
(
Xi > b(n/k)

) − l

n

n∑
i=1

I
(
Xi > b(n/k)

)∣∣∣∣∣
(4.24)

+ oP (1),

and

α√
2 + χ

Tn(ϕ2) = α√
k(2 + χ)

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

(
logXi − logb(n/k)

)
+

(4.25)

− l

n

n∑
i=1

(
logXi − logb(n/k)

)
+

∣∣∣∣∣ + oP (1).
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Since the proof of (4.25) is similar to that of (4.24), we only provide for the latter. Let K be any
positive real number. By setting ζn = −√

k(logX(k) − logb(n/k)), we can express

1√
k

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

{
I
(
Xi > X(k)

) − I
(
Xi > b(n/k)

)} − l

n

n∑
i=1

{
I
(
Xi > X(k)

) − I
(
Xi > b(n/k)

)}∣∣∣∣∣
= 1√

k
max

1≤l≤n

∣∣∣∣∣
l∑

i=1

{Ai(ζn) − Ai(0)} − l

n

n∑
i=1

{Ai(ζn) − Ai(0)}
∣∣∣∣∣

:= In + IIn,

where

In = 1√
k

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

{Ai(ζn) − Ai(0)} − l

n

n∑
i=1

{Ai(ζn) − Ai(0)}
∣∣∣∣∣I (|ζn| < K)

and

IIn = 1√
k

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

{Ai(ζn) − Ai(0)} − l

n

n∑
i=1

{Ai(ζn) − Ai(0)}
∣∣∣∣∣I (|ζn| ≥ K).

Due to Lemma 5, we have

In ≤ 1√
k

max
1≤l≤n

sup
ζ∈[−K,K]

∣∣∣∣∣
l∑

i=1

{Ai(ζ ) − Ai(0)} − l

n

n∑
i=1

{Ai(ζ ) − Ai(0)}
∣∣∣∣∣

≤ 2 sup
ζ∈[−K,K]

sup
0≤t≤1

|Mn(t, ζ ) − Mn(t,0)| = oP (1).

On the other hand, since ζn ⇒ N(0, α−2(1 + ω)) in view of Lemmas 3 and 6 (cf. Theorem 2.4
of Hsing (1991)), we have

lim sup
n

P (IIn > 0) ≤ lim sup
n

P (|ζn| ≥ K) → 0 as K → ∞.

Therefore, (4.24) is asserted. This completes the proof. �

Below, we prove Theorem 2. It is well known that under conditions (B1)–(B3), the sequence
of stochastic processes En defined by

En(x) = √
k

(
1

k

n∑
i=1

I
(
Zi > x−1/αb∗(n/k)

) − x

)
, x ∈ [0,∞), (4.26)

converges weakly to a standard Brownian motion B in D[0,∞) (cf. Proposition 2.1 of Resnick
et al. (1997b)). The following result is due to Proposition 3.2 of Resnick et al. (1997a), which
plays an important role in verifying Theorem 2.
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Lemma 7. Under conditions (B1)–(B4),

1√
k

sup
x∈[c,d]

n∑
i=1

∣∣I(
Zi > xb∗(n/k)

) − I
(
Ẑi > xb∗(n/k)

)∣∣ = oP (1)

for every 0 < c < d < ∞.

Lemma 8. Under conditions (B1)–(B4),
√

k
{
log Ẑ(k) − logb∗(n/k)

} = OP (1).

Proof. By Lemmas 3, 6 and 7, for every ζ ∈ R,

1√
k

n∑
i=1

{
I
(
Ẑi > eζ/

√
kb∗(n/k)

) − P
(
Zi > eζ/

√
kb∗(n/k)

)}

= 1√
k

n∑
i=1

{
I
(
Zi > eζ/

√
kb∗(n/k)

) − P
(
Zi > eζ/

√
kb∗(n/k)

)} + oP (1) ⇒ N(0,1).

Hence,
√

k
{
log Ẑ(k) − logb∗(n/k)

} ⇒ N(0, α−2)

(cf. Theorem 2.4 of Hsing (1991)). This completes the proof. �

Lemma 9. Under conditions (B1)–(B4) and (2.23), for c < d ∈ R,

1√
k

sup
x∈[c,d]

n∑
i=1

∣∣(logZi − logb∗(n/k) + x
)
+ − (

log Ẑi − logb∗(n/k) + x
)
+
∣∣ = oP (1). (4.27)

Proof. By setting Yi = logZi − logb∗(n/k) and Ŷi = log Ẑi − logb∗(n/k), we can express the
argument in (4.27) as

1√
k

sup
x∈[c,d]

n∑
i=1

|(Yi + x)+ − (Ŷi + x)+|

≤ 1√
k

sup
x∈[c,d]

n∑
i=1

|(Yi + x)+ − (Ŷi + x)+||I (Ŷi + x > 0) − I (Yi + x > 0)|
(4.28)

+ 1√
k

sup
x∈[c,d]

n∑
i=1

|(Yi + x)+ − (Ŷi + x)+|I (Ŷi + x > 0, Yi + x > 0)

:= �n1 + �n2.
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Note that �n1 is no more than In + IIn, where

In = 1√
k

sup
x∈[c,d]

n∑
i=1

Ui(x)I
(
(Yi + x)+ ∨ (Ŷi + x)+ ≤ 1

)
,

IIn = 1√
k

sup
x∈[c,d]

n∑
i=1

Ui(x)
{
I
(
(Yi + x)+ > 1, (Ŷi + x)+ ≤ 0

)

+ I
(
(Yi + x)+ ≤ 0, (Ŷi + x)+ > 1

)}
and

Ui(x) = |(Yi + x)+ − (Ŷi + x)+||I (Ŷi + x > 0) − I (Yi + x > 0)|.
First, note that by Lemma 7,

In ≤ 1√
k

sup
x∈[c,d]

n∑
i=1

|I (Ŷi + x > 0) − I (Yi + x > 0)| = oP (1).

Second, if we set Xi−1 = (Xi−1, . . . ,Xi−p)T and |x| = √
xT x for x ∈ R

p , we have that for
0 < δ < ν,

1

n1/α+δ
max

1≤i≤n
|Xi−1| = oP (1),

and therefore, by using (2.23) and the fact that

b∗(·) ∈ RV1/α (4.29)

(cf. Theorems 1.5.12 and 1.5.4 of Bingham et al. (1987)), we get

sup
x∈[c,d]

max
1≤i≤n

{
I
(
(Yi + x)+ > 1, (Ŷi + x)+ ≤ 0

) + I
(
(Yi + x)+ ≤ 0, (Ŷi + x)+ > 1

)}

≤ I

(
max

1≤i≤n
|Zi − Ẑi | ≥ e−db∗(n/k)(e − 1)

)

≤ I

(
n1/α+δ

d(n)b∗(n/k)
· d(n)|φ̂ − φ| 1

n1/α+δ
max

1≤i≤n
|Xi−1| > e−d(e − 1)

)
= oP (1),

which asserts IIn = oP (1). Hence �n1 = oP (1).
Third, by using (2.23), (4.29), Theorem 1.5.4 of Bingham et al. (1987) and the fact that

∣∣(log z − logb∗(n/k) + x
)
+ − (

log ẑ − logb∗(n/k) + x
)
+
∣∣ ≤ |z − ẑ|

min{z, ẑ} ,
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we have

1√
k

sup
x∈[c,d]

n∑
i=1

|(Yi + x)+ − (Ŷi + x)+|I (Ŷi + x > 0, Yi + x > 0)

≤ max1≤i≤n |Zi − Ẑi |
e−db∗(n/k)

1√
k

n∑
i=1

I
(
Zi > e−db∗(n/k)

)
(4.30)

≤ ed

√
kn1/α+δ

d(n)b∗(n/k)
d(n)|φ̂ − φ| 1

n1/α+δ
max

1≤i≤n
|Xi−1|1

k

n∑
i=1

I
(
Zi > e−db∗(n/k)

)
= oP (1).

This implies �n2 = oP (1). Hence the lemma is established by (4.28). �

Proof of Theorem 2. Note that

1√
k

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

{
I
(
Ẑi > Ẑ(k)

) − I
(
Zi > b∗(n/k)

)}

− l

n

n∑
i=1

{
I
(
Ẑi > Ẑ(k)

) − I
(
Zi > b∗(n/k)

)}∣∣∣∣∣
is bounded by In + IIn, where

In = 1√
k

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

{
I
(
Ẑi > Ẑ(k)

) − I
(
Zi > Ẑ(k)

)} − l

n

n∑
i=1

{
I
(
Ẑi > Ẑ(k)

) − I
(
Zi > Ẑ(k)

)}∣∣∣∣∣,
and

IIn = 1√
k

max
1≤l≤n

∣∣∣∣∣
l∑

i=1

{
I
(
Zi > Ẑ(k)

) − I
(
Zi > b∗(n/k)

)}

− l

n

n∑
i=1

{
I
(
Zi > Ẑ(k)

) − I
(
Zi > b∗(n/k)

)}∣∣∣∣∣.
By Lemmas 7 and 8, we can have

In ≤ 2√
k

n∑
i=1

∣∣∣∣I
(

Ẑi >
Ẑ(k)

b∗(n/k)
b∗(n/k)

)
− I

(
Zi >

Ẑ(k)

b∗(n/k)
b∗(n/k)

)∣∣∣∣ = oP (1).
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Further, by using Lemma 8, we can prove IIn = oP (1) in a fashion similar to that used to prove
Theorem 1. Therefore, in view of Corollary 1, we have

T ∗
n (ϕ1) = 1√

k
max

1≤l≤n

∣∣∣∣∣
l∑

i=1

I
(
Zi > b∗(n/k)

) − l

n

n∑
i=1

I
(
Zi > b∗(n/k)

)∣∣∣∣∣ + oP (1)

⇒ sup
0≤t≤1

|B◦(t)|,

which establishes (2.22). Since (2.24) can be proven similarly – in this case Lemma 9 is used
instead of Lemma 7 – we complete the proof without detailing algebras. �

Now we prove Theorem 3. It is not difficult to verify the following lemma (cf. Theorem 3.1 of
Hsing (1991)).

Lemma 10. Under the conditions in Theorem 3, we have that for each t ∈ (0, τ ] and δ > 0,

sup
x>δ

∣∣∣∣∣1

k

[nt]∑
i=1

I
(
Xi > xbpre(n/k)

) − tx−αpre

∣∣∣∣∣ P−→ 0

and

sup
x>δ

∣∣∣∣∣1

k

[nt]∑
i=1

(
logXi − logbpre(n/k) − logx

)
+ − tx−αpreα−1

pre

∣∣∣∣∣ P−→ 0.

Further, for each t ∈ (τ,1],

sup
x>δ

∣∣∣∣∣1

k

[nt]∑
i=[nτ ]+1

I
(
Xi > xbpost(n/k)

) − (t − τ)x−αpost

∣∣∣∣∣ P−→ 0

and

sup
x>δ

∣∣∣∣∣1

k

[nt]∑
i=[nτ ]+1

(
logXi − logbpost(n/k) − logx

)
+ − (t − τ)x−αpostα−1

post

∣∣∣∣∣ P−→ 0.

Proof of Theorem 3. We verify the first part of the theorem. Suppose that (2.26) holds. Let
y > 1 be a real number such that

τy−αpre +
(

y

c

)−αpost

(1 − τ) > 1.
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For sufficiently large n, we have

1

k

n∑
i=1

I
(
Xi > ybpre(n/k)

) = 1

k

[nτ ]∑
i=1

I
(
Xi > ybpre(n/k)

) + 1

k

n∑
i=[nτ ]+1

I
(
Xi > ybpre(n/k)

)

≥ 1

k

[nτ ]∑
i=1

I
(
Xi > ybpre(n/k)

) + 1

k

n∑
i=[nτ ]+1

I

(
Xi >

y

c
bpost(n/k)

)

P−→ τy−αpre +
(

y

c

)−αpost

(1 − τ) > 1,

which implies limn→∞ P(X(k) > ybpre(n/k)) = 1. Hence, if we set

Un,1(t) = 1

k

[nt]∑
i=1

I
(
Xi > X(k)

) − [nt]
n

(
1 − 1

k

)
,

we have

Un,1(τ ) ≤ 1

k

[nτ ]∑
i=1

I
(
Xi > ybpre(n/k)

) − τ + oP (1) = (y−αpre − 1)τ + oP (1).

Since Tn(ϕ1) = sup0≤t≤1

√
k|Un,1(t)| and (y−1/αpre − 1) < 0, the above asserts that

Tn(ϕ1)
P−→ ∞.

Next, we verify the second part of the theorem. We first handle the case that d in (2.27) is
finite. By Lemma 10, we have that for 0 < y < ∞,

1

k

n∑
i=1

I
(
Xi > ybpre(n/k)

) = 1

k

[nτ ]∑
i=1

I
(
Xi > ybpre(n/k)

)

+ 1

k

n∑
i=[nτ ]+1

I

(
Xi > y

bpre(n/k)

bpost(n/k)
bpost(n/k)

)

P−→ τy−αpre +
(

y

d

)−αpost

(1 − τ),

and thus there exists y0 > 1 such that τy
−αpre
0 + (

y0
d

)−αpost(1 − τ) = 1,

X(k)

bpre(n/k)

P−→ y0 and
X(k)

bpost(n/k)

P−→ y0

d
.
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Hence, we have that for each t ∈ (0, τ ],

1

k

[nt]∑
i=1

I
(
Xi > X(k)

) = 1

k

[nt]∑
i=1

I

(
Xi >

X(k)

bpre(n/k)
bpre(n/k)

)
P−→ ty

−αpre
0

and

1

k

[nt]∑
i=1

(
logXi − logX(k)

)
+ = 1

k

[nt]∑
i=1

(
logXi − logbpre(n/k) − log

X(k)

bpre(n/k)

)
+

P−→ ty
−αpre
0

αpre
.

Further, for each t ∈ (τ,1],

1

k

[nt]∑
i=[nτ ]+1

I
(
Xi > X(k)

) = 1

k

[nt]∑
i=[nτ ]+1

I

(
Xi >

X(k)

bpost(n/k)
bpost(n/k)

)
P−→ (t − τ)

(
y0

d

)−αpost

and

1

k

[nt]∑
i=[nτ ]+1

(
logXi − logX(k)

)
+ = 1

k

[nt]∑
i=[nτ ]+1

(
logXi − logbpost(n/k) − log

X(k)

bpost(n/k)

)
+

P−→ (t − τ)

(
y0

d

)−αpost 1

αpost

due to Lemma 10. Since both the stochastic process 1
k

∑[nt]
i=1 I (Xi > X(k)) and its limiting process

are non-decreasing in t and the limiting process is continuous in t , we have

sup
t∈[0,τ ]

∣∣∣∣∣1

k

[nt]∑
i=1

I
(
Xi > X(k)

) − ty
−αpre
0

∣∣∣∣∣ P−→ 0.

Similarly, we get

sup
t∈[0,τ ]

∣∣∣∣∣1

k

[nt]∑
i=1

(
logXi − logX(k)

)
+ − ty

−αpre
0

αpre

∣∣∣∣∣ P−→ 0,

sup
t∈(τ,1]

∣∣∣∣∣1

k

[nt]∑
i=[nτ ]+1

I
(
Xi > X(k)

) − (t − τ)

(
y0

d

)−αpost
∣∣∣∣∣ P−→ 0

and

sup
t∈(τ,1]

∣∣∣∣∣1

k

[nt]∑
i=[nτ ]+1

(
logXi − logX(k)

)
+ − (t − τ)

(
y0

d

)−αpost 1

αpost

∣∣∣∣∣ P−→ 0.
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By using these facts, we can have that uniformly in t ∈ [0,1],

Un,1(t)
P−→ t (y

−αpre
0 − 1) ∨

[
τ

{
y

−αpre
0 −

(
y0

d

)−αpost
}

+ t

{(
y0

d

)−αpost

− 1

}]
,

and further,

Un,2(t) := 1

k

[nt]∑
i=1

(
logXi − logX(k)

)
+ − [nt]

nk

n∑
i=1

(
logXi − logX(k)

)
+

P−→ (
t (1 − τ) ∧ (1 − t)τ

){y
−αpre
0

αpre
−

(
y0

d

)−αpost 1

αpost

}
,

which has a minimum at t = τ . Hence, Tn(ϕ2)
P−→ ∞ and (2.28) is established.

Now, we deal with the case that d = ∞. Due to Lemma 10, we have that for y > 0,

1

k

n∑
i=1

I
(
Xi > ybpost(n/k)

) P−→ (1 − τ)y−αpost ,

and subsequently,

X(k)

bpost(n/k)

P−→ (1 − τ)1/αpost and
X(k)

bpre(n/k)

P−→ ∞.

By using this and Lemma 10, it can be shown that

sup
t∈(0,τ ]

1

k

[nt]∑
i=1

I
(
Xi > X(k)

) P−→ 0,

sup
t∈(0,τ ]

1

k

[nt]∑
i=1

(
logXi − logX(k)

)
+

P−→ 0,

sup
t∈(τ,1]

∣∣∣∣∣1

k

[nt]∑
i=[nτ ]+1

I
(
Xi > X(k)

) − t − τ

1 − τ

∣∣∣∣∣ P−→ 0

and

sup
t∈(τ,1]

∣∣∣∣1

k

[nt]∑
i=[nτ ]+1

(
logXi − logX(k)

)
+ − t − τ

1 − τ

1

αpost

∣∣∣∣ P−→ 0.

Further, by using the above arguments, it can be obtained that

sup
t∈[0,1]

∣∣∣∣Un,1(t) − (−t) ∨
(

t − τ

1 − τ
− t

)∣∣∣∣ P−→ 0
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and

sup
t∈[0,1]

∣∣∣∣Un,2(t) − (−t) ∨
(

t − τ

1 − τ
− t

)
1

αpost

∣∣∣∣ P−→ 0.

Since t �→ (−t) ∨ ( t−τ
1−τ

− t) has a minimum at t = τ , the theorem is established. �
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