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This paper considers non-negative integer-valued autoregressive processes where the autoregression para-
meter is close to unity. We consider the asymptotics of this ‘near unit root’ situation. The local asymptotic
structure of the likelihood ratios of the model is obtained, showing that the limit experiment is Poissonian.
To illustrate the statistical consequences we discuss efficient estimation of the autoregression parameter and
efficient testing for a unit root.
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1. Introduction

The non-negative integer-valued autoregressive process of the order 1 (INAR(1)) was introduced
by Al-Osh and Alzaid (1987) and Alzaid (1988) as a non-negative integer-valued analogue of the
AR(1) process. Al-Osh and Alzaid (1990) and Du and Li (1991) extended this work to INAR(p)
processes. Recently there has been a growing interest in INAR processes. Without going into
details we mention some recent (theoretical) contributions to the literature on INAR processes:
Freeland and McCabe (2005), Jung, Ronning and Tremayne (2005), Silva and Oliveira (2005),
Silva and Silva (2006), Zheng, Basawa and Datta (2006), Neal and Subba Rao (2007) and Drost,
Van den Akker and Werker (2008a, 2008b). Applications of INAR processes in the medical sci-
ences can be found in, for example, Franke and Seligmann (1993), Bélisle et al. (1998) and
Cardinal, Roy and Lambert (1999); an application to psychometrics in Böckenholt (1999a), an
application to environmentology in Thyregod et al. (1999); recent applications to economics
in, for example, Böckenholt (1999b), Berglund and Brännäs (2001), Brännäs and Hellström
(2001), Rudholm (2001), Böckenholt (2003), Brännäs and Quoreshi (2004), Freeland and Mc-
Cabe (2004), Gourieroux and Jasiak (2004) and Drost, Van den Akker and Werker (2008c); and
Ahn, Gyemin and Jongwoo (2000) and Pickands III and Stine (1997) considered queueing appli-
cations.

This paper considers a nearly nonstationary INAR(1) model and derives its limit experiment
(in the Le Cam framework). Our main result is that this limit experiment is Poissonian. This
is surprising since limit experiments are usually locally asymptotically quadratic (LAQ; see
Jeganathan (1995), Le Cam and Yang (1990) and Ling and McAleer (2003)) and even non-
regular models often enjoy a shift structure (see Hirano and Porter (2003a, 2003b)), whereas
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the Poisson limit experiment does not enjoy these two properties. The result is indeed surpris-
ing since Ispány, Pap and van Zuijlen (2003a) established a functional limit theorem with an
Ornstein–Uhlenbeck limit process from which one would conjecture a standard LAQ-type limit
experiment. On a technical level the proof of the convergence to a Poisson limit experiment is
interesting, since the ‘score’ can be split into two parts that have different rates of convergence.
To illustrate the statistical consequences of the convergence to a Poisson limit experiment, we
exploit this limit experiment to construct efficient estimators of the autoregression parameter and
to construct an efficient test for the null hypothesis of a unit root. Since the INAR(1) process
is a particular branching process with immigration, this also partially solves the question (see
Wei and Winnicki (1990)) of how to estimate the offspring mean efficiently. Furthermore, we
show that the ordinary least squares (OLS) estimator, considered by Ispány, Pap and van Zui-
jlen (2003a, 2003b, 2005), is inefficient. Surprisingly, the OLS estimator even has a lower rate
of convergence than the efficient one. Related to this, we show that the classical Dickey–Fuller
test for a unit root has no power against local alternatives induced by the limit experiment. More
precisely, as we will see below, the autoregressive parameter in these local alternatives is of the
form 1 −h/n2 with h > 0 and n denoting the number of observations. Of course, for alternatives
at a further distance the Dickey–Fuller test will have power but the efficient test can perfectly
discriminate between the null and the alternative in such a case.

An INAR(1) process (starting at 0) is defined by the recursion, X0 = 0, and,

Xt = ϑ ◦ Xt−1 + εt , t ∈ N, (1)

where (by definition an empty sum equals 0),

ϑ ◦ Xt−1 =
Xt−1∑
j=1

Z
(t)
j . (2)

Here (Z
(t)
j )j∈N,t∈N is a collection of i.i.d. Bernoulli variables with success probability θ ∈ [0,1],

independent of the i.i.d. innovation sequence (εt )t∈N with distribution G on Z+ = N ∪ {0}. All
these variables are defined on a probability space (�, F ,Pθ,G). If we work with fixed G, we usu-
ally drop the subscript G. The random variable ϑ ◦ Xt−1 is called the binomial thinning of Xt−1
(this operator was introduced by Steutel and van Harn (1979)) and, conditionally on Xt−1, it
follows a binomial distribution with success probability θ and a number of trials equal to Xt−1.
Equation (1) can be interpreted as a branching process with immigration. The outcome Xt is
composed of ϑ ◦ Xt−1, the elements of Xt−1 that survive during (t − 1, t], and εt , the number
of immigrants during (t − 1, t]. Here the number of immigrants is independent of the survival of
elements of Xt−1. Moreover, each element of Xt−1 survives with probability θ and its survival
has no effect on the survival of the other elements. From a statistical point of view, the difference
between the literature on INAR processes and the literature on branching processes with immi-
gration is that in the latter setting one commonly observes both the X process and the ε process,
whereas one only observes the X process in the INAR setting, which complicates inference dras-
tically. Compared to the familiar AR(1) processes, inference for INAR(1) processes is also more
complicated, since, even if θ is known, observing X does not imply observing ε. From the defin-
ition of an INAR process it immediately follows that Eθ,G[Xt |Xt−1, . . . ,X0] = θXt−1 + EGε1,
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which (partially) explains the ‘AR’ in ‘INAR’. It is well known that, if θ ∈ [0,1) and EGε1 < ∞,
which is called the ‘stable’ case, there exists an initial distribution, νθ,G, such that X is stationary
if L(X0) = νθ,G. Of course, the INAR(1) process is non-stationary if θ = 1: under P1 the process
X is nothing but a standard random walk with drift on Z+ (but note that X is nondecreasing un-
der P1). We call this situation ‘unstable’ or say that the process has a ‘unit root’. Although the
unit root is on the boundary of the parameter space, it is an important parameter value since in
many applications the estimates of θ are close to 1.

Denote the law of (X0, . . . ,Xn) under Pθ,G on the measurable space (Xn, An) = (Zn+1+ ,2Z
n+1+ )

by P
(n)
θ,G. For G known, the global model of interest is thus (Pθ,G | θ ∈ [0,1]). The model re-

stricted to the stable case θ ∈ [0,1), has been shown to be locally asymptotically normal (LAN)
in Drost, Van den Akker and Werker (2008b) and Section 4.3.2 in Van den Akker (2007). For this
stable case, the OLS estimator is consistent and asymptotically normal. The focus of interest of
the present paper is, however, the unstable case θ = 1. Therefore we will introduce the local para-
meter h ≥ 0 and take the autoregressive parameter θn = 1−h/n2 in (2). This is formalized below.

In our applications we mainly consider two sets of assumptions on G: (i) G is known or (ii) G

is completely unknown (apart from some regularity conditions). For expository reasons, let us,
for the moment, focus on the case that G is completely known and the goal is to estimate θ .
We use ‘local-to-unity’ asymptotics to take the ‘increasing statistical difficulty’ in the neigh-
borhood of the unit root into account, that is, we consider local alternatives to the unit root in
such a way that the increasing degree of difficulty to discriminate between these alternatives and
the unit root compensates the increase of information contained in the sample as the number
of observations grows. This approach is well known; it originated from the work of Chan and
Wei (1987) and Philips (1987), who studied the behavior of a given estimator (OLS) in a nearly
unstable AR(1) setting, and Jeganathan (1995), whose results yield the asymptotic structure of
nearly unstable AR models. Following this approach, we introduce the sequence of nearly un-
stable INAR experiments En(G) = (Xn, An, (P

(n)

1−h/n2 | h ≥ 0)), n ∈ N. The ‘localizing rate’ n2

will become apparent later on. It is surprising that the localizing rate is n2, since for the classical
nearly unstable AR(1) model one has rate n

√
n (non-zero intercept) or n (no intercept). Suppose

that we have found an estimator ĥn with ‘nice properties’; then this corresponds to the estimate
θ̂n = 1 − ĥn/n2 of θ in the global experiment of interest.

To our knowledge, Ispány, Pap and van Zuijlen (2003a) were the first to study estimation
in a nearly unstable INAR(1) model. These authors study the behavior of the OLS estimator
and they use a localizing rate n instead of n2. However, n2 is the proper localizing rate and, in
Proposition 4.3, we show indeed that the OLS estimator is an exploding estimator in (En(G))n∈N,
that is, it has not even the ‘right’ rate of convergence. The question then arises how we should
estimate h. Instead of analyzing the asymptotic behavior of a given estimator, we derive the
asymptotic structure of the experiments themselves by determining the limit experiment (in the
Le Cam sense) of (En(G))n∈N. This limit experiment gives bounds to the accuracy of inference
procedures and suggests how to construct efficient ones.

The main contribution of this paper is to determine the limit experiment of (En(G))n∈N.
Remember that (see, e.g., Le Cam (1986), Le Cam and Yang (1990), Van der Vaart (1991),
Shiryaev and Spokoiny (1999) or Van der Vaart (2000) Chapter 9), the sequence of exper-
iments (En(G))n∈N is said to converge to a limit experiment (in Le Cam’s weak topology)
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E = (X , A, (Qh | h ≥ 0)) if, for every finite subset I ⊂ R+ and every h0 ∈ R+, we have

( dP
(n)

1−h/n2

dP
(n)

1−h0/n2

(X0, . . . ,Xn)

)
h∈I

d−→
(

dQh

dQh0

(Z)

)
h∈I

, under P
(n)

1−h0/n2 .

To see that it is indeed reasonable to expect n2 as the proper localizing rate we briefly discuss
the case of geometrically distributed innovations (in the remainder we treat general G). In case
G = Geometric(1/2), that is, G puts mass (1/2)k+1 at k ∈ Z+, it is an easy exercise to verify for
h > 0 (the geometric distribution allows us, using Newton’s binomial formula, to obtain explicit
expressions for the transition probabilities from Xt−1 to Xt if Xt ≥ Xt−1),

dP
(n)
1−h,rn

dP
(n)
1

(X0, . . . ,X0)

p−→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if
rn

n2
→ 0,

exp

(
−hG(0)EGε1

2

)
= exp

(
−h

4

)
, if

rn

n2
→ 1,

1, if
rn

n2
→ ∞,

under P1.

This has two important implications: First, it indicates that n2 is indeed the proper localizing
rate. Intuitively, if we go faster than n2 we cannot distinguish P

(n)
1−h/rn

from P
(n)
1 , and if we

go slower we can distinguish P
(n)
1−h/rn

perfectly from P
(n)
1 . Second, since exp(−h/4) < 1 we

have, by Le Cam’s first lemma, no contiguity of P
(n)

1−h/n2 with respect to P
(n)
1 . (Remark 2 after

Theorem 2.1 gives an example of sets that yield this non-contiguity.) This lack of contiguity is
unfortunate for several reasons. Most important, if we had contiguity the limiting behavior of
(dP

(n)

1−h/n2/dP
(n)
1 )h∈I would determine the limit experiment, whereas we now need to consider

the behavior of (dP
(n)

1−h/n2/dP
(n)

1−h0/n2)h∈I for all h0 ≥ 0. And it implies that the global sequence
of experiments does not have the common LAQ structure (see Jeganathan (1995)) at θ = 1. This
differs from the traditional AR(1) process Y0 = 0, Yt = μ + θYt−1 + ut , ut i.i.d. N(0, σ 2), with
μ 
= 0 and σ 2 known, that enjoys this LAQ property at θ = 1: the limit experiment at θ = 1 is
the usual normal location experiment (i.e., the model is LAN) and the localizing rate is n3/2. The
limit experiment at θ = 1 for Y0 = 0, Yt = θYt−1 +ut , ut i.i.d. N(0, σ 2), with σ 2 known, does not
have the LAN structure; the limit experiment is of the locally asymptotically Brownian functional
type (a special class of LAQ experiments; see Jeganathan (1995)) and the localizing rate is n.
Thus although the INAR(1) process and the traditional AR(1) process both are walks with drift
at θ = 1, their statistical properties ‘near θ = 1’ are very different. In Section 3 we prove that the
limit experiment of (En(G))n∈N corresponds to one draw from a Poisson distribution with mean
hG(0)EGε1/2, that is,

E (G) =
(

Z+,2Z+ ,

(
Poisson

(
hG(0)EGε1

2

) ∣∣∣ h ≥ 0

))
.
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We indeed recognize exp(−hG(0)EGε1/2) as the likelihood ratio at h relative to h0 = 0 in the
experiment E (G). Due to the lack of enough smoothness of the likelihood ratios around the
unit root, this convergence of experiments is not obtained by the usual (generally applicable)
techniques, but rather by a direct approach. Since the transition probability is the convolution
of a binomial distribution with G and the fact that certain binomial experiments converge to a
Poisson limit experiment, one might be tempted to think that the convergence En(G) → E (G)

follows, in some way, from this convergence. As is clear from the proof of Theorem 3.1 this
reasoning is not valid.

The remainder of the paper is organized as follows: In Section 2 we discuss some preliminary
properties that provide insight into the behavior of a nearly unstable INAR(1) process and are
needed in the rest of the paper. The main result is stated and proved in Section 3. Section 4 uses
our main result to analyze some estimation and testing problems. We consider efficient inference
of h, the deviation from a unit root, in the nearly unstable case for two settings. The first setting,
discussed in Section 4.1, treats the case that the immigration distribution G is completely known.
The second setting, analyzed in Section 4.2, considers a semi-parametric model, where hardly
any conditions on G are imposed. Furthermore, we show in Section 4.1 that the OLS estimator
is explosive under the local alternative θn = 1 − h/n2. Finally, we discuss testing for a unit root
in Section 4.3. We show that the traditional Dickey–Fuller test has no (local) power, but that an
intuitively obvious test is efficient. Appendix A contains some auxiliary results and Appendix B
gathers some proofs.

2. Preliminaries

This section discusses some basic properties of nearly unstable INAR(1) processes. Besides giv-
ing insight into the behavior of a nearly unstable INAR(1) process, these properties are a key
input in the next sections. To enhance readability the proofs are organized in Appendix B.

First, we introduce the following notation: The mean of εt is denoted by μG and its variance
by σ 2

G. The probability mass function corresponding to G, the distribution of the innovations εt ,
is denoted by g. The probability mass function of the binomial distribution with parameters
θ ∈ [0,1] and n ∈ Z+ is denoted by bn,θ .

Given Xt−1 = xt−1, the random variables εt and ϑ ◦ Xt−1 are independent and Xt−1 − ϑ ◦
Xt−1, ‘the number of deaths during (t −1, t]’, follows a binomial(Xt−1,1− θ) distribution. This
interpretation yields the following representation of the transition probabilities,

P θ
xt−1,xt

= Pθ {Xt = xt |Xt−1 = xt−1}

=
xt−1∑
k=0

Pθ {εt = xt − xt−1 + k,Xt−1 − ϑ ◦ Xt−1 = k|Xt−1 = xt−1}

=
xt−1∑
k=0

bxt−1,1−θ (k)g(�xt + k),
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where �xt = xt − xt−1, and g(i) = 0 for i < 0. Under P1 we have Xt = μGt +∑t
i=1(εi − μG),

and P 1
xt−1,xt

= g(�xt ), xt−1, xt ∈ Z+. Hence, under P1, an INAR(1) process is nothing but an
integer-valued random walk with drift.

The next proposition is basic, but often applied in the sequel.

Proposition 2.1. If σ 2
G < ∞, we have for h ≥ 0,

lim
n→∞ E1−h/n2

[
1

n2

n∑
t=1

Xt − μG

2

]2

= 0. (3)

If σ 2
G < ∞, then we have for α > 0 and every sequence (θn)n∈N in [0,1],

lim
n→∞

1

n3+α

n∑
t=1

EθnX
2
t = 0. (4)

Remark 1. Convergence in probability for the case h > 0 in (3) cannot be concluded from the
convergence in probability in (3) for h = 0 by contiguity arguments. The reason is (see Remark 2
after the proof of Theorem 2.1) that P

(n)

1−h/n2 is not contiguous with respect to P
(n)
1 .

Next, we consider the thinning process (ϑ ◦ Xt−1)t≥1. Under P1−h/n2 , Xt−1 − ϑ ◦ Xt−1,
conditional on Xt−1, a binomial(Xt−1, h/n2) distribution follows. So we expect that, near unity,
many ‘deaths’ do not occur in any time interval (t − 1, t]. The following proposition gives a
precise statement where we use the following notation: For h ≥ 0 and n ∈ N,

Ah
n =

{
z ∈ Z+

∣∣∣h(z + 1)

n2
<

1

2

}
, Ah

n = {(X0, . . . ,Xn−1) ∈ Ah
n × · · · × Ah

n}. (5)

These sets are introduced for the following reasons: By Proposition A.1 we have for x ∈ Ah
n∑x

k=r bx,h/n2(k) ≤ 2 bx,h/n2(r) for r = 2,3 and terms of the form (1 − h

n2 )−2 can be bounded
neatly without having to make statements of the form ‘for n large enough’, or having to refer to
‘up to a constant depending on h’. Also, recall the notation �Xt = Xt − Xt−1.

Proposition 2.2. If σ 2
G < ∞, then we have for all sequences (θn)n∈N in [0,1] and for all h ≥ 0,

lim
n→∞ Pθn(Ah

n) = 1. (6)

Moreover, if σ 2
G < ∞ and h ≥ 0, we have,

lim
n→∞ P1−h/n2{∃t ∈ {1, . . . , n} :Xt−1 − ϑ ◦ Xt−1 ≥ 2} = 0. (7)

Finally, we derive the limit distribution of the number of downward movements of X during
[0, n]. The probability that the Bernoulli variable 1{�Xt < 0} equals one is small. Intuitively,
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the dependence over time of this indicator process is not too strong, so it is not unreasonable
to expect that a ‘Poisson law of small numbers’ holds. As the following theorem shows, this is
indeed the case.

Theorem 2.1. If σ 2
G < ∞, then we have for h ≥ 0,

n∑
t=1

1{�Xt < 0} d−→ Poisson

(
hg(0)μG

2

)
, under P1−h/n2 . (8)

Remark 2. Since
∑n

t=1 1{�Xt < 0} equals zero under P
(n)
1 and converges in distribution to a

non-degenerated limit under P
(n)

1−h/n2 (h > 0, 0 < g(0) < 1), we see that P
(n)

1−h/n2 is not contigu-

ous with respect to P
(n)
1 for h > 0.

3. The limit experiment: one observation from a Poisson
distribution

For easy reference, we introduce the following assumption.

Assumption 3.1. A probability distribution G on Z+ is said to satisfy Assumption 3.1 if one of
the following two conditions holds:

(1) Support(G) = {0, . . . ,M} for some M ∈ N;
(2) Support(G) = Z+, σ 2

G < ∞ and g is eventually decreasing, that is, there exists M ∈ N

such that g(k + 1) ≤ g(k) for k ≥ M .

The rest of this section is devoted to the following theorem.

Theorem 3.1. Suppose G satisfies Assumption 3.1. Then the limit experiment of (En(G))n∈N is
given by

E (G) = (Z+,2Z+ , (Qh | h ≥ 0)
)
,

with Qh = Poisson(hg(0)μG/2). More precisely, for h ≥ 0 and h0 > 0 we have, under P
(n)

1−h0/n2 ,

dP
(n)

1−h/n2

dP
(n)

1−h0/n2

(X0, . . . ,Xn)
d−→ dQh

dQh0

(Z) = exp

(
− (h − h0)g(0)μG

2

)(
h

h0

)Z

, (9)

while for h ≥ 0 and h0 = 0 we have, under P
(n)
1 ,

dP
(n)

1−h/n2

dP
(n)
1

(X0, . . . ,Xn)
d−→ dQh

dQ0
(Z) = exp

(
−hg(0)μG

2

)
1{Z = 0}. (10)
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Proof. Introduce for h,h0 ≥ 0,

Ln(h,h0) = log
dP

(n)

1−h/n2

dP
(n)

1−h0/n2

=
n∑

t=1

log
P

1−h/n2

Xt−1,Xt

P
1−h0/n2

Xt−1,Xt

.

Note, if
∑n

t=1 1{�Xt < 0} > 0 and h0 > 0, that Ln(0, h0) = −∞ and thus dP
(n)
0 /dP

(n)

1−h0/n2 = 0.

Because Ln(h,h0) is complicated to analyze, split the transition probability P
1−h/n2

xt−1,xt
into a lead-

ing term,

Ln(xt−1, xt , h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�xt+1∑
k=−�xt

bxt−1,h/n2(k)g(�xt + k), if �xt < 0,

1∑
k=0

bxt−1,h/n2(k)g(�xt + k), if �xt ≥ 0,

and a remainder term,

Rn(xt−1, xt , h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xt−1∑
k=−�xt+2

bxt−1,h/n2(k)g(�xt + k), if �xt < 0,

xt−1∑
k=2

bxt−1,h/n2(k)g(�xt + k), if �xt ≥ 0.

We introduce a simpler version of Ln(h,h0) in which the remainder terms are removed,

L̃n(h,h0) =
n∑

t=1

log
Ln(Xt−1,Xt , h)

Ln(Xt−1,Xt , h0)
.

The difference between L̃n(h,h0) and Ln(h,h0) is negligible.

Lemma 3.1. If G satisfies Assumption 3.1, then we have for h ≥ 0 and h0 ≥ 0,

L̃n(h,h0) = Ln(h,h0) + o(P1−h0/n2;1). (11)

To enhance readability the proof of the lemma is organized in Appendix B. Hence, the limit
distribution of the random vector (Ln(h,h0))h∈I , for a finite subset I ⊂ R+, is the same as the
limit distribution of (L̃n(h,h0))h∈I . It easily follows, using (7), that L̃n(h,h0) can be decom-
posed as

L̃n(h,h0) =
n∑

t=1

Xt−1 − 2

n2
log

(
1 − h/n2

1 − h0/n2

)n2

+ S+
n (h,h0)

+ S−
n (h,h0) + o(P1−h0/n2;1), (12)
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where S+
n (h,h0) = ∑

t :�Xt≥0 W+
tn and S−

n (h,h0) = ∑
t :�Xt=−1 W−

tn are defined by (here∑
t :�Xt=−1 is shorthand for

∑
1≤t≤n:�Xt=−1, and for

∑
t :�Xt≥0 the same convention is used),

W+
tn = log

[
g(�Xt)(1 − h/n2)2 + Xt−1(h/n2)(1 − h/n2)g(�Xt + 1)

g(�Xt)(1 − h0/n2)2 + Xt−1(h0/n2)(1 − h0/n2)g(�Xt + 1)

]
,

W−
tn = log

[
Xt−1(h/n2)(1 − h/n2)g(0) + (Xt−1(Xt−1 − 1)/2)(h2/n4)g(1)

Xt−1(h0/n2)(1 − h0/n2)g(0) + (Xt−1(Xt−1 − 1)/2)(h2
0/n4)g(1)

]
.

So we need to determine the asymptotic behavior of the terms in (12). By (3) we have,

log

[(
1 − h/n2

1 − h0/n2

)n2]
1

n2

n∑
t=1

(Xt−1 − 2)
p−→ − (h − h0)μG

2
, under P1−h0/n2 . (13)

The next lemma yields the behavior of S+
n (h,h0), the second term of (12); see Appendix B for

the proof.

Lemma 3.2. If G satisfies Assumption 3.1, then we have for h ≥ 0 and h0 ≥ 0,

S+
n (h,h0)

p−→ (h − h0)(1 − g(0))μG

2
, under P1−h0/n2 . (14)

Finally, we discuss the term S−
n (h,h0) in (12). Under P1 this term is not present, so we only

need to consider h0 > 0. We organize the result in the following lemma; see Appendix B for the
proof.

Lemma 3.3. If G satisfies Assumption 3.1, then we have for h0 > 0 and h ≥ 0,

S−
n (h,h0) = log

[
h

h0

] n∑
t=1

1{�Xt < 0} + o(P1−h0/n2;1), (15)

where we set log(0) = −∞ and log(0) · 0 = 0.

To complete the proof of the theorem, note that we obtain from Lemmas 3.1–3.3, (12) and
(13):

Ln(h,h0) = L̃n(h,h0) + o(P1−h0/n2;1)

= − (h − h0)g(0)μG

2
+ log

[
h

h0

] n∑
t=1

1{�Xt < 0} + o(P1−h0/n2;1),

where we interpret log(0) = −∞, log(0) · 0 = 0 and log(h/0)
∑n

t=1 1{�Xt < 0} = 0 when
h0 = 0, h > 0. Hence, Theorem 2.1 implies that, for a finite subset I ⊂ R+,

(Ln(h,h0))h∈I
d−→
(

log
dQh

dQh0

(Z)

)
h∈I

, under P1−h0/n2,
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which concludes the proof. �

Remark 3. In the proof we have seen that,

log
dP

(n)

1−h/n2

dP
(n)

1−h0/n2

= − (h − h0)g(0)μG

2
+ log

[
h

h0

] n∑
t=1

1{�Xt < 0} + o(P1−h0/n2;1).

So, heuristically, we can interpret
∑n

t=1 1{�Xt < 0} as an ‘approximately sufficient statistic’.

4. Applications

This section considers the following applications as an illustration of the statistical consequences
of the convergence of experiments. We discuss the efficient estimation of h, the deviation from a
unit root, in the nearly unstable case for two settings. The first setting, discussed in Section 4.1,
treats the case that G is completely known. And the second setting, analyzed in Section 4.2,
considers a semi-parametric model, where hardly any conditions on G are imposed. Finally, we
discuss testing for a unit root in Section 4.3.

4.1. Efficient estimation of h in nearly unstable INAR models (G known)

In this section G is assumed to be known. So we consider the sequence of experiments
(En(G))n∈N. As before, we denote the observation from the limit experiment E (G) by Z, and
Qh = Poisson(hg(0)μG/2).

Since we have established convergence of (En(G))n∈N to E (G), an application of the Le Cam–
Van der Vaart asymptotic representation theorem yields the following proposition.

Proposition 4.1. Suppose G satisfies Assumption 3.1. If (Tn)n∈N is a sequence of estimators of
h in the sequence of experiments (En(G))n∈N such that L(Tn|P1−h/n2) → Zh for all h ≥ 0, then
there exists a map t : Z+ × [0,1] → R such that Zh = L(t (Z,U)|Qh × Uniform[0,1]) (i.e., U is
distributed uniformly on [0,1] and independent of the observation Z from the limit experiment

E (G)).

Proof. The sequence (En(G))n∈N converges to the experiment E (G) (Theorem 3.1). Since E (G)

is dominated by counting measure on Z+, the result follows by applying the Le Cam–Van der
Vaart asymptotic representation theorem (see, e.g., Van der Vaart (1991), Theorem 3.1, or Van
der Vaart (2000), Theorem 9.3). �

Thus, for any set of limit laws of an estimator there is a randomized estimator in the limit exper-
iment that has the same set of laws. If the asymptotic performance of an estimator is considered
to be determined by its sets of limit laws, the limit experiment thus gives a lower bound to what is
possible: Along the sequence of experiments you cannot do better than the best procedure in the
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limit experiment. To discuss efficient estimation we need to prescribe what we judge to be opti-
mal in the Poisson limit experiment. Often a normal location experiment is the limit experiment.
For such a normal location experiment, that is, estimate h on the basis of one observation Y from
N(h, τ ) (τ known), it is natural to restrict to location-equivariant estimators. For this class one
has a convolution property (see, e.g., Bickel et al. (1998), Van der Vaart (2000) or Wong (1992)):

the law of every location-equivariant estimator T of h can be decomposed as T
d= Y + V , where

V is independent of Y . This yields, by Anderson’s lemma (see, e.g., Lemma 8.5 in Van der Vaart
(2000)), efficiency of Y (within the class of location-equivariant estimators) for all bowl-shaped
loss functions. To be more general, there are convolution results for shift experiments. However,
the Poisson limit experiment E (G) does not have a natural shift structure. In such a Poisson set-
ting it seems reasonable to minimize variance amongst the unbiased estimators. See Ling and
McAleer (2003) for a similar approach for LAQ limit experiments.

Definition 4.1. An estimator ĥ for h is called efficient in the experiment E (G) if it is unbiased,
that is, Ehĥ = h for all h ≥ 0, and minimizes the variance amongst all unbiased (randomized)
estimators of h.

The next proposition is an immediate consequence of the Lehmann–Scheffé theorem.

Proposition 4.2. If 0 < g(0) < 1 and μG < ∞, then 2Z/g(0)μG is an efficient estimator of h in
the experiment E (G). The variance of this estimator, under Qh, is given by 2h/g(0)μG.

A combination with Proposition 4.1 yields a variance lower bound to asymptotically unbiased
estimators in the sequence of experiments (En(G))n∈N.

Corollary 4.1. Suppose G satisfies Assumption 3.1. If (Tn)n∈N is an estimator of h in the se-
quence of experiments (En(G))n∈N such that L(Tn|P1−h/n2) → Zh with

∫
z dZh(z) = h for all

h ≥ 0, then we have

∫
(z − h)2 dZh(z) ≥ 2h

g(0)μG

for all h ≥ 0. (16)

It is not unnatural to restrict to estimators that satisfy L(Tn|P1−h/n2) → Zh. We make the ad-
ditional restriction that

∫
z dZh(Z) = h, that is, the limit distribution is unbiased. Now, based

on the previous proposition, it is natural to call an estimator in this class efficient if it at-
tains the variance bound (16). To demonstrate the efficiency of a given estimator, one only
needs to show that it belongs to the class of asymptotically unbiased estimators, and that it
attains the bound. How should we estimate h? Recall, that we interpreted

∑n
t=1 1{�Xt < 0}

as an approximately sufficient statistic for h. Hence, it is natural to try to construct an ef-
ficient estimator based on this statistic. Using Theorem 2.1 we see that this is indeed possi-
ble.
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Corollary 4.2. If Assumption 3.1 holds, then the estimator,

ĥn = 2
∑n

t=1 1{�Xt < 0}
g(0)μG

, (17)

is an efficient estimator of h in the sequence (En(G))n∈N.

Finally, we discuss the commonly used OLS estimator when θn = 1 − h/n2. Rewriting Xt =
ϑ ◦ Xt−1 + εt = μG + θnXt−1 + ut for ut = εt − μG + ϑ ◦ Xt−1 − θnXt−1, we obtain the
autoregression Xt − μG = θnXt−1 + ut , which can also be written as n2(Xt − Xt−1 − μG) =
h(−Xt−1)+n2ut (note that indeed Eθnut = EθnXt−1ut = 0). So the OLS estimator of θn is given
by

θ̂OLS
n =

∑n
t=1 Xt−1(Xt − μG)∑n

t=1 X2
t−1

, (18)

and the OLS estimator of h is given by

ĥOLS
n = −n2∑n

t=1 Xt−1(Xt − Xt−1 − μG)∑n
t=1 X2

t−1

= n2(1 − θ̂OLS
n ).

Ispány, Pap and van Zuijlen (2003a) showed that n3/2(θ̂OLS
n − γn)

d−→ N(0, σ 2
γ ) under Pγn for

γn = 1 −hn/n, hn → γ , and σ 2
γ depending on γ . This means that the OLS estimator can be used

to distinguish alternatives at rate n. Since the convergence of experiments takes place at rate n2,
the OLS estimator deteriorates under the localizing rate n2.

Proposition 4.3. If EGε3
1 < ∞, then we have for all h ≥ 0,

|ĥOLS
n | p−→ ∞, under P1−h/n2 .

Remark 4. A similar result holds for the OLS estimator in the model where G is unknown.

Thus the OLS estimator cannot distinguish local alternatives at rate n2; at lower rates (up to
n3/2) it is capable of distinguishing alternatives. In this sense it does not have the right rate of
convergence.

4.2. Efficient estimation of h in nearly unstable INAR models (G unknown)

So far we have assumed that G is known. In this section, where we instead consider a semi-
parametric model, we hardly impose conditions on G (see, e.g., Bickel and Kwon (2001) or
Wefelmeyer (1996) for general theories on semi-parametric stationary Markov models, and
Drost, Klaassen and Werker (1997) for group-based time series models). The dependence of
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Pθ upon G is made explicit by adding a subscript: Pθ,G. Formally, we consider the sequence of
experiments,

En = (Zn+1+ ,2Z
n+1+ ,

(
P

(n)

1−h/n2,G
| (h,G) ∈ [0,∞) × G

))
, n ∈ N,

where G is the set of all distributions on Z+ that satisfy Assumption 3.1.
The goal is to estimate h efficiently. Here efficient, just as in the previous section, means as-

ymptotically unbiased with minimal variance. Since the semi-parametric model is more realistic,
the estimation of h becomes more difficult. As we will see, the situation for our semi-parametric
model is quite fortunate: we can estimate h with the same asymptotic precision as in the case
where G is known. In semi-parametric statistics this is called adaptive estimation.

The efficient estimator for the case where G is known cannot be used anymore, since it depends
on g(0) and μG. The obvious idea is to replace these objects by estimates. The next proposition
provides consistent estimators.

Proposition 4.4. Let h ≥ 0 and G satisfy σ 2
G < ∞. Then we have

ĝn(0) = 1

n

n∑
t=1

1{Xt = Xt−1} p−→ g(0) and μ̂G,n = Xn

n

p−→ μG, under P1−h/n2,G.

Proof. Notice first that we have

1

n

n∑
t=1

(Xt−1 − ϑ ◦ Xt−1)
p−→ 0, under P1−h/n2,G, (19)

thus condition on Xt−1 and use (3),

0 ≤ 1

n

n∑
t=1

E1−h/n2,G(Xt−1 − ϑ ◦ Xt−1) = h

n3

n∑
t=1

E1−h/n2,GXt−1 → 0.

Using that |1{Xt = Xt−1} − 1{εt = 0}| = 1 only if Xt−1 − ϑ ◦ Xt−1 ≥ 1, we easily obtain by
using (19),∣∣∣∣∣ĝn(0) − 1

n

n∑
t=1

1{εt = 0}
∣∣∣∣∣≤ 1

n

n∑
t=1

1{Xt−1 − ϑ ◦ Xt−1 ≥ 1} ≤ 1

n

n∑
t=1

(Xt−1 − ϑ ◦ Xt−1)
p−→ 0.

Now the result for ĝn(0) follows by applying the weak law of large numbers to n−1∑n
t=1 1{εt =

0}. Next, consider μ̂G,n. We have, using (19) and the weak law of large numbers for n−1∑n
t=1 εt ,

μ̂G,n = Xn

n
= 1

n

n∑
t=1

(Xt − Xt−1)

= 1

n

n∑
t=1

εt − 1

n

n∑
t=1

(Xt−1 − ϑ ◦ Xt−1)
p−→ μG, under P1−h/n2,G,



310 F.C. Drost, R. van den Akker and B.J.M. Werker

which concludes the proof. �

From the previous proposition we have ĥn − h̃n
p−→ 0, under P1−h/n2,G, where

h̃n = 2
∑n

t=1 1{�Xt < 0}
ĝn(0)μ̂G,n

.

This implies that estimation of h in the semi-parametric experiments (En)n∈N is not harder than
the estimation of h in (En(G))n∈N. In semi-parametric parlor: The semi-parametric problem is
adaptive to G . The precise statement is given in the following corollary; the proof is trivial.

Corollary 4.3. If (Tn)n∈N is a sequence of estimators in the semi-parametric sequence of ex-
periments (En)n∈N such that L(Tn|P1−h/n2,G) → Zh,G with

∫
z dZh,G(z) = h for all (h,G) ∈

[0,∞) × G , then we have∫
(z − h)2 dZh,G(z) ≥ 2h

g(0)μG

for all (h,G) ∈ [0,∞) × G.

The estimator h̃n satisfies the conditions and achieves the variance bound.

4.3. Testing for a unit root

This section discusses testing for a unit root in an INAR(1) model. We consider the case where
G is known and satisfies Assumption 3.1. We want to test the hypothesis H0 : θ = 1 versus
H1 : θ < 1. Hellstrom (2001) considered this problem from the perspective that one wants to use
standard (i.e., OLS) software routines. He derives, by Monte Carlo simulations, the finite sample
null distributions for a Dickey–Fuller test of a random walk with Poisson distributed errors. This
(standard) Dickey–Fuller test statistic is given by the usual (i.e., non-corrected) t -test that the
slope parameter equals 1, that is,

τn = θ̂OLS
n − 1√

σ 2
G(
∑n

t=1 X2
t−1)

−1
,

where θ̂OLS
n is given by (18). Under H0, that is, under P1, we have τn

d−→ N(0,1). To analyze
the power of this test, and since En(G) → E (G), we consider the performance of τn along the
sequence En(G). The following proposition shows, however, that the asymptotic probability that
the null hypothesis is rejected remains α for all alternatives. Obviously, this does not exclude
power of the Dickey–Fuller test under local alternatives at rate n3/2 (which indeed it has).

Proposition 4.5. If EGε3
1 < ∞, we have for all h ≥ 0,

τn
d−→ N(0,1), under P1−h/n2 , which yields lim

n→∞ P1−h/n2(reject H0) = α.
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Proof. From Ispány, Pap and van Zuijlen (2003a) the result easily follows. �

We propose the intuitively obvious tests

ψn(X0, . . . ,Xn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α, if
n∑

t=1

1{�Xt < 0} = 0,

1, if
n∑

t=1

1{�Xt < 0} ≥ 1,

that is, reject H0 if the process ever moves down and reject H0 with probability α if there are
no downward movements. We will see that this obvious test is, in fact, efficient. To discuss the
efficiency of tests, we recall the implication of the Le Cam–Van der Vaart asymptotic repre-
sentation theorem to testing (see Theorem 7.2 in Van der Vaart (1991)). Let α ∈ (0,1) and φn

be a sequence of tests in (En(G))n∈N such that lim supn→∞ E1φn(X0, . . . ,Xn) ≤ α. Then we
have

lim sup
n→∞

E1−h/n2φn(X0, . . . ,Xn) ≤ sup
φ∈�α

Ehφ(Z) for all h > 0,

where �α is the collection of all level α tests for testing H0 :h = 0 versus H1 :h > 0 in the Pois-
son limit experiment E (G). If we have equality in the previous display, it is natural to call a test
φn efficient. It is obvious that the uniform most powerful test in the Poisson limit experiment is
given by

φ(Z) =
{

α, if Z = 0,
1, if Z ≥ 1.

Its power function is given by E0φ(Z) = α and Ehφ(Z) = 1− (1−α) exp(−hg(0)μG/2). Using
Theorem 2.1 we find

lim
n→∞ E1ψn(X0, . . . ,Xn) = α

and

lim
n→∞ E1−h/n2ψn(X0, . . . ,Xn) = 1 − (1 − α) exp

(
−hg(0)μG

2

)
for h > 0.

We conclude that the test ψn is indeed efficient.

Appendix A: Auxiliaries

The following result is basic (see, e.g., Feller (1968), pages 150–151), but since it is heavily
applied, we state it here for convenience.
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Proposition A.1. Let m ∈ N, p ∈ (0,1). If r > mp, we have

m∑
k=r

bm,p(k) ≤ bm,p(r)
r(1 − p)

r − mp
. (20)

So, if 1 > mp, we have for r = 2,3,

m∑
k=r

bm,p(k) ≤ 2 bm,p(r). (21)

For convenience we recall Theorem 1 in Serfling (1975).

Lemma A.1. Let Z1, . . . ,Zn (possibly dependent) 0–1 valued random variables and set Sn =∑n
t=1 Zt . Let Y be Poisson distributed with mean

∑n
t=1 EZt . Then we have

sup
A⊂Z+

|P{Sn ∈ A} − P{Y ∈ A}| ≤
n∑

t=1

(EZt)
2 +

n∑
t=1

E|E[Zt |Z1, . . . ,Zt−1] − EZt |.

Appendix B: Proofs

Proof of Proposition 2.1. Obviously Var1(
∑n

t=1 Xt) = O(n3) and limn→∞ n−2∑n
t=1 E1Xt =

μG/2, which yields (3) for h = 0. Next, we prove (3) for h > 0. Straightforward calculations
show, for θ < 1,

Eθ

n∑
t=1

Xt = μG

n∑
t=1

1 − θ t

1 − θ
= μG

[
n

1 − θ
− θ − θn+1

(1 − θ)2

]
,

which yields

lim
n→∞

1

n2
E1−h/n2

n∑
t=1

Xt

= lim
n→∞

μG

n2

[
n

h/n2
− 1 − h/n2 − [1 − (n + 1)h/n2 + ((n + 1)n/2)h2/n4 + o(1/n2)]

h2/n4

]

= μG

2
. (22)

To treat the variance of n−2∑n
t=1 Xt , we use the following simple relations; see also Ispány, Pap

and van Zuijlen (2003a), for 0 < θ < 1, s, t ≥ 1,

Covθ (Xt ,Xs) = θ |t−s| Varθ Xt∧s ,
(23)

Varθ Xt = 1 − θ2t

1 − θ2
σ 2

G + (θ − θ t )(1 − θ t )

1 − θ2
μG ≤ (σ 2

G + μG)
1 − θ2t

1 − θ2
.
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From this we obtain, as n → ∞,

Var1−h/n2

(
1

n2

n∑
t=1

Xt

)
= 1

n4

n∑
t=1

(
1 + 2

n∑
s=t+1

(
1 − h

n2

)s−t
)

Var1−h/n2 Xt

≤ 1

n
2n(σ 2

G + μG)
1

n2

1

1 − (1 − h/n2)2

1

n

n∑
t=1

(
1 −

(
1 − h

n2

)2t)
→ 0.

Together with (22) this completes the proof of (3) for h > 0. To prove (4), note that Xt ≤∑t
i=1 εi .

Hence EθnX
2
t ≤ E1X

2
t = σ 2

Gt + μ2
Gt2, which yields the desired conclusion. �

Proof of Proposition 2.2. Equation (6) easily follows since, for a sequence (θn)n∈N in [0,1], (4)
implies

Pθn{∃0 ≤ t ≤ n :Xt > n7/4} ≤ 1

n7/2

n∑
t=1

EθnX
2
t → 0 as n → ∞. (24)

To obtain (7) note that, for Xt−1 ∈ Ah
n we have, using the bound (21),

P1−h/n2{Xt−1 − ϑ ◦ Xt−1 ≥ 2|Xt−1} =
Xt−1∑
k=2

bXt−1,h/n2(k) ≤ 2 bXt−1,h/n2(2) ≤ h2X2
t−1

n4
.

By (4) this yields,

lim
n→∞ P1−h/n2

({∃t ∈ {1, . . . , n} :Xt−1 − ϑ ◦ Xt−1 ≥ 2
}∩ Ah

n

)≤ lim
n→∞

h2

n4

n∑
t=1

E1−h/n2X
2
t−1 = 0.

Since we already showed limn→∞ P1−h/n2(Ah
n) = 1, this yields (7). �

Proof of Theorem 2.1. If g(0) = 0, then �Xt < 0 implies Xt−1 − ϑ ◦ Xt−1 ≥ 2. Hence, (7)

implies
∑n

t=1 1{�Xt < 0} p−→ 0 under P1−h/n2 . Since the Poisson distribution with mean 0
concentrates all its mass at 0, this yields the result. The cases h = 0 or g(0) = 1 (recall X0 = 0)
are also trivial. So we consider the case h > 0 and 0 < g(0) < 1. For notational convenience,
abbreviate P1−h/n2 by Pn and E1−h/n2 by En. Put Zt = 1{�Xt = −1, εt = 0} and notice that
0 ≤ 1{�Xt < 0} − Zt = 1{�Xt ≤ −2} + 1{�Xt = −1, εt ≥ 1}. From (7) it now follows that

0 ≤
n∑

t=1

1{�Xt < 0} −
n∑

t=1

Zt ≤ 2
n∑

t=1

1{Xt−1 − ϑ ◦ Xt−1 ≥ 2} p−→ 0, under Pn.

Thus it suffices to prove that
∑n

t=1 Zt
d−→ Poisson(hg(0)μG/2) under Pn. We do this by apply-

ing Lemma A.1. Introduce random variables Yn, where Yn follows a Poisson distribution with



314 F.C. Drost, R. van den Akker and B.J.M. Werker

mean λn =∑n
t=1 EnZt . And let Z follow a Poisson distribution with mean hg(0)μG/2. From

Lemma A.1 we obtain the bound

sup
A⊂Z+

∣∣∣∣∣Pn

{
n∑

t=1

Zt ∈ A

}
− Pr{Yn ∈ A}

∣∣∣∣∣
≤

n∑
t=1

(EnZt )
2 +

n∑
t=1

En

∣∣En[Zt − EnZt |Z1, . . . ,Zt−1]
∣∣.

If we prove that

(i)
n∑

t=1

(EnZt )
2 → 0, (ii)

n∑
t=1

EnZt → hg(0)μG

2
,

(iii)
n∑

t=1

En|En[Zt − EnZt |Z1, . . . ,Zt−1]| → 0,

all hold as n → ∞, then the result follows since we then have for all z ∈ R,∣∣∣∣∣Pn

{
n∑

t=1

Zt ≤ z

}
− Pr(Z ≤ z)

∣∣∣∣∣ ≤
∣∣∣∣∣Pn

{
n∑

t=1

Zt ≤ z

}
− Pr{Yn ≤ z}

∣∣∣∣∣
+ |Pr{Yn ≤ z} − Pr(Z ≤ z)| → 0.

First we tackle (i). Using that, conditional on Xt−1, εt and Xt−1 −ϑ ◦Xt−1 ∼ BinXt−1,h/n2 being
independent, we obtain

EnZt = Pn{εt = 0,Xt−1 − ϑ ◦ Xt−1 = 1} = hg(0)

n2
EnXt−1

(
1 − h

n2

)Xt−1−1

≤ hg(0)

n2
EnXt−1.

Then (i) is easily obtained using (4),

lim
n→∞

n∑
t=1

(EnZt )
2 ≤ lim

n→∞
h2g2(0)

n4

n∑
t=1

EnX
2
t−1 = 0.

Next we consider (ii). If we prove the relation,

lim
n→∞

∣∣∣∣∣ 1

n2

n∑
t=1

EnXt−1 − 1

n2

n∑
t=1

EnXt−1

(
1 − h

n2

)Xt−1−1
∣∣∣∣∣= 0,

it is immediate that (ii) follows from (3). To prove the previous display, we introduce Bn = {∀t ∈
{1, . . . , n} :Xt ≤ n7/4} with limn→∞ Pn(Bn) = 1 (see (24)). On the event Bn we have n−2Xt ≤



Nearly unstable INAR 315

n−1/4 for t = 1, . . . , n. This yields

0 ≤ EnXt−1

(
1 −

(
1 − h

n2

)Xt−1−1)
≤ EnXt−1

(
1 −

(
1 − h

n2

)Xt−1
)

1Bn + EnXt−11Bc
n

≤ En

[
1BnXt−1

Xt−1∑
j=1

(
Xt−1

j

)(
h

n2

)j
]

+ EnXt−11Bc
n
≤ 1

n1/4
exp(h)EnXt−1 + EnXt−11Bc

n
.

Using Pn(Bn) → 1 and (3) we obtain,

lim
n→∞

1

n2

n∑
t=1

EnXt−11Bc
n
≤ lim

n→∞

√√√√En

(
1

n2

n∑
t=1

Xt−1

)2

Pn(Bc
n) =

√(
μG

2

)2

· 0 = 0.

By (4) we have limn→∞ n−9/4∑n
t=1 EnXt−1 = 0. Combination with the previous two displays

yields the result.
Finally, we prove (iii). Let F ε = (F ε

t )t≥1 and F X = (F X
t )t≥0 be the filtrations generated by

(εt )t≥1 and (Xt )t≥0, respectively, that is, F ε
t = σ(ε1, . . . , εt ) and F X

t = σ(X0, . . . ,Xt ). Note
that we have, for t ≥ 2,

En

∣∣En[Zt − EnZt |Z1, . . . ,Zt−1]
∣∣

≤ En

∣∣En[Zt − EnZt |F ε
t−1, F X

t−1]
∣∣ (25)

= hg(0)

n2
En

∣∣∣∣Xt−1

(
1 − h

n2

)Xt−1−1

− EnXt−1

(
1 − h

n2

)Xt−1−1∣∣∣∣.
Using the reverse triangle inequality we obtain∣∣∣∣En

∣∣∣∣Xt−1

(
1 − h

n2

)Xt−1−1

− EnXt−1

(
1 − h

n2

)Xt−1−1∣∣∣∣− En|Xt−1 − EnXt−1|
∣∣∣∣

≤ En

∣∣∣∣Xt−1

(
1 −

(
1 − h

n2

)Xt−1−1)
− EnXt−1

(
1 −

(
1 − h

n2

)Xt−1−1)∣∣∣∣
≤ 2EnXt−1

(
1 −

(
1 − h

n2

)Xt−1−1)
.

We have already seen in the proof of (ii) that

lim
n→∞

1

n2

n∑
t=1

EnXt−1

(
1 −

(
1 − h

n2

)Xt−1−1)
= 0.

A combination of the previous two displays with (25) now easily yields the bound

n∑
t=1

En

∣∣En[Zt − EnZt |Z1, . . . ,Zt−1]
∣∣≤ o(1) + hg(0)

n2

n∑
t=1

√
Varn Xt−1. (26)
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From (23) we have for θ < 1, Varθ Xt ≤ (σ 2
G + μG)(1 − θ2t )(1 − θ2)−1. And for 1 ≤ t ≤ n we

have 0 ≤ 1 − (1 − h/n2)2t ≤ n−1 exp(2h). Now we easily obtain

1

n2

n∑
t=1

√
Varn Xt−1 ≤

√
σ 2

G + μG

√
1

n2

1

1 − (1 − h/n2)2

1

n
n

√
exp(2h)

n
→ 0 as n → ∞.

A combination with (26) yields (iii). This concludes the proof. �

Proof of Lemma 3.1. We obtain, for h > 0, h0 ≥ 0, using the inequality | log((a +b)/(c+d))−
log(a/c)| ≤ b/a + d/c for a, c > 0, b, d ≥ 0, the bound

|Ln(h,h0) − L̃n(h,h0)| ≤
n∑

t=1

Rn(Xt−1,Xt , h)

Ln(Xt−1,Xt , h)
+

n∑
t=1

Rn(Xt−1,Xt , h0)

Ln(Xt−1,Xt , h0)
P1−h0/n2 -a.s.

(27)
It is easy to see, since bn,0(k) = 0 for k > 0 and g(i) = 0 for i < 0, that for h0 > 0, Ln(0, h0) and
L̃n(0, h0) both contain log(0) exactly

∑n
t=1 1{�Xt < 0} times. Also for

∑n
t=1 1{�Xt < 0} = 0

we have

|Ln(0, h0) − L̃n(0, h0)| ≤
n∑

t=1

Rn(Xt−1,Xt , h0)

Ln(Xt−1,Xt , h0)
P1−h0/n2 -a.s.

Thus if we show that

n∑
t=1

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
p−→ 0, under P1−h0/n2

holds for h′ = h and h′ = h0, the lemma is proved (exclude the case h′ = 0 and h0 > 0, which
need not be considered). We split the expression in the previous display into four non-negative
parts (empty sums are by definition equal to 0)

n∑
t=1

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
=

∑
t :�Xt≤−2

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
+

∑
t :�Xt=−1

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)

+
∑

t :0≤�Xt≤M

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
+

∑
t :�Xt>M

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
.

Since �Xt ≤ −2 implies Xt−1 − ϑ ◦ Xt−1 ≥ 2, (7) implies

∑
t :�Xt≤−2

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
p−→ 0, under P1−h0/n2 .

Next we treat the terms for which �Xt = −1. If h0 = 0, we do not have such terms (under
P1−h0/n2 ) and remember that the case h′ = 0 and h0 > 0 need not be considered. So we only
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need to consider this term for h′, h0 > 0. On the event Ah′
n (see (5) for the definition of this

event), an application of (21) yields,

∑
t :�Xt=−1

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
≤

∑
t :�Xt=−1

∑Xt−1
k=3 bXt−1,h

′/n2(k)

g(0)bXt−1,h
′/n2(1)

≤ 2
n∑

t=1

(X3
t−1/3!)(h′3/n6)(1 − h′/n2)Xt−1−3

g(0)Xt−1(h′/n2)(1 − h′/n2)Xt−1−1
1{Xt−1 ≥ 1}

≤ 4h
′2

3g(0)n4

n∑
t=1

X2
t−1,

since (1 − h′/n2)−2 ≤ 4 by definition of Ah′
n . From (4) and (6) we now obtain

∑
t :�Xt=−1

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
p−→ 0, under P1−h0/n2 .

Next, we analyze the terms for which 0 ≤ �Xt ≤ M . We have, by (21), on the event Ah′
n ,

∑
t :0≤�Xt≤M

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
≤

∑
t :0≤�Xt≤M

∑Xt−1
k=2 bXt−1,h

′/n2(k)g(�Xt + k)

g(�Xt)bXt−1,h
′/n2(0)

≤ 2

m∗
∑

t :0≤�Xt≤M

bXt−1,h
′/n2(2)

bXt−1,h
′/n2(0)

≤ 4h
′2

m∗n4

n∑
t=1

X2
t−1,

where m∗ = min{g(k) | 0 ≤ k ≤ M} > 0. Now (4) and (6) yield the desired convergence,

∑
t :0≤�Xt≤M

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
p−→ 0, under P1−h0/n2 .

Finally, we discuss the terms for which �Xt > M . If the support of G equals {0, . . . ,M}, there
are no such terms. So we only need to consider the case where the support of G is Z+. Since g is
non-increasing on {M,M +1, . . .}, we have, by (21), Rn(Xt−1,Xt , h

′) ≤ 2g(�Xt)bXt−1,h
′/n2(2)

for Xt−1 ∈ Ah′
n , which yields,

0 ≤ Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
≤ 2g(�Xt)(X

2
t−1/2)h

′2/n4(1 − h′/n2)Xt−1−2

g(�Xt)(1 − h′/n2)Xt−1

≤ 4h
′2

n4
X2

t−1, Xt−1 ∈ Ah′
n .
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From (4) and (6) it now easily follows that we have

∑
t :�Xt≥M

Rn(Xt−1,Xt , h
′)

Ln(Xt−1,Xt , h′)
p−→ 0, under P1−h0/n2 .

This concludes the proof of the lemma. �

Proof of Lemma 3.2. We write S+
n (h,h0) =∑t :�Xt≥0 log[1 + U+

tn], where

U+
tn =

(
g(�Xt)

[
h2 − h2

0

n4
− 2

h − h0

n2

]
+ Xt−1g(�Xt + 1)

[
h − h0

n2
− h2 − h2

0

n4

])

×
(

g(�Xt)

(
1 − h0

n2

)2

+ Xt−1g(�Xt + 1)
h0

n2

(
1 − h0

n2

))−1

.

Notice that, for n large enough,

U+2
tn ≤

(
2

(
g2(�Xt)

[
h2 − h2

0

n4
− 2

h − h0

n2

]2

+ X2
t−1g

2(�Xt + 1)

[
h − h0

n2
− h2 − h2

0

n4

]2))

×
(

g2(�Xt)

(
1 − h0

n2

)4)−1

≤ C

n4
(X2

t−1 + 1),

for some constant C, where we used that e �→ g(e + 1)/g(e) is bounded. From (4) we obtain

lim
n→∞ E1−h0/n2

∑
t :�Xt≥0

U+2
tn ≤ 0 + lim

n→∞ E1−h0/n2
C

n4

n∑
t=1

X2
t−1 = 0.

Hence

∑
t :�Xt≥0

U+2
tn

p−→ 0, under P1−h0/n2 and

lim
n→∞ P1−h0/n2

{
max

t :�Xt≥0
|U+

tn| ≤ 1/2

}
= 1. (28)

Using log(1 + x) = x + r(x), where r satisfies |r(x)| ≤ 2x2 for |x| ≤ 1/2, we obtain from (28),

S+
n (h,h0) =

∑
t :�Xt≥0

log[1 + U+
tn] =

∑
t :�Xt≥0

U+
tn + o(P1−h0/n2;1).
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Thus the problem reduces to determining the asymptotic behavior of
∑

t :�Xt≥0 U+
tn. Note that,

∑
t :�Xt≥0

U+
tn =

∑
t :�Xt≥0

Xt−1g(�Xt + 1)[(h − h0)/n2 − (h2 − h2
0)/n4]

g(�Xt)(1 − h0/n2)2 + Xt−1g(�Xt + 1)(h0/n2)(1 − h0/n2)

+ o(P1−h0/n2;1).

Using that e �→ g(e + 1)/g(e) is bounded and (4), we obtain

∑
t :�Xt≥0

∣∣∣∣ Xt−1g(�Xt + 1)[(h − h0)/n2 − (h2 − h2
0)/n4]

g(�Xt)(1 − h0/n2)2 + Xt−1g(�Xt + 1)(h0/n2)(1 − h0/n2)

− (h − h0)

n2

Xt−1g(�Xt + 1)

g(�Xt)

∣∣∣∣
≤ C

n4

n∑
t=1

X2
t−1

p−→ 0, under P1−h0/n2 .

Thus the previous three displays and (7) yield

S+
n (h,h0) = h − h0

n2

n∑
t=1

Xt−1
g(�Xt + 1)

g(�Xt)
1{�Xt ≥ 0,Xt−1 − ϑ ◦ Xt−1 ≤ 1} + o(P1−h0/n2;1).

Finally, we will show that

1

n2

n∑
t=1

Xt−1
g(�Xt + 1)

g(�Xt)
1{�Xt ≥ 0,Xt−1 − ϑ ◦ Xt−1 ≤ 1}

p−→ (1 − g(0))μG

2
, under P1−h0/n2 , (29)

which will conclude the proof. For notational convenience we introduce

Zt = g(�Xt + 1)

g(�Xt)
1{�Xt ≥ 0,Xt−1 − ϑ ◦ Xt−1 ≤ 1}

= g(εt + 1)

g(εt )
1{Xt−1 − ϑ ◦ Xt−1 = 0} + g(εt )

g(εt − 1)
1{εt ≥ 1,Xt−1 − ϑ ◦ Xt−1 = 1}.

Using that εt is independent of Xt−1 − ϑ ◦ Xt−1, we obtain

E1−h0/n2[Zt |Xt−1 − ϑ ◦ Xt−1] = (1 − g(0)
)
1{Xt−1 − ϑ ◦ Xt−1 = 0}

+ 1{Xt−1 − ϑ ◦ Xt−1 = 1}E g(εt )

g(εt − 1)
1{εt ≥ 1},
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where we used that Eg(ε1 + 1)/g(ε1) = 1 − g(0) and E1{ε1 ≥ 1}g(ε1)/g(ε1 − 1) < ∞, since
we assumed that g is eventually decreasing. So we have

Zt − E1−h0/n2[Zt |Xt−1 − ϑ ◦ Xt−1]

=
(

g(εt + 1)

g(εt )
− E

g(εt + 1)

g(εt )

)
1{Xt−1 − ϑ ◦ Xt−1 = 0}

+
(

g(εt )

g(εt − 1)
1{εt ≥ 1} − E

g(εt )

g(εt − 1)
1{εt ≥ 1}

)
1{Xt−1 − ϑ ◦ Xt−1 = 1}.

From this it is not hard to see that we have

E1−h0/n2Xt−1(Zt − E1−h0/n2 [Zt |Xt−1 − ϑ ◦ Xt−1]) = 0,

E1−h0/n2Xt−1(Zt − E1−h0/n2 [Zt |Xt−1 − ϑ ◦ Xt−1])
× Xs−1(Zs − E1−h0/n2 [Zs |Xs−1 − ϑ ◦ Xs−1]) = 0 for s < t,

E1−h0/n2(Zt − E1−h0/n2[Zt |Xt−1 − ϑ ◦ Xt−1])2 ≤ C, (30)

for C = 2(Var(g(ε1 + 1)/g(ε1)) + Var(1{εt≥1}g(ε1)/g(ε1 − 1)), which is finite by Assump-
tion 3.1. Thus, by (4), it follows that

E1−h0/n2

(
1

n2

n∑
t=1

Xt−1(Zt − E1−h0/n2[Zt |Xt−1 − ϑ ◦ Xt−1])
)2

= 1

n4

n∑
t=1

E1−h0/n2X
2
t−1(Zt − E1−h0/n2[Zt |Xt−1 − ϑ ◦ Xt−1])2

≤ C

n4

n∑
t=1

E1−h0/n2X
2
t−1 → 0.

Hence (29) is equivalent to

1

n2

n∑
t=1

Xt−1E1−h0/n2[Zt |Xt−1 − ϑ ◦ Xt−1] p−→ (1 − g(0))μG

2
, under P1−h0/n2 . (31)

Since, by (4),

1

n2

n∑
t=1

E1−h0/n2Xt−11{Xt−1 − ϑ ◦ Xt−1 = 1} = h0

n4

n∑
t=1

E1−h0/n2X
2
t−1

(
1 − h0

n2

)Xt−1−1

≤ h0

n4

n∑
t=1

E1−h0/n2X
2
t−1 → 0,
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we have, using (7),∣∣∣∣∣ 1

n2

n∑
t=1

Xt−1E1−h0/n2 [Zt |Xt−1 − ϑ ◦ Xt−1] − 1 − g(0)

n2

n∑
t=1

Xt−1

∣∣∣∣∣
≤
∣∣∣∣E g(εt )

g(εt − 1)
1{εt ≥ 1} − (1 − g(0)

)∣∣∣∣ 1

n2

n∑
t=1

Xt−11{Xt−1 − ϑ ◦ Xt−1 = 1}

+ 1 − g(0)

n2

n∑
t=1

Xt−11{Xt−1 − ϑ ◦ Xt−1 ≥ 2} p−→ 0, under P1−h0/n2 .

We conclude (31), which finally concludes the proof of the lemma. �

Proof of Lemma 3.3. First we consider h = 0. From the definition of S−
n (0, h0) we see that

S−
n (0, h0) = 0 if

∑n
t=1 1{�Xt < 0} = 0 (since an empty sum equals zero by definition). And if∑n

t=1 1{�Xt < 0} ≥ 1, we have S−
n (0, h0) = −∞ (since W−

tn = −∞ for h = 0). This concludes
the proof for h = 0.

So we now consider h > 0. We rewrite

W−
tn = log

[(
h

h0

(
1 − h/n2

1 − h0/n2

)
+ Xt−1 − 1

2n2

h2g(1)

g(0)h0(1 − h0/n2)

)

×
(

1 + Xt−1 − 1

2n2

h0g(1)

g(0)(1 − h0/n2)

)−1]
.

By (7), the proof is finished if we show that

∑
t :�Xt=−1

∣∣∣∣W−
tn − log

[
h

h0

]∣∣∣∣ p−→ 0, under P1−h0/n2 .

Using the inequality | log((a + b)/(c + d)) − log(a/c)| ≤ b/a + d/c for a, c > 0, b, d ≥ 0, we
obtain∣∣∣∣W−

tn − log

[
h

h0

]∣∣∣∣
≤
∣∣∣∣W−

tn − log

[
h

h0

(
1 − h/n2

1 − h0/n2

)]∣∣∣∣+ O(n−2)

≤ Xt−1 − 1

2n2

[
h2g(1)

g(0)h0(1 − h0/n2)

(
h

h0

(
1 − h/n2

1 − h0/n2

))−1

+ h0g(1)

g(0)(1 − h0/n2)

]
+ O(n−2).

Hence, it suffices to show that

∑
t :�Xt=−1

Xt−1

n2

p−→ 0, under P1−h0/n2 .
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Note first that we have, by (7),

0 ≤ 1

n2

n∑
t=1

Xt−11{�Xt = −1} = 1

n2

n∑
t=1

Xt−11{�Xt = −1, εt = 0} + o(P1−h0/n2;1).

We show that the expectation of the first term on the right-hand side in the previous display
converges to zero, which will conclude the proof. We have, by (4),

lim
n→∞

1

n2

n∑
t=1

E1−h0/n2Xt−11{�Xt = −1, εt = 0}

= lim
n→∞

h0

n4

n∑
t=1

E1−h0/n2g(0)X2
t−1

(
1 − h0

n2

)Xt−1−1

≤ lim
n→∞

h0g(0)

n4

n∑
t=1

E1−h0/n2X
2
t−1 = 0,

which concludes the proof of the lemma. �

Acknowledgements

The authors thank Marc Hallin and Johan Segers for useful discussions and suggestions. Com-
ments by the conference participants at the Econometric Society EM 2006, Prague Stochastics
2006 and Faro EC2 as well as seminar participants at Universiteit van Amsterdam and Université
Libre de Bruxelles are kindly acknowledged. Furthermore, the authors are grateful to the referees
for very helpful comments and suggestions.

References

Ahn, S., Lee, G. and Jeon, J. (2000). Analysis of the M/D/1-type queue based on an integer-valued first-
order autoregressive process. Oper. Res. Lett. 27 235–241. MR1806547

Al-Osh, M. and Alzaid, A. (1987). First-order integer-valued autoregressive (INAR(1)) processes. J. Time
Ser. Anal. 8 261–75. MR0903755

Al-Osh, M. and Alzaid, A. (1990). An integer-valued pth-order autoregressive structure (INAR(p)) process.
J. Appl. Probab. 27 314–324. MR1052303

Alzaid, A. (1988). First-order integer-valued autoregressive (INAR(1)) process: distributional and regres-
sion properties. Statist. Neerlandica 42 53–61. MR0959714

Bélisle, P., Joseph, L., MacGibbon, B., Wolfson, D. and du Berger, R. (1998). Change-point analysis of
neuron spike train data. Biometrics 54 113–123.

Berglund, E. and Brännäs, K. (2001). Plants’ entry and exit in Swedish municipalities. Ann. Reg. Sci. 35
431–448.

Bickel, P., Klaassen, C., Ritov, Y. and Wellner, J. (1998). Efficient and Adaptive Estimation for Semi-
parametric Models, 2nd ed. New York: Springer.

http://www.ams.org/mathscinet-getitem?mr=1806547
http://www.ams.org/mathscinet-getitem?mr=0903755
http://www.ams.org/mathscinet-getitem?mr=1052303
http://www.ams.org/mathscinet-getitem?mr=0959714


Nearly unstable INAR 323

Bickel, P.J. and Kwon, J. (2001). Inference for semiparametric models: Some questions and an answer.
Statist. Sinica 11 863–960. With comments and a rejoinder by the authors. MR1867326

Böckenholt, U. (1999a). An INAR(1) negative multinomial regression model for longitudinal count data.
Psychometrika 64 53–67.

Böckenholt, U. (1999b). Mixed INAR(1) Poisson regression models: Analyzing heterogeneity and serial
dependencies in longitudinal count data. J. Econometrics 89 317–338. MR1681133

Böckenholt, U. (2003). Analysing state dependences in emotional experiences by dynamic count data mod-
els. J. Roy. Statist. Soc. Ser. C 52 213–226. MR1973741

Brännäs, K. and Hellström, J. (2001). Generalized integer-valued autoregression. Econometric Rev. 20 425–
443. MR1868341

Brännäs, K. and Quoreshi, S. (2004). Integer-valued moving average modelling of the number of transac-
tions in stocks. Working paper, Umeå Economic Studies 637.

Cardinal, M., Roy, R. and Lambert, J. (1999). On the application of integer-valued time series models for
the analysis of disease incidence. Stat. Med. 18 2025–2039.

Chan, N. and Wei, C. (1987). Asymptotic inference for nearly nonstationary AR(1) processes. Ann. Statist.
15 1050–1063. MR0902245

Drost, F., Klaassen, C. and Werker, B. (1997). Adaptive estimation in time-series models. Ann. Statist. 25
786–818. MR1439324

Drost, F., van den Akker, R. and Werker, B. (2008a). Note on integer-valued bilinear time series models.
Statist. Probab. Lett. 78 992–996.

Drost, F., van den Akker, R. and Werker, B. (2008b). Local asymptotic normality and efficient estimation
for INAR(p) models. J. Time Ser. Anal. 29 783–801.

Drost, F., van den Akker, R. and Werker, B. (2008c). Efficient estimation of autoregression parameters and
innovation distribution for semi-parametric non-negative integer-valued AR(p) models. J. Roy. Statist.
Soc. Ser. B. To appear.

Du, J.-G. and Li, Y. (1991). The integer valued autoregressive (INAR(p)) model. J. Time Ser. Anal. 12
129–142. MR1108796

Feller, W. (1968). An introduction to Probability Theory and Its Applications I, 3rd ed. New York: Wiley.
MR0228020

Franke, J. and Seligmann, T. (1993). Conditional maximum-likelihood estimates for INAR(1) processes
and their applications to modelling epileptic seizure counts. In Developments in time series (T. Subba
Rao, ed.) 310–330. London: Chapman and Hall. MR1292273

Freeland, R. and McCabe, B. (2004). Analysis of low count time series data by Poisson autoregression.
J. Time Ser. Anal. 25 701–722. MR2089191

Freeland, R. and McCabe, B. (2005). Asymptotic properties of CLS estimators in the Poisson AR(1) model.
Statist. Probab. Lett. 73 147–153. MR2159250

Gourieroux, C. and Jasiak, J. (2004). Heterogeneous INAR(1) model with application to car insurance.
Insurance Math. Econom. 34 177–192. MR2053785

Hellström, J. (2001). Unit root testing in integer-valued AR(1) models. Econom. Lett. 70 9–14.
Hirano, K. and Porter, J. (2003a). Asymptotic efficiency in parametric structural models with parameter

dependent support. Econometrica 71 1307–1338. MR2000249
Hirano, K. and Porter, J. (2003b). Efficiency in asymptotic shift experiments. Working paper.
Ispány, M., Pap, G. and van Zuijlen, M. (2003a). Asymptotic inference for nearly unstable INAR(1) models.

J. Appl. Probab. 40 750–765. MR1993265
Ispány, M., Pap, G. and van Zuijlen, M. (2003b). Asymptotic behavior of estimators of the parameters of

nearly unstable INAR(1) models. In Foundations of Statistical Inference (Y. Haitovsky, H. Lerche and
Y. Ritov, eds.) 193–204. Heidelberg: Physica.

http://www.ams.org/mathscinet-getitem?mr=1867326
http://www.ams.org/mathscinet-getitem?mr=1681133
http://www.ams.org/mathscinet-getitem?mr=1973741
http://www.ams.org/mathscinet-getitem?mr=1868341
http://www.ams.org/mathscinet-getitem?mr=0902245
http://www.ams.org/mathscinet-getitem?mr=1439324
http://www.ams.org/mathscinet-getitem?mr=1108796
http://www.ams.org/mathscinet-getitem?mr=0228020
http://www.ams.org/mathscinet-getitem?mr=1292273
http://www.ams.org/mathscinet-getitem?mr=2089191
http://www.ams.org/mathscinet-getitem?mr=2159250
http://www.ams.org/mathscinet-getitem?mr=2053785
http://www.ams.org/mathscinet-getitem?mr=2000249
http://www.ams.org/mathscinet-getitem?mr=1993265


324 F.C. Drost, R. van den Akker and B.J.M. Werker

Ispány, M., Pap, G. and van Zuijlen, M. (2005). Fluctuation limit of branching processes with immigration
and estimation of the means. Adv. Appl. Probab. 37 523–538. MR2144565

Jeganathan, P. (1995). Some aspects of asymptotic theory with applications to time series models. Econo-
metric Theory 11 818–887. MR1458943

Jung, R., Ronning, G. and Tremayne, A. (2005). Estimation in conditional first order autoregression with
discrete support. Statist. Papers 46 195–224. MR2155712

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory, 1st ed. New York: Springer.
MR0856411

Le Cam, L. and Yang, G. (1990). Asymptotics in Statistics: Some Basic Concepts, 1st ed. New York:
Springer. MR1066869

Ling, S. and McAleer, M. (2003). Adaptive estimation in nonstationary ARMA models with GARCH
noises. Ann. Statist. 31 642–674. MR1983545

Neal, P. and Subba Rao, T. (2007). MCMC for integer-valued ARMA processes. J. Time Ser. Anal. 28
92–110. MR2332852

Philips, P. (1987). Towards a unified asymptotic theory for autoregression. Biometrika 74 535–547.
MR0909357

Pickands III, J. and Stine, R. (1997). Estimation for an M/G/∞ queue with incomplete information. Bio-
metrika 84 295–308. MR1467048

Rudholm, N. (2001). Entry and the number of firms in the Swedish pharmaceuticals market. Rev. Ind.
Organ. 19 351–364.

Serfling, R. (1975). A general Poisson approximation theorem. Ann. Probab. 3 726–731. MR0380946
Silva, M. and Oliveira, V. (2005). Difference equations for the higher order moments and cumulants of the

INAR(p) model. J. Time Ser. Anal. 26 17–36. MR2118939
Silva, I. and Silva, M. (2006). Asymptotic distribution of the Yule–Walker estimator for INAR(p) processes.

Statist. Probab. Lett. 76 1655–1663. MR2248854
Shiryaev, A. and Spokoiny, V. (1999). Statistical Experiments and Decisions: Asymptotic Theory, 1st ed.

River Edge, NJ: World Scientific Publishing Company. MR1791434
Steutel, F. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Probab.

7 893–899. MR0542141
Thyregod, P., Carstensen, J., Madsen, H. and Arnbjerg-Nielsen, K. (1999). Integer valued autoregressive

models for tipping bucket rainfall measurements. Environmetrics 10 395–411.
Van den Akker, R. (2007). Integer-valued time series. Ph.D. dissertation, Tilburg Univ. Available at

http://arno.uvt.nl/show.cgi?did=306632.
Van der Vaart, A. (1991). An asymptotic representation theorem. Internat. Statist. Rev. 59 97–121.
Van der Vaart, A. (2000). Asymptotic Statistics, 1 ed. Cambridge: Cambridge Univ. Press.
Wei, C. and Winnicki, J. (1990). Estimation of the means in the branching process with immigration. Ann.

Statist. 18 1757–1773. MR1074433
Wefelmeyer, W. (1996). Quasi-likelihood and optimal inference. Ann. Statist. 24 405–422. MR1389898
Wong, W. (1992). On asymptotic efficiency in estimation theory. Statist. Sinica 2 47–68. MR1152297
Zheng, H., Basawa, I. and Datta, S. (2006). Inference for pth-order random coefficient integer-valued au-

toregressive processes. J. Time Ser. Anal. 27 411–440. MR2328539

Received February 2007 and revised January 2008

http://www.ams.org/mathscinet-getitem?mr=2144565
http://www.ams.org/mathscinet-getitem?mr=1458943
http://www.ams.org/mathscinet-getitem?mr=2155712
http://www.ams.org/mathscinet-getitem?mr=0856411
http://www.ams.org/mathscinet-getitem?mr=1066869
http://www.ams.org/mathscinet-getitem?mr=1983545
http://www.ams.org/mathscinet-getitem?mr=2332852
http://www.ams.org/mathscinet-getitem?mr=0909357
http://www.ams.org/mathscinet-getitem?mr=1467048
http://www.ams.org/mathscinet-getitem?mr=0380946
http://www.ams.org/mathscinet-getitem?mr=2118939
http://www.ams.org/mathscinet-getitem?mr=2248854
http://www.ams.org/mathscinet-getitem?mr=1791434
http://www.ams.org/mathscinet-getitem?mr=0542141
http://arno.uvt.nl/show.cgi?did=306632
http://www.ams.org/mathscinet-getitem?mr=1074433
http://www.ams.org/mathscinet-getitem?mr=1389898
http://www.ams.org/mathscinet-getitem?mr=1152297
http://www.ams.org/mathscinet-getitem?mr=2328539

	Introduction
	Preliminaries
	The limit experiment: one observation from a Poisson distribution
	Applications
	Efficient estimation of h in nearly unstable INAR models (G known)
	Efficient estimation of h in nearly unstable INAR models (G unknown)
	Testing for a unit root

	Appendix A: Auxiliaries
	Appendix B: Proofs
	Acknowledgements
	References

