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Stute [Ann. Probab. 19 (1991) 812–825] introduced a class of estimators called conditional U -statistics.
They can be seen as a generalization of the Nadaraya–Watson estimator for the regression function. Stute
proved their strong pointwise consistency to

m(t) := E[g(Y1, . . . , Ym)|(X1, . . . ,Xm) = t], t ∈ R
m.

Very recently, Giné and Mason introduced the notion of a local U -process, which generalizes that of a local
empirical process, and obtained central limit theorems and laws of the iterated logarithm for this class. We
apply the methods developed in Einmahl and Mason [Ann. Statist. 33 (2005) 1380–1403] and Giné and
Mason [Ann. Statist. 35 (2007) 1105–1145; J. Theor. Probab. 20 (2007) 457–485] to establish uniform in t
and in bandwidth consistency to m(t) of the estimator proposed by Stute. We also discuss how our results
are used in the analysis of estimators with data-dependent bandwidths.

Keywords: conditional U -statistics; consistency; data-dependent bandwidth selection; empirical process;
kernel estimation; Nadaraya–Watson; regression; uniform in bandwidth

1. Introduction and statement of main results

Let (X,Y ), (X1, Y1), . . . , (Xn,Yn) be independent random vectors with common joint density
function f : R×R → [0,∞[ and, for a measurable function ϕ : Rm → R, consider the regression
function

mϕ(t) = E[ϕ(Y1, . . . , Ym)|(X1, . . . ,Xm) = t], t ∈ R
m.

Stute [13] introduced a class of estimators for mϕ(t), called conditional U -statistics, which is
defined for each t ∈ R

m to be

m̂n(t;hn) =
∑

(i1,...,im)∈Im
n

ϕ(Yi1, . . . , Yim)K((t1 − Xi1)/hn) · · ·K((tm − Xim)/hn)∑
(i1,...,im)∈Im

n
K((t1 − Xi1)/hn) · · ·K((tm − Xim)/hn)

, (1.1)

where

Im
n = {(i1, . . . , im) : 1 ≤ ij ≤ n, ij �= il if j �= l} (1.2)

and 0 < hn < 1 goes to zero at a certain rate. Notice that when m = 1 and ϕ is the identity
function, we get the Nadaraya–Watson estimator of E[Y |X = t], t ∈ R.
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Stute [13] proved a pointwise consistency result and a central limit theorem for m̂n(t;hn).
Soon afterward, Sen [12] obtained results on the uniform in t consistency of this estimator. We
shall adapt and extend the methods developed in Einmahl and Mason [5] and Giné and Mason
[6,7] to show that under appropriate regularity conditions, a much stronger form of consistency
holds, namely, uniform in t and in bandwidth consistency of m̂n. This means that, with probabil-
ity 1,

lim sup
n→∞

sup
ãn≤h≤bn

sup
t∈[c,d]m

|m̂n(t;h) − mϕ(t)| = 0, (1.3)

for −∞ < c < d < ∞ appropriately chosen and ãn < bn, as long as ãn → 0, bn → 0 and
bn/̃an → ∞ at rates depending on the moments of ϕ(Y1, . . . , Ym). Moreover, we shall show
that (1.3) also holds uniformly in ϕ ∈ F for certain classes of functions F . In fact, our results
extend those of Einmahl and Mason [5], who treat the case m = 1. We point out in a remark
below that specializing to the case of a fixed function ϕ and bandwidth sequence hn, we gener-
aly get better rates of strong consistency uniformly in t ∈ [c, d]m than does Sen [12]. Uniform
in bandwidth results of the type (1.3) are crucial to the verification of the asymptotic uniform
in t ∈ [c, d]m consistency of m̂n(t; ĥn), where ĥn is a selector of the bandwidth depending on
(X1, Y1), . . . , (Xn,Yn). We shall discuss such applications in the next section.

We shall infer (1.3) via general uniform in bandwidth results for a specific U -statistic process
indexed by a class of functions. We define this process in (1.4) below. Toward this end, for m ≤ n,
consider a class F of measurable functions g : Rm → R such that Eg2(Y1, . . . , Ym) < ∞, which
satisfies the following conditions, (F.i)–(F.iii). First, to avoid measurability problems, we assume
that

F is a pointwise measurable class, (F.i)

that is, there exists a countable subclass F0 of F such that we can find, for any function g ∈ F ,
a sequence of functions gm ∈ F0 for which gm(z) → g(z), z ∈ R

m. This condition is discussed
in van der Vaart and Wellner [16]. We also assume that F has a measurable envelope function

F(y) ≥ sup
g∈F

|g(y)|, y ∈ R
m. (F.ii)

Notice that condition (F.i) implies that the supremum in (F.ii) is measurable. Finally, we assume
that F is of VC-type, with characteristics A and v (“VC” for Vapnik and Červonenkis), meaning
that for some A ≥ 3 and v ≥ 1,

N (F ,L2(Q), ε) ≤
(

A‖F‖L2(Q)

ε

)v

, 0 < ε ≤ 2‖F‖L2(Q), (F.iii)

where Q is any probability measure on (Rm, B) such that ‖F‖L2(Q) < ∞, and where for ε > 0,
N (F ,L2(Q), ε) is defined as the smallest number of L2(Q)-open balls of radius ε required to
cover F . (If (F.iii) holds for F , then we say that the VC-type class F admits the characteristics
A and v.)

Now, let K : R → R be a kernel function with support contained in [−B,B], B > 0 satisfying

sup
x∈R

|K(x)| =: κ < ∞ and
∫

K(x)dx = 1. (K.i)



1110 J. Dony and D.M. Mason

For such kernels, we consider the class of functions K := {hKh(t − ·) :h > 0, t ∈ R} and assume
that

K is pointwise measurable and of VC-type, (K.ii)

where, as usual, Kh(z) = h−1K(z/h), z ∈ R. Furthermore, let

K̃(t) :=
m∏

j=1

K(tj ), t = (t1, . . . , tm) (K.iii)

denote the product kernel. Next, if (S, S) is a measurable space, define the general U -statistic
with kernel H :Sk → R based on S-valued random variables Z1, . . . ,Zn as

U(k)
n (H) := (n − k)!

n!
∑
i∈I k

n

H(Zi1, . . . ,Zik ), 1 ≤ k ≤ n,

where I k
n is defined as in (1.2) with m = k. (Note that we do not require H to be symmetric here.)

For a bandwidth 0 < h < 1 and g ∈ F , consider the U -kernel

Gg,h,t(x,y) := g(y)K̃h(t − x), x,y, t ∈ R
m,

and for the sample (X1, Y1), . . . , (Xn,Yn), define

Un(g,h, t) := U(m)
n (Gg,h,t) = (n − m)!

n!
∑
i∈Im

n

Gg,h,t(Xi,Yi),

where, throughout this paper, we shall use the notation

X = (X1, . . . ,Xm) ∈ R
m and Xi := (Xi1, . . . ,Xik ) ∈ R

k, i ∈ I k
n ,

Y = (Y1, . . . , Ym) ∈ R
m and Yi := (Yi1 , . . . , Yik ) ∈ R

k, i ∈ I k
n .

Now, introduce the U -statistic process

un(g,h, t) := √
n{Un(g,h, t) − EUn(g,h, t)}. (1.4)

We shall establish strong uniform in t and in bandwidth consistency results for the U -statistic
process in (1.4). Theorem 1 leads to such a result for bounded classes of functions F , while
Theorem 2 is applicable for unbounded classes F which satisfy a conditional moment condition
stated in (1.6) below. In the bounded case, we assume that the envelope function of F is bounded
by some finite constant M , that is, that (1.5) holds.

Theorem 1. Suppose that the marginal density fX of X is bounded and let an = c(logn/n)1/m

for c > 0. If the class of functions F is bounded, in the sense that for some 0 < M < ∞,

F(y) ≤ M, y ∈ R
m, (1.5)
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then we can infer, under the above mentioned assumptions on F and K, that for all c > 0 and
0 < b0 < 1, there exists a constant 0 < C < ∞ such that

lim sup
n→∞

sup
an≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|Un(g,h, t) − EUn(g,h, t)|√| logh| ∨ log logn

≤ C a.s.

Theorem 2. Suppose that the marginal density fX of X is bounded and for c > 0, let a′
n =

c((logn/n)1−2/p)1/m. If F is unbounded, but satisfies, for some p > 2,

μp := sup
x∈Rm

E[Fp(Y)|X = x] < ∞, (1.6)

then we can infer, under the above mentioned assumptions on F and K, that for all c > 0 and
0 < b0 < 1, there exists a constant 0 < C′ < ∞ such that

lim sup
n→∞

sup
a′
n≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|Un(g,h, t) − EUn(g,h, t)|√| logh| ∨ log logn

≤ C′ a.s.

From now on, to stress the role of ϕ(y), we shall write m̂n,ϕ(t, h) for the estimator of the
regression function defined in (1.1). It is clear that m̂n,ϕ(t, h) can be rewritten, for all ϕ ∈ F , as

m̂n,ϕ(t, h) =
∑

i∈Im
n

ϕ(Yi)K̃h(t − Xi)∑
i∈Im

n
K̃h(t − Xi)

= Un(ϕ,h, t)
Un(1, h, t)

,

where we denote by Un(1, h, t) the U -statistic Un(g,h, t) with g ≡ 1. To prove the uniform
consistency of m̂n,ϕ(t, h) to mϕ(t), we shall consider another, more appropriate, centering factor
than the expectation Em̂n,ϕ(t, h), which may not exist or may be difficult to compute. Define the
centering

Êm̂n,ϕ(t, h) := EUn(ϕ,h, t)
EUn(1, h, t)

. (1.7)

This centering permits us to apply Theorems 1 and 2 (depending on whether the class F is
bounded in the sense of (1.5) or unbounded in the sense of (1.6)) to derive results on the con-
vergence rates of the process m̂n,ϕ(t, h) − Êm̂n,ϕ(t, h) to zero and the consistency of m̂n,ϕ(t, h),
uniform in t and in bandwidth.

For any compact interval I = [c, d] with −∞ < c < d < ∞ and η > 0, define Iη = [c−η, d +
η] and, as usual, denote the marginal density function of X by fX . Then, introduce the class of
functions defined on the compact subset Jm = Iη × · · · × Iη of R

m,

M = {mϕ(·)f̃ (·) :ϕ ∈ F }, (1.8)

where the function f̃ : Rm → R is defined as

f̃ (t) :=
∫

f (t1, y1) · · ·f (tm, ym)dy1 · · ·dym = fX(t1) · · ·fX(tm). (1.9)
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We have now introduced all of the notation that we need to state our results on the uniform
consistency of the conditional U -statistic estimator proposed by Stute for the general regression
function, where this consistency is uniform in t ∈J with J compact, in bandwidth and also in
ϕ ∈ F .

Theorem 3. Besides being bounded, suppose that the marginal density function fX of X is
continuous and strictly positive on the interval J = Iη , where I is a compact interval and η > 0.
Assume that the class of functions M is uniformly equicontinuous. It then follows that for all
sequences 0 < bn < 1 with bn → 0,

sup
0<h≤bn

sup
ϕ∈F

sup
t∈Im

|Êm̂n,ϕ(t, h) − mϕ(t)| = o(1),

where Im = I × · · · × I .

Theorem 4. Besides being bounded, suppose that the marginal density function fX of X is
continuous and strictly positive on the interval J = Iη , where I is a compact interval and η > 0.
It then follows under the abovementioned assumptions on F and K that for all c > 0 and all
sequences 0 < bn < 1 with a′′

n ≤ bn → 0, there exists a constant 0 < C′′ < ∞ such that

lim sup
n→∞

sup
a′′
n≤h≤bn

sup
ϕ∈F

sup
t∈Im

√
nhm|m̂n,ϕ(t, h) − Êm̂n,ϕ(t, h)|√| logh| ∨ log logn

≤ C′′ a.s.,

where Im = I × · · · × I and a′′
n is either an or a′

n, depending on whether the class F is bounded
or not, that is, whether (1.5) or (1.6) holds.

The following proposition follows straightforwardly from Theorems 3 and 4.

Proposition 1. Under the assumptions of Theorems 3 and 4 on fX and the classes F and K, it
follows that for all sequences 0 < a′′

n ≤ ãn ≤ bn < 1 satisfying bn → 0 and ñam
n / logn → ∞,

sup
ãn≤h≤bn

sup
ϕ∈F

sup
t∈Im

|m̂n,ϕ(t, h) − mϕ(t)| −→ 0 a.s., (1.10)

where Im = I × · · · × I and a′′
n is as in Theorem 2.

Remark. If the class of functions F and the density fX satisfy additional smoothness assump-
tions, one can derive rates of uniform consistency. For instance, assume, in addition to the con-
ditions of Theorem 4, that the following uniform Lipschitz condition holds: for some constant C

and all s, t ∈Jm and s, t ∈ J ,

sup
ϕ∈F

|mϕ(s) − mϕ(t)| ≤ C‖s − t‖ and |fX(s) − fX(t)| ≤ C|s − t |,

where ‖x‖ :=∑m
i=1 |xi |,x ∈ R

m. By then using Theorem 4, combined with the same arguments
as those given in the proofs of Lemma 1 and Theorem M of Sen [12], it is straightforward to
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show that there exists a constant D > 0 such that, with probability 1, for all n sufficiently large
and all a′′

n ≤ ãn ≤ h ≤ bn,

sup
ϕ∈F

sup
t∈Im

|m̂n,ϕ(t, h) − mϕ(t)| ≤ D

(√| logh| ∨ log logn√
nhm

+ h

)
. (1.11)

Notice that we must impose ñam
n / logn → ∞ and bn → 0 to be able to conclude uniform con-

sistency.

To compare our results with those of Sen [12], which apply only to the case of one fixed ϕ and
a single choice of a bandwidth sequence hn, we get a much better rate of consistency in (1.11)
when ϕ is bounded and h = hn, by imposing less restrictive assumptions on hn than he does.
A comparison is more difficult in the unbounded case, when we apply ours to one fixed ϕ and
bandwidth choice hn. However, assuming (1.6), which is a stronger assumption than his, namely
that Eϕ2(Y) < ∞, we find for any choice of hn that satisfies both his conditions and ours that our
result yields a much better rate in (1.11) with h = hn than is obtainable using his. On the other
hand, his result is applicable to the case p = 2 in (1.6) and ours is not since we require p > 2.

In the next section, we discuss how our results are used in the analysis of estimators with data-
dependent bandwidths. All of the proofs are detailed in Sections 3, 4, 5, 6 and 7. An Appendix
contains some facts that are needed in the proofs.

2. Application to estimators with data-dependent bandwidths

As we have already noted, a special case of the conditional U -statistic is the Nadaraya–Watson
estimator. An extensive literature has evolved, developing methods to construct, in asymptot-
ically optimal ways, data-dependent bandwidth selectors for this estimator. Among the many
papers on this subject, we cite Hall [9], Härdle and Marron [8], Tsybakov [15], Vieu [17] and
Rachdi and Vieu [11]. Such studies do not presently exist for the more general conditional U -
statistic. However, at present, we can suggest the following data-dependent bandwidth selector,
which leads to a consistent estimator. It is an extension of a cross-validation procedure proposed
by Härdle and Marron [8] for choosing the smoothing parameter for the Nadaraya–Watson esti-
mator. For any fixed i = (i1, . . . , im) ∈ Im

n , set

Im
n (i) := {k : k ∈Im

n and k �= i} = Im
n \ {i}

and let

m̂n,ϕ(Xi, h, i) =
∑

k∈Im
n (i) ϕ(Yk)K̃h(Xi − Xk)∑
k∈Im

n (i) K̃h(Xi − Xk)

be the ‘leave-out-(Xi,Yi)’ estimator of mϕ(Y), which can also be seen as the predictor of ϕ(Yi)

based on (Xk,Yk),k ∈ Im
n (i). Assume that the conditions and notation of Proposition 1 hold. Let

w ≥ 0 be a measurable weight function defined on R with support contained in I and introduce
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the weighted squared distance between ϕ(Yi) and its predictor m̂n,ϕ(Xi, h, i),

CV(h,ϕ) = (n − m)!
n!

∑
i∈Im

n

(
ϕ(Yi) − m̂n,ϕ(Xi, h, i)

)2
w̃(Xi),

where w̃(t) :=∏m
j=1 w(tj ). Further, let ãn and bn be as in Proposition 1 and choose

ĥn := hn

(
(X1, Y1), . . . , (Xn,Yn)

) ∈ [̃an, bn]
to minimize among h ∈ [̃an, bn]

sup
ϕ∈F

CV(h,ϕ).

Clearly, since ĥn ∈ [̃an, bn], we can conclude, by Proposition 1, that

sup
ϕ∈F

sup
t∈Im

|m̂n,ϕ(t, ĥn) − mϕ(t)| −→ 0 a.s.

In the case when m = 1 and F = {ϕ}, with ϕ being the identity function, this is the Härdle
and Marron [8] bandwidth selector. They prove, under suitable regularity conditions (including
ĥn ∈ [̃an, bn] for appropriate ãn ≤ bn which satisfy the assumptions of Proposition 1), that this
procedure is asymptotically optimal in a number of senses. Our bandwidth selector can be moti-
vated in much the same way as Härdle and Marron [8] motivate theirs. It is beyond the scope of
this paper to generalize their result to the conditional U -statistic setup.

Another avenue to follow in order to construct an asymptotically optimal bandwidth selector
for the conditional U -statistic is to extend the plug-in method based on minimizing an expression
for the asymptotic mean squared error of the Nadaraya–Watson estimator used by Tsybakov [15]
for the Nadaraya–Watson estimator of E[Y |X = t]. This approach will be investigated in depth
elsewhere.

3. Preliminaries for the proofs of the theorems

Hereafter, throughout the proofs of our results, we shall assume, for the sake of notational con-
venience, but without loss of generality, that our kernel K has support contained in [−1/2,1/2].

Let � be a real-valued functional defined on a class of functions G and g a real-valued function
defined on R

d , d ≥ 1. Occasionally, we shall use the notation

‖�(G)‖G = sup
G∈G

|�(G)| and ‖g‖∞ = sup
x∈Rd

|g(x)|. (3.1)

In the sequel, we will need to symmetrize the functions Gg,h,t(·, ·). To do this, we set

Ḡg,h,t(x,y) := (m!)−1
∑
σ∈Im

m

Gg,h,t(xσ ,yσ ) = (m!)−1
∑
σ∈Im

m

g(yσ )K̃h(t − xσ ),
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where zσ := (zσ1 , . . . , zσm). Obviously, the expectation of Gg,h,t remains unchanged after sym-

metrization and U
(m)
n (Ḡg,h,t(·, ·)) = Un(g,h, t), so the U -statistic process in (1.4) may be rede-

fined using the symmetrized kernels, that is, we consider

un(g,h, t) = √
n
{
U(m)

n (Ḡg,h,t) − EU(m)
n (Ḡg,h,t)

}
. (3.2)

Moreover, the Hoeffding decomposition tells us that

un(g,h, t) = √
n

m∑
k=1

(
m

k

)
U(k)

n (πkḠg,h,t(·, ·)), (3.3)

where the kth Hoeffding projection for a (symmetric) function L :Sm × Sm → R is defined for
xk = (x1, . . . , xk) ∈ Sk and yk = (y1, . . . , yk) ∈ Sk as

πkL(xk,yk) := (
δ(x1,y1) − P

)× · · · × (
δ(xk,yk) − P

)× P m−k(L),

where P is any probability measure on (S, S). Considering (Xi, Yi), i ≥ 1, i.i.d.-P and as-
suming L is in L2(P

m), this is an orthogonal decomposition and E[πkL(Xk,Yk)|(X2, Y2), . . . ,

(Xk,Yk)] = 0, k ≥ 1, where we denote Xk and Yk for (X1, . . . ,Xk) and (Y1, . . . , Yk), respec-
tively. Thus, the kernels πkL are canonical for P (or completely degenerate, or completely cen-
tered). Also, πk , k ≥ 1, are nested projections, that is, πk ◦ πl = πk if k ≤ l, and

E[(πkL)2(Xk,Yk)] ≤ E[(L − EL)2(X,Y)] ≤ EL2(X,Y). (3.4)

For more details, consult de la Peña and Giné [2].
Since we assume F to be of VC-type with envelope function F and K to be of VC-type with

envelope κ , it is readily checked (via Lemma A.1 in Einmahl and Mason [4]) that the class of
functions on R

m ×R
m given by {hmGg,h,t(·, ·) :g ∈ F ,0 < h < 1, t ∈ R

m} is of VC-type, as well
as the class

G = {hmḠg,h,t(·, ·) :g ∈ F ,0 < h < 1, t ∈ R
m}, (3.5)

for which we denote the VC-type characteristics by A1 and v1, and the envelope function by

F̃ (y) ≡ F̃ (x,y) = κm
∑
σ∈Im

m

F (yσ ), y ∈ R
m. (3.6)

(Recall (F.ii) and (F.iii) for terminology.) Next, for k = 1, . . . ,m, introduce the following classes
of functions on R

k × R
k :

G(k) = {hmπkḠg,h,t(·, ·) :g ∈ F ,0 < h < 1, t ∈ R
m}. (3.7)

An argument in Giné and Mason [7] then shows that each class G(k) is of VC-type with charac-
teristics A1 and v1 and envelope function

Fk ≤ 2k‖F̃‖∞. (3.8)

(See the completion of the proof of Theorem 1 in that paper for more details.)
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4. Proof of Theorem 1: the bounded case

We begin by studying the first term of (3.3), namely, the linear term,

m
√

nU(1)
n (π1Ḡg,h,t(·, ·)) = m√

n

n∑
i=1

π1Ḡg,h,t(Xi, Yi).

Linear term of (3.3). From the definition of the Hoeffding projections and recalling that the
sample (X1, Y1), . . . , (Xn,Yn) is i.i.d., we can say, for all (x, y) ∈ R

2, that

π1Ḡg,h,t(x, y) = E[Ḡg,h,t((x,X2, . . . ,Xm), (y,Y2, . . . , Ym))] − EḠg,h,t(X,Y)

= E[Ḡg,h,t(X,Y)|(X1, Y1) = (x, y)] − EḠg,h,t(X,Y).

Introduce the following function on R × R (for notational brevity, we supress the dependence
on m):

Sg,h,t : R × R −→ R

(x, y) �−→ mhm
E[Ḡg,h,t(X,Y)|(X1, Y1) = (x, y)].

Using this notation, we write

mhmπ1Ḡg,h,t(x, y) = Sg,h,t(x, y) − ESg,h,t(X1, Y1)

and hence for all g ∈ F , h ∈ [an, b0] and t ∈ R
m, the linear term of the decomposition in (3.3)

times hm is given by

mhm
√

nU(1)
n (π1Ḡg,h,t) = 1√

n

n∑
i=1

{Sg,h,t(Xi, Yi) − ESg,h,t(Xi, Yi)}

=: αn(Sg,h,t),

where this last expression is an empirical process αn based on the sample (X1, Y1), . . . , (Xn,Yn)

and indexed by the class of functions on R × R,

Sn = {Sg,h,t(·, ·) :g ∈ F , an ≤ h ≤ b0, t ∈ R
m}.

Clearly, Sn ⊂ mG(1) and the class mG(1) has envelope function mF1, where F1 is the envelope
function of the class G(1) defined in (3.7). From the above discussion, this class is of VC-type
with the same characteristics as G and, therefore, after appropriate identifications of notation, we
can apply Theorem 2 of Dony, Einmahl and Mason [3] to conclude that for some 0 < C̃ < ∞,

lim sup
n→∞

sup
an≤h≤b0

sup
g∈F

sup
t∈Rm

m
√

nhm|U(1)
n (π1Ḡg,h,t)|√| logh| ∨ log logn

≤ C̃ a.s. (4.1)
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Alternatively, a straightforward modification of the proof of (5.9) below, with a′
n replaced by an

and γ
1/p

� by M , also gives (4.1).
The other terms of (3.3). Our aim now is to show that all of the other terms of the Hoeffding

decomposition are almost surely bounded or, more precisely, that for each k = 2, . . . ,m,

sup
an≤h≤b0

sup
g∈F

sup
t∈Rm

(
m
k

)√
nhm|U(k)

n (πkḠg,h,t)|√| logh| ∨ log logn
= O(1) a.s. (4.2)

Since nam
n = cm logn, this will be accomplished if we can prove that for each k = 2, . . . ,m,

sup
an≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|U(k)

n (πkḠg,h,t)|√
(| logh| ∨ log logn)k

= O

(
1√

am
n nk−1

)
a.s. (4.3)

To obtain uniform in bandwidth convergence rates, we shall need a blocking argument and a
decomposition of the interval [an, b0] into smaller intervals. To do this, set n� = 2�, � ≥ 0 and
consider the intervals H�,j := [h�,j−1, h�,j ], where the boundaries are given by hm

�,j := 2j am
n�

.
Setting L(�) = max{j :h�,j ≤ 2b0}, observe that

[an�
, b0] ⊆

L(�)⋃
�=1

H�,j and L(�) ∼ log

(
n�b0

c logn�

)/
log 2, (4.4)

implying, in particular, that L(�) ≤ 2 logn�. (This fact will be used repeatedly to finish some im-
portant steps of the proofs.) Next, for 1 ≤ j ≤ L(�), consider the class of functions on R

m × R
m,

G�,j := {hmḠg,h,t(·, ·) :g ∈ F , h ∈ H�,j , t ∈ R
m},

as well as the class on R
k × R

k ,

G(k)
�,j :=

{
hmπkḠg,h,t(·, ·)

Mk

:g ∈ F , h ∈ H�,j , t ∈ R
m

}
,

where Mk = 2kκmM . Clearly, each class G�,j is of VC-type with the same characteristics and

envelope function as G and G(k)
�,j is of VC-type with the same characteristics as G(k) (and thus

as G ) with envelope function M−1
k Fk , where Fk is the envelope function of G(k). Notice that

from (1.5) and (3.8),

Mk ≥ sup
x,y∈Rk

{|πkḠg,h,t(x,y)| :g ∈ F ,0 < h < 1, t ∈ R
m}

and hence each function in G(k)
�,j is bounded by 1. Define now for n�−1 < n ≤ n�, � = 1,2, . . . ,

Un(j, k, �) = n
−k/2
� sup

H∈G(k)
�,j

∣∣∣∣∣∑
i∈I k

n

H(Xi,Yi)

∣∣∣∣∣. (4.5)
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From Theorem 4 of Giné and Mason [7] (see Theorem A.1 in the Appendix), we get for c = 1/2,

r = 2 and all x > 0 that for any � ≥ 1,

P

{
max

n�−1<n≤n�

Un(j, k, �) > x

}
≤ 2

x
P{Un�

(j, k, �) > x/2}1/2
E[U 2

n�
(j, k, �)]1/2. (4.6)

We shall apply an exponential inequality and a moment bound for U -statistics, due to, respec-
tively, de la Peña and Giné [2] and Giné and Mason [7], on the class G(k)

�,j to bound (4.6). In order
to use these results, we must first derive some bounds. First, it is readily checked that

Un(j, k, �) ≤ n
k/2
�

∥∥U(k)
n (πkG)

∥∥
G(k)

�,j

(4.7)

for all n�−1 < n ≤ n�. (Recall the notation in (3.1).) Second, notice that in (K.i), K is assumed to
be bounded by κ and, for notational convenience in the proofs, to have support in [−1/2,1/2],
so that by assumption (1.5) and Mk = 2kκmM , for H ∈ G(k)

�,j , we have, by (3.4),

EH 2(X,Y) ≤ M−2
k h2m

EḠ2
g,h,t(X,Y)

= M−2
k E

[
g2(Y)K̃2

(
t − X

h

)]
≤ hm4−k‖fX‖m∞.

For Dm,k = 4−k‖fX‖m∞, this gives us that

sup
H∈G(k)

�,j

EH 2(X,Y) ≤ Dm,kh
m
�,j =: σ 2

�,j . (4.8)

Since πkπkL = πkL for all k ≥ 1, we can now apply Theorem A.4 to the class G(k)
�,j with σ 2

�,j as
in (4.8) and easily obtain that for some constant Ak ,

EU 2
n�

(j, k, �) ≤ nk
�E
∥∥U(k)

n�
(πkH)

∥∥2
G(k)

�,j

≤ 2kAkh
m
�,j | logh�,j |k. (4.9)

To control the probability term in (4.6), we shall apply an exponential inequality to the same
class G(k)

�,j (recall that each H ∈ G(k)
�,j is bounded by 1). Setting

y∗ = C1,k(| logh�,j | ∨ log logn�)
k/2 =: C1,kλj,k(�), (4.10)

where C1,k < ∞, Theorem A.6 gives us constants C2,k,C3,k and C4,k such that for j =
1, . . . ,L(�) and any ρ > 1,

P{Un�
(j, k, �) > ρk/2y∗} ≤ C2,k exp{−C3,kρy∗2/k}

(4.11)
≤ exp{−C4,kρ log logn�}.
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Plugging the bounds (4.9) and (4.11) into (4.6), we then get for some C5,k > 0, any ρ ≥ 2 and �

large enough,

P

{
max

n�−1<n≤n�

Un(j, k, �) > 2ρk/2y∗
}

≤
(logn�)

−ρC4,k/2
√

2kAkh
m
�,j | logh�,j |k

C1,k

√
ρk(| logh�,j | ∨ log logn�)k

(4.12)
≤
√

hm
�,j (logn�)

−ρC5,k .

Finally, note also that

n
k/2
�

∥∥U(k)
n (πkG)

∥∥
G�,j

≤ CkMk Un(j, k, �) (4.13)

for some Ck > 0. Therefore, by (4.4), for each k = 2, . . . ,m and � large enough,

max
n�−1<n≤n�

An,k := max
n�−1<n≤n�

sup
an≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|U(k)

n (πkḠg,h,t)|√
(| logh| ∨ log logn)k

≤ max
n�−1<n≤n�

max
1≤j≤L(�)

sup
h∈H�,j

sup
g∈F

sup
t∈Rm

√
n�hm|U(k)

n (πkḠg,h,t)|√
(| logh| ∨ log logn�)k

≤ CkMk√
nk−1

�

max
n�−1<n≤n�

max
1≤j≤L(�)

Un(j, k, �)

λj,k(�)

≤ CkMk√
am
n�

nk−1
�

max
n�−1<n≤n�

max
1≤j≤L(�)

Un(j, k, �)

λj,k(�)
,

where λj,k(�) was defined as in (4.10). Now, recall that h�,j ≤ 2b0 < 2 for j = 1, . . . ,L(�)

and that L(�) ≤ 2 logn�. Then, (4.12) applied with ρ ≥ (2 + δ)/C5,k , δ > 0 and in combination

with the above inequality and the obvious bound
√

am
n nk−1An,k ≤

√
am
n�

nk−1
� An,k valid for all

n�−1 < n ≤ n�, implies for C6,k ≥ 2ρk/2CkMkC1,k that for k = 2, . . . ,m,

P

{
max

n�−1<n≤n�

√
am
n nk−1An,k > C6,k

}
≤

L(�)∑
j=1

√
hm

�,j (logn�)
−ρC5,k

≤ L(�)
√

2m(logn�)
−ρC5,k

≤
√

2m+2(� log 2)−(1+δ).

This proves, via some elementary bounds and Borel–Cantelli, that (4.3) holds, which obviously
implies (4.2) and hence completes the proof of Theorem 1.
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5. Proof of Theorem 2: the unbounded case

In case (1.5) is not satisfied, we consider bandwidths lying in the slightly smaller interval H′
n�

=
[a′

n�
, b0] that can be decomposed into the subintervals

H′
�,j := [h′

�,j−1, h
′
�,j ] with h′m

�,j := 2j a′m
n�

. (5.1)

Note that it is straightforward to show that (4.4) remains valid if we replace h�,j by h′
�,j . In

particular, we still have L(�) ≤ 2 logn�, where L(�) is now defined as L(�) := max{j : h′
�,j ≤

2b0}. Recall that n� = 2�, � ≥ 0, and set, for � ≥ 1,

γ� = n�/ logn�. (5.2)

For an arbitrary ε > 0, we shall decompose each function in G as

Ḡg,h,t(x,y) = Ḡg,h,t(x,y)1{F̃ (y) ≤ εγ
1/p

� } + Ḡg,h,t(x,y)1{F̃ (y) > εγ
1/p

� }
=: Ḡ(�)

g,h,t(x,y) + G̃
(�)
g,h,t(x,y),

where F̃ (y) is the (symmetric) envelope function of the class G as defined in (3.6). un(g,h, t)
can then also be decomposed for any n�−1 < n ≤ n� since, from (3.2),

un(g,h, t) = √
n
{
U(m)

n

(
Ḡ

(�)
g,h,t

)− EU(m)
n

(
Ḡ

(�)
g,h,t

)}+ √
n
{
U(m)

n

(
G̃

(�)
g,h,t

)− EU(m)
n

(
G̃

(�)
g,h,t

)}
=: u(�)

n (g,h, t) + ũ(�)
n (g,h, t).

The term u
(�)
n (g,h, t) will be called the truncated part and ũ

(�)
n (g,h, t) the remainder part. To

prove Theorem 2, we shall apply the Hoeffding decomposition to the truncated part and ana-
lyze each of the terms separately, while the remainder part can be treated directly using simple
arguments based on standard inequalities. Note, for further use, that

a′m
n�

= cmγ
2/p−1
� , � ≥ 1. (5.3)

5.1. Truncated part

Note that from (3.3), we need to consider the terms of
∑m

k=1

(
m
k

)
U

(k)
n (πkḠ

(�)
g,h,t). We shall start

with the linear term in this decomposition. Following the same reasoning as in the previous
section, we can show that π1Ḡ

(�)
g,h,t is a centered conditional expectation and that the first term

of (3.3) can be written as an empirical process based on the sample (X1, Y1), . . . , (Xn,Yn) and
indexed by the class of functions

S ′
� := {

S
(�)
g,h,t(·, ·) :g ∈ F , h ∈ H′

n�
, t ∈ R

m
}
,
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where H′
n�

was defined at the beginning of this section and where

S
(�)
g,h,t(x, y) = mhm

E
[
Ḡ

(�)
g,h,t(X,Y)|(X1, Y1) = (x, y)

]
.

To show that S ′
� is a VC-class, introduce the class of functions of (x,y) ∈ R

m × R
m,

C = {
hmḠg,h,t(x,y)1{F̃ (y) ≤ c} :g ∈ F ,0 < h < 1, t ∈ R

m, c > 0
}
.

Since both G as defined in (3.5) and the class of functions of y ∈ R
m given by I = {1{F̃ (y) ≤

c} : c > 0} are of VC-type (and note that I has a bounded envelope function), we can apply
Lemma A.1 in Einmahl and Mason [4] to conclude that C is also of VC-type. Therefore, so is the
class of functions mC(1) on R

2, where C(1) consists of the π1-projections of the functions in the
class C . Thus, we see that S ′

� ⊂ mC(1) and hence S ′
� is of VC-type with the same characteristics

as mC(1). Now, to find an envelope function for S ′
�, set tj := (t1, . . . , tj−1, tj+1, . . . , tm) ∈ R

m−1

and Zj (u) := (Z1, . . . ,Zj−1, u,Zj+1, . . . ,Zm) ∈ R
m for u ∈ R and Z ∈ R

m. We can then rewrite

the function S
(�)
g,h,t(x, y) ∈ S ′

� as

S
(�)
g,h,t(x, y) = K

(
t1 − x

h

)
E

[
g(Y1(y))K̃

(
t1 − X∗

h

)
1{F̃ (Y1(y)) ≤ εγ

1/p

� }
]

+ K

(
t2 − x

h

)
E

[
g(Y2(y))K̃

(
t2 − X∗

h

)
1{F̃ (Y2(y)) ≤ εγ

1/p
� }

]
(5.4)

+ · · · + K

(
tm − x

h

)
E

[
g(Ym(y))K̃

(
tm − X∗

h

)
1{F̃ (Ym(y)) ≤ εγ

1/p
� }

]
,

where X∗ = (X2, . . . ,Xm) ∈ R
m−1 and where (with a little abuse of notation here) the product

kernel in (K.iii) is now defined for (m − 1)-dimensional vectors, that is, K̃(u) =∏m−1
i=1 K(ui),

u ∈ R
m−1. Hence, we can bound S

(�)
g,h,t(x, y) simply as

∣∣S(�)
g,h,t(x, y)

∣∣ ≤ κm{E[F(y,Y2, . . . , Ym)]
+ E[F(Y2, y,Y3, . . . , Ym)] + · · · + E[F(Y2, . . . , Ym, y)]}

=: Gm(x, y).

We shall now apply the moment bound in Theorem A.3 to the subclasses

S ′
�,j := {

S
(�)
g,h,t(·, ·) :g ∈ F , h ∈ H′

�,j , t ∈ R
m
}
, 1 ≤ j ≤ L(�),

where H′
�,j was defined in (5.1). Since S ′

�,j ⊂ S ′
� for j = 1, . . . ,L(�), all of these subclasses are

of VC-type, with the same envelope function and characteristics as the class mC(1) (which is in-
dependent of �), verifying (ii) in Theorem A.3. For (i), recall that although all of the terms of the
envelope function Gm(x, y) are different, their expectations are the same. Therefore, writing Y∗
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for (Y2, . . . , Ym) and applying Minkowski’s inequality followed by Jensen’s inequality, we ob-
tain from assumption (1.6) the following upper bound for the second moment of the envelope
function:

EG2
m(X,Y ) = κ2m

EY {EY∗ [F(Y,Y2, . . . , Ym)]
+ EY∗ [F(Y2, Y,Y3, . . . , Ym)] + · · · + EY∗ [F(Y2, . . . , Ym,Y )]}2

≤ m2κ2m
EF 2(Y1, . . . , Ym)

≤ m2κ2mμ
2/p
p .

Note, further, that by symmetry of F̃ ,

EḠ
(�)
g,h,t(X,Y) = h−m

E[g(Y)K̃

(
t − X

h

)
1{F̃ (Y) ≤ εγ

1/p

� }]

so that Jensen’s inequality, the change of variable u = (t − x)/h and the assumption in (1.6) give
the following upper bound for the second moment of any function in S ′

�:

E
(
S

(�)
g,h,t(X,Y )

)2
≤ m2

E

[
g2(Y)K̃2

(
t − X

h

)
1{F̃ (Y) ≤ εγ

1/p
� }

]
(5.5)

≤ m2κ2mhm

∫
[−1/2,1/2]m

E[F 2(Y)|X = t − hu]fX(t1 − hu1) · · ·fX(tm − hum)du

≤ m2κ2mμ
2/p
p ‖fX‖m∞hm.

Therefore, with β ≡ mκmμ
1/p
p (1 ∨ ‖fX‖m/2∞ ), our previous calculations give us that

EG2
m(X,Y ) ≤ β2 and sup

S∈S ′
�,j

ES2(X,Y ) ≤ β2h′m
�,j =: σ 2

�,j ,

verifying condition (iii) as well. Finally, recall from (3.6) that since G has envelope function
F̃ (y), it holds for all x, y ∈ R that∣∣S(�)

g,h,t(x, y)
∣∣≤ mE[F̃ (Y)1{F̃ (Y) ≤ εγ

1/p
� }|(X1, Y1) = (x, y)] ≤ mεγ

1/p
�

so that by taking ε > 0 small enough, Theorem A.3 is now applicable. Thus, for an absolute
constant A1 < ∞, we have

E

∥∥∥∥∥
n�∑

i=1

εiS(Xi,Yi)

∥∥∥∥∥
S ′

�,j

≤ A1

√
n�h

′m
�,j | logh′

�,j |

≤ A1

√
n�h

′m
�,j (| logh′

�,j | ∨ log logn�) (5.6)

=: A1λ
′
j (�),
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where ε1, . . . , εn�
are independent Rademacher variables, independent of (Xi, Yi), 1 ≤ i ≤ n�.

Consequently, applying the exponential inequality of Talagrand [14] to the class S ′
�,j (see The-

orem A.5 in the Appendix) with M = mεγ
1/p

� , σ 2
S ′

�,j

= β2h′m
�,j and the moment bound in (5.6),

we get, for an absolute constant A2 < ∞ and all t > 0, that

P

{
max

n�−1<n≤n�

∥∥√nαn

∥∥
S ′

�,j
≥ C1

(
A1λ

′
j (�) + t

)}
(5.7)

≤ 2

[
exp

(
− A2t

2

n�β2h′m
�,j

)
+ exp

(
− A2t

mεγ
1/p

�

)]
.

Regarding the application of this inequality with t = ρλ′
j (�), ρ > 1, note that it clearly follows

from (5.3) and the definitions of h′
�,j as in (5.1), γ� as in (5.3) and λ′

j (�) as in (5.6) that for all
j ≥ 0,

λ′2
j (�)

n�h
′m
�,j

= | logh′
�,j | ∨ log logn� ≥ log logn�,

λ′2
j (�)

γ
2/p

�

= 2j cm logn�(| logh′
�,j | ∨ log logn�) ≥ cm(log logn�)

2.

Consequently, (5.7), when applied with t = ρλ′
j (�) and any ρ > 1 with � large enough, yields,

for suitable constants A′
2, A′′

2 and A3, the inequality

P

{
max

n�−1<n≤n�

∥∥√nαn

∥∥
S ′

�,j
≥ C1(A1 + ρ)λ′

j (�)

}
≤ 2[exp(−A′

2ρ
2 log logn�) + exp(−A′′

2ρ log logn�)] (5.8)

≤ 4(logn�)
−A3ρ.

Keeping in mind that mhm
√

nU
(1)
n (π1Ḡ

(�)
g,h,t) is the empirical process αn(S

(�)
g,h,t) indexed by the

class S ′
� and recalling (4.4), we obtain, for � ≥ 1, that

max
n�−1<n≤n�

A′
n,� := max

n�−1<n≤n�

sup
a′
n≤h≤b0

sup
g∈F

sup
t∈Rm

m
√

nhm|U(1)
n (π1Ḡ

(�)
g,h,t)|√| logh| ∨ log logn

≤ max
n�−1<n≤n�

max
1≤j≤L(�)

sup
h∈H′

�,j

sup
g∈F

sup
t∈Rm

2
√

2|√nαn(S
(�)
g,h,t)|√

n�h
′m
�,j (| logh′

�,j | ∨ log logn�)

≤ max
n�−1<n≤n�

max
1≤j≤L(�)

sup
H∈S ′

�,j

3|√nαn(H)|
λ′

j (�)
.
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Consequently, recalling once again that L(�) ≤ 2 logn�, we can infer from (5.8) that for some
constant C5(ρ) ≥ 3C1(A1 + ρ),

P

{
max

n�−1<n≤n�

A′
n,� > C5(ρ)

}
≤

L(�)∑
j=1

P

{
max

n�−1<n≤n�

∥∥√nαn

∥∥
S ′

�,j
> C1(A1 + ρ)λ′

j (�)

}
≤ 8(logn�)

1−A3ρ.

The Borel–Cantelli lemma, when combined with this inequality for ρ ≥ (2 + δ)/A3, δ > 0 and
with the choice n� = 2�, establishes, for some C′ < ∞ and with probability 1, that

lim sup
�→∞

max
n�−1<n≤n�

sup
a′
n≤h≤b0

sup
g∈F

sup
t∈Rm

m
√

nhm|U(1)
n (π1Ḡ

(�)
g,h,t)|√| logh| ∨ log logn

≤ C′, (5.9)

concluding the study of the first term in (3.3).
We now show that, with probability 1, all of the other terms of (3.3) are asymptotically

bounded or go to zero at the proper rate, which will be accomplished if we can prove that for
k = 2, . . . ,m and with probability 1,

max
n�−1<n≤n�

sup
a′
n≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|U(k)

n (πkḠ
(�)
g,h,t)|√| logh| ∨ log logn

= O(γ
1−k/2
� ). (5.10)

Analogously to the bounded case, we start by defining the classes of functions on R
m × R

m and
R

k × R
k ,

G′
�,j := {

hmḠ
(�)
g,h,t(·, ·) :g ∈ F , h ∈ H′

�,j , t ∈ R
m
}
,

G′(k)
�,j := {

hm
(
πkḠ

(�)
g,h,t

)
(·, ·)/(2kεγ

1/p
� ) :g ∈ F , h ∈ H′

�,j , t ∈ R
m
}
.

It is then easily verified that these classes are of VC-type with characteristics that are independent
of � and with envelope functions F̃ and (2kεγ

1/p
� )−1Fk , respectively. The function F̃ is defined

as in (3.6) and Fk is determined just as in the proof of Theorem 1 of Giné and Mason [7]. Note
that just as in (4.5) and (4.7), by setting

U ′
n(j, k, �) := sup

H∈G′(k)
�,j

∣∣∣∣∣ 1

n
k/2
�

∑
i∈I k

n

H(Xi,Yi)

∣∣∣∣∣, n�−1 < n ≤ n�,

we see that for all k = 2, . . . ,m and n�−1 < n ≤ n�,

U ′
n(j, k, �) ≤ n

k/2
�

∥∥U(k)
n (πkG)

∥∥
G′(k)

�,j

.

Consequently, applying Theorem A.1 with c = 1/2 and r = 2 gives us precisely (4.6) with
Un(j, k, �) and Un�

(j, k, �) replaced by U ′
n(j, k, �) and U ′

n�
(j, k, �), respectively. Therefore, the
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same methodology as in the bounded case will be applied. Note also that, as held for all the
functions in G(k)

�,j , the functions in G′(k)
�,j are bounded by 1 and have second moments that can be

bounded by hmDm,k for a suitable Dm,k (by arguing as in (5.5) and (4.8)). Hence, the expression
in (4.8) is also satisfied for functions in G ′(k)

�,j , that is,

sup
H∈G′(k)

�,j

EH 2(X,Y) ≤ Dm,kh
′m
�,j =: σ ′2

�,j .

Thus, all the conditions for Theorems A.4 and A.6 are satisfied so that, after some obvious iden-
tifications and modifications, the second part of the proof of Theorem 1 (and (4.12) in particular)
gives us, for some C7,k > 0, all j = 1, . . . ,L(�) and any ρ > 2,

P

{
max

n�−1<n≤n�

U ′
n(j, k, �) > 2ρk/2y′∗

}
≤
√

h′m
�,j (logn�)

−ρC7,k , (5.11)

with y′∗ = C′
1,kλ

′
j,k(�) for some C′

1,k > 0 and where λ′
j,k(�) is defined as in (4.10) with h�,j

replaced by h′
�,j , that is,

λ′
j,k(�) = (| logh′

�,j | ∨ log logn�)
k/2. (5.12)

Now, to finish the proof of (5.10), note that, similarly to (4.13), for some Ck > 0, for
n�−1 < n ≤ n�,

n
k/2
�

∥∥U(k)
n (πkG)

∥∥
G′

�,j
≤ 2kCkεγ

1/p
� U ′

n(j, k, �).

This gives that for some ck > 0,

max
n�−1<n≤n�

A′
n,�,k := max

n�−1<n≤n�

sup
a′
n≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|U(k)

n (πkḠ
(�)
g,h,t)|√

(| logh| ∨ log logn)k

≤ 2kckεγ
1/p

�√
nk−1

�

max
n�−1<n≤n�

max
1≤j≤L(�)

U ′
n(j, k, �)

λ′
j,k(�)

≤ 2kckεγ
1/p
�√

a′m
n�

nk−1
�

max
n�−1<n≤n�

max
1≤j≤L(�)

U ′
n(j, k, �)

λ′
j,k(�)

.

From (5.3), we now see that γ
2/p

� /a′m
n�

nk−1
� = c−mn2−k

� / logn�. Moreover, logn/n2−k is
monotone increasing in n ≥ 2 whenever k ≥ 2 so that for some constant C8,k > 0,

P

{
max

n�−1<n≤n�

√
logn

n2−k
A′

n,�,k > C8,k

}

≤ P

{
max

n�−1<n≤n�

max
1≤j≤L(�)

U ′
n(j, k, �)

λ′
j,k(�)

>
C8,k

2kckεγ
1/p
�

√
n2−k

� a′m
n�

nk−1
�

logn�

}
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≤
L(�)∑
j=1

P

{
max

n�−1<n≤n�

U ′
n(j, k, �) >

C8,kc
m/2

2kckε
λ′

j,k(�)

}
.

Therefore, by choosing C8,k > 2k+1c−m/2εckC
′
1,k((2 + δ)/C7,k)

k/2 and noting that by definition
L(�) ≤ 2 logn� and h′

�,j < 2 for all j = 1, . . . ,L(�), we can infer from (5.11) with

ρ = (2 + δ)/C7,k

that

P

{
max

n�−1<n≤n�

√
logn

n2−k
A′

n,�,k > C8,k

}

≤
L(�)∑
j=1

P

{
max

n�−1<n≤n�

U ′
n(j, k, �) > 2

(
2 + δ

C7,k

)k/2

C′
1,kλ

′
j,k(�)

}

=
L(�)∑
j=1

P

{
max

n�−1<n≤n�

U ′
n(j, k, �) > 2

(
2 + δ

C7,k

)k/2

y′∗
}

≤ L(�)
√

h′m
�,j (logn�)

−ρC7,k ,

≤ 2
√

2m(logn�)
−(1+δ).

This immediately implies, via Borel–Cantelli, that for all k = 2, . . . ,m and � ≥ 1,

max
n�−1<n≤n�

sup
a′
n≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|U(k)

n (πkḠ
(�)
g,h,t)|√

(| logh| ∨ log logn)k
= O

(√
n2−k

�

logn�

)
a.s.,

which obviously implies (5.10). Finally, recalling the Hoeffding decomposition (3.3), this im-
plies, together with (5.9), that for some C

′′
> 0 with probability 1,

lim sup
�→∞

max
n�−1<n≤n�

sup
a′
n≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|U(m)

n (Ḡ
(�)
g,h,t) − EU

(m)
n (Ḡ

(�)
g,h,t)|√| logh| ∨ log logn

≤ C
′′
. (5.13)

5.2. Remainder part

Consider now the remainder process ũ
(�)
n (g,h, t) based on the unbounded (symmetric) U -kernel

given by

G̃
(�)
g,h,t(x,y) := Ḡg,h,t(x,y)1{F̃ (y) > εγ

1/p

� },
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where we defined γ� as in (5.2). We shall show that this U -process is asymptotically negligible
at the rate given in Theorem 2. More precisely, we shall prove that as � → ∞,

max
n�−1<n≤n�

sup
a′
n≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|U(m)

n (G̃
(�)
g,h,t) − EU

(m)
n (G̃

(�)
g,h,t)|√| logh| ∨ log logn

= o(1) a.s. (5.14)

Recall that for all g ∈ F , h ∈ [a′
n, b0] and t,x ∈ R

m, F̃ (y) ≥ hm|Ḡg,h,t(x,y)|, so from the sym-
metry of F̃ , it holds that∣∣U(m)

n

(
G̃

(�)
g,h,t

)∣∣≤ h−mU(m)
n (F̃ · 1{F̃ > εγ

1/p
� }),

where U
(m)
n (F̃ · 1{F̃ > εγ

1/p

� }) is a U -statistic based on the positive and symmetric kernel y →
F̃ (y)1{F̃ (y) > εγ

1/p
� }. Recalling that a′m

n = cm(logn/n)1−2/p , we obtain easily that for all g ∈
F , h ∈ [a′

n, b0], t ∈ R
m and some C > 0,

max
n�−1<n≤n�

√
nhm|U(m)

n (G̃
(�)
g,h,t)|√| logh| ∨ log logn

≤
√

n�U
(m)
n�

(F̃ · 1{F̃ > εγ
1/p

� })√
a′m
n�

(| loga′
n�

| ∨ log logn�)

≤ Cγ
1−1/p
� U(m)

n�
(F̃ · 1{F̃ > εγ

1/p
� }).

Arguing in the same way, since a U -statistic is an unbiased estimator of its kernel, we get that,
uniformly in g ∈ F , h ∈ [a′

n, b0] and t ∈ R
m,

max
n�−1<n≤n�

√
nhm|EU

(m)
n (G̃

(�)
g,h,t)|√| logh| ∨ log logn

≤ Cγ
1−1/p

� EU(m)
n�

(F̃ · 1{F̃ > εγ
1/p

� })
(5.15)

≤ C′
E[F̃ p(Y)1{F̃ (Y) > εγ

1/p

� }].
From (5.15), we see that as � → ∞,

max
n�−1<n≤n�

sup
a′
n≤h≤b0

sup
g∈F

sup
t∈Rm

√
nhm|EU

(m)
n (G̃

(�)
g,h,t)|√| logh| ∨ log logn

= o(1). (5.16)

Thus, to finish the proof of (5.14), it suffices to show that

U(m)
n�

(F̃ · 1{F̃ > εγ
1/p
� }) = o(γ

1/p−1
� ) a.s. (5.17)

First, note that from Chebyshev’s inequality and a well-known inequality for the variance of a
U -statistic (see Theorem 5.2 of Hoeffding [10]), we get, for any δ > 0,

P
{∣∣U(m)

n�
(F̃ · 1{F̃ > εγ

1/p
� }) − EU(m)

n�
(F̃ · 1{F̃ > εγ

1/p
� })∣∣> δγ

−(1−1/p)
�

}
≤ δ−2γ

2−2/p

� Var
(
U(m)

n�
(F̃ · 1{F̃ > εγ

1/p

� })) (5.18)
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≤ mδ−2 n
1−2/p

�

(logn�)2−2/p
E[F̃ 2(Y)1{F̃ (Y) > εγ

1/p

� }].

Next, in order to establish the finite convergence of the series of the above probabilities, we split
the indicator function 1{F̃ (Y) > εγ

1/p
� } into two distinct parts determined by whether F̃ (Y) >

n
1/p

� or εγ
1/p

� < F̃ (Y) ≤ n
1/p

� , and consider the corresponding second moments in (5.18) sepa-
rately. In the first case, note that, from (1.6) and (3.6), EF̃ p(Y) ≤ μpκpm(m!)p and observe that
since p > 2 and n� = 2�,

∞∑
�=1

n
1−2/p

�

(logn�)2−2/p
E[F̃ 2(Y)1{F̃ (Y) > n

1/p
� }] ≤ E[F̃ p(Y)]

∞∑
�=1

(logn�)
−(2−2/p) < ∞.

To handle the second case, we shall need the following fact from Einmahl and Mason [4].

Fact 1. Let (cn)n≥1 be a sequence of positive constants such that cn/n1/s ↗ ∞ for some s > 0
and let Z be a random variable satisfying

∑∞
n=1 P{|Z| > cn} < ∞. We then have, for any q > s,

∞∑
k=1

2k
E[|Z|q1{|Z| ≤ c2k }]/(c2k )q < ∞.

Notice that for any p < r ≤ 2p,

∞∑
�=1

n
1−2/p

�

(logn�)2−2/p
E[F̃ 2(Y)1{εγ 1/p

� < F̃ (Y) ≤ n
1/p
� }] ≤ εr−2

∞∑
�=1

n�E[F̃ r (Y)1{F̃ (Y) ≤ n
1/p

� }]
(logn�)2−r/pn

r/p
�

≤ εr−2
∞∑

�=1

n�E[F̃ r (Y)1{F̃ (Y) ≤ n
1/p

� }]
n

r/p

�

.

Now, set Z = F̃ (Y), cn = n1/p and q = r in Fact 1 and note that cn/n1/s ↗ ∞ for any s such
that q = r > s > p. Since q = r > s, we can conclude from Fact 1 that this last bound is finite.

Finally, note that the bound leading to (5.15) implies that

γ
1−1/p

� EU(m)
n�

(F̃ · 1{F̃ > εγ
1/p

� }) = o(1).

Consequently, the above results, together with (5.18), imply via Borel–Cantelli and the arbitrary
choice of δ > 0 that (5.17) holds, which, when combined with (5.16) and (5.15), completes the
proof of (5.14). This also completes the proof of Theorem 2 since we have already established
the result in (5.13).

6. Proof of Theorem 3: uniform consistency of m̂n(t,h) to mϕ(t)

Theorem 3 is essentially a consequence of Theorem A.2 in the Appendix. Recall that a U -statistic
with U -kernel H is an unbiased estimator of EH . Writing dx and dy for dx1 dx2 · · ·dxm and
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dy1 dy2 · · ·dym, respectively, we see that

EUn(1, h, t) =
∫

K̃h(t − x)f (x1, y1) · · ·f (xm,ym)dx dy = f̃ ∗ K̃h(t),

where the function f̃ : Rm → R is defined in (1.9). Since we assume fX to be continuous on J =
Iη, the function f̃ is continuous on Jm = J ×· · ·×J . Therefore, we can infer from Theorem A.2
that

sup
0<h<bn

sup
t∈Im

|EUn(1, h, t) − f̃ (t)| −→ 0 (6.1)

for all sequences of positive constants bn → 0, and where Im = I × · · · × I . In the same way,
notice that

EUn(ϕ,h, t) =
∫

ϕ(y)K̃h(t − x)f (x1, y1) · · ·f (xm,ym)dx dy

= {E[ϕ(Y)|X = ·] f̃ (·)} ∗ K̃h(t).

Hence, Theorem A.2 applied to the class of functions M as defined in (1.8) gives that

sup
0<h<bn

sup
ϕ∈F

sup
t∈Im

|EUn(ϕ,h, t) − mϕ(t)f̃ (t)| −→ 0. (6.2)

Keeping in mind the definition of Êm̂n,ϕ(t, h) in (1.7), it is clear that since fX is bounded away
from zero on J , (6.1) and (6.2) imply that

sup
0<h<bn

sup
ϕ∈F

sup
t∈Im

|Êm̂n,ϕ(t, h) − mϕ(t)| = o(1),

completing the proof of Theorem 3.

7. Proof of Theorem 4: convergence rates of the conditional
U -statistic m̂n,ϕ(t,h)

Observe that

|m̂n,ϕ(t, h) − Êm̂n,ϕ(t, h)| =
∣∣∣∣Un(ϕ,h, t)
Un(1, h, t)

− EUn(ϕ,h, t)
EUn(1, h, t)

∣∣∣∣
≤ |Un(ϕ,h, t) − EUn(ϕ,h, t)|

|Un(1, h, t)|
+ |EUn(ϕ,h, t)| · |Un(1, h, t) − EUn(1, h, t)|

|Un(1, h, t)| · |EUn(1, h, t)|
=: (I) + (I).
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From Theorem 1, (6.1) and fX bounded away from zero on J , we get, for some ξ1, ξ2 > 0 and c

large enough in an = c(logn/n)1/m,

lim inf
n→∞ sup

an≤h<bn

sup
t∈Im

|Un(1, h, t)| = ξ1 > 0 a.s.

and, for n large enough,

sup
an≤h<bn

sup
t∈Im

|EUn(1, h, t)| = ξ2 > 0.

Further, for a′′
n equalling either an or a′

n, we readily obtain from the assumptions (1.5) or (1.6)
on the envelope function that

sup
a′′
n≤h<bn

sup
ϕ∈F

sup
t∈Im

|EUn(ϕ,h, t)| = O(1).

Hence, we can now use Theorem 1 to handle (I), while for (I), depending on whether the class F
satisfies (1.5) or (1.6), we apply Theorem 1 or Theorem 2, respectively. Taking everything to-
gether, we conclude that for c large enough and some C ′′ > 0, with probability 1,

lim sup
n→∞

sup
a′′
n≤h<bn

sup
ϕ∈F

sup
t∈Im

√
nhm|m̂n,ϕ(t, h) − Êm̂n,ϕ(t, h)|√| logh| ∨ log logn

≤ lim sup
n→∞

sup
a′′
n≤h<bn

sup
ϕ∈F

sup
t∈Im

√
nhm(I)√| logh| ∨ log logn

+ lim sup
n→∞

sup
a′′
n≤h<bn

sup
ϕ∈F

sup
t∈Im

√
nhm(I)√| logh| ∨ log logn

≤ C′′,

proving the assertion of Theorem 4.

Appendix

The first result below is stated as Theorem 4 in Giné and Mason [7] and is essentially a conse-
quence of a martingale inequality due to Brown [1]. The second theorem is a generalization of
Bochner’s lemma.

Theorem A.1 (Theorem 4 of Giné and Mason [7]). Let X1,X2, . . . be i.i.d. S-valued with
probability law P . Let H be a P -separable collection of measurable functions f :Sk → R and
assume that H is P -canonical (which means that every f in H is P -canonical). Further, assume
that E‖f (X1, . . . ,Xk)‖r

H < ∞ for some r > 1 and let s be the conjugate of r . Then, with Sn
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defined as

Sn = sup
f ∈H

∣∣∣∣∣∑
i∈I k

n

f (Xi1, . . . ,Xik )

∣∣∣∣∣, n ≥ k,

we have, for all x > 0 and 0 < c < 1,

P

{
max

k≤m≤n
Sm > x

}
≤ P{Sn > cx}1/s(ESr

n)
1/r

x(1 − c)
.

Theorem A.2. Let I = [a, b] be a compact interval. Suppose that H is a uniformly equicontinu-
ous family of real-valued functions ϕ on J = [a − η, b + η]d for some d ≥ 1 and η > 0. Further,
assume that K is an L1-kernel with support in [−B,B]d , with B > 0 satisfying

∫
Rd K(u)du = 1.

Then, uniformly in ϕ ∈ H and for any sequence of positive constants bn → 0,

sup
0<h<bn

sup
z∈Id

|ϕ ∗ Kh(z) − ϕ(z)| −→ 0 as n → ∞,

where Kh(z) = h−dK(z/h) and

ϕ ∗ Kh(z) := h−d

∫
Rd

ϕ(x)K

(
z − x

h

)
dx.

A.1. Moment bounds

Theorem A.3 (Proposition 1 of Einmahl and Mason [5]). Let G be a pointwise measurable
class of bounded functions with envelope function G such that for some constants C,ν ≥ 1 and
0 < σ ≤ β , the following conditions hold:

(i) EG2(X) ≤ β2;
(ii) N (ε, G) ≤ Cε−ν, 0 < ε < 1;

(iii) σ 2
0 := supg∈G Eg2(X) ≤ σ 2;

(iv) supg∈G ‖g‖∞ ≤ 1
4
√

ν

√
nσ 2/ log(C1β/σ), where C1 = C1/ν ∨ e.

We then have, for some absolute constant A,

E

∥∥∥∥∥
n∑

i=1

εig(Xi)

∥∥∥∥∥
G

≤ A

√
νnσ 2 log(C1β/σ),

where ε1, . . . , εn are i.i.d. Rademacher variables, independent of X1, . . . ,Xn.

Theorem A.4 (Corollary 1 of Giné and Mason [7]). Let F be a collection of measurable
functions f :Sm → R, symmetric in their entries, with absolute values bounded by M > 0, and
let P be any probability measure on (S, S) (with Xi i.i.d.-P ). Assume that F is of VC-type with
envelope function F ≡ M and with characteristics A and v. Then, for every m ∈ N, A ≥ em,
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v ≥ 1, there exist constants C1 := C1(m,A,v,M) and C2 = C2(m,A,v,M) such that for k =
1, . . . ,m,

nk
E
∥∥U(k)

n (πkf )
∥∥2

F ≤ C2
12kσ 2

(
log

A

σ

)k

,

assuming nσ 2 ≥ C2 log(A/σ), where σ 2 is any number satisfying

‖P mf 2‖F ≤ σ 2 ≤ M2.

A.2. Exponential inequalities

Theorem A.5 (Talagrand [14]). Let G be a pointwise measurable class of functions satisfying

‖g‖∞ ≤ M < ∞, g ∈ G.

We then have, for all t > 0,

P

{
max

1≤m≤n

∥∥√mαm

∥∥
G ≥ A1

(
E

∥∥∥∥∥
n∑

i=1

εig(Xi)

∥∥∥∥∥
G

+ t

)}
≤ 2

{
exp

(
−A2t

2

nσ 2
G

)
+ exp

(
−A2t

M

)}
,

where σ 2
G = supg∈G Var(g(X)) and A1,A2 are universal constants.

We now state the exponential inequality that will permit us to control the probability term
in (4.6) and which is stated as Theorem 5.3.14 in de la Peña and Giné [2].

Theorem A.6 (Theorem 5.3.14 of de la Penã and Giné [2]). Let H be a V C-subgraph class of
uniformly bounded measurable real-valued kernels H on (Sm, S m), symmetric in their entries.
Then, for each 1 ≤ k ≤ m, there exist constants ck, dk ∈]0,∞[ such that, for all n ≥ m and t > 0,{∥∥nk/2U(k)

n (πkH)
∥∥

H > t
}≤ ck exp{−dkt

2/k}.
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