Uniform in bandwidth consistency of conditional U-statistics

JULIA DONY ${ }^{1}$ and DAVID M. MASON ${ }^{2}$
${ }^{1}$ Mathematics Department, Free University of Brussels (VUB), Pleinlaan 2, B-1050 Brussels, Belgium. E-mail: jdony@vub.ac.be
${ }^{2}$ Food and Resource Economics, University of Delaware, 206 Townsend Hall, Newark, DE 19717.
E-mail: davidm@udel.edu

Stute [Ann. Probab. 19 (1991) 812-825] introduced a class of estimators called conditional U-statistics. They can be seen as a generalization of the Nadaraya-Watson estimator for the regression function. Stute proved their strong pointwise consistency to

$$
m(\mathbf{t}):=\mathbb{E}\left[g\left(Y_{1}, \ldots, Y_{m}\right) \mid\left(X_{1}, \ldots, X_{m}\right)=\mathbf{t}\right], \quad \mathbf{t} \in \mathbb{R}^{m} .
$$

Very recently, Giné and Mason introduced the notion of a local U-process, which generalizes that of a local empirical process, and obtained central limit theorems and laws of the iterated logarithm for this class. We apply the methods developed in Einmahl and Mason [Ann. Statist. 33 (2005) 1380-1403] and Giné and Mason [Ann. Statist. 35 (2007) 1105-1145; J. Theor. Probab. 20 (2007) 457-485] to establish uniform in t and in bandwidth consistency to $m(\mathbf{t})$ of the estimator proposed by Stute. We also discuss how our results are used in the analysis of estimators with data-dependent bandwidths.

Keywords: conditional U-statistics; consistency; data-dependent bandwidth selection; empirical process; kernel estimation; Nadaraya-Watson; regression; uniform in bandwidth

1. Introduction and statement of main results

Let $(X, Y),\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be independent random vectors with common joint density function $f: \mathbb{R} \times \mathbb{R} \rightarrow\left[0, \infty\left[\right.\right.$ and, for a measurable function $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}$, consider the regression function

$$
m_{\varphi}(\mathbf{t})=\mathbb{E}\left[\varphi\left(Y_{1}, \ldots, Y_{m}\right) \mid\left(X_{1}, \ldots, X_{m}\right)=\mathbf{t}\right], \quad \mathbf{t} \in \mathbb{R}^{m}
$$

Stute [13] introduced a class of estimators for $m_{\varphi}(\mathbf{t})$, called conditional U-statistics, which is defined for each $\mathbf{t} \in \mathbb{R}^{m}$ to be

$$
\begin{equation*}
\hat{m}_{n}\left(\mathbf{t} ; h_{n}\right)=\frac{\sum_{\left(i_{1}, \ldots, i_{m}\right) \in I_{n}^{m}} \varphi\left(Y_{i_{1}}, \ldots, Y_{i_{m}}\right) K\left(\left(t_{1}-X_{i_{1}}\right) / h_{n}\right) \cdots K\left(\left(t_{m}-X_{i_{m}}\right) / h_{n}\right)}{\sum_{\left(i_{1}, \ldots, i_{m}\right) \in I_{n}^{m}} K\left(\left(t_{1}-X_{i_{1}}\right) / h_{n}\right) \cdots K\left(\left(t_{m}-X_{i_{m}}\right) / h_{n}\right)}, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n}^{m}=\left\{\left(i_{1}, \ldots, i_{m}\right): 1 \leq i_{j} \leq n, i_{j} \neq i_{l} \text { if } j \neq l\right\} \tag{1.2}
\end{equation*}
$$

and $0<h_{n}<1$ goes to zero at a certain rate. Notice that when $m=1$ and φ is the identity function, we get the Nadaraya-Watson estimator of $\mathbb{E}[Y \mid X=t], t \in \mathbb{R}$.

Stute [13] proved a pointwise consistency result and a central limit theorem for $\hat{m}_{n}\left(\mathbf{t} ; h_{n}\right)$. Soon afterward, Sen [12] obtained results on the uniform in \mathbf{t} consistency of this estimator. We shall adapt and extend the methods developed in Einmahl and Mason [5] and Giné and Mason $[6,7]$ to show that under appropriate regularity conditions, a much stronger form of consistency holds, namely, uniform in \mathbf{t} and in bandwidth consistency of \hat{m}_{n}. This means that, with probability 1 ,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{\widetilde{a}_{n} \leq h \leq b_{n}} \sup _{\mathbf{t} \in[c, d]^{m}}\left|\hat{m}_{n}(\mathbf{t} ; h)-m_{\varphi}(\mathbf{t})\right|=0, \tag{1.3}
\end{equation*}
$$

for $-\infty<c<d<\infty$ appropriately chosen and $\widetilde{a}_{n}<b_{n}$, as long as $\widetilde{a}_{n} \rightarrow 0, b_{n} \rightarrow 0$ and $b_{n} / \widetilde{a}_{n} \rightarrow \infty$ at rates depending on the moments of $\varphi\left(Y_{1}, \ldots, Y_{m}\right)$. Moreover, we shall show that (1.3) also holds uniformly in $\varphi \in \mathcal{F}$ for certain classes of functions \mathcal{F}. In fact, our results extend those of Einmahl and Mason [5], who treat the case $m=1$. We point out in a remark below that specializing to the case of a fixed function φ and bandwidth sequence h_{n}, we generaly get better rates of strong consistency uniformly in $\mathbf{t} \in[c, d]^{m}$ than does Sen [12]. Uniform in bandwidth results of the type (1.3) are crucial to the verification of the asymptotic uniform in $\mathbf{t} \in[c, d]^{m}$ consistency of $\hat{m}_{n}\left(\mathbf{t} ; \hat{h}_{n}\right)$, where \hat{h}_{n} is a selector of the bandwidth depending on $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$. We shall discuss such applications in the next section.

We shall infer (1.3) via general uniform in bandwidth results for a specific U-statistic process indexed by a class of functions. We define this process in (1.4) below. Toward this end, for $m \leq n$, consider a class \mathcal{F} of measurable functions $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $\mathbb{E} g^{2}\left(Y_{1}, \ldots, Y_{m}\right)<\infty$, which satisfies the following conditions, (F.i)-(F.iii). First, to avoid measurability problems, we assume that

$$
\begin{equation*}
\mathcal{F} \text { is a pointwise measurable class, } \tag{F.i}
\end{equation*}
$$

that is, there exists a countable subclass \mathcal{F}_{0} of \mathcal{F} such that we can find, for any function $g \in \mathcal{F}$, a sequence of functions $g_{m} \in \mathcal{F}_{0}$ for which $g_{m}(z) \rightarrow g(z), z \in \mathbb{R}^{m}$. This condition is discussed in van der Vaart and Wellner [16]. We also assume that \mathcal{F} has a measurable envelope function

$$
\begin{equation*}
F(\mathbf{y}) \geq \sup _{g \in \mathcal{F}}|g(\mathbf{y})|, \quad \mathbf{y} \in \mathbb{R}^{m} \tag{F.ii}
\end{equation*}
$$

Notice that condition (F.i) implies that the supremum in (F.ii) is measurable. Finally, we assume that \mathcal{F} is of VC-type, with characteristics A and v ("VC" for Vapnik and Červonenkis), meaning that for some $A \geq 3$ and $v \geq 1$,

$$
\begin{equation*}
\mathcal{N}\left(\mathcal{F}, L_{2}(Q), \varepsilon\right) \leq\left(\frac{A\|F\|_{L_{2}(Q)}}{\varepsilon}\right)^{v}, \quad 0<\varepsilon \leq 2\|F\|_{L_{2}(Q)}, \tag{F.iii}
\end{equation*}
$$

where Q is any probability measure on $\left(\mathbb{R}^{m}, \mathcal{B}\right)$ such that $\|F\|_{L_{2}(Q)}<\infty$, and where for $\varepsilon>0$, $\mathcal{N}\left(\mathcal{F}, L_{2}(Q), \varepsilon\right)$ is defined as the smallest number of $L_{2}(Q)$-open balls of radius ε required to cover \mathcal{F}. (If (F.iii) holds for \mathcal{F}, then we say that the VC-type class \mathcal{F} admits the characteristics A and v.)

Now, let $K: \mathbb{R} \rightarrow \mathbb{R}$ be a kernel function with support contained in $[-B, B], B>0$ satisfying

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}|K(x)|=: \kappa<\infty \quad \text { and } \quad \int K(x) \mathrm{d} x=1 \tag{K.i}
\end{equation*}
$$

For such kernels, we consider the class of functions $\mathcal{K}:=\left\{h K_{h}(t-\cdot): h>0, t \in \mathbb{R}\right\}$ and assume that
\mathcal{K} is pointwise measurable and of VC-type,
where, as usual, $K_{h}(z)=h^{-1} K(z / h), z \in \mathbb{R}$. Furthermore, let

$$
\begin{equation*}
\widetilde{K}(\mathbf{t}):=\prod_{j=1}^{m} K\left(t_{j}\right), \quad \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right) \tag{K.iii}
\end{equation*}
$$

denote the product kernel. Next, if (S, \mathcal{S}) is a measurable space, define the general U-statistic with kernel $H: S^{k} \rightarrow \mathbb{R}$ based on S-valued random variables Z_{1}, \ldots, Z_{n} as

$$
U_{n}^{(k)}(H):=\frac{(n-k)!}{n!} \sum_{i \in I_{n}^{k}} H\left(Z_{i_{1}}, \ldots, Z_{i_{k}}\right), \quad 1 \leq k \leq n,
$$

where I_{n}^{k} is defined as in (1.2) with $m=k$. (Note that we do not require H to be symmetric here.) For a bandwidth $0<h<1$ and $g \in \mathcal{F}$, consider the U-kernel

$$
G_{g, h, \mathbf{t}}(\mathbf{x}, \mathbf{y}):=g(\mathbf{y}) \widetilde{K}_{h}(\mathbf{t}-\mathbf{x}), \quad \mathbf{x}, \mathbf{y}, \mathbf{t} \in \mathbb{R}^{m}
$$

and for the sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, define

$$
U_{n}(g, h, \mathbf{t}):=U_{n}^{(m)}\left(G_{g, h, \mathbf{t}}\right)=\frac{(n-m)!}{n!} \sum_{\mathbf{i} \in I_{n}^{m}} G_{g, h, \mathbf{t}}\left(\mathbf{X}_{\mathbf{i}}, \mathbf{Y}_{\mathbf{i}}\right)
$$

where, throughout this paper, we shall use the notation

$$
\begin{aligned}
& \mathbf{X}=\left(X_{1}, \ldots, X_{m}\right) \in \mathbb{R}^{m} \quad \text { and } \quad \mathbf{X}_{\mathbf{i}}:=\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \in \mathbb{R}^{k}, \quad \mathbf{i} \in I_{n}^{k}, \\
& \mathbf{Y}=\left(Y_{1}, \ldots, Y_{m}\right) \in \mathbb{R}^{m} \quad \text { and } \quad \mathbf{Y}_{\mathbf{i}}:=\left(Y_{i_{1}}, \ldots, Y_{i_{k}}\right) \in \mathbb{R}^{k}, \quad \mathbf{i} \in I_{n}^{k}
\end{aligned}
$$

Now, introduce the U-statistic process

$$
\begin{equation*}
u_{n}(g, h, \mathbf{t}):=\sqrt{n}\left\{U_{n}(g, h, \mathbf{t})-\mathbb{E} U_{n}(g, h, \mathbf{t})\right\} . \tag{1.4}
\end{equation*}
$$

We shall establish strong uniform in \mathbf{t} and in bandwidth consistency results for the U-statistic process in (1.4). Theorem 1 leads to such a result for bounded classes of functions \mathcal{F}, while Theorem 2 is applicable for unbounded classes \mathcal{F} which satisfy a conditional moment condition stated in (1.6) below. In the bounded case, we assume that the envelope function of \mathcal{F} is bounded by some finite constant M, that is, that (1.5) holds.

Theorem 1. Suppose that the marginal density f_{X} of X is bounded and let $a_{n}=c(\log n / n)^{1 / m}$ for $c>0$. If the class of functions \mathcal{F} is bounded, in the sense that for some $0<M<\infty$,

$$
\begin{equation*}
F(\mathbf{y}) \leq M, \quad \mathbf{y} \in \mathbb{R}^{m} \tag{1.5}
\end{equation*}
$$

then we can infer, under the above mentioned assumptions on \mathcal{F} and \mathcal{K}, that for all $c>0$ and $0<b_{0}<1$, there exists a constant $0<C<\infty$ such that

$$
\limsup _{n \rightarrow \infty} \sup _{a_{n} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \in \mathbb{R}^{m}} \frac{\sqrt{n h^{m}}\left|U_{n}(g, h, \mathbf{t})-\mathbb{E} U_{n}(g, h, \mathbf{t})\right|}{\sqrt{|\log h| \vee \log \log n}} \leq C \quad \text { a.s. }
$$

Theorem 2. Suppose that the marginal density f_{X} of X is bounded and for $c>0$, let $a_{n}^{\prime}=$ $c\left((\log n / n)^{1-2 / p}\right)^{1 / m}$. If \mathcal{F} is unbounded, but satisfies, for some $p>2$,

$$
\begin{equation*}
\mu_{p}:=\sup _{\mathbf{x} \in \mathbb{R}^{m}} \mathbb{E}\left[F^{p}(\mathbf{Y}) \mid \mathbf{X}=\mathbf{x}\right]<\infty \tag{1.6}
\end{equation*}
$$

then we can infer, under the above mentioned assumptions on \mathcal{F} and \mathcal{K}, that for all $c>0$ and $0<b_{0}<1$, there exists a constant $0<C^{\prime}<\infty$ such that

$$
\limsup _{n \rightarrow \infty} \sup _{a_{n}^{\prime} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{t \in \mathbb{R}^{m}} \frac{\sqrt{n h^{m}}\left|U_{n}(g, h, \mathbf{t})-\mathbb{E} U_{n}(g, h, \mathbf{t})\right|}{\sqrt{|\log h| \vee \log \log n}} \leq C^{\prime} \quad \text { a.s. }
$$

From now on, to stress the role of $\varphi(\mathbf{y})$, we shall write $\hat{m}_{n, \varphi}(\mathbf{t}, h)$ for the estimator of the regression function defined in (1.1). It is clear that $\hat{m}_{n, \varphi}(\mathbf{t}, h)$ can be rewritten, for all $\varphi \in \mathcal{F}$, as

$$
\hat{m}_{n, \varphi}(\mathbf{t}, h)=\frac{\sum_{\mathbf{i} \in I_{n}^{m}} \varphi\left(\mathbf{Y}_{\mathbf{i}}\right) \widetilde{K}_{h}\left(\mathbf{t}-\mathbf{X}_{\mathbf{i}}\right)}{\sum_{\mathbf{i} \in I_{n}^{m}} \widetilde{K}_{h}\left(\mathbf{t}-\mathbf{X}_{\mathbf{i}}\right)}=\frac{U_{n}(\varphi, h, \mathbf{t})}{U_{n}(1, h, \mathbf{t})}
$$

where we denote by $U_{n}(1, h, \mathbf{t})$ the U-statistic $U_{n}(g, h, \mathbf{t})$ with $g \equiv 1$. To prove the uniform consistency of $\hat{m}_{n, \varphi}(\mathbf{t}, h)$ to $m_{\varphi}(\mathbf{t})$, we shall consider another, more appropriate, centering factor than the expectation $\mathbb{E} \hat{m}_{n, \varphi}(\mathbf{t}, h)$, which may not exist or may be difficult to compute. Define the centering

$$
\begin{equation*}
\widehat{\mathbb{E}} \hat{m}_{n, \varphi}(\mathbf{t}, h):=\frac{\mathbb{E} U_{n}(\varphi, h, \mathbf{t})}{\mathbb{E} U_{n}(1, h, \mathbf{t})} \tag{1.7}
\end{equation*}
$$

This centering permits us to apply Theorems 1 and 2 (depending on whether the class \mathcal{F} is bounded in the sense of (1.5) or unbounded in the sense of (1.6)) to derive results on the convergence rates of the process $\hat{m}_{n, \varphi}(\mathbf{t}, h)-\widehat{\mathbb{E}} \hat{m}_{n, \varphi}(\mathbf{t}, h)$ to zero and the consistency of $\hat{m}_{n, \varphi}(\mathbf{t}, h)$, uniform in \mathbf{t} and in bandwidth.

For any compact interval $I=[c, d]$ with $-\infty<c<d<\infty$ and $\eta>0$, define $I^{\eta}=[c-\eta, d+$ η] and, as usual, denote the marginal density function of X by f_{X}. Then, introduce the class of functions defined on the compact subset $J^{m}=I^{\eta} \times \cdots \times I^{\eta}$ of \mathbb{R}^{m},

$$
\begin{equation*}
\mathcal{M}=\left\{m_{\varphi}(\cdot) \tilde{f}(\cdot): \varphi \in \mathcal{F}\right\} \tag{1.8}
\end{equation*}
$$

where the function $\tilde{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is defined as

$$
\begin{equation*}
\tilde{f}(\mathbf{t}):=\int f\left(t_{1}, y_{1}\right) \cdots f\left(t_{m}, y_{m}\right) \mathrm{d} y_{1} \cdots \mathrm{~d} y_{m}=f_{X}\left(t_{1}\right) \cdots f_{X}\left(t_{m}\right) \tag{1.9}
\end{equation*}
$$

We have now introduced all of the notation that we need to state our results on the uniform consistency of the conditional U-statistic estimator proposed by Stute for the general regression function, where this consistency is uniform in $\mathbf{t} \in J$ with J compact, in bandwidth and also in $\varphi \in \mathcal{F}$.

Theorem 3. Besides being bounded, suppose that the marginal density function f_{X} of X is continuous and strictly positive on the interval $J=I^{\eta}$, where I is a compact interval and $\eta>0$. Assume that the class of functions \mathcal{M} is uniformly equicontinuous. It then follows that for all sequences $0<b_{n}<1$ with $b_{n} \rightarrow 0$,

$$
\sup _{0<h \leq b_{n}} \sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}}\left|\widehat{\mathbb{E}} \hat{m}_{n, \varphi}(\mathbf{t}, h)-m_{\varphi}(\mathbf{t})\right|=o(1),
$$

where $I^{m}=I \times \cdots \times I$.
Theorem 4. Besides being bounded, suppose that the marginal density function f_{X} of X is continuous and strictly positive on the interval $J=I^{\eta}$, where I is a compact interval and $\eta>0$. It then follows under the abovementioned assumptions on \mathcal{F} and \mathcal{K} that for all $c>0$ and all sequences $0<b_{n}<1$ with $a_{n}^{\prime \prime} \leq b_{n} \rightarrow 0$, there exists a constant $0<C^{\prime \prime}<\infty$ such that

$$
\limsup _{n \rightarrow \infty} \sup _{a_{n}^{\prime \prime} \leq h \leq b_{n}} \sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}} \frac{\sqrt{n h^{m}}\left|\hat{m}_{n, \varphi}(\mathbf{t}, h)-\widehat{\mathbb{E}} \hat{m}_{n, \varphi}(\mathbf{t}, h)\right|}{\sqrt{|\log h| \vee \log \log n}} \leq C^{\prime \prime} \quad \text { a.s., }
$$

where $I^{m}=I \times \cdots \times I$ and $a_{n}^{\prime \prime}$ is either a_{n} or a_{n}^{\prime}, depending on whether the class \mathcal{F} is bounded or not, that is, whether (1.5) or (1.6) holds.

The following proposition follows straightforwardly from Theorems 3 and 4 .
Proposition 1. Under the assumptions of Theorems 3 and 4 on f_{X} and the classes \mathcal{F} and \mathcal{K}, it follows that for all sequences $0<a_{n}^{\prime \prime} \leq \widetilde{a}_{n} \leq b_{n}<1$ satisfying $b_{n} \rightarrow 0$ and $n \widetilde{a}_{n}^{m} / \log n \rightarrow \infty$,

$$
\begin{equation*}
\sup _{\tilde{a}_{n} \leq h \leq b_{n}} \sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}}\left|\hat{m}_{n, \varphi}(\mathbf{t}, h)-m_{\varphi}(\mathbf{t})\right| \longrightarrow 0 \quad \text { a.s. } \tag{1.10}
\end{equation*}
$$

where $I^{m}=I \times \cdots \times I$ and $a_{n}^{\prime \prime}$ is as in Theorem 2 .
Remark. If the class of functions \mathcal{F} and the density f_{X} satisfy additional smoothness assumptions, one can derive rates of uniform consistency. For instance, assume, in addition to the conditions of Theorem 4, that the following uniform Lipschitz condition holds: for some constant C and all $\mathbf{s}, \mathbf{t} \in J^{m}$ and $s, t \in J$,

$$
\sup _{\varphi \in \mathcal{F}}\left|m_{\varphi}(\mathbf{s})-m_{\varphi}(\mathbf{t})\right| \leq C\|\mathbf{s}-\mathbf{t}\| \quad \text { and } \quad\left|f_{X}(s)-f_{X}(t)\right| \leq C|s-t|,
$$

where $\|\mathbf{x}\|:=\sum_{i=1}^{m}\left|x_{i}\right|, \mathbf{x} \in \mathbb{R}^{m}$. By then using Theorem 4, combined with the same arguments as those given in the proofs of Lemma 1 and Theorem M of Sen [12], it is straightforward to
show that there exists a constant $D>0$ such that, with probability 1 , for all n sufficiently large and all $a_{n}^{\prime \prime} \leq \widetilde{a}_{n} \leq h \leq b_{n}$,

$$
\begin{equation*}
\sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}}\left|\hat{m}_{n, \varphi}(\mathbf{t}, h)-m_{\varphi}(\mathbf{t})\right| \leq D\left(\frac{\sqrt{|\log h| \vee \log \log n}}{\sqrt{n h^{m}}}+h\right) . \tag{1.11}
\end{equation*}
$$

Notice that we must impose $n \widetilde{a}_{n}^{m} / \log n \rightarrow \infty$ and $b_{n} \rightarrow 0$ to be able to conclude uniform consistency.

To compare our results with those of Sen [12], which apply only to the case of one fixed φ and a single choice of a bandwidth sequence h_{n}, we get a much better rate of consistency in (1.11) when φ is bounded and $h=h_{n}$, by imposing less restrictive assumptions on h_{n} than he does. A comparison is more difficult in the unbounded case, when we apply ours to one fixed φ and bandwidth choice h_{n}. However, assuming (1.6), which is a stronger assumption than his, namely that $\mathbb{E} \varphi^{2}(\mathbf{Y})<\infty$, we find for any choice of h_{n} that satisfies both his conditions and ours that our result yields a much better rate in (1.11) with $h=h_{n}$ than is obtainable using his. On the other hand, his result is applicable to the case $p=2$ in (1.6) and ours is not since we require $p>2$.

In the next section, we discuss how our results are used in the analysis of estimators with datadependent bandwidths. All of the proofs are detailed in Sections 3, 4, 5, 6 and 7. An Appendix contains some facts that are needed in the proofs.

2. Application to estimators with data-dependent bandwidths

As we have already noted, a special case of the conditional U-statistic is the Nadaraya-Watson estimator. An extensive literature has evolved, developing methods to construct, in asymptotically optimal ways, data-dependent bandwidth selectors for this estimator. Among the many papers on this subject, we cite Hall [9], Härdle and Marron [8], Tsybakov [15], Vieu [17] and Rachdi and Vieu [11]. Such studies do not presently exist for the more general conditional U statistic. However, at present, we can suggest the following data-dependent bandwidth selector, which leads to a consistent estimator. It is an extension of a cross-validation procedure proposed by Härdle and Marron [8] for choosing the smoothing parameter for the Nadaraya-Watson estimator. For any fixed $\mathbf{i}=\left(i_{1}, \ldots, i_{m}\right) \in I_{n}^{m}$, set

$$
I_{n}^{m}(\mathbf{i}):=\left\{\mathbf{k}: \mathbf{k} \in I_{n}^{m} \text { and } \mathbf{k} \neq \mathbf{i}\right\}=I_{n}^{m} \backslash\{\mathbf{i}\}
$$

and let

$$
\hat{m}_{n, \varphi}\left(\mathbf{X}_{\mathbf{i}}, h, \mathbf{i}\right)=\frac{\sum_{\mathbf{k} \in I_{n}^{m}(\mathbf{i})} \varphi\left(\mathbf{Y}_{\mathbf{k}}\right) \widetilde{K}_{h}\left(\mathbf{X}_{\mathbf{i}}-\mathbf{X}_{\mathbf{k}}\right)}{\sum_{\mathbf{k} \in I_{n}^{m}(\mathbf{i})} \widetilde{K}_{h}\left(\mathbf{X}_{\mathbf{i}}-\mathbf{X}_{\mathbf{k}}\right)}
$$

be the 'leave-out- $\left(\mathbf{X}_{\mathbf{i}}, \mathbf{Y}_{\mathbf{i}}\right)$ ' estimator of $m_{\varphi}(\mathbf{Y})$, which can also be seen as the predictor of $\varphi\left(\mathbf{Y}_{\mathbf{i}}\right)$ based on $\left(\mathbf{X}_{\mathbf{k}}, \mathbf{Y}_{\mathbf{k}}\right), \mathbf{k} \in I_{n}^{m}(\mathbf{i})$. Assume that the conditions and notation of Proposition 1 hold. Let $w \geq 0$ be a measurable weight function defined on \mathbb{R} with support contained in I and introduce
the weighted squared distance between $\varphi\left(\mathbf{Y}_{\mathbf{i}}\right)$ and its predictor $\hat{m}_{n, \varphi}\left(\mathbf{X}_{\mathbf{i}}, h, \mathbf{i}\right)$,

$$
\mathrm{CV}(h, \varphi)=\frac{(n-m)!}{n!} \sum_{\mathbf{i} \in I_{n}^{m}}\left(\varphi\left(\mathbf{Y}_{\mathbf{i}}\right)-\hat{m}_{n, \varphi}\left(\mathbf{X}_{\mathbf{i}}, h, \mathbf{i}\right)\right)^{2} \widetilde{w}\left(\mathbf{X}_{\mathbf{i}}\right)
$$

where $\widetilde{w}(\mathbf{t}):=\prod_{j=1}^{m} w\left(t_{j}\right)$. Further, let \widetilde{a}_{n} and b_{n} be as in Proposition 1 and choose

$$
\hat{h}_{n}:=h_{n}\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right) \in\left[\widetilde{a}_{n}, b_{n}\right]
$$

to minimize among $h \in\left[\widetilde{a}_{n}, b_{n}\right]$

$$
\sup _{\varphi \in \mathcal{F}} \mathrm{CV}(h, \varphi) .
$$

Clearly, since $\hat{h}_{n} \in\left[\widetilde{a}_{n}, b_{n}\right]$, we can conclude, by Proposition 1, that

$$
\sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}}\left|\hat{m}_{n, \varphi}\left(\mathbf{t}, \hat{h}_{n}\right)-m_{\varphi}(\mathbf{t})\right| \longrightarrow 0 \quad \text { a.s. }
$$

In the case when $m=1$ and $\mathcal{F}=\{\varphi\}$, with φ being the identity function, this is the Härdle and Marron [8] bandwidth selector. They prove, under suitable regularity conditions (including $\hat{h}_{n} \in\left[\widetilde{a}_{n}, b_{n}\right]$ for appropriate $\widetilde{a}_{n} \leq b_{n}$ which satisfy the assumptions of Proposition 1), that this procedure is asymptotically optimal in a number of senses. Our bandwidth selector can be motivated in much the same way as Härdle and Marron [8] motivate theirs. It is beyond the scope of this paper to generalize their result to the conditional U-statistic setup.

Another avenue to follow in order to construct an asymptotically optimal bandwidth selector for the conditional U-statistic is to extend the plug-in method based on minimizing an expression for the asymptotic mean squared error of the Nadaraya-Watson estimator used by Tsybakov [15] for the Nadaraya-Watson estimator of $\mathbb{E}[Y \mid X=t]$. This approach will be investigated in depth elsewhere.

3. Preliminaries for the proofs of the theorems

Hereafter, throughout the proofs of our results, we shall assume, for the sake of notational convenience, but without loss of generality, that our kernel K has support contained in [-1/2, 1/2].

Let Ψ be a real-valued functional defined on a class of functions \mathcal{G} and g a real-valued function defined on $\mathbb{R}^{d}, d \geq 1$. Occasionally, we shall use the notation

$$
\begin{equation*}
\|\Psi(G)\|_{\mathcal{G}}=\sup _{G \in \mathcal{G}}|\Psi(G)| \quad \text { and } \quad\|g\|_{\infty}=\sup _{\mathbf{x} \in \mathbb{R}^{d}}|g(\mathbf{x})| . \tag{3.1}
\end{equation*}
$$

In the sequel, we will need to symmetrize the functions $G_{g, h, \mathbf{t}}(\cdot, \cdot)$. To do this, we set

$$
\bar{G}_{g, h, \mathbf{t}}(\mathbf{x}, \mathbf{y}):=(m!)^{-1} \sum_{\sigma \in I_{m}^{m}} G_{g, h, \mathbf{t}}\left(\mathbf{x}_{\sigma}, \mathbf{y}_{\sigma}\right)=(m!)^{-1} \sum_{\sigma \in I_{m}^{m}} g\left(\mathbf{y}_{\sigma}\right) \widetilde{K}_{h}\left(\mathbf{t}-\mathbf{x}_{\sigma}\right),
$$

where $\mathbf{z}_{\sigma}:=\left(z_{\sigma_{1}}, \ldots, z_{\sigma_{m}}\right)$. Obviously, the expectation of $G_{g, h, \mathbf{t}}$ remains unchanged after symmetrization and $U_{n}^{(m)}\left(\bar{G}_{g, h, \mathbf{t}}(\cdot, \cdot)\right)=U_{n}(g, h, \mathbf{t})$, so the U-statistic process in (1.4) may be redefined using the symmetrized kernels, that is, we consider

$$
\begin{equation*}
u_{n}(g, h, \mathbf{t})=\sqrt{n}\left\{U_{n}^{(m)}\left(\bar{G}_{g, h, \mathbf{t}}\right)-\mathbb{E} U_{n}^{(m)}\left(\bar{G}_{g, h, \mathbf{t}}\right)\right\} \tag{3.2}
\end{equation*}
$$

Moreover, the Hoeffding decomposition tells us that

$$
\begin{equation*}
u_{n}(g, h, \mathbf{t})=\sqrt{n} \sum_{k=1}^{m}\binom{m}{k} U_{n}^{(k)}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}(\cdot, \cdot)\right), \tag{3.3}
\end{equation*}
$$

where the k th Hoeffding projection for a (symmetric) function $L: S^{m} \times S^{m} \rightarrow \mathbb{R}$ is defined for $\mathbf{x}_{k}=\left(x_{1}, \ldots, x_{k}\right) \in S^{k}$ and $\mathbf{y}_{k}=\left(y_{1}, \ldots, y_{k}\right) \in S^{k}$ as

$$
\pi_{k} L\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right):=\left(\delta_{\left(x_{1}, y_{1}\right)}-P\right) \times \cdots \times\left(\delta_{\left(x_{k}, y_{k}\right)}-P\right) \times P^{m-k}(L)
$$

where P is any probability measure on (S, \mathcal{S}). Considering (X_{i}, Y_{i}), $i \geq 1$, i.i.d.- P and assuming L is in $L_{2}\left(P^{m}\right)$, this is an orthogonal decomposition and $\mathbb{E}\left[\pi_{k} L\left(\mathbf{X}_{k}, \mathbf{Y}_{k}\right) \mid\left(X_{2}, Y_{2}\right), \ldots\right.$, $\left.\left(X_{k}, Y_{k}\right)\right]=0, k \geq 1$, where we denote \mathbf{X}_{k} and \mathbf{Y}_{k} for $\left(X_{1}, \ldots, X_{k}\right)$ and $\left(Y_{1}, \ldots, Y_{k}\right)$, respectively. Thus, the kernels $\pi_{k} L$ are canonical for P (or completely degenerate, or completely centered). Also, $\pi_{k}, k \geq 1$, are nested projections, that is, $\pi_{k} \circ \pi_{l}=\pi_{k}$ if $k \leq l$, and

$$
\begin{equation*}
\mathbb{E}\left[\left(\pi_{k} L\right)^{2}\left(\mathbf{X}_{k}, \mathbf{Y}_{k}\right)\right] \leq \mathbb{E}\left[(L-\mathbb{E} L)^{2}(\mathbf{X}, \mathbf{Y})\right] \leq \mathbb{E} L^{2}(\mathbf{X}, \mathbf{Y}) \tag{3.4}
\end{equation*}
$$

For more details, consult de la Peña and Giné [2].
Since we assume \mathcal{F} to be of VC-type with envelope function F and \mathcal{K} to be of VC-type with envelope κ, it is readily checked (via Lemma A. 1 in Einmahl and Mason [4]) that the class of functions on $\mathbb{R}^{m} \times \mathbb{R}^{m}$ given by $\left\{h^{m} G_{g, h, \mathbf{t}}(\cdot, \cdot): g \in \mathcal{F}, 0<h<1, \mathbf{t} \in \mathbb{R}^{m}\right\}$ is of VC-type, as well as the class

$$
\begin{equation*}
\mathcal{G}=\left\{h^{m} \bar{G}_{g, h, \mathbf{t}}(\cdot, \cdot): g \in \mathcal{F}, 0<h<1, \mathbf{t} \in \mathbb{R}^{m}\right\} \tag{3.5}
\end{equation*}
$$

for which we denote the VC-type characteristics by A_{1} and v_{1}, and the envelope function by

$$
\begin{equation*}
\widetilde{F}(\mathbf{y}) \equiv \widetilde{F}(\mathbf{x}, \mathbf{y})=\kappa^{m} \sum_{\sigma \in I_{m}^{m}} F\left(\mathbf{y}_{\sigma}\right), \quad \mathbf{y} \in \mathbb{R}^{m} \tag{3.6}
\end{equation*}
$$

(Recall (F.ii) and (F.iii) for terminology.) Next, for $k=1, \ldots, m$, introduce the following classes of functions on $\mathbb{R}^{k} \times \mathbb{R}^{k}$:

$$
\begin{equation*}
\mathcal{G}^{(k)}=\left\{h^{m} \pi_{k} \bar{G}_{g, h, \mathbf{t}}(\cdot, \cdot): g \in \mathcal{F}, 0<h<1, \mathbf{t} \in \mathbb{R}^{m}\right\} . \tag{3.7}
\end{equation*}
$$

An argument in Giné and Mason [7] then shows that each class $\mathcal{G}^{(k)}$ is of VC-type with characteristics A_{1} and v_{1} and envelope function

$$
\begin{equation*}
F_{k} \leq 2^{k}\|\widetilde{F}\|_{\infty} \tag{3.8}
\end{equation*}
$$

(See the completion of the proof of Theorem 1 in that paper for more details.)

4. Proof of Theorem 1: the bounded case

We begin by studying the first term of (3.3), namely, the linear term,

$$
m \sqrt{n} U_{n}^{(1)}\left(\pi_{1} \bar{G}_{g, h, \mathbf{t}}(\cdot, \cdot)\right)=\frac{m}{\sqrt{n}} \sum_{i=1}^{n} \pi_{1} \bar{G}_{g, h, \mathbf{t}}\left(X_{i}, Y_{i}\right) .
$$

Linear term of (3.3). From the definition of the Hoeffding projections and recalling that the sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ is i.i.d., we can say, for all $(x, y) \in \mathbb{R}^{2}$, that

$$
\begin{aligned}
\pi_{1} \bar{G}_{g, h, \mathbf{t}}(x, y) & =\mathbb{E}\left[\bar{G}_{g, h, \mathbf{t}}\left(\left(x, X_{2}, \ldots, X_{m}\right),\left(y, Y_{2}, \ldots, Y_{m}\right)\right)\right]-\mathbb{E} \bar{G}_{g, h, \mathbf{t}}(\mathbf{X}, \mathbf{Y}) \\
& =\mathbb{E}\left[\bar{G}_{g, h, \mathbf{t}}(\mathbf{X}, \mathbf{Y}) \mid\left(X_{1}, Y_{1}\right)=(x, y)\right]-\mathbb{E} \bar{G}_{g, h, \mathbf{t}}(\mathbf{X}, \mathbf{Y}) .
\end{aligned}
$$

Introduce the following function on $\mathbb{R} \times \mathbb{R}$ (for notational brevity, we supress the dependence on m):

$$
\begin{aligned}
S_{g, h, \mathbf{t}}: \mathbb{R} \times \mathbb{R} & \longrightarrow \mathbb{R} \\
(x, y) & \longmapsto m h^{m} \mathbb{E}\left[\bar{G}_{g, h, \mathbf{t}}(\mathbf{X}, \mathbf{Y}) \mid\left(X_{1}, Y_{1}\right)=(x, y)\right] .
\end{aligned}
$$

Using this notation, we write

$$
m h^{m} \pi_{1} \bar{G}_{g, h, \mathbf{t}}(x, y)=S_{g, h, \mathbf{t}}(x, y)-\mathbb{E} S_{g, h, \mathbf{t}}\left(X_{1}, Y_{1}\right)
$$

and hence for all $g \in \mathcal{F}, h \in\left[a_{n}, b_{0}\right]$ and $\mathbf{t} \in \mathbb{R}^{m}$, the linear term of the decomposition in (3.3) times h^{m} is given by

$$
\begin{aligned}
m h^{m} \sqrt{n} U_{n}^{(1)}\left(\pi_{1} \bar{G}_{g, h, \mathbf{t}}\right) & =\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left\{S_{g, h, \mathbf{t}}\left(X_{i}, Y_{i}\right)-\mathbb{E} S_{g, h, \mathbf{t}}\left(X_{i}, Y_{i}\right)\right\} \\
& =: \alpha_{n}\left(S_{g, h, \mathbf{t}}\right),
\end{aligned}
$$

where this last expression is an empirical process α_{n} based on the sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ and indexed by the class of functions on $\mathbb{R} \times \mathbb{R}$,

$$
\mathcal{S}_{n}=\left\{S_{g, h, \mathbf{t}}(\cdot, \cdot): g \in \mathcal{F}, a_{n} \leq h \leq b_{0}, \mathbf{t} \in \mathbb{R}^{m}\right\} .
$$

Clearly, $\mathcal{S}_{n} \subset m \mathcal{G}^{(1)}$ and the class $m \mathcal{G}^{(1)}$ has envelope function $m F_{1}$, where F_{1} is the envelope function of the class $\mathcal{G}^{(1)}$ defined in (3.7). From the above discussion, this class is of VC-type with the same characteristics as \mathcal{G} and, therefore, after appropriate identifications of notation, we can apply Theorem 2 of Dony, Einmahl and Mason [3] to conclude that for some $0<\widetilde{C}<\infty$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{a_{n} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \in \mathbb{R}^{m}} \frac{m \sqrt{n h^{m}}\left|U_{n}^{(1)}\left(\pi_{1} \bar{G}_{g, h, \mathbf{t}}\right)\right|}{\sqrt{|\log h| \vee \log \log n}} \leq \widetilde{C} \quad \text { a.s. } \tag{4.1}
\end{equation*}
$$

Alternatively, a straightforward modification of the proof of (5.9) below, with a_{n}^{\prime} replaced by a_{n} and $\gamma_{\ell}^{1 / p}$ by M, also gives (4.1).

The other terms of (3.3). Our aim now is to show that all of the other terms of the Hoeffding decomposition are almost surely bounded or, more precisely, that for each $k=2, \ldots, m$,

$$
\begin{equation*}
\sup _{a_{n} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{t \in \mathbb{R}^{m}} \frac{\binom{m}{k} \sqrt{n h^{m}}\left|U_{n}^{(k)}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}\right)\right|}{\sqrt{|\log h| \vee \log \log n}}=O(1) \quad \text { a.s. } \tag{4.2}
\end{equation*}
$$

Since $n a_{n}^{m}=c^{m} \log n$, this will be accomplished if we can prove that for each $k=2, \ldots, m$,

$$
\begin{equation*}
\sup _{a_{n} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \in \mathbb{R}^{m}} \frac{\sqrt{n h^{m}}\left|U_{n}^{(k)}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}\right)\right|}{\sqrt{(|\log h| \vee \log \log n)^{k}}}=O\left(\frac{1}{\sqrt{a_{n}^{m} n^{k-1}}}\right) \quad \text { a.s. } \tag{4.3}
\end{equation*}
$$

To obtain uniform in bandwidth convergence rates, we shall need a blocking argument and a decomposition of the interval $\left[a_{n}, b_{0}\right]$ into smaller intervals. To do this, set $n_{\ell}=2^{\ell}, \ell \geq 0$ and consider the intervals $\mathcal{H}_{\ell, j}:=\left[h_{\ell, j-1}, h_{\ell, j}\right]$, where the boundaries are given by $h_{\ell, j}^{m}:=2^{j} a_{n_{\ell}}^{m}$. Setting $L(\ell)=\max \left\{j: h_{\ell, j} \leq 2 b_{0}\right\}$, observe that

$$
\begin{equation*}
\left[a_{n \ell}, b_{0}\right] \subseteq \bigcup_{\ell=1}^{L(\ell)} \mathcal{H}_{\ell, j} \quad \text { and } \quad L(\ell) \sim \log \left(\frac{n_{\ell} b_{0}}{c \log n_{\ell}}\right) / \log 2 \tag{4.4}
\end{equation*}
$$

implying, in particular, that $L(\ell) \leq 2 \log n_{\ell}$. (This fact will be used repeatedly to finish some important steps of the proofs.) Next, for $1 \leq j \leq L(\ell)$, consider the class of functions on $\mathbb{R}^{m} \times \mathbb{R}^{m}$,

$$
\mathcal{G}_{\ell, j}:=\left\{h^{m} \bar{G}_{g, h, \mathbf{t}}(\cdot, \cdot): g \in \mathcal{F}, h \in \mathcal{H}_{\ell, j}, \mathbf{t} \in \mathbb{R}^{m}\right\}
$$

as well as the class on $\mathbb{R}^{k} \times \mathbb{R}^{k}$,

$$
\mathcal{G}_{\ell, j}^{(k)}:=\left\{\frac{h^{m} \pi_{k} \bar{G}_{g, h, \mathbf{t}}(\cdot, \cdot)}{M_{k}}: g \in \mathcal{F}, h \in \mathcal{H}_{\ell, j}, \mathbf{t} \in \mathbb{R}^{m}\right\}
$$

where $M_{k}=2^{k} \kappa^{m} M$. Clearly, each class $\mathcal{G}_{\ell, j}$ is of VC-type with the same characteristics and envelope function as \mathcal{G} and $\mathcal{G}_{\ell, j}^{(k)}$ is of VC-type with the same characteristics as $\mathcal{G}^{(k)}$ (and thus as \mathcal{G}) with envelope function $M_{k}^{-1} F_{k}$, where F_{k} is the envelope function of $\mathcal{G}^{(k)}$. Notice that from (1.5) and (3.8),

$$
M_{k} \geq \sup _{\mathbf{x}, \mathbf{y} \in \mathbb{R}^{k}}\left\{\left|\pi_{k} \bar{G}_{g, h, \mathbf{t}}(\mathbf{x}, \mathbf{y})\right|: g \in \mathcal{F}, 0<h<1, \mathbf{t} \in \mathbb{R}^{m}\right\}
$$

and hence each function in $\mathcal{G}_{\ell, j}^{(k)}$ is bounded by 1 . Define now for $n_{\ell-1}<n \leq n_{\ell}, \ell=1,2, \ldots$,

$$
\begin{equation*}
\mathcal{U}_{n}(j, k, \ell)=n_{\ell}^{-k / 2} \sup _{H \in \mathcal{G}_{\ell, j}^{(k)}}\left|\sum_{\mathbf{i} \in I_{n}^{k}} H\left(\mathbf{X}_{\mathbf{i}}, \mathbf{Y}_{\mathbf{i}}\right)\right| \tag{4.5}
\end{equation*}
$$

From Theorem 4 of Giné and Mason [7] (see Theorem A. 1 in the Appendix), we get for $c=1 / 2$, $r=2$ and all $x>0$ that for any $\ell \geq 1$,

$$
\begin{equation*}
\mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \mathcal{U}_{n}(j, k, \ell)>x\right\} \leq \frac{2}{x} \mathbb{P}\left\{\mathcal{U}_{n_{\ell}}(j, k, \ell)>x / 2\right\}^{1 / 2} \mathbb{E}\left[\mathcal{U}_{n_{\ell}}^{2}(j, k, \ell)\right]^{1 / 2} \tag{4.6}
\end{equation*}
$$

We shall apply an exponential inequality and a moment bound for U-statistics, due to, respectively, de la Peña and Giné [2] and Giné and Mason [7], on the class $\mathcal{G}_{\ell, j}^{(k)}$ to bound (4.6). In order to use these results, we must first derive some bounds. First, it is readily checked that

$$
\begin{equation*}
\mathcal{U}_{n}(j, k, \ell) \leq n_{\ell}^{k / 2}\left\|U_{n}^{(k)}\left(\pi_{k} G\right)\right\|_{\mathcal{G}_{\ell, j}^{(k)}} \tag{4.7}
\end{equation*}
$$

for all $n_{\ell-1}<n \leq n_{\ell}$. (Recall the notation in (3.1).) Second, notice that in (K.i), K is assumed to be bounded by κ and, for notational convenience in the proofs, to have support in $[-1 / 2,1 / 2]$, so that by assumption (1.5) and $M_{k}=2^{k} \kappa^{m} M$, for $H \in \mathcal{G}_{\ell, j}^{(k)}$, we have, by (3.4),

$$
\begin{aligned}
\mathbb{E} H^{2}(\mathbf{X}, \mathbf{Y}) & \leq M_{k}^{-2} h^{2 m} \mathbb{E} \bar{G}_{g, h, \mathbf{t}}^{2}(\mathbf{X}, \mathbf{Y}) \\
& =M_{k}^{-2} \mathbb{E}\left[g^{2}(\mathbf{Y}) \widetilde{K}^{2}\left(\frac{\mathbf{t}-\mathbf{X}}{h}\right)\right] \\
& \leq h^{m} 4^{-k}\left\|f_{X}\right\|_{\infty}^{m}
\end{aligned}
$$

For $D_{m, k}=4^{-k}\left\|f_{X}\right\|_{\infty}^{m}$, this gives us that

$$
\begin{equation*}
\sup _{H \in \mathcal{G}_{\ell, j}^{(k)}} \mathbb{E} H^{2}(\mathbf{X}, \mathbf{Y}) \leq D_{m, k} h_{\ell, j}^{m}=: \sigma_{\ell, j}^{2} \tag{4.8}
\end{equation*}
$$

Since $\pi_{k} \pi_{k} L=\pi_{k} L$ for all $k \geq 1$, we can now apply Theorem A. 4 to the class $\mathcal{G}_{\ell, j}^{(k)}$ with $\sigma_{\ell, j}^{2}$ as in (4.8) and easily obtain that for some constant A_{k},

$$
\begin{equation*}
\mathbb{E} \mathcal{U}_{n_{\ell}}^{2}(j, k, \ell) \leq n_{\ell}^{k} \mathbb{E}\left\|U_{n_{\ell}}^{(k)}\left(\pi_{k} H\right)\right\|_{\mathcal{G}_{\ell, j}^{(k)}}^{2} \leq 2^{k} A_{k} h_{\ell, j}^{m}\left|\log h_{\ell, j}\right|^{k} \tag{4.9}
\end{equation*}
$$

To control the probability term in (4.6), we shall apply an exponential inequality to the same class $\mathcal{G}_{\ell, j}^{(k)}$ (recall that each $H \in \mathcal{G}_{\ell, j}^{(k)}$ is bounded by 1). Setting

$$
\begin{equation*}
y^{*}=C_{1, k}\left(\left|\log h_{\ell, j}\right| \vee \log \log n_{\ell}\right)^{k / 2}=: C_{1, k} \lambda_{j, k}(\ell), \tag{4.10}
\end{equation*}
$$

where $C_{1, k}<\infty$, Theorem A. 6 gives us constants $C_{2, k}, C_{3, k}$ and $C_{4, k}$ such that for $j=$ $1, \ldots, L(\ell)$ and any $\rho>1$,

$$
\begin{align*}
\mathbb{P}\left\{\mathcal{U}_{n_{\ell}}(j, k, \ell)>\rho^{k / 2} y^{*}\right\} & \leq C_{2, k} \exp \left\{-C_{3, k} \rho y^{* 2 / k}\right\} \\
& \leq \exp \left\{-C_{4, k} \rho \log \log n_{\ell}\right\} \tag{4.11}
\end{align*}
$$

Plugging the bounds (4.9) and (4.11) into (4.6), we then get for some $C_{5, k}>0$, any $\rho \geq 2$ and ℓ large enough,

$$
\begin{align*}
\mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \mathcal{U}_{n}(j, k, \ell)>2 \rho^{k / 2} y^{*}\right\} & \leq \frac{\left(\log n_{\ell}\right)^{-\rho C_{4, k} / 2} \sqrt{2^{k} A_{k} h_{\ell, j}^{m}\left|\log h_{\ell, j}\right|^{k}}}{C_{1, k} \sqrt{\rho^{k}\left(\left|\log h_{\ell, j}\right| \vee \log \log n_{\ell}\right)^{k}}} \tag{4.12}\\
& \leq \sqrt{h_{\ell, j}^{m}}\left(\log n_{\ell}\right)^{-\rho C_{5, k}} .
\end{align*}
$$

Finally, note also that

$$
\begin{equation*}
n_{\ell}^{k / 2}\left\|U_{n}^{(k)}\left(\pi_{k} G\right)\right\|_{\mathcal{G}_{\ell, j}} \leq C_{k} M_{k} \mathcal{U}_{n}(j, k, \ell) \tag{4.13}
\end{equation*}
$$

for some $C_{k}>0$. Therefore, by (4.4), for each $k=2, \ldots, m$ and ℓ large enough,

$$
\begin{aligned}
\max _{n_{\ell-1}<n \leq n_{\ell}} A_{n, k} & :=\max _{n_{\ell-1}<n \leq n_{\ell}} \sup _{a_{n} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{t \in \mathbb{R}^{m}} \frac{\sqrt{n h^{m}}\left|U_{n}^{(k)}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}\right)\right|}{\sqrt{(|\log h| \vee \log \log n)^{k}}} \\
& \leq \max _{n_{\ell-1}<n \leq n_{\ell}} \max _{1 \leq j \leq L(\ell)} \sup _{h \in \mathcal{H} \ell, j} \sup _{\sup } \frac{\sqrt{n_{\ell} h^{m}}\left|U_{n}^{(k)}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}\right)\right|}{\sqrt{\left(|\log h| \vee \log \log n_{\ell}\right)^{k}}} \\
& \leq \frac{C_{k} M_{k}}{\sqrt{n_{\ell}^{k-1}}} \max _{n_{\ell-1}<n^{m} \leq n_{\ell}} \max _{1 \leq j \leq L(\ell)} \frac{\mathcal{U}_{n}(j, k, \ell)}{\lambda_{j, k}(\ell)} \\
& \leq \frac{C_{k} M_{k}}{\sqrt{a_{n_{\ell}}^{m} n_{\ell}^{k-1}}} \max _{n_{\ell-1}<n \leq n_{\ell}} \max _{1 \leq j \leq L(\ell)} \frac{\mathcal{U}_{n}(j, k, \ell)}{\lambda_{j, k}(\ell)},
\end{aligned}
$$

where $\lambda_{j, k}(\ell)$ was defined as in (4.10). Now, recall that $h_{\ell, j} \leq 2 b_{0}<2$ for $j=1, \ldots, L(\ell)$ and that $L(\ell) \leq 2 \log n_{\ell}$. Then, (4.12) applied with $\rho \geq(2+\delta) / C_{5, k}, \delta>0$ and in combination with the above inequality and the obvious bound $\sqrt{a_{n}^{m} n^{k-1}} A_{n, k} \leq \sqrt{a_{n_{\ell}}^{m} n_{\ell}^{k-1}} A_{n, k}$ valid for all $n_{\ell-1}<n \leq n_{\ell}$, implies for $C_{6, k} \geq 2 \rho^{k / 2} C_{k} M_{k} C_{1, k}$ that for $k=2, \ldots, m$,

$$
\begin{aligned}
\mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \sqrt{a_{n}^{m} n^{k-1}} A_{n, k}>C_{6, k}\right\} & \leq \sum_{j=1}^{L(\ell)} \sqrt{h_{\ell, j}^{m}}\left(\log n_{\ell}\right)^{-\rho C_{5, k}} \\
& \leq L(\ell) \sqrt{2^{m}}\left(\log n_{\ell}\right)^{-\rho C_{5, k}} \\
& \leq \sqrt{2^{m+2}}(\ell \log 2)^{-(1+\delta)}
\end{aligned}
$$

This proves, via some elementary bounds and Borel-Cantelli, that (4.3) holds, which obviously implies (4.2) and hence completes the proof of Theorem 1.

5. Proof of Theorem 2: the unbounded case

In case (1.5) is not satisfied, we consider bandwidths lying in the slightly smaller interval $\mathcal{H}_{n_{\ell}}^{\prime}=$ [$a_{n \ell}^{\prime}, b_{0}$] that can be decomposed into the subintervals

$$
\begin{equation*}
\mathcal{H}_{\ell, j}^{\prime}:=\left[h_{\ell, j-1}^{\prime}, h_{\ell, j}^{\prime}\right] \quad \text { with } h_{\ell, j}^{\prime m}:=2^{j} a_{n_{\ell}}^{\prime m} \tag{5.1}
\end{equation*}
$$

Note that it is straightforward to show that (4.4) remains valid if we replace $h_{\ell, j}$ by $h_{\ell, j}^{\prime}$. In particular, we still have $L(\ell) \leq 2 \log n_{\ell}$, where $L(\ell)$ is now defined as $L(\ell):=\max \left\{j: h_{\ell, j}^{\prime} \leq\right.$ $\left.2 b_{0}\right\}$. Recall that $n_{\ell}=2^{\ell}, \ell \geq 0$, and set, for $\ell \geq 1$,

$$
\begin{equation*}
\gamma_{\ell}=n_{\ell} / \log n_{\ell} . \tag{5.2}
\end{equation*}
$$

For an arbitrary $\varepsilon>0$, we shall decompose each function in \mathcal{G} as

$$
\begin{aligned}
\bar{G}_{g, h, \mathbf{t}}(\mathbf{x}, \mathbf{y}) & =\bar{G}_{g, h, \mathbf{t}}(\mathbf{x}, \mathbf{y}) \mathbf{1}\left\{\widetilde{F}(\mathbf{y}) \leq \varepsilon \gamma_{\ell}^{1 / p}\right\}+\bar{G}_{g, h, \mathbf{t}}(\mathbf{x}, \mathbf{y}) \mathbf{1}\left\{\widetilde{F}(\mathbf{y})>\varepsilon \gamma_{\ell}^{1 / p}\right\} \\
& =: \bar{G}_{g, h, \mathbf{t}}^{(\ell)}(\mathbf{x}, \mathbf{y})+\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}(\mathbf{x}, \mathbf{y}),
\end{aligned}
$$

where $\widetilde{F}(\mathbf{y})$ is the (symmetric) envelope function of the class \mathcal{G} as defined in (3.6). $u_{n}(g, h, \mathbf{t})$ can then also be decomposed for any $n_{\ell-1}<n \leq n_{\ell}$ since, from (3.2),

$$
\begin{aligned}
u_{n}(g, h, \mathbf{t}) & =\sqrt{n}\left\{U_{n}^{(m)}\left(\bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)-\mathbb{E} U_{n}^{(m)}\left(\bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right\}+\sqrt{n}\left\{U_{n}^{(m)}\left(\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}\right)-\mathbb{E} U_{n}^{(m)}\left(\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right\} \\
& =: u_{n}^{(\ell)}(g, h, \mathbf{t})+\widetilde{u}_{n}^{(\ell)}(g, h, \mathbf{t}) .
\end{aligned}
$$

The term $u_{n}^{(\ell)}(g, h, \mathbf{t})$ will be called the truncated part and $\widetilde{u}_{n}^{(\ell)}(g, h, \mathbf{t})$ the remainder part. To prove Theorem 2, we shall apply the Hoeffding decomposition to the truncated part and analyze each of the terms separately, while the remainder part can be treated directly using simple arguments based on standard inequalities. Note, for further use, that

$$
\begin{equation*}
a_{n_{\ell}}^{\prime m}=c^{m} \gamma_{\ell}^{2 / p-1}, \quad \ell \geq 1 \tag{5.3}
\end{equation*}
$$

5.1. Truncated part

Note that from (3.3), we need to consider the terms of $\sum_{k=1}^{m}\binom{m}{k} U_{n}^{(k)}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right.$. We shall start with the linear term in this decomposition. Following the same reasoning as in the previous section, we can show that $\pi_{1} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}$ is a centered conditional expectation and that the first term of (3.3) can be written as an empirical process based on the sample $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ and indexed by the class of functions

$$
\mathcal{S}_{\ell}^{\prime}:=\left\{S_{g, h, \mathbf{t}}^{(\ell)}(\cdot, \cdot): g \in \mathcal{F}, h \in \mathcal{H}_{n_{\ell}}^{\prime}, \mathbf{t} \in \mathbb{R}^{m}\right\}
$$

where $\mathcal{H}_{n_{\ell}}^{\prime}$ was defined at the beginning of this section and where

$$
S_{g, h, \mathbf{t}}^{(\ell)}(x, y)=m h^{m} \mathbb{E}\left[\bar{G}_{g, h, \mathbf{t}}^{(\ell)}(\mathbf{X}, \mathbf{Y}) \mid\left(X_{1}, Y_{1}\right)=(x, y)\right]
$$

To show that $\mathcal{S}_{\ell}^{\prime}$ is a VC-class, introduce the class of functions of $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{m} \times \mathbb{R}^{m}$,

$$
\mathcal{C}=\left\{h^{m} \bar{G}_{g, h, \mathbf{t}}(\mathbf{x}, \mathbf{y}) \mathbf{1}\{\widetilde{F}(\mathbf{y}) \leq c\}: g \in \mathcal{F}, 0<h<1, \mathbf{t} \in \mathbb{R}^{m}, c>0\right\} .
$$

Since both \mathcal{G} as defined in (3.5) and the class of functions of $\mathbf{y} \in \mathbb{R}^{m}$ given by $\mathcal{I}=\{\mathbf{1}\{\widetilde{F}(\mathbf{y}) \leq$ $c\}: c>0\}$ are of VC-type (and note that \mathcal{I} has a bounded envelope function), we can apply Lemma A. 1 in Einmahl and Mason [4] to conclude that \mathcal{C} is also of VC-type. Therefore, so is the class of functions $m \mathcal{C}^{(1)}$ on \mathbb{R}^{2}, where $\mathcal{C}^{(1)}$ consists of the π_{1}-projections of the functions in the class \mathcal{C}. Thus, we see that $\mathcal{S}_{\ell}^{\prime} \subset m \mathcal{C}^{(1)}$ and hence $\mathcal{S}_{\ell}^{\prime}$ is of VC-type with the same characteristics as $m \mathcal{C}^{(1)}$. Now, to find an envelope function for $\mathcal{S}_{\ell}^{\prime}$, set $\mathbf{t}_{j}:=\left(t_{1}, \ldots, t_{j-1}, t_{j+1}, \ldots, t_{m}\right) \in \mathbb{R}^{m-1}$ and $\mathbf{Z}_{j}(u):=\left(Z_{1}, \ldots, Z_{j-1}, u, Z_{j+1}, \ldots, Z_{m}\right) \in \mathbb{R}^{m}$ for $u \in \mathbb{R}$ and $\mathbf{Z} \in \mathbb{R}^{m}$. We can then rewrite the function $S_{g, h, \mathbf{t}}^{(\ell)}(x, y) \in \mathcal{S}_{\ell}^{\prime}$ as

$$
\begin{align*}
S_{g, h, \mathbf{t}}^{(\ell)}(x, y)= & K\left(\frac{t_{1}-x}{h}\right) \mathbb{E}\left[g\left(\mathbf{Y}_{1}(y)\right) \widetilde{K}\left(\frac{\mathbf{t}_{1}-\mathbf{X}^{*}}{h}\right) \mathbf{1}\left\{\widetilde{F}\left(\mathbf{Y}_{1}(y)\right) \leq \varepsilon \gamma_{\ell}^{1 / p}\right\}\right] \\
& +K\left(\frac{t_{2}-x}{h}\right) \mathbb{E}\left[g\left(\mathbf{Y}_{2}(y)\right) \widetilde{K}\left(\frac{\mathbf{t}_{2}-\mathbf{X}^{*}}{h}\right) \mathbf{1}\left\{\widetilde{F}\left(\mathbf{Y}_{2}(y)\right) \leq \varepsilon \gamma_{\ell}^{1 / p}\right\}\right] \tag{5.4}\\
& +\cdots+K\left(\frac{t_{m}-x}{h}\right) \mathbb{E}\left[g\left(\mathbf{Y}_{m}(y)\right) \widetilde{K}\left(\frac{\mathbf{t}_{m}-\mathbf{X}^{*}}{h}\right) \mathbf{1}\left\{\widetilde{F}\left(\mathbf{Y}_{m}(y)\right) \leq \varepsilon \gamma_{\ell}^{1 / p}\right\}\right]
\end{align*}
$$

where $\mathbf{X}^{*}=\left(X_{2}, \ldots, X_{m}\right) \in \mathbb{R}^{m-1}$ and where (with a little abuse of notation here) the product kernel in (K.iii) is now defined for $(m-1)$-dimensional vectors, that is, $\widetilde{K}(\mathbf{u})=\prod_{i=1}^{m-1} K\left(u_{i}\right)$, $\mathbf{u} \in \mathbb{R}^{m-1}$. Hence, we can bound $S_{g, h, \mathbf{t}}^{(\ell)}(x, y)$ simply as

$$
\begin{aligned}
\left|S_{g, h, \mathbf{t}}^{(\ell)}(x, y)\right| \leq & \kappa^{m}\left\{\mathbb{E}\left[F\left(y, Y_{2}, \ldots, Y_{m}\right)\right]\right. \\
& \left.\quad+\mathbb{E}\left[F\left(Y_{2}, y, Y_{3}, \ldots, Y_{m}\right)\right]+\cdots+\mathbb{E}\left[F\left(Y_{2}, \ldots, Y_{m}, y\right)\right]\right\} \\
= & G_{m}(x, y)
\end{aligned}
$$

We shall now apply the moment bound in Theorem A. 3 to the subclasses

$$
\mathcal{S}_{\ell, j}^{\prime}:=\left\{S_{g, h, \mathbf{t}}^{(\ell)}(\cdot, \cdot): g \in \mathcal{F}, h \in \mathcal{H}_{\ell, j}^{\prime}, \mathbf{t} \in \mathbb{R}^{m}\right\}, \quad 1 \leq j \leq L(\ell),
$$

where $\mathcal{H}_{\ell, j}^{\prime}$ was defined in (5.1). Since $\mathcal{S}_{\ell, j}^{\prime} \subset \mathcal{S}_{\ell}^{\prime}$ for $j=1, \ldots, L(\ell)$, all of these subclasses are of VC-type, with the same envelope function and characteristics as the class $m \mathcal{C}^{(1)}$ (which is independent of ℓ), verifying (ii) in Theorem A.3. For (i), recall that although all of the terms of the envelope function $G_{m}(x, y)$ are different, their expectations are the same. Therefore, writing \mathbf{Y}^{*}
for $\left(Y_{2}, \ldots, Y_{m}\right)$ and applying Minkowski's inequality followed by Jensen's inequality, we obtain from assumption (1.6) the following upper bound for the second moment of the envelope function:

$$
\begin{aligned}
\mathbb{E} G_{m}^{2}(X, Y)= & \kappa^{2 m} \mathbb{E}_{Y}\left\{\mathbb{E}_{\mathbf{Y}^{*}}\left[F\left(Y, Y_{2}, \ldots, Y_{m}\right)\right]\right. \\
& \left.\quad+\mathbb{E}_{\mathbf{Y}^{*}}\left[F\left(Y_{2}, Y, Y_{3}, \ldots, Y_{m}\right)\right]+\cdots+\mathbb{E}_{\mathbf{Y}^{*}}\left[F\left(Y_{2}, \ldots, Y_{m}, Y\right)\right]\right\}^{2} \\
\leq & m^{2} \kappa^{2 m} \mathbb{E} F^{2}\left(Y_{1}, \ldots, Y_{m}\right) \\
\leq & m^{2} \kappa^{2 m} \mu_{p}^{2 / p}
\end{aligned}
$$

Note, further, that by symmetry of \widetilde{F},

$$
\mathbb{E} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}(\mathbf{X}, \mathbf{Y})=h^{-m} \mathbb{E}\left[g(\mathbf{Y}) \widetilde{K}\left(\frac{\mathbf{t}-\mathbf{X}}{h}\right) \mathbf{1}\left\{\widetilde{F}(\mathbf{Y}) \leq \varepsilon \gamma_{\ell}^{1 / p}\right\}\right]
$$

so that Jensen's inequality, the change of variable $\mathbf{u}=(\mathbf{t}-\mathbf{x}) / h$ and the assumption in (1.6) give the following upper bound for the second moment of any function in $\mathcal{S}_{\ell}^{\prime}$:

$$
\begin{align*}
& \mathbb{E}\left(S_{g, h, \mathbf{t}}^{(\ell)}(X, Y)\right)^{2} \\
& \quad \leq m^{2} \mathbb{E}\left[g^{2}(\mathbf{Y}) \widetilde{K}^{2}\left(\frac{\mathbf{t}-\mathbf{X}}{h}\right) \mathbf{1}\left\{\widetilde{F}(\mathbf{Y}) \leq \varepsilon \gamma_{\ell}^{1 / p}\right\}\right] \\
& \quad \leq m^{2} \kappa^{2 m} h^{m} \int_{[-1 / 2,1 / 2]^{m}} \mathbb{E}\left[F^{2}(\mathbf{Y}) \mid \mathbf{X}=\mathbf{t}-h \mathbf{u}\right] f_{X}\left(t_{1}-h u_{1}\right) \cdots f_{X}\left(t_{m}-h u_{m}\right) \mathrm{d} \mathbf{u} \tag{5.5}\\
& \quad \leq m^{2} \kappa^{2 m} \mu_{p}^{2 / p}\left\|f_{X}\right\|_{\infty}^{m} h^{m} .
\end{align*}
$$

Therefore, with $\beta \equiv m \kappa^{m} \mu_{p}^{1 / p}\left(1 \vee\left\|f_{X}\right\|_{\infty}^{m / 2}\right)$, our previous calculations give us that

$$
\mathbb{E} G_{m}^{2}(X, Y) \leq \beta^{2} \quad \text { and } \quad \sup _{S \in \mathcal{S}_{\ell, j}^{\prime}} \mathbb{E} S^{2}(X, Y) \leq \beta^{2} h_{\ell, j}^{\prime m}=: \sigma_{\ell, j}^{2}
$$

verifying condition (iii) as well. Finally, recall from (3.6) that since \mathcal{G} has envelope function $\widetilde{F}(\mathbf{y})$, it holds for all $x, y \in \mathbb{R}$ that

$$
\left|S_{g, h, \mathbf{t}}^{(\ell)}(x, y)\right| \leq m \mathbb{E}\left[\widetilde{F}(\mathbf{Y}) \mathbf{1}\left\{\widetilde{F}(\mathbf{Y}) \leq \varepsilon \gamma_{\ell}^{1 / p}\right\} \mid\left(X_{1}, Y_{1}\right)=(x, y)\right] \leq m \varepsilon \gamma_{\ell}^{1 / p}
$$

so that by taking $\varepsilon>0$ small enough, Theorem A. 3 is now applicable. Thus, for an absolute constant $A_{1}<\infty$, we have

$$
\begin{align*}
\mathbb{E}\left\|\sum_{i=1}^{n_{\ell}} \epsilon_{i} S\left(X_{i}, Y_{i}\right)\right\|_{\mathcal{S}_{\ell, j}^{\prime}} & \leq A_{1} \sqrt{n_{\ell} h_{\ell, j}^{\prime \prime}\left|\log h_{\ell, j}^{\prime}\right|} \\
& \leq A_{1} \sqrt{n_{\ell} h_{\ell, j}^{\prime m}\left(\left|\log h_{\ell, j}^{\prime}\right| \vee \log \log n_{\ell}\right)} \tag{5.6}\\
& =: A_{1} \lambda_{j}^{\prime}(\ell),
\end{align*}
$$

where $\epsilon_{1}, \ldots, \epsilon_{n_{\ell}}$ are independent Rademacher variables, independent of $\left(X_{i}, Y_{i}\right), 1 \leq i \leq n_{\ell}$. Consequently, applying the exponential inequality of Talagrand [14] to the class $\mathcal{S}_{\ell, j}^{\prime}$ (see Theorem A. 5 in the Appendix) with $M=m \varepsilon \gamma_{\ell}^{1 / p}, \sigma_{\mathcal{S}_{\ell, j}^{\prime}}^{2}=\beta^{2} h_{\ell, j}^{\prime m}$ and the moment bound in (5.6), we get, for an absolute constant $A_{2}<\infty$ and all $t>0$, that

$$
\begin{align*}
& \mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}}\left\|\sqrt{n} \alpha_{n}\right\|_{\mathcal{S}_{\ell, j}^{\prime}} \geq C_{1}\left(A_{1} \lambda_{j}^{\prime}(\ell)+t\right)\right\} \tag{5.7}\\
& \quad \leq 2\left[\exp \left(-\frac{A_{2} t^{2}}{n_{\ell} \beta^{2} h_{\ell, j}^{\prime m}}\right)+\exp \left(-\frac{A_{2} t}{m \varepsilon \gamma_{\ell}^{1 / p}}\right)\right] .
\end{align*}
$$

Regarding the application of this inequality with $t=\rho \lambda_{j}^{\prime}(\ell), \rho>1$, note that it clearly follows from (5.3) and the definitions of $h_{\ell, j}^{\prime}$ as in (5.1), γ_{ℓ} as in (5.3) and $\lambda_{j}^{\prime}(\ell)$ as in (5.6) that for all $j \geq 0$,

$$
\begin{aligned}
& \frac{\lambda_{j}^{\prime 2}(\ell)}{n_{\ell} h_{\ell, j}^{\prime m}}=\left|\log h_{\ell, j}^{\prime}\right| \vee \log \log n_{\ell} \geq \log \log n_{\ell}, \\
& \frac{\lambda_{j}^{\prime 2}(\ell)}{\gamma_{\ell}^{2 / p}}=2^{j} c^{m} \log n_{\ell}\left(\left|\log h_{\ell, j}^{\prime}\right| \vee \log \log n_{\ell}\right) \geq c^{m}\left(\log \log n_{\ell}\right)^{2}
\end{aligned}
$$

Consequently, (5.7), when applied with $t=\rho \lambda_{j}^{\prime}(\ell)$ and any $\rho>1$ with ℓ large enough, yields, for suitable constants $A_{2}^{\prime}, A_{2}^{\prime \prime}$ and A_{3}, the inequality

$$
\begin{align*}
& \mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}}\left\|\sqrt{n} \alpha_{n}\right\|_{\mathcal{S}_{\ell, j}^{\prime}} \geq C_{1}\left(A_{1}+\rho\right) \lambda_{j}^{\prime}(\ell)\right\} \\
& \quad \leq 2\left[\exp \left(-A_{2}^{\prime} \rho^{2} \log \log n_{\ell}\right)+\exp \left(-A_{2}^{\prime \prime} \rho \log \log n_{\ell}\right)\right] \tag{5.8}\\
& \quad \leq 4\left(\log n_{\ell}\right)^{-A_{3} \rho} .
\end{align*}
$$

Keeping in mind that $m h^{m} \sqrt{n} U_{n}^{(1)}\left(\pi_{1} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)$ is the empirical process $\alpha_{n}\left(S_{g, h, \mathbf{t}}^{(\ell)}\right)$ indexed by the class $\mathcal{S}_{\ell}^{\prime}$ and recalling (4.4), we obtain, for $\ell \geq 1$, that

$$
\begin{aligned}
\max _{n_{\ell-1}<n \leq n_{\ell}} A_{n, \ell}^{\prime} & :=\max _{n_{\ell-1}<n \leq n_{\ell}} \sup _{a_{n}^{\prime} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \in \mathbb{R}^{m}} \frac{m \sqrt{n h^{m}}\left|U_{n}^{(1)}\left(\pi_{1} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{|\log h| \vee \log \log n}} \\
& \leq \max _{n_{\ell-1}<n \leq n_{\ell}} \max _{1 \leq j \leq L(\ell)} \sup _{h \in \mathcal{H}_{\ell, j}^{\prime}} \sup _{g \in \mathcal{F}} \sup _{t \in \mathbb{R}^{m}} \frac{2 \sqrt{2}\left|\sqrt{n} \alpha_{n}\left(S_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{n_{\ell} h_{\ell, j}^{\prime m}\left(\left|\log h_{\ell, j}^{\prime}\right| \vee \log \log n_{\ell}\right)}} \\
& \leq \max _{n_{\ell-1}<n \leq n_{\ell}} \max _{1 \leq j \leq L(\ell)} \sup _{H \in \mathcal{S}_{\ell, j}^{\prime}} \frac{3\left|\sqrt{n} \alpha_{n}(H)\right|}{\lambda_{j}^{\prime}(\ell)} .
\end{aligned}
$$

Consequently, recalling once again that $L(\ell) \leq 2 \log n_{\ell}$, we can infer from (5.8) that for some constant $C_{5}(\rho) \geq 3 C_{1}\left(A_{1}+\rho\right)$,

$$
\begin{aligned}
\mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} A_{n, \ell}^{\prime}>C_{5}(\rho)\right\} & \leq \sum_{j=1}^{L(\ell)} \mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}}\left\|\sqrt{n} \alpha_{n}\right\|_{\mathcal{S}_{\ell, j}^{\prime}}>C_{1}\left(A_{1}+\rho\right) \lambda_{j}^{\prime}(\ell)\right\} \\
& \leq 8\left(\log n_{\ell}\right)^{1-A_{3} \rho} .
\end{aligned}
$$

The Borel-Cantelli lemma, when combined with this inequality for $\rho \geq(2+\delta) / A_{3}, \delta>0$ and with the choice $n_{\ell}=2^{\ell}$, establishes, for some $C^{\prime}<\infty$ and with probability 1 , that

$$
\begin{equation*}
\limsup _{\ell \rightarrow \infty} \max _{n_{\ell-1}<n \leq n_{\ell}} \sup _{a_{n}^{\prime} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \in \mathbb{R}^{m}} \frac{m \sqrt{n h^{m}}\left|U_{n}^{(1)}\left(\pi_{1} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{|\log h| \vee \log \log n}} \leq C^{\prime} \tag{5.9}
\end{equation*}
$$

concluding the study of the first term in (3.3).
We now show that, with probability 1 , all of the other terms of (3.3) are asymptotically bounded or go to zero at the proper rate, which will be accomplished if we can prove that for $k=2, \ldots, m$ and with probability 1 ,

$$
\begin{equation*}
\max _{n_{\ell-1}<n \leq n_{\ell}} \sup _{a_{n}^{\prime} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \in \mathbb{R}^{m}} \frac{\sqrt{n h^{m}}\left|U_{n}^{(k)}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{|\log h| \vee \log \log n}}=O\left(\gamma_{\ell}^{1-k / 2}\right) . \tag{5.10}
\end{equation*}
$$

Analogously to the bounded case, we start by defining the classes of functions on $\mathbb{R}^{m} \times \mathbb{R}^{m}$ and $\mathbb{R}^{k} \times \mathbb{R}^{k}$,

$$
\begin{aligned}
\mathcal{G}_{\ell, j}^{\prime} & :=\left\{h^{m} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}(\cdot, \cdot): g \in \mathcal{F}, h \in \mathcal{H}_{\ell, j}^{\prime}, \mathbf{t} \in \mathbb{R}^{m}\right\}, \\
\mathcal{G}_{\ell, j}^{\prime(k)} & :=\left\{h^{m}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)(\cdot, \cdot) /\left(2^{k} \varepsilon \gamma_{\ell}^{1 / p}\right): g \in \mathcal{F}, h \in \mathcal{H}_{\ell, j}^{\prime}, \mathbf{t} \in \mathbb{R}^{m}\right\} .
\end{aligned}
$$

It is then easily verified that these classes are of VC-type with characteristics that are independent of ℓ and with envelope functions \widetilde{F} and $\left(2^{k} \varepsilon \gamma_{\ell}^{1 / p}\right)^{-1} F_{k}$, respectively. The function \widetilde{F} is defined as in (3.6) and F_{k} is determined just as in the proof of Theorem 1 of Giné and Mason [7]. Note that just as in (4.5) and (4.7), by setting

$$
\mathcal{U}_{n}^{\prime}(j, k, \ell):=\sup _{H \in \mathcal{G}_{\ell, j}^{\prime(k)}}\left|\frac{1}{n_{\ell}^{k / 2}} \sum_{\mathbf{i} \in I_{n}^{k}} H\left(\mathbf{X}_{\mathbf{i}}, \mathbf{Y}_{\mathbf{i}}\right)\right|, \quad n_{\ell-1}<n \leq n_{\ell},
$$

we see that for all $k=2, \ldots, m$ and $n_{\ell-1}<n \leq n_{\ell}$,

$$
\mathcal{U}_{n}^{\prime}(j, k, \ell) \leq n_{\ell}^{k / 2}\left\|U_{n}^{(k)}\left(\pi_{k} G\right)\right\|_{\mathcal{G}_{\ell, j}^{\prime(k)}}
$$

Consequently, applying Theorem A. 1 with $c=1 / 2$ and $r=2$ gives us precisely (4.6) with $\mathcal{U}_{n}(j, k, \ell)$ and $\mathcal{U}_{n \ell}(j, k, \ell)$ replaced by $\mathcal{U}_{n}^{\prime}(j, k, \ell)$ and $\mathcal{U}_{n_{\ell}}^{\prime}(j, k, \ell)$, respectively. Therefore, the
same methodology as in the bounded case will be applied. Note also that, as held for all the functions in $\mathcal{G}_{\ell, j}^{(k)}$, the functions in $\mathcal{G}_{\ell, j}^{\prime(k)}$ are bounded by 1 and have second moments that can be bounded by $h^{m} D_{m, k}$ for a suitable $D_{m, k}$ (by arguing as in (5.5) and (4.8)). Hence, the expression in (4.8) is also satisfied for functions in $\mathcal{G}_{\ell, j}^{\prime(k)}$, that is,

$$
\sup _{H \in \mathcal{G}_{\ell, j}^{\prime(k)}} \mathbb{E} H^{2}(\mathbf{X}, \mathbf{Y}) \leq D_{m, k} h_{\ell, j}^{\prime m}=: \sigma_{\ell, j}^{\prime 2}
$$

Thus, all the conditions for Theorems A. 4 and A. 6 are satisfied so that, after some obvious identifications and modifications, the second part of the proof of Theorem 1 (and (4.12) in particular) gives us, for some $C_{7, k}>0$, all $j=1, \ldots, L(\ell)$ and any $\rho>2$,

$$
\begin{equation*}
\mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \mathcal{U}_{n}^{\prime}(j, k, \ell)>2 \rho^{k / 2} y^{\prime *}\right\} \leq \sqrt{h_{\ell, j}^{\prime m}}\left(\log n_{\ell}\right)^{-\rho C_{7, k}} \tag{5.11}
\end{equation*}
$$

with $y^{\prime *}=C_{1, k}^{\prime} \lambda_{j, k}^{\prime}(\ell)$ for some $C_{1, k}^{\prime}>0$ and where $\lambda_{j, k}^{\prime}(\ell)$ is defined as in (4.10) with $h_{\ell, j}$ replaced by $h_{\ell, j}^{\prime}$, that is,

$$
\begin{equation*}
\lambda_{j, k}^{\prime}(\ell)=\left(\left|\log h_{\ell, j}^{\prime}\right| \vee \log \log n_{\ell}\right)^{k / 2} \tag{5.12}
\end{equation*}
$$

Now, to finish the proof of (5.10), note that, similarly to (4.13), for some $C_{k}>0$, for $n_{\ell-1}<n \leq n_{\ell}$,

$$
n_{\ell}^{k / 2}\left\|U_{n}^{(k)}\left(\pi_{k} G\right)\right\|_{\mathcal{G}_{\ell, j}^{\prime}} \leq 2^{k} C_{k} \varepsilon \gamma_{\ell}^{1 / p} \mathcal{U}_{n}^{\prime}(j, k, \ell)
$$

This gives that for some $c_{k}>0$,

$$
\begin{aligned}
\max _{n_{\ell-1}<n \leq n_{\ell}} A_{n, \ell, k}^{\prime} & :=\max _{n_{\ell-1}<n \leq n_{\ell}} \sup _{a_{n}^{\prime} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t \in \mathbb { R } ^ { m }}} \frac{\sqrt{n h^{m}}\left|U_{n}^{(k)}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{(|\log h| \vee \log \log n)^{k}}} \\
& \leq \frac{2^{k} c_{k} \varepsilon \gamma_{\ell}^{1 / p}}{\sqrt{n_{\ell}^{k-1}}} \max _{n_{\ell-1}<n \leq n_{\ell}} \max _{1 \leq j \leq L(\ell)} \frac{\mathcal{U}_{n}^{\prime}(j, k, \ell)}{\lambda_{j, k}^{\prime}(\ell)} \\
& \leq \frac{2^{k} c_{k} \varepsilon \gamma_{\ell}^{1 / p}}{\sqrt{a_{n_{\ell}}^{\prime m} n_{\ell}^{k-1}}} \max _{n_{\ell-1}<n \leq n_{\ell}} \max _{1 \leq j \leq L(\ell)} \frac{\mathcal{U}_{n}^{\prime}(j, k, \ell)}{\lambda_{j, k}^{\prime}(\ell)} .
\end{aligned}
$$

From (5.3), we now see that $\gamma_{\ell}^{2 / p} / a_{n_{\ell}}^{\prime m} n_{\ell}^{k-1}=c^{-m} n_{\ell}^{2-k} / \log n_{\ell}$. Moreover, $\log n / n^{2-k}$ is monotone increasing in $n \geq 2$ whenever $k \geq 2$ so that for some constant $C_{8, k}>0$,

$$
\begin{aligned}
& \mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \sqrt{\frac{\log n}{n^{2-k}}} A_{n, \ell, k}^{\prime}>C_{8, k}\right\} \\
& \quad \leq \mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \max _{1 \leq j \leq L(\ell)} \frac{\mathcal{U}_{n}^{\prime}(j, k, \ell)}{\lambda_{j, k}^{\prime}(\ell)}>\frac{C_{8, k}}{2^{k} c_{k} \varepsilon \gamma_{\ell}^{1 / p}} \sqrt{\frac{n_{\ell}^{2-k} a_{n}^{\prime m} n_{\ell}^{k-1}}{\log n_{\ell}}}\right\}
\end{aligned}
$$

$$
\leq \sum_{j=1}^{L(\ell)} \mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \mathcal{U}_{n}^{\prime}(j, k, \ell)>\frac{C_{8, k} c^{m / 2}}{2^{k} c_{k} \varepsilon} \lambda_{j, k}^{\prime}(\ell)\right\}
$$

Therefore, by choosing $C_{8, k}>2^{k+1} c^{-m / 2} \varepsilon c_{k} C_{1, k}^{\prime}\left((2+\delta) / C_{7, k}\right)^{k / 2}$ and noting that by definition $L(\ell) \leq 2 \log n_{\ell}$ and $h_{\ell, j}^{\prime}<2$ for all $j=1, \ldots, L(\ell)$, we can infer from (5.11) with

$$
\rho=(2+\delta) / C_{7, k}
$$

that

$$
\begin{aligned}
& \mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \sqrt{\frac{\log n}{n^{2-k}}} A_{n, \ell, k}^{\prime}>C_{8, k}\right\} \\
& \quad \leq \sum_{j=1}^{L(\ell)} \mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \mathcal{U}_{n}^{\prime}(j, k, \ell)>2\left(\frac{2+\delta}{C_{7, k}}\right)^{k / 2} C_{1, k}^{\prime} \lambda_{j, k}^{\prime}(\ell)\right\} \\
& \\
& =\sum_{j=1}^{L(\ell)} \mathbb{P}\left\{\max _{n_{\ell-1}<n \leq n_{\ell}} \mathcal{U}_{n}^{\prime}(j, k, \ell)>2\left(\frac{2+\delta}{C_{7, k}}\right)^{k / 2} y^{\prime *}\right\} \\
& \leq L(\ell) \sqrt{h_{\ell, j}^{\prime m}}\left(\log n_{\ell}\right)^{-\rho C_{7, k}}, \\
& \leq 2 \sqrt{2^{m}}\left(\log n_{\ell}\right)^{-(1+\delta)} .
\end{aligned}
$$

This immediately implies, via Borel-Cantelli, that for all $k=2, \ldots, m$ and $\ell \geq 1$,

$$
\max _{n_{\ell-1}<n \leq n_{\ell}} \sup _{a_{n}^{\prime} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \in \mathbb{R}^{m}} \frac{\sqrt{n h^{m}}\left|U_{n}^{(k)}\left(\pi_{k} \bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{(|\log h| \vee \log \log n)^{k}}}=O\left(\sqrt{\frac{n_{\ell}^{2-k}}{\log n_{\ell}}}\right) \quad \text { a.s., }
$$

which obviously implies (5.10). Finally, recalling the Hoeffding decomposition (3.3), this implies, together with (5.9), that for some $C^{\prime \prime}>0$ with probability 1 ,

$$
\begin{equation*}
\limsup _{\ell \rightarrow \infty} \max _{n_{\ell-1}<n \leq n \ell} \sup _{a_{n}^{\prime} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \in \mathbb{R}^{m}} \frac{\sqrt{n h^{m}}\left|U_{n}^{(m)}\left(\bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)-\mathbb{E} U_{n}^{(m)}\left(\bar{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{|\log h| \vee \log \log n}} \leq C^{\prime \prime} . \tag{5.13}
\end{equation*}
$$

5.2. Remainder part

Consider now the remainder process $\widetilde{u}_{n}^{(\ell)}(g, h, \mathbf{t})$ based on the unbounded (symmetric) U-kernel given by

$$
\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}(\mathbf{x}, \mathbf{y}):=\bar{G}_{g, h, \mathbf{t}}(\mathbf{x}, \mathbf{y}) \mathbf{1}\left\{\widetilde{F}(\mathbf{y})>\varepsilon \gamma_{\ell}^{1 / p}\right\},
$$

where we defined $\gamma \ell$ as in (5.2). We shall show that this U-process is asymptotically negligible at the rate given in Theorem 2. More precisely, we shall prove that as $\ell \rightarrow \infty$,

$$
\begin{equation*}
\max _{n_{\ell-1}<n \leq n_{\ell}} \sup _{a_{n}^{\prime} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \in \mathbb{R}^{m}} \frac{\sqrt{n h^{m}}\left|U_{n}^{(m)}\left(\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}\right)-\mathbb{E} U_{n}^{(m)}\left(\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{|\log h| \vee \log \log n}}=o(1) \quad \text { a.s. } \tag{5.14}
\end{equation*}
$$

Recall that for all $g \in \mathcal{F}, h \in\left[a_{n}^{\prime}, b_{0}\right]$ and $\mathbf{t}, \mathbf{x} \in \mathbb{R}^{m}, \widetilde{F}(\mathbf{y}) \geq h^{m}\left|\bar{G}_{g, h, \mathbf{t}}(\mathbf{x}, \mathbf{y})\right|$, so from the symmetry of \widetilde{F}, it holds that

$$
\left|U_{n}^{(m)}\left(\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right| \leq h^{-m} U_{n}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right),
$$

where $U_{n}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right)$ is a U-statistic based on the positive and symmetric kernel $\mathbf{y} \rightarrow$ $\widetilde{F}(\mathbf{y}) \mathbf{1}\left\{\widetilde{F}(\mathbf{y})>\varepsilon \gamma_{\ell}^{1 / p}\right\}$. Recalling that $a_{n}^{\prime m}=c^{m}(\log n / n)^{1-2 / p}$, we obtain easily that for all $g \in$ $\mathcal{F}, h \in\left[a_{n}^{\prime}, b_{0}\right], \mathbf{t} \in \mathbb{R}^{m}$ and some $C>0$,

$$
\begin{aligned}
\max _{n_{\ell-1}<n \leq n_{\ell}} \frac{\sqrt{n h^{m}}\left|U_{n}^{(m)}\left(\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{|\log h| \vee \log \log n}} & \leq \frac{\sqrt{n_{\ell}} U_{n_{\ell}}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right)}{\sqrt{a_{n_{\ell}}^{m}\left(\left|\log a_{n_{\ell}}^{\prime}\right| \vee \log \log n_{\ell}\right)}} \\
& \leq C \gamma_{\ell}^{1-1 / p} U_{n_{\ell}}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right) .
\end{aligned}
$$

Arguing in the same way, since a U-statistic is an unbiased estimator of its kernel, we get that, uniformly in $g \in \mathcal{F}, h \in\left[a_{n}^{\prime}, b_{0}\right]$ and $\mathbf{t} \in \mathbb{R}^{m}$,

$$
\begin{align*}
\max _{n_{\ell-1}<n \leq n \ell} \frac{\sqrt{n h^{m}}\left|\mathbb{E} U_{n}^{(m)}\left(\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{|\log h| \vee \log \log n}} & \leq C \gamma_{\ell}^{1-1 / p} \mathbb{E} U_{n_{\ell}}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right) \\
& \leq C^{\prime} \mathbb{E}\left[\widetilde{F}^{p}(\mathbf{Y}) \mathbf{1}\left\{\widetilde{F}(\mathbf{Y})>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right] . \tag{5.15}
\end{align*}
$$

From (5.15), we see that as $\ell \rightarrow \infty$,

$$
\begin{equation*}
\max _{n_{\ell-1}<n \leq n_{\ell}} \sup _{a_{n}^{\prime} \leq h \leq b_{0}} \sup _{g \in \mathcal{F}} \sup _{\mathbf{t} \mathbb{R}^{m}} \frac{\sqrt{n h^{m}}\left|\mathbb{E} U_{n}^{(m)}\left(\widetilde{G}_{g, h, \mathbf{t}}^{(\ell)}\right)\right|}{\sqrt{|\log h| \vee \log \log n}}=o(1) . \tag{5.16}
\end{equation*}
$$

Thus, to finish the proof of (5.14), it suffices to show that

$$
\begin{equation*}
U_{n_{\ell}}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right)=o\left(\gamma_{\ell}^{1 / p-1}\right) \tag{5.17}
\end{equation*}
$$

First, note that from Chebyshev's inequality and a well-known inequality for the variance of a U-statistic (see Theorem 5.2 of Hoeffding [10]), we get, for any $\delta>0$,

$$
\begin{align*}
& \mathbb{P}\left\{\left|U_{n_{\ell}}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right)-\mathbb{E} U_{n_{\ell}}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right)\right|>\delta \gamma_{\ell}^{-(1-1 / p)}\right\} \\
& \quad \leq \delta^{-2} \gamma_{\ell}^{2-2 / p} \operatorname{Var}\left(U_{n_{\ell}}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right)\right) \tag{5.18}
\end{align*}
$$

$$
\leq m \delta^{-2} \frac{n_{\ell}^{1-2 / p}}{\left(\log n_{\ell}\right)^{2-2 / p}} \mathbb{E}\left[\widetilde{F}^{2}(\mathbf{Y}) \mathbf{1}\left\{\widetilde{F}(\mathbf{Y})>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right]
$$

Next, in order to establish the finite convergence of the series of the above probabilities, we split the indicator function $\mathbf{1}\left\{\widetilde{F}(\mathbf{Y})>\varepsilon \gamma_{\ell}^{1 / p}\right\}$ into two distinct parts determined by whether $\widetilde{F}(\mathbf{Y})>$ $n_{\ell}^{1 / p}$ or $\varepsilon \gamma_{\ell}^{1 / p}<\widetilde{F}(\mathbf{Y}) \leq n_{\ell}^{1 / p}$, and consider the corresponding second moments in (5.18) separately. In the first case, note that, from (1.6) and (3.6), $\mathbb{E} \widetilde{F}^{p}(\mathbf{Y}) \leq \mu_{p} \kappa^{p m}(m!)^{p}$ and observe that since $p>2$ and $n_{\ell}=2^{\ell}$,

$$
\sum_{\ell=1}^{\infty} \frac{n_{\ell}^{1-2 / p}}{\left(\log n_{\ell}\right)^{2-2 / p}} \mathbb{E}\left[\widetilde{F}^{2}(\mathbf{Y}) \mathbf{1}\left\{\widetilde{F}(\mathbf{Y})>n_{\ell}^{1 / p}\right\}\right] \leq \mathbb{E}\left[\widetilde{F}^{p}(\mathbf{Y})\right] \sum_{\ell=1}^{\infty}\left(\log n_{\ell}\right)^{-(2-2 / p)}<\infty
$$

To handle the second case, we shall need the following fact from Einmahl and Mason [4].
Fact 1. Let $\left(c_{n}\right)_{n \geq 1}$ be a sequence of positive constants such that $c_{n} / n^{1 / s} \nearrow \infty$ for some $s>0$ and let Z be a random variable satisfying $\sum_{n=1}^{\infty} \mathbb{P}\left\{|Z|>c_{n}\right\}<\infty$. We then have, for any $q>s$,

$$
\sum_{k=1}^{\infty} 2^{k} \mathbb{E}\left[|Z|^{q} \mathbf{1}\left\{|Z| \leq c_{2^{k}}\right\}\right] /\left(c_{2^{k}}\right)^{q}<\infty
$$

Notice that for any $p<r \leq 2 p$,

$$
\begin{aligned}
\sum_{\ell=1}^{\infty} \frac{n_{\ell}^{1-2 / p}}{\left(\log n_{\ell}\right)^{2-2 / p}} \mathbb{E}\left[\widetilde{F}^{2}(\mathbf{Y}) \mathbf{1}\left\{\varepsilon \gamma_{\ell}^{1 / p}<\widetilde{F}(\mathbf{Y}) \leq n_{\ell}^{1 / p}\right\}\right] & \leq \varepsilon^{r-2} \sum_{\ell=1}^{\infty} \frac{n_{\ell} \mathbb{E}\left[\tilde{F}^{r}(\mathbf{Y}) \mathbf{1}\left\{\tilde{F}(\mathbf{Y}) \leq n_{\ell}^{1 / p}\right\}\right]}{\left(\log n_{\ell}\right)^{2-r / p} n_{\ell}^{r / p}} \\
& \leq \varepsilon^{r-2} \sum_{\ell=1}^{\infty} \frac{n_{\ell} \mathbb{E}\left[\tilde{F}^{r}(\mathbf{Y}) \mathbf{1}\left\{\widetilde{F}(\mathbf{Y}) \leq n_{\ell}^{1 / p}\right\}\right]}{n_{\ell}^{r / p}}
\end{aligned}
$$

Now, set $Z=\widetilde{F}(\mathbf{Y}), c_{n}=n^{1 / p}$ and $q=r$ in Fact 1 and note that $c_{n} / n^{1 / s} \nearrow \infty$ for any s such that $q=r>s>p$. Since $q=r>s$, we can conclude from Fact 1 that this last bound is finite.

Finally, note that the bound leading to (5.15) implies that

$$
\gamma_{\ell}^{1-1 / p} \mathbb{E} U_{n_{\ell}}^{(m)}\left(\widetilde{F} \cdot \mathbf{1}\left\{\widetilde{F}>\varepsilon \gamma_{\ell}^{1 / p}\right\}\right)=o(1) .
$$

Consequently, the above results, together with (5.18), imply via Borel-Cantelli and the arbitrary choice of $\delta>0$ that (5.17) holds, which, when combined with (5.16) and (5.15), completes the proof of (5.14). This also completes the proof of Theorem 2 since we have already established the result in (5.13).

6. Proof of Theorem 3: uniform consistency of $\hat{\boldsymbol{m}}_{\boldsymbol{n}}(t, h)$ to $\boldsymbol{m}_{\boldsymbol{\varphi}}(t)$

Theorem 3 is essentially a consequence of Theorem A. 2 in the Appendix. Recall that a U-statistic with U-kernel H is an unbiased estimator of $\mathbb{E} H$. Writing $\mathrm{d} \mathbf{x}$ and $\mathrm{d} \mathbf{y}$ for $\mathrm{d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{m}$ and
$\mathrm{d} y_{1} \mathrm{~d} y_{2} \cdots \mathrm{~d} y_{m}$, respectively, we see that

$$
\mathbb{E} U_{n}(1, h, \mathbf{t})=\int \widetilde{K}_{h}(\mathbf{t}-\mathbf{x}) f\left(x_{1}, y_{1}\right) \cdots f\left(x_{m}, y_{m}\right) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y}=\widetilde{f} * \widetilde{K}_{h}(\mathbf{t})
$$

where the function $\tilde{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is defined in (1.9). Since we assume f_{X} to be continuous on $J=$ I^{η}, the function \tilde{f} is continuous on $J^{m}=J \times \cdots \times J$. Therefore, we can infer from Theorem A. 2 that

$$
\begin{equation*}
\sup _{0<h<b_{n}} \sup _{\mathbf{t} \in I^{m}}\left|\mathbb{E} U_{n}(1, h, \mathbf{t})-\tilde{f}(\mathbf{t})\right| \longrightarrow 0 \tag{6.1}
\end{equation*}
$$

for all sequences of positive constants $b_{n} \rightarrow 0$, and where $I^{m}=I \times \cdots \times I$. In the same way, notice that

$$
\begin{aligned}
\mathbb{E} U_{n}(\varphi, h, \mathbf{t}) & =\int \varphi(\mathbf{y}) \widetilde{K}_{h}(\mathbf{t}-\mathbf{x}) f\left(x_{1}, y_{1}\right) \cdots f\left(x_{m}, y_{m}\right) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y} \\
& =\{\mathbb{E}[\varphi(\mathbf{Y}) \mid \mathbf{X}=\cdot] \widetilde{f}(\cdot)\} * \widetilde{K}_{h}(\mathbf{t})
\end{aligned}
$$

Hence, Theorem A. 2 applied to the class of functions \mathcal{M} as defined in (1.8) gives that

$$
\begin{equation*}
\sup _{0<h<b_{n}} \sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}}\left|\mathbb{E} U_{n}(\varphi, h, \mathbf{t})-m_{\varphi}(\mathbf{t}) \widetilde{f}(\mathbf{t})\right| \longrightarrow 0 . \tag{6.2}
\end{equation*}
$$

Keeping in mind the definition of $\widehat{\mathbb{E}} \hat{m}_{n, \varphi}(\mathbf{t}, h)$ in (1.7), it is clear that since f_{X} is bounded away from zero on J, (6.1) and (6.2) imply that

$$
\sup _{0<h<b_{n}} \sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}}\left|\widehat{\mathbb{E}} \hat{m}_{n, \varphi}(\mathbf{t}, h)-m_{\varphi}(\mathbf{t})\right|=o(1),
$$

completing the proof of Theorem 3.

7. Proof of Theorem 4: convergence rates of the conditional \boldsymbol{U}-statistic $\hat{\boldsymbol{m}}_{\boldsymbol{n}, \varphi}(\mathbf{t}, \boldsymbol{h})$

Observe that

$$
\begin{aligned}
\left|\hat{m}_{n, \varphi}(\mathbf{t}, h)-\widehat{\mathbb{E}} \hat{m}_{n, \varphi}(\mathbf{t}, h)\right|= & \left|\frac{U_{n}(\varphi, h, \mathbf{t})}{U_{n}(1, h, \mathbf{t})}-\frac{\mathbb{E} U_{n}(\varphi, h, \mathbf{t})}{\mathbb{E} U_{n}(1, h, \mathbf{t})}\right| \\
\leq & \frac{\left|U_{n}(\varphi, h, \mathbf{t})-\mathbb{E} U_{n}(\varphi, h, \mathbf{t})\right|}{\left|U_{n}(1, h, \mathbf{t})\right|} \\
& +\frac{\left|\mathbb{E} U_{n}(\varphi, h, \mathbf{t})\right| \cdot\left|U_{n}(1, h, \mathbf{t})-\mathbb{E} U_{n}(1, h, \mathbf{t})\right|}{\left|U_{n}(1, h, \mathbf{t})\right| \cdot\left|\mathbb{E} U_{n}(1, h, \mathbf{t})\right|} \\
= & (\mathrm{I})+(\mathbb{I}) .
\end{aligned}
$$

From Theorem 1, (6.1) and f_{X} bounded away from zero on J, we get, for some $\xi_{1}, \xi_{2}>0$ and c large enough in $a_{n}=c(\log n / n)^{1 / m}$,

$$
\liminf _{n \rightarrow \infty} \sup _{a_{n} \leq h<b_{n}} \sup _{\mathbf{t} \in I^{m}}\left|U_{n}(1, h, \mathbf{t})\right|=\xi_{1}>0 \quad \text { a.s. }
$$

and, for n large enough,

$$
\sup _{a_{n} \leq h<b_{n}} \sup _{\mathbf{t} \in I^{m}}\left|\mathbb{E} U_{n}(1, h, \mathbf{t})\right|=\xi_{2}>0 .
$$

Further, for $a_{n}^{\prime \prime}$ equalling either a_{n} or a_{n}^{\prime}, we readily obtain from the assumptions (1.5) or (1.6) on the envelope function that

$$
\sup _{a_{n}^{\prime \prime} \leq h<b_{n}} \sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}}\left|\mathbb{E} U_{n}(\varphi, h, \mathbf{t})\right|=O(1) .
$$

Hence, we can now use Theorem 1 to handle (\mathbb{I}), while for (I), depending on whether the class \mathcal{F} satisfies (1.5) or (1.6), we apply Theorem 1 or Theorem 2, respectively. Taking everything together, we conclude that for c large enough and some $C^{\prime \prime}>0$, with probability 1 ,

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \sup _{a_{n}^{\prime \prime} \leq h<b_{n}} \sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}} \frac{\sqrt{n h^{m}}\left|\hat{m}_{n, \varphi}(\mathbf{t}, h)-\widehat{\mathbb{E}} \hat{m}_{n, \varphi}(\mathbf{t}, h)\right|}{\sqrt{|\log h| \vee \log \log n}} \\
& \leq \limsup _{n \rightarrow \infty} \sup _{a_{n}^{\prime \prime} \leq h<b_{n}} \sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}} \frac{\sqrt{n h^{m}}(\mathrm{I})}{\sqrt{|\log h| \vee \log \log n}} \\
& \quad+\limsup _{n \rightarrow \infty} \sup _{a_{n}^{\prime \prime} \leq h<b_{n}} \sup _{\varphi \in \mathcal{F}} \sup _{\mathbf{t} \in I^{m}} \frac{\sqrt{n h^{m}}(\mathbb{I})}{\sqrt{|\log h| \vee \log \log n}} \\
& \leq C^{\prime \prime},
\end{aligned}
$$

proving the assertion of Theorem 4.

Appendix

The first result below is stated as Theorem 4 in Giné and Mason [7] and is essentially a consequence of a martingale inequality due to Brown [1]. The second theorem is a generalization of Bochner's lemma.

Theorem A. 1 (Theorem 4 of Giné and Mason [7]). Let X_{1}, X_{2}, \ldots be i.i.d. S-valued with probability law P. Let \mathcal{H} be a P-separable collection of measurable functions $f: S^{k} \rightarrow \mathbb{R}$ and assume that \mathcal{H} is P-canonical (which means that every f in \mathcal{H} is P-canonical). Further, assume that $\mathbb{E}\left\|f\left(X_{1}, \ldots, X_{k}\right)\right\|_{\mathcal{H}}^{r}<\infty$ for some $r>1$ and let s be the conjugate of r. Then, with S_{n}
defined as

$$
S_{n}=\sup _{f \in \mathcal{H}}\left|\sum_{i \in I_{n}^{k}} f\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)\right|, \quad n \geq k
$$

we have, for all $x>0$ and $0<c<1$,

$$
\mathbb{P}\left\{\max _{k \leq m \leq n} S_{m}>x\right\} \leq \frac{\mathbb{P}\left\{S_{n}>c x\right\}^{1 / s}\left(\mathbb{E} S_{n}^{r}\right)^{1 / r}}{x(1-c)}
$$

Theorem A.2. Let $I=[a, b]$ be a compact interval. Suppose that \mathcal{H} is a uniformly equicontinuous family of real-valued functions φ on $J=[a-\eta, b+\eta]^{d}$ for some $d \geq 1$ and $\eta>0$. Further, assume that K is an L_{1}-kernel with support in $[-B, B]^{d}$, with $B>0$ satisfying $\int_{\mathbb{R}^{d}} K(\mathbf{u}) \mathrm{d} \mathbf{u}=1$. Then, uniformly in $\varphi \in \mathcal{H}$ and for any sequence of positive constants $b_{n} \rightarrow 0$,

$$
\sup _{0<h<b_{n}} \sup _{\mathbf{z} \in I^{d}}\left|\varphi * K_{h}(\mathbf{z})-\varphi(\mathbf{z})\right| \longrightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where $K_{h}(\mathbf{z})=h^{-d} K(\mathbf{z} / h)$ and

$$
\varphi * K_{h}(\mathbf{z}):=h^{-d} \int_{\mathbb{R}^{d}} \varphi(\mathbf{x}) K\left(\frac{\mathbf{z}-\mathbf{x}}{h}\right) \mathrm{d} \mathbf{x}
$$

A.1. Moment bounds

Theorem A. 3 (Proposition 1 of Einmahl and Mason [5]). Let \mathcal{G} be a pointwise measurable class of bounded functions with envelope function G such that for some constants $C, v \geq 1$ and $0<\sigma \leq \beta$, the following conditions hold:
(i) $\mathbb{E} G^{2}(X) \leq \beta^{2}$;
(ii) $\mathcal{N}(\epsilon, \mathcal{G}) \leq C \epsilon^{-v}, \quad 0<\epsilon<1$;
(iii) $\sigma_{0}^{2}:=\sup _{g \in \mathcal{G}} \mathbb{E} g^{2}(X) \leq \sigma^{2}$;
(iv) $\sup _{g \in \mathcal{G}}\|g\|_{\infty} \leq \frac{1}{4 \sqrt{v}} \sqrt{n \sigma^{2} / \log \left(C_{1} \beta / \sigma\right)}$, where $C_{1}=C^{1 / v} \vee e$.

We then have, for some absolute constant A,

$$
\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} g\left(X_{i}\right)\right\|_{\mathcal{G}} \leq A \sqrt{v n \sigma^{2} \log \left(C_{1} \beta / \sigma\right)}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are i.i.d. Rademacher variables, independent of X_{1}, \ldots, X_{n}.
Theorem A. 4 (Corollary 1 of Giné and Mason [7]). Let \mathcal{F} be a collection of measurable functions $f: S^{m} \rightarrow \mathbb{R}$, symmetric in their entries, with absolute values bounded by $M>0$, and let P be any probability measure on (S, \mathcal{S}) (with X_{i} i.i.d.- P). Assume that \mathcal{F} is of $V C$-type with envelope function $F \equiv M$ and with characteristics A and v. Then, for every $m \in \mathbb{N}, A \geq e^{m}$,
$v \geq 1$, there exist constants $C_{1}:=C_{1}(m, A, v, M)$ and $C_{2}=C_{2}(m, A, v, M)$ such that for $k=$ $1, \ldots, m$,

$$
n^{k} \mathbb{E}\left\|U_{n}^{(k)}\left(\pi_{k} f\right)\right\|_{\mathcal{F}}^{2} \leq C_{1}^{2} 2^{k} \sigma^{2}\left(\log \frac{A}{\sigma}\right)^{k}
$$

assuming $n \sigma^{2} \geq C_{2} \log (A / \sigma)$, where σ^{2} is any number satisfying

$$
\left\|P^{m} f^{2}\right\|_{\mathcal{F}} \leq \sigma^{2} \leq M^{2}
$$

A.2. Exponential inequalities

Theorem A. 5 (Talagrand [14]). Let \mathcal{G} be a pointwise measurable class of functions satisfying

$$
\|g\|_{\infty} \leq M<\infty, \quad g \in \mathcal{G}
$$

We then have, for all $t>0$,

$$
\mathbb{P}\left\{\max _{1 \leq m \leq n}\left\|\sqrt{m} \alpha_{m}\right\|_{\mathcal{G}} \geq A_{1}\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} g\left(X_{i}\right)\right\|_{\mathcal{G}}+t\right)\right\} \leq 2\left\{\exp \left(-\frac{A_{2} t^{2}}{n \sigma_{\mathcal{G}}^{2}}\right)+\exp \left(-\frac{A_{2} t}{M}\right)\right\},
$$

where $\sigma_{\mathcal{G}}^{2}=\sup _{g \in \mathcal{G}} \operatorname{Var}(g(X))$ and A_{1}, A_{2} are universal constants.
We now state the exponential inequality that will permit us to control the probability term in (4.6) and which is stated as Theorem 5.3.14 in de la Peña and Giné [2].

Theorem A. 6 (Theorem 5.3.14 of de la Penã and Giné [2]). Let \mathcal{H} be a VC-subgraph class of uniformly bounded measurable real-valued kernels H on $\left(S^{m}, \mathcal{S}^{m}\right)$, symmetric in their entries. Then, for each $1 \leq k \leq m$, there exist constants $\left.c_{k}, d_{k} \in\right] 0, \infty[$ such that, for all $n \geq m$ and $t>0$,

$$
\left\{\left\|n^{k / 2} U_{n}^{(k)}\left(\pi_{k} H\right)\right\|_{\mathcal{H}}>t\right\} \leq c_{k} \exp \left\{-d_{k} t^{2 / k}\right\}
$$

Acknowledgements

We are grateful to Uwe Einmahl for pointing out an oversight and for very helpful suggestions. We also thank an Associate Editor for suggesting that we include a discussion on how our results can be used in the analysis of estimators with data-dependent bandwidth. David Mason's research was partially supported by an NSF Grant. Julia Dony's research is financed by a Ph.D. grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen).

References

[1] Brown, B. (1971). Martingale central limit theorems. Ann. Math. Statist. 42 59-66. MR0290428
[2] de la Peña, V.H. and Giné, E. (1999). Decoupling. From Dependence to Independence. Randomly Stopped Processes. U-Statistics and Processes. Martingales and Beyond. Probability and Its Applications. New York: Springer. MR1666908
[3] Dony, J., Einmahl, U. and Mason, D.M. (2006). Uniform in bandwidth consistency of local polynomial regression function estimators. Austr. J. Stat. 35 105-120.
[4] Einmahl, U. and Mason, D.M. (2000). An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theor. Probab. 13 1-37. MR1744994
[5] Einmahl, U. and Mason, D.M. (2005). Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 33 1380-1403. MR2195639
[6] Giné, E. and Mason, D.M. (2007a). On local U-statistic processes and the estimation of densities of functions of several sample variables. Ann. Statist. 35 1105-1145. MR2341700
[7] Giné, E. and Mason, D.M. (2007b). Laws of the iterated logarithm for the local U-statistic process. J. Theor. Probab. 20 457-485. MR2337137
[8] Härdle, W. and Marron, J.S. (1985). Optimal bandwidth selection in nonparametric regression function estimation. Ann. Statist. 13 1465-1481. MR0811503
[9] Hall, P. (1984). Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function. Z. Wahrsch. Verw. Gebiete 67 175-196. MR0758072
[10] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 293-325. MR0026294
[11] Rachdi, M. and Vieu, P. (2007). Nonparametric regression for functional data: Automatic smoothing parameter selection. J. Statist. Plann. Inference 137 2784-2801. MR2323791
[12] Sen, A. (1994). Uniform strong consistency rates for conditional U-statistics. Sankhyā 56 Ser. A 179194. MR1664910
[13] Stute, W. (1991). Conditional U-statistics. Ann. Probab. 19 812-825. MR1106287
[14] Talagrand, M. (1994). Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 28-76. MR1258865
[15] Tsybakov, A.B. (1987). On the choice of bandwidth in nonparametric kernel regression. Teor. Veroyatnost. i Primenen. 32 153-159. (In Russian.) MR0890944
[16] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. New York: Springer. MR1385671
[17] Vieu, P. (1991). Nonparametric regression: Optimal local bandwidth choice. J. Roy. Statist. Soc. Ser. B 53 453-464. MR1108340

Received February 2007 and revised March 2008

