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Invariance principles are obtained for a Markov process on a half-line with continuous paths on the interior.
The domains of attraction of the two different types of self-similar processes are investigated. Our approach
is to establish convergence of excursion point processes, which is based on Itô’s excursion theory and a
recent result on convergence of excursion measures by Fitzsimmons and the present author.
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1. Introduction

A strong Markov process on [0,∞) with continuous paths on the interior (0,∞) is characterized
as follows. Its generator L is an extension of Lm = d

dm
d

dx
on (0,∞) for a speed measure dm on

(0,∞) under Feller’s boundary condition ([5]), which is given by

rLu(0) =
∫

(0,∞)

{u(x) − u(0)}j (dx) + cu′(0) (1.1)

for constants c, r ≥ 0 and a jumping-in measure j on (0,∞). Itô and McKean [9] and Itô [8] have
constructed a sample path of the strong Markov process characterized as above for a possible
triplet (m, j, c, r). Such a process which starts from the origin will be denoted by Xm,j,c,r .

Lamperti [18] has characterized the totality of strong Markov processes X = Xm,j,c,r with

the self-similar property, (λ−αX(λt) : t ≥ 0)
law= (X(t) : t ≥ 0) for some α > 0. Such a process

behaves as a Bessel diffusion on the interior (0,∞) and its behavior when it starts from the
origin has the following two possibilities:

(a) it enters the interior continuously, that is, it is a reflecting Bessel process;
(b) it jumps into the interior according to the jumping-in measure j = j (β), where j (β) is

given by j (β)((x,∞)) = x−β .

The purpose of the present paper is to establish invariance principles for the process Xm,j,c,r .
The domain of attraction for the possible limit process (a) or (b) varies according to whether the
integral

∫ ∞
xj (dx) converges or diverges. The result is a generalization in our class of strong

Markov processes of that of Stone [23], who has characterized the domain of attraction of the
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case (a) in the class of diffusion processes (without jumps at the origin). For this purpose, we ap-
peal to the method of convergence of excursion point processes explained below, which enables
us to understand clearly what happens in the excursion level. In the proof of our results, a crucial
role is played by one of the main results of Fitzsimmons and Yano [6], who dealt with conver-
gence of excursion measures for diffusion processes on (0,∞) via time-change of the Brownian
excursion.

Let us give an example to illustrate the main theorems. Consider

Lm = x

2x + 1

d2

dx2
on (0,∞), (1.2)

that is, dm(x) = 2x+1
x

dx. The origin for Lm is exit but non-entrance and hence the contin-
uous entrance is not allowed, namely, the constant c must be 0. In particular, a reflecting

Lm-diffusion process does not exist. In addition, the process Xm,j,0,r exists if and only if∫
0+ x log(1/x)j (dx) + j ([1,∞)) < ∞ and either r > 0 or j ((0,1)) = ∞ holds. Then, by Theo-

rems 2.5 and 2.6, we obtain the following:

(i) if Xm,j,0,r is non-trivial and
∫ ∞

xj (dx) < ∞, then the process 1√
λ
Xm,j,0,r (λ·) converges

in law to a reflecting Brownian motion;
(ii) if j ((x,∞)) ∼ x−βL(x) as x → ∞ for β ∈ (0,1) and some slowly varying function L

at infinity (with
∫ ∞

xj (dx) = ∞ holding true in this case), then the process 1√
λ
Xm,j,0,r (λ·)

converges in law to the process X2x,j (β),0,0(·).
The method of the time-change of Brownian motion is quite useful to functional limit theo-

rems of diffusion processes. For example, see [17,19,23,24]. Recently, Fitzsimmons and Yano [6]
have obtained limit theorems where the method of the time-change of the Brownian excursion is
fully exploited. In the present paper, based on Itô’s excursion theory ([7,8]) and the method of the
time-change of the Brownian excursion, we construct sample paths of the processes Xm,j,c,r si-
multaneously for all possible characteristics (m, j, c, r) from a common excursion point process.
Our limit theorems are then reduced to certain continuity lemmas of Xm,j,c,r and its inverse local
time process ηm,j,c,r with respect to (m, j, c, r).

The key to our limit theorems is convergence of excursion point processes, which is stated
in Propositions 4.2 and 4.3. Vague or other convergences of Poisson point processes on finite-
dimensional spaces have been studied by many authors; see, for example, [3,4,10–12,14–16]. For
our purposes, we need a certain stronger convergence of Poisson point processes on the space of
excursions. Let us roughly explain the idea. The excursion point process Nm,j,c of the process
Xm,j,c,r is realized as the image measure of a certain time-changed path em,j,c under the ex-
cursion point process N̂ of a Brownian motion (see Lemma 3.3). The propositions then assert
that if (mλ, jλ, cλ) converges to (m, j, c) in a certain sense, then emλ,jλ,cλ converges to em,j,c

in a certain sense for all points in the support of the excursion point process N̂ almost surely.
The convergence emλ,jλ,cλ → em,j,c under N̂ implies convergence of excursion point processes
Nmλ,jλ,cλ → Nm,j,c. This may be regarded as an analogue of Skorokhod representation, which
asserts that weak convergence of probability measures can be realized as almost-sure conver-
gence of random variables on a certain probability space. We point out that our convergence of
excursion point processes in the above sense is stronger than the vague convergence of those.
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The present paper is organized as follows. In Section 2, we state the main theorems. In Sec-
tion 3, we follow Itô [8] to construct a sample path of the process from an excursion point process.
Continuity lemmas of excursion point processes which play important roles in proving our main
theorems are stated in Section 4 and proved in Section 5. Under certain extra assumptions, we
prove almost-sure continuity lemmas for the inverse local time processes in Section 6 and for the
strong Markov processes considered in Section 7. In Section 8, we remove the extra assumptions
and obtain in-probability continuity lemmas. We then conclude by completing the proof of our
invariance principles.

2. Main theorems

Let m : (0,∞) → (−∞,∞) be a right-continuous and strictly increasing function. For such m,
we denote Lm = d

dm
d

dx
. We always assume that

∫
0+ x dm(x) < ∞, that is, that the origin for Lm

is an exit boundary. There then exists an absorbing Lm-diffusion process starting from x > 0,
whose law will be denoted by Qx

m. If m(0+) is finite, that is, the origin for Lm is exit and
entrance, we denote by nm the excursion measure away from the origin for the reflecting Lm-
diffusion process. For a Radon measure j on (0,∞) and for non-negative constants c and r , we
denote by Xm,j,c,r , if it exists, a strong Markov process starting from the origin whose generator
is an extension of Lm on (0,∞) and which is subject to Feller’s boundary condition (1.1). The
following theorem is due to Feller [5] and Itô [8].

Theorem 2.1. Let j be a Radon measure on (0,∞) and let c and r be non-negative constants.
Then the process Xm,j,c,r exists if and only if the following conditions (C) and (C+) hold:

(C) the pair (m, j) satisfies

j ((x0,∞)) +
∫

(0,x0)

j (dx)

∫ x

0
m((y, x0))dy < ∞ (2.1)

for some x0 > 0, and

c = 0 in the case where m(0+) = −∞; (2.2)

(C+) r > 0 in the case where c = 0 and j ((0, x0)) < ∞.

If the process exists, then its excursion measure away from the origin is described as

nm,j,c(�) =
∫

(0,∞)

j (dx)Qx
m(�) + cnm(�). (2.3)

We will denote by Lm,j,c,r (t) a version of the local time at the origin, chosen so that

P

[∫ ∞

0
e−t dLm,j,c,r (t)

]
= 1

Cm,j,c,r

, (2.4)
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where

Cm,j,c,r = r +
∫

(0,∞)

(1 − e−t )nm,j,c

(
ζ(e) ∈ dt

)
, (2.5)

ζ(e) being the lifetime of an excursion path e. We will denote the right-continuous inverse of
Lm,j,c,r by ηm,j,c,r .

Remark 2.2. Theorem 2.1 has been obtained by Feller [5] in the case where c is general but
m(0+) is finite, and by Itô [8] in the case where m is general but c = 0. We can prove Theorem 2.1
in full generality in the same way as Itô [8], so we omit the proof.

Remark 2.3. The condition (2.1) always implies that
∫

0+ xj (dx) < ∞. The converse also holds
if m(0+) is finite.

Example 2.4. Let us give typical examples of m and j . For α > 0, we define

m(α)(x) =
⎧⎨
⎩

(1 − α)−1x1/α−1, if 0 < α < 1,
logx, if α = 1,
−(α − 1)−1x1/α−1, if α > 1.

(2.6)

For β > 0, we define a Radon measure j (β) on (0,∞) by

j (β)(dx) = βx−β−1 dx. (2.7)

According to Lamperti [18], Theorem 5.2, the totality of self-similar processes in the class of our
strong Markov processes X = Xm,j,c,r consists of the following two classes:

(a) X = Xm(α),0,c,0 for some 0 < α < 1 and c > 0. The process X is then a reflecting Bessel
process of dimension 2 − 2α ∈ (0,2). The process X has the α-self-similar property

(
λ−αX(λt) : t ≥ 0

) law= (
X(t) : t ≥ 0

)
. (2.8)

In addition, its inverse local time process η = ηm(α),0,c,0 is an α-stable subordinator which has
the 1/α-self-similar property.

(b) X = Xm(α),j (β),0,0 for some α > 0 and β ∈ (0,1/α). The process X also has the α-self-
similar property. In addition, its inverse local time process η = ηm(α),j (β),0,0 is an αβ-stable sub-
ordinator which has the 1/(αβ)-self-similar property.

We equip the set of cadlag paths with Skorokhod’s J1-topology, following Lindvall [20]; see
also [11] and [12]. For cadlag paths wλ and w, we say that wλ → w (J1) if there exists a family
of homeomorphisms of [0,∞) denoted by {�λ :λ > 0} such that

lim
λ→∞ sup

t∈[0,T ]
|�λ(t) − t | = 0 for all T > 0 (2.9)
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and

lim
λ→∞ sup

t∈[0,T ]
|wλ(�λ(t)) − w(t)| = 0 for all T > 0. (2.10)

Note that compact uniform convergence always implies convergence (J1) and that the converse
holds if the limit is a continuous path on [0,∞).

Generally speaking, invariance principles require one of the following conditions to hold:

(M1) m(x) ∼ (1 − α)−1x1/α−1K(x) as x → ∞ for some α ∈ (0,1);
(M2) m(λx) − m(λ) ∼ (logx)K(λ) as λ → ∞ for all x > 0;
(M3) m(∞) < ∞ and m(∞) − m(x) ∼ (α − 1)−1x1/α−1K(x) as x → ∞ for some α ∈

(1,∞).

Here, K(x) denotes a slowly varying function at infinity. For the conditions (M2) and (M3), see,
for example, [17] and also [6]. For a certain technical reason, we need the following assumption,
stronger than (M1)–(M3):

(M) dm(x) = m′(x)dx on (x0,∞) for some x0 > 0, where m′(x) is a non-negative locally
bounded measurable function such that

m′(x) ∼ α−1x1/α−2K(x) as x → ∞ (2.11)

and m satisfies an integrability condition
∫

0+ x log log(1/x)dm(x) < ∞.

We say that X = Xm,j,c,r is trivial if j = 0 and c = 0, which is equivalent to saying that X(t) ≡ 0;
in fact, the process Xm,j,c,r starts from the origin and does not jump in (0,∞) nor enter (0,∞)

continuously. We now state the main theorems of the present paper.

Theorem 2.5 (The convergent case). Assume that the process Xm,j,c,r exists and is not trivial
and that the condition (M) holds for α ∈ (0,1) and for some slowly varying function K(x) at
infinity. Assume, in addition, that the following holds:

(J1)
∫ ∞

xj (dx) < ∞.

Let u(λ) = λ1/αK(λ). It then holds that

1

λ
Xm,j,c,r (u(λ)·) → Y (α)(·) (J1) in law (2.12)

as λ → ∞, where Y (α) stands for a reflecting Bessel process of dimension 2 − 2α.

Theorem 2.6 (The divergent case). Assume that the process Xm,j,c,r exists and that the condi-
tion (M) holds for 0 < α < ∞ and for some slowly varying function K(x) at infinity. Assume, in
addition, that the following holds:

(J2) j ((x,∞)) ∼ x−βL(x) as x → ∞ for some 0 < β < min{1,1/α} and for some slowly
varying function L(x) at infinity.
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Let u(λ) = λ1/αK(λ). It then holds that

1

λ
Xm,j,c,r (u(λ)·) → Xm(α),j (β),0,0(·) (J1) in law (2.13)

as λ → ∞.

3. Construction of a sample path

Based on the method of Itô [8] for constructing a sample path of the process Xm,j,c,r under
Feller’s boundary condition (1.1), we shall give a realization of the processes on a common
probability space. For the general excursion theory, see [7,21] and also [2].

Let E denote the set of continuous paths e : [0,∞) → [0,∞) such that if e(t0) = 0 for some
t0 > 0, then e(t) = 0 for all t > t0. We call ζ = ζ(e) = inf{t > 0 : e(t) = 0} the lifetime of a path
e ∈ E. Here, we follow the usual convention that inf∅ = ∞. We equip E with a compact uniform
topology and denote by B(E) its Borel σ -field. For e ∈ E, we denote the first hitting time to a ≥ 0
by τa = τa(e) = inf{t ≥ 0 : e(t) = a}. In particular, τ0(e) = 0 if e(0) = 0. The supremum value is
denoted by M = M(e) = supt≥0 e(t). Under our notation, we note that {τa < ∞} = {M ≥ a} on
{ζ < ∞}.

We recall the Brownian excursion measure. Let nBE denote the excursion measure away from
the origin of a reflecting Brownian motion. That is, nBE is a σ -finite measure on E such that

nBE
(
e(t + ·) ∈ �

) =
∫

(0,∞)

Qx
BM(�)P 0

3B

(
e(t) ∈ dx

)
for t > 0 and � ∈ B(E), (3.1)

where Qx
BM stands for the law on E of an absorbing Brownian motion starting from x > 0 and

P 0
3B for that of a 3-dimensional Bessel process starting from 0 with the generator 1

2
d2

dx2 + 1
x

d
dx

.
It is obvious that nBE(E \ E1) = 0, where

E1 = {e ∈ E : e(0) = 0,0 < ζ(e) < ∞}. (3.2)

Just as an almost everywhere Brownian path does, an almost everywhere excursion path with
respect to the Brownian excursion measure has local times, which is precisely stated as follows.

Theorem 3.1 (See, e.g., [2]). There exist a measurable functional � : [0,∞) × [0,∞) × E →
[0,∞) and a set E2 ∈ B(E) with nBE(E \ E2) = 0 such that, for every fixed e ∈ E2, the function
�(t, x) = �(t, x, e) satisfies the following:

(i) the function [0,∞) × [0,∞) 
 (t, x) �→ �(t, x) is jointly continuous;
(ii) for any x > 0, the function t �→ �(t, x) is non-decreasing;

(iii)
∫ t

0 1A(e(s))ds = 2
∫
A

�(t, x)dx holds for all t ≥ 0 and A ∈ B([0,∞)).

We remark that it follows from the occupation formula (iii) and the bi-continuity (i) that

�(t, x) = lim
ε→0+

1

2ε

∫ t

0
1[x,x+ε)(e(s))ds for e ∈ E2. (3.3)
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Moreover, we remark that �(t,0) = 0 holds for nBE-almost everywhere excursion path, whereas
�(t,0) > 0 for almost everywhere Brownian path.

Following [6], we introduce the time-change of the Brownian excursion. For a right-
continuous strictly increasing function m : (0,∞) → (−∞,∞) such that

∫
0+ x dm(x) < ∞,

we define a clock Am(t) = Am[e](t) by Am(t) = ∫
(0,∞)

�(t, x)dm(x). Lemma 2.4 of [6], which
we may call a version of Jeulin’s lemma (see also [13] and [22]), says that Am(t) < ∞ for
nBE-almost every excursion path. We now define a time-changed excursion path by em(t) =
e(A−1

m (t)) for t ≥ 0. For x > 0, we define a shifted path θx(e) by

θx(e)(·) =
{

e
(
τx(e) + ·), if M(e) > x,

0(·), if M(e) ≤ x,
(3.4)

where 0 ∈ E is defined by 0(t) ≡ 0. We define em,x by the time-changed excursion path of θx(e),
which coincides with the shifted path of em, namely,

em,x = (θx(e))m = θx(em). (3.5)

Then, fundamental to our method are the following identities (see the equalities (2.13) and (2.17)
and Theorem 2.5 of [6]). For any � ∈ B(E) such that 0 /∈ �,

Qx
m(�) = xnBE(em,x ∈ �) (3.6)

and

nm(�) = nBE(em ∈ �). (3.7)

Remark 3.2. If m(0+) is finite, then the measure nm is the excursion measure of the reflecting
Lm-diffusion process in the usual sense. Otherwise, nm is never an excursion measure for any
strong Markov process since

∫
0+ tnm(ζ(e) ∈ dt) = ∞. Nevertheless, the measure nm, which we

call the generalized excursion measure, gives a useful tool to consider limit theorems involving
the case where the origin for Lm is exit but non-entrance. See [25] and [6] for details.

Let j be a Radon measure j on (0,∞) such that
∫

0+ xj (dx) < ∞ and let c ≥ 0 be a constant.
For a such pair (j, c), we define a function J (z) on (0,∞) by

J (z) = inf

{
x > 0 : c +

∫
(0,x]

yj (dy) > z

}
. (3.8)

Let J : (0,∞) → [0,∞] be a right-continuous non-decreasing function such that J (∞) = ∞.
Conversely, if such a function J is given, then we recover a pair (j, c) by setting

j (dx) = dJ−1(x)

x
and c = c(J ) = inf{z > 0 :J (z) > 0}, (3.9)

where J−1 is the right-continuous inverse of J : J−1(x) = inf{z > 0 :J (z) > x}. We always
identify (j, c) with J in this way. Set d(J ) = sup{z > 0 :J (z) < ∞}. Then, d(J ) = c(J ) +∫
(0,∞)

yj (dy).
Based on the identities (3.6) and (3.7), we obtain the following.
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Lemma 3.3. Let m : (0,∞) → (−∞,∞) be a right-continuous strictly increasing function and
J : (0,∞) → [0,∞] be a right-continuous non-decreasing function such that J (∞) = ∞. Then,
for any non-negative measurable functional F on E such that F(0) = 0, the identity

∫
(0,d(J ))×E

F
(
em,J (z)

)
dz ⊗ nBE(de) =

∫
E

F(e)nm,j,c(de) (3.10)

holds, where j and c are given by (3.9) and

nm,j,c(�) =
∫

(0,∞)

j (dx)Qx
m(�) + cnm(�). (3.11)

Proof. We divide the domain of the integral into the two disjoint intervals as (0, d(J )) = (0, c]∪
(c, d(J )) and in the integral on (c, d(J )), we change the variables by x = J (z). The left-hand
side of (3.10) then becomes

∫
(0,∞)×E

F(em,x)xj (dx) ⊗ nBE(de) + c

∫
E

F(em)nBE(de). (3.12)

Using the identities (3.6) and (3.7), we rewrite the above expression as
∫

(0,∞)×E

F(e)j (dx) ⊗ Qx
m(de) + c

∫
E

F(e)nm(de), (3.13)

which is exactly the right-hand side of (3.10). �

Let N̂ be a Poisson point process on (0,∞) × (0,∞) × E with its characteristic measure
ds ⊗ dz ⊗ nBE(de) defined on a probability space (�̂, F̂ , P̂ ). Lemma 3.3 then asserts that the
excursion point process corresponding to the excursion measure nm,j,c can be realized by the
law of em,J (z) under N̂(ds × dz × de). We define a process η̂m,J,r = (η̂m,J,r (s)) as

η̂m,J,r (s) = rs +
∫

(0,d(J ))×E

ζ
(
em,J (z)

)
N̂

(
(0, s] × dz × de

)
. (3.14)

Here, we note that

ζ
(
em,J (z)

) =
{

Am(ζ ) − Am

(
τJ (z)

)
, on {M(e) > J(z)},

0, on {M(e) ≤ J (z)}. (3.15)

Under the identifications (3.8) and (3.9) between (j, c) and J , the conditions (C) and (C+) of
Theorem 2.1 stated in terms of (m, j, c) are translated into those in terms of (m,J ) as follows:

(C) the pair (m,J ) satisfies

∫
(z0,d(J ))

dz

J (z)
+

∫
(c(J ),z0)

dz

J (z)

∫ J (z)

c(J )

m((y, J (z0)))dy < ∞ (3.16)
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for some z0 ∈ (c(J ), d(J )) and

c(J ) = 0 in the case where m(0+) = −∞; (3.17)

(C+) r > 0 in the case where
∫

0+
dz

J (z)
< ∞.

We then obtain

Lemma 3.4. Let m : (0,∞) → (−∞,∞) be a right-continuous strictly increasing function and
J : (0,∞) → [0,∞] a right-continuous non-decreasing function such that J (∞) = ∞. The
process η̂m,J,r is then a non-decreasing Lévy process if and only if the condition (C) holds. In this
case, the Lévy measure is given by nm,j,c(ζ(e) ∈ ·). Moreover, the process η̂m,J,r is increasing if
and only if the condition (C+) holds.

Proof. It is immediate by construction that η̂m,J,r = (η̂m,J,r (s) : s ≥ 0) is a Lévy process. The
Laplace transform P̂ [e−ξ η̂m,J,r (s)] is given by

exp

{
−ξrs − s

∫
(0,∞)×E

(
1 − e−ξζ(em,J (z))1{M(e)>J(z)})dz ⊗ nBE(de)

}
. (3.18)

Using Lemma 3.3, we rewrite the expression (3.18) as

exp

{
−ξrs − s

∫
(0,∞)

(1 − e−ξ t )nm,j,c

(
ζ(e) ∈ dt

)}
. (3.19)

It is well known that the integral∫
(0,∞)

j (dx)

∫
(0,∞)

(1 − e−ξ t )Qx
m

(
ζ(e) ∈ dt

)
(3.20)

is finite for all ξ > 0 if and only if (2.1) (or (3.16)) of the condition (C) holds and that the integral∫
(0,∞)

(1 − e−ξ t )nm

(
ζ(e) ∈ dt

)
(3.21)

is finite for all ξ > 0 if and only if (2.2) (or (3.17)) of the condition (C) holds. Hence, we conclude
that the condition (C) is the necessary and sufficient condition for the process η̂m,J,r to be a
Lévy process. It is obvious that the Lévy process η̂m,J,r is strictly increasing if and only if the
condition (C+) is satisfied. �

Suppose that the conditions (C) and (C+) hold. We define a process X̂m,J,r = (X̂m,J,r (t)) by
setting

X̂m,J,r (t) = em,J (z)

(
t − η̂m,J,r (s−)

)
(3.22)

if η̂m,J,r (s−) ≤ t < η̂m,J,r (s) for some point (s, z, e) in the support of N̂(ds × dz × de) and by
setting X̂m,J,r (t) = 0 otherwise. We now have the following.

Proposition 3.5. Let m : (0,∞) → (−∞,∞) be a right-continuous strictly increasing function
and J : (0,∞) → [0,∞] a right-continuous non-decreasing function such that J (∞) = ∞. Sup-
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pose that conditions (C) and (C+) hold. The law of (X̂m,J,r , η̂m,J,r ) on the probability space
(�̂, F̂ , P̂ ) is then identical to that of (Xm,j,c,r , ηm,j,c,r ).

The proof is obvious by Theorem 2.1 and Lemma 3.3, so we omit it. Therefore, we obtain a
realization of the process Xm,j,c,r defined on the common probability space (�̂, F̂ , P̂ ).

Remark 3.6. If m(0+) is finite, that is, the origin for Lm is exit and entrance, then the process
Xm,0,c,0 for positive c exists, which is exactly a reflecting Lm-diffusion process starting from the
origin. In this case, the function J (z) is given by

J (z) = V(0,c)(z) =
{

0, for 0 < z < c,
∞, for z ≥ c.

(3.23)

4. Convergence of excursion point processes

For a function m which satisfies either one of the three conditions (M1)–(M3), we set

mλ(x) =
⎧⎨
⎩

m(λx)/{λ1/α−1K(λ)}, if 0 < α < 1,
{m(λx) − m(λ)}/{λ1/α−1K(λ)}, if α = 1,
{m(λx) − m(∞)}/{λ1/α−1K(λ)}, if α > 1

(4.1)

so that dmλ(x) = dm(λx)/{λ1/α−1K(λ)} in all cases.
The following lemma plays an important role in the proofs of Theorems 2.5 and 2.6.

Lemma 4.1. Let v(λ) be an arbitrary function. The identity in law
(

1

λ
X̂m,J,r (u(λ)·), 1

u(λ)
η̂m,J,r (v(λ)·)

)
law= (X̂mλ,Jλ,rλ(·), η̂mλ,Jλ,rλ(·)) (4.2)

holds, where

rλ = v(λ)

u(λ)
r (4.3)

and Jλ is defined by

Jλ(z) = 1

λ
J

(
λ

v(λ)
z

)
. (4.4)

Proof. For e ∈ E and λ > 0, we define eλ ∈ E by eλ(t) = λe(t/λ2). Then, nBE(eλ ∈ ·) = λnBE(·)
and we hence obtain{∫

1A(s, x, e)N̂(ds × dx × de) :A ∈ B
(
(0,∞) × (0,∞) × E

)}
(4.5)

law=
{∫

1A(v(λ)s, λx/v(λ), eλ)N̂(ds × dx × de) :A ∈ B
(
(0,∞) × (0,∞) × E

)}
.
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Using this identity in law, we immediately obtain (4.2). �

By the definition (4.1), it is immediate that

lim
λ→∞mλ(x) = m(α)(x) for all x > 0. (4.6)

Consider the case of Theorem 2.5. Since d(J ) = c + ∫
(0,∞)

yj (dy), the assumption (J1) is
equivalent to d(J ) < ∞. We take v(λ) = λ and adopt the notation of Lemma 4.1. We then see
that

rλ = r

λ1/α−1K(λ)
→ 0 and Jλ(z) = J (z)/λ → V(0,c̃)(z), (4.7)

where c̃ = d(J ) = c + ∫
(0,∞)

yj (dy). Here, the function V(0,c̃) was introduced in (3.23).

Consider the case of Theorem 2.6. The assumption (J2) is equivalent to J−1(x) ∼ β
1−β

x1−β ×
L(x) as x → ∞. We take v(λ) = λβ/L(λ) and adopt the notation of Lemma 4.1. We then see
that

rλ = r

λ1/α−βK(λ)L(λ)
→ 0 and Jλ(z) = J (λ1−βL(λ)z)

λ
→ J (β)(z), (4.8)

where J (β)(z) = (
1−β
β

z)1/(1−β), c(J (β)) = 0 and d(J (β))−1(x) = xj(β)(dx).
Now, we may think that our problem is reduced to a suitable continuity of the excursion path

em,J (z) and of its lifetime ζ(em,J (z)) with respect to (m,J ) for fixed points (z, e). Central to our
method are the following two continuity lemmas of excursion point processes.

Proposition 4.2 (The convergent case). Suppose that
∫

0+ x log log(1/x)dm(x) < ∞ and that
any one of the three conditions (M1), (M2) and (M3) holds. Suppose, in addition, that the con-
dition (J1) holds. Set v(λ) = λ and adopt the notation (4.3) and (4.4). The following then holds
with P̂ -probability one:

lim
λ→∞ ζ

(
emλ,Jλ(z)

) = ζ
(
em(α)

)
. (4.9)

Further,

lim
λ→∞ sup

t≥0

∣∣emλ,Jλ(z)(t) − em(α)(t)
∣∣ = 0 (4.10)

holds for all (z, e) in the support of the measure N̂((0,∞) × dz × de).

Proposition 4.3 (The divergent case). Suppose that
∫

0+ x log log(1/x)dm(x) < ∞ and that
any one of the three conditions (M1), (M2) and (M3) holds. Suppose, in addition, that the con-
dition (J2) holds. Set v(λ) = λβ/L(λ) and adopt the notation (4.3) and (4.4). The following then
holds with P̂ -probability one:

lim
λ→∞ ζ

(
emλ,Jλ(z)

) = ζ
(
em(α),J (β)(z)

)
. (4.11)
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Further,

lim
λ→∞ sup

t≥0

∣∣emλ,Jλ(z)(t) − em(α),J (β)(z)(t)
∣∣ = 0 (4.12)

holds for all (z, e) in the support of the measure N̂((0,∞) × dz × de).

The proofs of Propositions 4.2 and 4.3 will be given in the next section.

5. Proof of the continuity lemmas of the excursion point
processes

We introduce the following assumption.

(A1) mλ(x) → m∞(x) as λ → ∞ for all continuity points x > 0 of m∞ and

lim
δ→0+ lim sup

λ→∞

∫
(0,δ]

x log log(1/x)dmλ(x) = 0. (5.1)

Condition (5.1) is called ML-tightness in [6]. The following theorem plays a crucial role in
the proof of our main theorems.

Theorem 5.1 (Theorem 2.9 of [6]). Suppose that condition (A1) holds. Set

E3 =
{
e ∈ E : lim

λ→∞ sup
t≥0

|Amλ(t) − Am∞(t)| = 0

}
(5.2)

and

E4 =
{
e ∈ E : lim

λ→∞ sup
t≥0

|emλ(t) − em∞(t)| = 0

}
. (5.3)

Then, nBE(E \ (E3 ∩ E4)) = 0.

For later use, we set E∗ = E1 ∩ E2 ∩ E3 ∩ E4 so that nBE(E \ E∗) = 0.
In addition, we introduce the following assumption.

(A2) Jλ(z) → J∞(z) as λ → ∞ for all z > 0 and the right-continuous inverse J−1∞ (x) =
inf{z > 0 :J∞(z) > x} is absolutely continuous on (0,∞) with respect to the Lebesgue
measure dx.

Under these assumptions, we obtain the following.

Lemma 5.2. Suppose that the conditions (A1) and (A2) hold. The following statement then holds
with P̂ -probability one:

lim
λ→∞ ζ

(
emλ,Jλ(z)

) = ζ
(
em∞,J∞(z)

)
. (5.4)
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Further,

lim
λ→∞ sup

t≥0

∣∣emλ,Jλ(z)(t) − em∞,J∞(z)(t)
∣∣ = 0 (5.5)

holds for all (z, e) in the support of N̂((0,∞) × dz × de).

Proof. Set

U =
{
(x, e) ∈ [0,∞) × E∗ : lim

ε→0
τx+ε(e) = τx(e)

}
. (5.6)

Recall the definitions (5.2) and (5.3) and the identity (3.15). Then, by assumption (A2), it is obvi-
ous that the convergences (5.4) and (5.5) hold if (J∞(z), e) ∈ U . Hence, the desired convergence
follows if we prove that, with P̂ -probability one, the set

{(z, e) ∈ (0,∞) × E : (J∞(z), e) /∈ U} (5.7)

has null measure with respect to the point measure N̂((0,∞) × dz × de). For this, it suffices to
show that the set (5.7) has null measure with respect to the characteristic measure dz ⊗ nBE(de).

We note that

lim
x→0+ τx(e) = 0 on E1 = {e(0) = 0,0 < ζ(e) < ∞}. (5.8)

In fact, τx(e) converges decreasingly to some t0 ∈ [0, ζ(e)) as x tends decreasingly to 0 and hence
x = e(τx) → e(t0) = 0 by the continuity of e(t) at t = 0, which shows that t0 = 0. Hence, we
obtain nBE(limx→0+ τx(e) �= 0) = 0, which shows that the set (5.7) restricted to {(z, e) :J∞(z) =
0} has null measure with respect to the characteristic measure dz ⊗ nBE(de).

Let e ∈ E be fixed for the time being. Since the function (0,M(e)] 
 x �→ τx(e) is non-
decreasing and since τx(e) = ∞ for all x > M(e), we have limε→0 τx+ε(e) = τx(e) for dx-
almost every x. Hence, we conclude that the set (5.7) restricted to {(z, e) : 0 < J∞(z) < ∞} has
null measure with respect to the characteristic measure dz ⊗ nBE(de). The proof is now com-
plete. �

Let us reduce Propositions 4.2 and 4.3 to Lemma 5.2. For this, we check that assumptions
(A1) and (A2) hold under each of the assumptions of Propositions 4.2 and 4.3.

The following lemma is a slight improvement of [6], Lemma 2.17.

Lemma 5.3. If
∫

0+ x log log(1/x)dm(x) < ∞ and if any one of the three conditions (M1), (M2)
and (M3) is satisfied, then condition (A1) is satisfied.

Proof. It is obvious that mλ(x) → m(x) as λ → ∞ for all x > 0. Hence, we need only to
check condition (5.1). Set m0(x) = m(max{x,1}) and m1(x) = m(min{x,1}). Since dm(x) =
dm0(x)+dm1(x), it suffices to show that the condition (5.1) is satisfied for m = m0 and m = m1.

For the proof of (5.1) for m = m0, the same argument as used in [6], Lemma 2.17, is still valid
and hence we omit it.
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Writing dm1
λ(x) = dm(λx)/{λ1/α−1K(λ)}, we have

∫
(0,δ]

x log log(1/x)dm1
λ(x) = 1

λ1/αK(λ)

∫
(0,1]

1(0,λδ](x)x log log(λ/x)dm(x). (5.9)

Using the inequality a + b ≤ (1 + a)(1 + b) for a, b > 0, we see that the right-hand side of (5.9)
is dominated by

1 + log{1 + logλ}
λ1/αK(λ)

∫
(0,1]

x
{
1 + log{1 + log(1/x)}}dm(x). (5.10)

Since
∫

0+ x log log(1/x)dm(x) < ∞, the integral in (5.10) converges and hence the expres-
sion (5.10) converges to zero as λ → ∞, which shows that (5.1) holds for m = m1. �

Remark 5.4. Thanks to Lemma 5.3, some of the assumptions of [6], Theorem 2.16, can be
relaxed—the assumption on m near the origin can be replaced by the assumption

∫
0+ x ×

log log(1/x)dm(x) < ∞.

Lemma 5.5. Suppose that either one of the conditions (J1) and (J2) holds. The condition (A2) is
then satisfied, where J∞ = V(0,d(J )) in the former case and where J∞ = J (β) in the latter case.

Proof. This is immediate by (4.7) and (4.8). �

Combining Lemma 5.2 with Lemmas 5.3 and 5.5, we have completed the proofs of Proposi-
tions 4.2 and 4.3.

6. Convergence of the inverse local time process

The following two propositions, although they need extra assumptions, play an essential role in
our proof of Theorems 2.5 and 2.6.

Proposition 6.1 (The convergent case). Suppose that the conditions (M) and (J1) hold. Sup-
pose, in addition, that dm(x) has a locally bounded density on the whole of (0,∞) such that

lim sup
x→0+

m′(x)

x1/α−2
< ∞. (6.1)

Set v(λ) = λ and adopt the notation (4.3) and (4.4). Then, with P̂ -probability one,

lim
λ→∞ sup

s∈[0,S]

∣∣η̂mλ,Jλ,rλ(s) − η̂m(α),V(0,d(J )),0(s)
∣∣ = 0 for all S > 0. (6.2)

Proposition 6.2 (The divergent case). Suppose that the conditions (M) and (J2) hold. Suppose,
in addition, that dm(x) has a locally bounded density on the whole of (0,∞) such that (6.1)
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holds and that

lim sup
x→0+

xβ−1
∫

(0,x]
yj (dy) < ∞. (6.3)

Set v(λ) = λβ/L(λ) and adopt the notation (4.3) and (4.4). Then, with P̂ -probability one,

lim
λ→∞ sup

s∈[0,S]
∣∣η̂mλ,Jλ,rλ(s) − η̂m(α),J (β),0(s)

∣∣ = 0 for all S > 0. (6.4)

Remark 6.3. The conclusions (6.2) and (6.4) are uniform convergence instead of J1-convergen-
ce, in spite of cadlag processes. The reason is that the processes involved jump at the same points.

Consider the following conditions:

(A3) rλ → r∞ as λ → ∞;
(A4) each mλ has a locally bounded density, that is, dmλ(x) = m′

λ(x)dx, and m′
λ(x) ≤ m′+(x)

and Jλ(z) ≥ J+(z) hold for all x, z ∈ (0,∞) and λ > 0 for some (m+, J+) which satis-
fies the conditions (3.16) and (3.17).

We then obtain the following continuity lemma of the Lévy process.

Lemma 6.4. If the conditions (A1)–(A4) are satisfied, then the convergence

lim
λ→∞ sup

s∈[0,S]
|η̂mλ,Jλ,rλ(s) − η̂m∞,J∞,r∞(s)| = 0 (6.5)

holds with P̂ -probability one for all S > 0.

Proof. Recall that sups∈[0,S] |η̂mλ,Jλ,rλ(s)− η̂m∞,J∞,r∞(s)| is dominated by the sum of |rλ − r∞|
and the integral Iλ := ∫

(0,∞)×E
|Fλ(z, e) − F∞(z, e)|N̂((0, S] × dz × de), where Fλ(z, e) =

ζ(emλ,Jλ(z))1{M(e)>Jλ(z)} for λ ≤ ∞. Set F+(z, e) = ζ(em+,J+(z))1{M(e)>J+(z)}. Since the vari-
able F+(z, e) is integrable with respect to the measure dz ⊗ nBE(de), there exists �̂∗ ∈ F̂
with P̂ (�̂∗) = 1 on which the variable F+(z, e) is integrable with respect to the measure
N̂((0, S] × dz × de) and N̂((0, S] × (0,∞) × (E \ E∗)) = 0. Let ω̂∗ ∈ �̂∗ be fixed.

By the conditions (A1) and (A2) and by Lemma 5.2, we have limλ→∞ Fλ(z, e) = F∞(z, e)

for all (z, e) in the support of the measure N̂((0, S] × dz × de). By the condition (A4), we see
that, for any λ ≤ ∞, the integrand Fλ(z, e) is dominated by F+(z, e), which is integrable with
respect to the measure N̂((0, S] × dz × de). We then appeal to Lebesgue’s convergence theorem
and obtain limλ→∞ Iλ = 0. Combining this with condition (A3), we obtain the desired result.

�

Remark 6.5. In the statement of Lemma 6.4, assumption (A4) cannot be removed. For example,
let us consider mλ defined by mλ(x) = x for x ∈ (0,1/λ) and = x + 1 for x ∈ [1/λ,∞), and let
m∞(x) = x. Let Jλ = J∞ = 0, rλ = r∞ = 0 and cλ = c∞ = c for some constant c > 0. We then
see that all the conditions (A1)–(A3) hold, but we can see (cf. [23]) that η̂mλ,Jλ,rλ converges in
law to η̂m∞,J∞,r∞+1, which never coincides in law with η̂m∞,J∞,r∞ .
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Let us reduce Propositions 6.1 and 6.2 to Lemma 6.4. For this purpose, we prepare the follow-
ing lemma.

Lemma 6.6. Let f be a non-negative locally bounded function on (0,∞). Assume that

f (x) ∼ xγ K(x) as x → ∞ (6.6)

for some real index γ and some slowly varying function K(x) at infinity, and that

lim sup
x→0+

f (x)x−γ < ∞. (6.7)

Set fλ(x) = f (λx)/{λγ K(λ)}. Then, for any γ ′ and γ ′′ with γ ′ < γ < γ ′′, there exist constants
C and λ0 > 0 such that

fλ(x) ≤ C max{xγ ′
, xγ ′′ } for all x > 0 and all λ > λ0. (6.8)

Proof. By the assumptions, we may take a constant C1 and a function K̃(x) defined on [0,∞)

such that the following hold:

(i) f (x) ≤ C1x
γ K̃(x) for all x > 0;

(ii) K̃(x) is bounded away from 0 and ∞ on each compact subset of [0,∞);
(iii) K̃(x)/K(x) → 1 as x → ∞ (K̃(x) is then necessarily slowly varying at x = ∞).

We may apply Theorem 1.5.6(ii) of [1], page 25, to the function K̃(x) and see that there exist
constants C2 and λ0 > 0 such that

K̃(λx)/K̃(λ) ≤ C2 max{xγ ′−γ , xγ ′′−γ } for all x > 0 and all λ > λ0. (6.9)

Therefore, we obtain (6.8). �

Thanks to Lemma 6.8, we obtain the following lemma.

Lemma 6.7. Suppose that all the assumptions of either Proposition 6.1 or Proposition 6.2 hold.
Condition (A4) is then satisfied, where J∞ = V(0,d(J )) in the former case and where J∞ = J (β)

in the latter case.

Proof. Suppose the assumptions of Proposition 6.1 are satisfied. Take numbers α′ and α′′
such that 0 < α′ < α < α′′ < 1. Using Lemma 6.6, we know that there exist constants
C and λ0 > 0 such that m′

λ(x) ≤ m′+(x) for all x > 0 and all λ > λ0, where m+(x) =
C max{m(α′)(x),m(α′′)(x)}. Since J (z) = ∞ for z ≥ d(J ), it is obvious that Jλ(z) ≥ V(0,d(J ))(z)

for all z > 0. Therefore, we may take J+ = V(0,d(J )) to satisfy condition (A4).
Suppose the assumptions of Proposition 6.2 are satisfied. Take numbers α′ and α′′ such

that 0 < α′ < α < α′′ < 1/β . Using Lemma 6.6, we know that there exist constants C1
and λ1 > 0 such that m′

λ(x) ≤ m′+(x) for all x > 0 and all λ > λ1, where m+(x) =
C1 max{m(α′)(x),m(α′′)(x)}. Take numbers β ′ and β ′′ such that 0 < β ′ < β < β ′′ < min{1,1/α′′}.
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Using Lemma 6.6 again for (Jλ)
−1, we know that there exist constants C2 and λ2 > λ1 such that

Jλ(z) ≥ J+(z) for all z > 0 and all λ > λ2, where J+(z) = C2 min{J (β ′)(z), J (β ′′)(z)}. Therefore,
we obtain that condition (A4) is satisfied. �

We now proceed to prove Propositions 6.1 and 6.2.

Proof of Propositions 6.1 and 6.2. Suppose that all the assumptions of either Proposition 6.1
or Proposition 6.2 hold. By Lemmas 5.3 and 5.5, we know that conditions (A1) and (A2) are sat-
isfied in both cases. It is also obvious that condition (A3) is satisfied for r∞ = 0. By Lemma 6.7,
we know that condition (A4) is satisfied. Therefore, the proof follows from Lemma 6.4. �

7. Convergence of the Markov process

Propositions 6.1 and 6.2 lead us to the following two propositions, respectively.

Proposition 7.1 (The convergent case). Suppose that the assumptions of Proposition 6.1 are
satisfied. The convergence

X̂mλ,Jλ,rλ → X̂m(α),V(0,d(J )),0 (J1) (7.1)

then holds with P̂ -probability one.

Proposition 7.2 (The divergent case). Suppose that the assumptions of Proposition 6.2 are
satisfied. The convergence

X̂mλ,Jλ,rλ → X̂m(α),J (β),0 (J1) (7.2)

then holds with P̂ -probability one.

We introduce the following condition.

(A5) There exist a constant z0 > 0 and a right-continuous non-decreasing function J+ :
(0,∞) → [0,∞] with ∫ ∞

z0

dz

J+(z)
< ∞ (7.3)

such that Jλ(z) ≥ J+(z) for all z > z0.

We now obtain the following continuity lemma for the Markov process.

Lemma 7.3. Suppose that conditions (A1)–(A3) and (A5) hold and that the convergence

lim
λ→∞ sup

s∈[0,S]
|η̂mλ,Jλ,rλ(s) − η̂m∞,J∞,r∞(s)| = 0 for all S > 0 (7.4)
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holds with P̂ -probability one. The convergence

X̂mλ,Jλ,rλ → X̂m∞,J∞,r∞ (J1) (7.5)

then holds with P̂ -probability one.

Proof. 1. Since nBE(M > x) = 1/x, we have

∫
(0,∞)×E

F(z, e)1{M(e)>ε} dz ⊗ nBE(de) < ∞ for all ε > 0, (7.6)

where F(z, e) = 1{0<z≤z0} + 1{z>z0,M(e)>J+(z)}. In fact, the left-hand side of (7.6) is dominated
by

z0

ε
+

∫ ∞

z0

1

max{J+(z), ε} dz, (7.7)

which turns out to be finite by the assumption (7.3) of (A5). Hence, we obtain that

∫
(0,∞)×E

F(z, e)1{M(e)>ε}N̂
(
(0, s] × dz × de

)
< ∞ for all s ≥ 0 and ε > 0 (7.8)

holds with P̂ -probability one. In addition, recall that we can apply Lemma 5.2 in this case and
obtain that

lim
λ→∞ sup

t≥0

∣∣emλ,Jλ(z)(t) − em∞,J∞(z)(t)
∣∣ = 0

(7.9)

for all (z, e) in the support of N̂
(
(0,∞) × dz × de

)

holds with P̂ -probability one. Thus, there exists �̂∗ ∈ F̂ with P̂ (�̂∗) = 1 on which (7.8), (7.9)
and (7.4) hold. Let ω̂ ∈ �̂∗ be fixed until the end of the proof.

2. We shall construct a family of functions {�λ :λ > 0} (which may depend on ω̂) imitating
Stone [23]. For any ε > 0, the support of the point process

F(z, e)1{M>ε}(e)N̂(ds × dz × de) (7.10)

on (0,∞) × (0,∞) × E∗ is enumerated by {(sε,(i), zε,(i), eε,(i)) : i = 1,2, . . .} such that sε,(1) <

sε,(2) < · · · . Define

�ε,λ

(
η̂m∞,J∞,r∞

(
sε,(i)−)) = η̂mλ,Jλ,rλ

(
sε,(i)−)

, i = 1,2, . . . , (7.11)

�ε,λ

(
η̂m∞,J∞,r∞

(
sε,(i)

)) = η̂mλ,Jλ,rλ

(
sε,(i)

)
, i = 1,2, . . . , (7.12)

and extend �ε,λ to a continuous function on (0,∞) by linear interpolation. If the number n of
sε,(i)’s is finite, then we set �ε,λ(t) = t − tn +�ε,λ(tn) for t > tn := η̂m∞,J∞,r∞(sε,(n)). We define
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�λ = �1/λ,λ. Since η̂mλ,Jλ,rλ(∞) = η̂m∞,J∞,r∞(∞) = ∞, we see that �λ(∞) = ∞ and hence
�λ is a homeomorphism of [0,∞). Since (7.4) holds, it is immediate that

lim
λ→∞ sup

t∈[0,T ]
|�λ(t) − t | = 0 (7.13)

for all T > 0.
3. Let ε > 0 be fixed. It suffices to show that

lim sup
λ→∞

sup
t∈[0,T ]

|X̂mλ,Jλ,rλ(�λ(t)) − X̂m∞,J∞,r∞(t)| ≤ 2ε (7.14)

for all T > 0.
For λ such that 1/ε < λ ≤ ∞, we set

I
ε,(i)
λ = [

η̂mλ,Jλ,rλ

(
sε,(i)−)

, η̂mλ,Jλ,rλ

(
sε,(i)

)) ⊂ (0,∞), i = 1,2, . . . . (7.15)

By definition, we have �λ(I
ε,(i)∞ ) = I

ε,(i)
λ .

4. Let t /∈ ⋃
i I

ε,(i)∞ . We then have �λ(t) /∈ ⋃
i I

ε,(i)
λ for all λ > 1/ε. For 1/ε < λ ≤ ∞, we take

(sλ, zλ, eλ) such that η̂mλ,Jλ,rλ(sλ−) ≤ �λ(t) < η̂mλ,Jλ,rλ(sλ), if it exists, where �∞(t) = t . If
such a point (sλ, zλ, eλ) does not exist, then X̂mλ,Jλ,rλ(t) = 0. If (sλ, zλ, eλ) exists, then we have
M(eλ) ≤ ε. In fact, if, in addition, zλ > z0, then M(eλ) ≥ Jλ(zλ) ≥ J+(zλ), by assumption (A5).
In both cases, we have X̂mλ,Jλ,rλ(�λ(t)) ≤ ε. Hence, we obtain

sup
t /∈⋃

i I ε,(i)

|X̂mλ,Jλ,rλ(�λ(t)) − X̂m∞,J∞,r∞(t)| < 2ε for all λ > 1/ε. (7.16)

Let t ∈ I
ε,(i)∞ for some i. Write (sε,(i), zε,(i), eε,(i)) simply as (s, z, e) for now. We then have

X̂m∞,J∞,r∞(t) = em∞,J∞(z)

(
t − η̂m∞,J∞,r∞(s−)

)
(7.17)

and, since �λ(t) ∈ I
ε,(i)
λ , we have

X̂mλ,Jλ,rλ(�λ(t)) = emλ,Jλ(z)

(
�λ(t) − η̂mλ,Jλ,rλ(s−)

)
. (7.18)

Since (7.9), (7.4) and (7.13) hold, we obtain

lim
λ→∞ X̂mλ,Jλ,rλ(�λ(t)) = X̂m∞,J∞,r∞(t). (7.19)

5. Since we have at most a finite number of i’s such that I
ε,(i)∞ ∩ [0, T ] �= ∅, it follows from

(7.16) and (7.19) that (7.14) holds for all T > 0. We now conclude that (6.4) holds. �

We now prove Propositions 7.1 and 7.2.

Proof of Propositions 7.1 and 7.2. Suppose that all the assumptions of either Propositions 6.1
or Proposition 6.2 hold. We then know that all the conditions (A1)–(A4) hold. It is obvious that
condition (A4) implies condition (A5). Therefore, the desired result follows from Lemma 7.3.

�
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8. Removal of the extra assumptions

We remove the extra assumptions (6.1) from Proposition 6.1 and (6.3) from Proposition 6.2 and
obtain in-probability continuity results as follows.

Proposition 8.1 (The convergent case). Suppose that the assumptions of Theorem 2.5 hold. Set
v(λ) = λ and adopt the notation (4.3) and (4.4). Then,

lim
λ→∞ sup

s∈[0,S]

∣∣η̂mλ,Jλ,rλ(s) − η̂m(α),V(0,d(J )),0(s)
∣∣ = 0 (8.1)

and

X̂mλ,Jλ,rλ → X̂m(α),V(0,d(J )),0 (J1) (8.2)

hold in probability for all S > 0.

Proposition 8.2 (The divergent case). Suppose that the assumptions of Theorem 2.6 hold. Set
v(λ) = λβ/L(λ) and adopt the notation (4.3) and (4.4). Then,

lim
λ→∞ sup

s∈[0,S]
∣∣η̂mλ,Jλ,rλ(s) − η̂m(α),J (β),0(s)

∣∣ = 0 (8.3)

and

X̂mλ,Jλ,rλ → X̂m(α),J (β),0 (J1) (8.4)

hold in probability for all S > 0.

Theorems 2.5 and 2.6 immediately follow from Propositions 8.1 and 8.2, respectively.
In order to prove Propositions 8.1 and 8.2, we prepare two lemmas. The first one is the follow-

ing.

Lemma 8.3. Let (m,J ) be a pair which satisfies condition (C). Assume that dm(x) = 0 on
(x0,∞) for some x0 > 0. Then, for any γ < 1,

lim
λ→∞

1

λ1/γ
η̂m,J,0(λs) = 0 (8.5)

holds in probability.

Proof. Taking a Laplace transform, we can see that it suffices to show that

lim
ε→0+ ε−γ

{
c(J )nBE

[
1 − e−εζ(em)

] +
∫

(0,∞)

dz

J (z)
Q

J (z)
BM

[
1 − e−εζ(em)

]} = 0. (8.6)

It is well known that

Qx
BM

[
1 − e−εζ(em)

] = 1 − gε(x), (8.7)
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where gε(x) satisfies

1 − gε(x) = ε

∫ x

0
dy

∫
(y,x0]

gε(z)dm(z) (8.8)

and gε(x) = gε(x0) for all x > x0. We use the inequality gε ≤ 1 to obtain

1 − gε(x) ≤ ε

∫ min{x,x0}

0
m((y, x0])dy for all x > 0. (8.9)

Hence, we obtain

ε−1
∫

(0,∞)

dz

J (z)
Q

J (z)
BM

[
1 − e−εζ(em)

] ≤
∫

(0,∞)

dz

J (z)

∫ min{J (z),x0}

0
m((y, x0])dy. (8.10)

The right-hand side turns out to be finite by assumption (3.16).
Suppose that c(J ) > 0. The origin for Lm must then be exit and entrance, that is, m(0+) is

finite. Since nBE[1 − e−εζ(em)] = limx→0+ 1
x
Qx

BM[1 − e−εζ(em)], we know that

ε−1nBE
[
1 − e−εζ(em)

] =
∫

(0,x0]
gε(z)dm(z) ≤ m((0, x0]) < ∞. (8.11)

Therefore, the proof is complete. �

Lemma 8.4. Let (m,J ) be a pair which satisfies condition (C). Suppose that m(x) satisfies (M)
for α ∈ (0,∞) and x0 > 0 and that dm(x) = 0 on (0, x0). Suppose that d(J ) < ∞ and that
c(J ) = 0 when α ≥ 1. Then, for any γ < min{1, α},

lim
λ→∞

1

λ1/γ
η̂m,J,0(λs) = 0 (8.12)

holds in probability.

Proof. 1. Consider the case where α < 1. For any ν ∈ (γ,α), there exists a constant C1 such that
m′(x) ≤ C1m

(ν)(x) for all x > 0. Since

η̂m,J,0(λs) ≤ C1η̂m(ν),J,0(λs), (8.13)

it suffices to show that

lim
ε→0+ ε−γ

{
c(J )nBE

[
1 − e−εζ(e

m(ν) )
] +

∫
(0,d(J ))

dz

J (z)
Q

J (z)
BM

[
1 − e−εζ(e

m(ν) )
]} = 0. (8.14)

It is well known that

Qx
BM

[
1 − e−εζ(e

m(ν) )
] = 1 − g(ενx), (8.15)
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where g(x) satisfies

1 − g(x) = −g′(x0)x +
∫ x

0
dy

∫ x0

y

g(z)dm(ν)(z), (8.16)

and that

nBE
[
1 − e−εζ(e

m(ν) )
] = εν

{
−g′(x0) +

∫ x0

0
g(z)dm(ν)(z)

}
. (8.17)

Since m(ν)((0, x0)) < ∞ and g(z) ≤ 1 for all z > 0, there exists a constant C such that
ε−νQx

BM[1 − e−εζ(e
m(ν) )] ≤ C and ε−νnBE[1 − e−εζ(e

m(ν) )] ≤ C for all ε > 0. Therefore, we
obtain (8.14).

2. In the case where α = 1, we can prove the desired convergence in almost the same way as 1.
The only difference is to use c(J ) = 0. We omit the details.

3. Consider the case where α > 1. Then, c(J ) = 0. Taking a Laplace transform, it suffices to
show that

lim
ε→0+ ε−γ

∫
(0,d(J ))

dz

J (z)
Q

J (z)
BM

[
1 − e−εζ(em)

] = 0. (8.18)

It is well known that Qx
BM[1 − e−εζ(em)] = 1 − gε(x), where gε(x) satisfies

1 − gε(x) = ε

∫ x

0
dy

∫ ∞

y

gε(z)dm(z). (8.19)

We use the inequality gε ≤ 1 to obtain

ε−1
∫

(0,d(J ))

dz

J (z)
Q

J (z)
BM

[
1 − e−εζ(em)

] ≤
∫

(0,d(J ))

dz

J (z)

∫ J (z)

0
m((y,∞))dy. (8.20)

The right-hand side is finite by condition (C) and we therefore obtain (8.18). �

Proof of Propositions 8.1 and 8.2. 1. In the case of Proposition 8.1, we take z0 = d(J ),
J+ = V(0,d(J )) and (m∞, J∞, r∞) = (m(α),V(0,d(J )),0). In the case of Proposition 8.2, using
Lemma 6.6, we have that there exist constants C > 0, z0 > 0 and β ′ with β < β ′ < max{1,1/α}
such that Jλ(z) ≥ J+(z) for all z > z0 and λ > 0, where J+(z) = CJ (β ′)(z). In this case, we take
(m∞, J∞, r∞) = (m(α), J (β),0). Now, in both cases, the triplet (m0

λ, J
0
λ , rλ) satisfies all of the

assumptions (A1)–(A3) and (A5).
Let us define m0 and m1 by

m0(x) = m(max{x, x0}) and m1(x) = m(min{x, x0}). (8.21)

Let us define J 0 and J 1 by

J 0(z) = J (z + z0) and J 1(z) =
{

J (z), on (0, z0),
∞, on [z0,∞).

(8.22)
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We define m0
λ and m1

λ (resp. J 0
λ and J 1

λ ) in the same way as mλ in (4.1) (resp. Jλ in (4.4)). The
triplet (m0

λ, J
0
λ , rλ) then satisfies all of the assumptions (A1)–(A4). We now have

η̂mλ,Jλ,rλ = η̂0
λ + η̂1

λ + η̂2
λ, (8.23)

where

η̂1
λ = η̂m0

λ,J 1
λ ,0, η̂2

λ = η̂m1
λ,Jλ,0 (8.24)

and

η̂0
λ(s) = rλ +

∫
[v(λ)/λz0,d(J ))×E

ζ
(
emλ,Jλ(z)

)
1{M(e)≥Jλ(z)}N̂

(
(0, s] × dz × de

)
(8.25)

for s ≥ 0. By the translation invariance in z of the characteristic measure of N̂(ds × dz × de), it
is obvious that

η̂0
λ

law= η̂m0
λ,J 0

λ ,rλ
. (8.26)

Since the triplet (m0, J 0,0) satisfies the assumptions, we may apply Lemma 6.4 and obtain

lim
λ→∞ sup

s∈[0,S]
|η̂0

λ(s) − η̂m∞,J∞,r∞(s)| = 0 for all S > 0 (8.27)

P̂ -almost surely.
Using Lemma 4.1 again, we have

η̂1
λ(s)

law= 1

u(λ)
η̂m0,J 1,0(v(λ)s) and η̂2

λ(s)
law= 1

u(λ)
η̂m1,J,0(v(λ)s). (8.28)

We note that the pair (m0, J 1) (resp. (m1, J )) satisfies the assumptions of Lemma 8.4 (resp.
Lemma 8.3). In the case of Proposition 8.1, we have u(v−1(λ)) ∼ λ1/αK(λ) as λ → ∞. In the
case of Proposition 8.2, we have u(v−1(λ)) ∼ λ1/(αβ)K̃(λ) as λ → ∞ for some slowly vary-
ing function K̃ at infinity, where v−1 is an asymptotic inverse of v. In both cases, we have
u(v−1(λ)) ∼ λ1/γ for some γ < 1. Hence, by Lemmas 8.4 and 8.3, we obtain

lim
λ→∞ η̂1

λ(s) = 0 and lim
λ→∞ η̂2

λ(s) = 0 (8.29)

in probability, for all s > 0.
Consequently, we obtain

lim
λ→∞ sup

s∈[0,S]
|η̂mλ,Jλ,rλ(s) − η̂m∞,J∞,r∞(s)| = 0, (8.30)

in probability, for all S > 0. Let λ(n) be an arbitrary sequence of (0,∞) such that λ(n) → ∞.
We can then take a subsequence λ(nk) along which (8.30) holds for S > 0 with P̂ -probability
one. We may now apply Lemma 7.3 to obtain

Xmλ,Jλ,rλ → Xm∞,J∞,r∞ (J1) (8.31)
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along the subsequence λ = λ(nk). This means that the convergence (8.31) occurs in probability.
Therefore, we obtain the desired conclusions. �
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