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We study the asymptotic expansions with respect to h of

E[�hf (Xt )], E[�hf (Xt )|FX
t ] and E[�hf (Xt )|Xt ],

where �hf (Xt ) = f (Xt+h) − f (Xt ), when f : R → R is a smooth real function, t ≥ 0 is a fixed time, X

is the solution of a one-dimensional stochastic differential equation driven by a fractional Brownian motion
with Hurst index H > 1/2 and FX is its natural filtration.
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1. Introduction

We study the asymptotic expansions with respect to h of

Ptf (h) � E[�hf (Xt )],
P̂tf (h) � E[�hf (Xt )|FX

t ], (1)

P̃tf (h) � E[�hf (Xt )|Xt ],
with �hf (Xt ) � f (Xt+h) − f (Xt ), when f : R → R is a smooth real function, t ≥ 0 is a fixed
time, X is the solution to the fractional stochastic differential equation

Xt = x +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dBs, t ∈ [0, T ], (2)

and FX is its natural filtration. Here, b,σ : R → R are real functions belonging to the space
C∞

b of all bounded continuous functions having bounded derivatives of all order, while B is a
one-dimensional fractional Brownian motion with Hurst index H ∈ (1/2,1). When the integral
with respect to B is understood in the Young sense, equation (2) has a unique pathwise solution
X in the set of processes whose paths are Hölder continuous of index α ∈ (1 −H,H). Moreover,
by, for example, [12], Theorem 4.3, we have, for any g : R → R ∈ C∞

b ,

g(Xt ) = g(x) +
∫ t

0
g′(Xs)σ (Xs)dBs +

∫ t

0
g′(Xs)b(Xs)ds, t ∈ [0, T ]. (3)
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The asymptotic expansion of E[f (Xh)] with respect to h has been recently studied in [1], [7].
In our framework, it turns out to be the case where t = 0 since we obviously have

E[f (Xh)] − f (x) = P0f (h) = P̂0f (h) = P̃0f (h).

In these last references, the authors work in a multidimensional setting and under the weaker
assumption that the Hurst index H of the fractional Brownian motion B is greater than 1/3 (the
integral with respect to B is then understood in the rough paths sense of Lyons’ type for [1] and
of Gubinelli’s type for [7]). In particular, it is proved in [1], [7] that there exists a family

� = {�2kH+� : (k, �) ∈ N
2, (k, �) �= (0,0)}

of differential operators such that for any smooth f : R → R, we have the following asymptotic
expansion:

P0f (h) ∼
h→0

∑
h2kH+��2kH+�(f, σ, b)(x). (4)

Moreover, in [7], operators �2kH+� are expressed using trees.
A natural question now arises. Can we also get an expansion of Ptf (h) when t �= 0? Let us

first consider the case where B is the standard Brownian motion (which corresponds to the case
where H = 1/2). By the Markov property on one hand, we have P̂tf (h) = P̃tf (h). On the other
hand, we always have Ptf (h) = E[P̂tf (h)]. Thus, there exist relations between Ptf (h), P̂tf (h)

and P̃tf (h). Moreover, the asymptotic expansion of Ptf (h) can be obtained as a corollary to
that of P0f (h) using the conditional expectation either with respect to the past FX

t of X, or with
respect to Xt only and the strong Markov property.

When H > 1/2, B is not Markovian. The situation regarding Ptf (h), P̂tf (h) and P̃tf (h)

is then completely different and actually more complicated. In particular, we no longer have
P̂tf (h) = P̃tf (h) and we cannot deduce the asymptotic expansion of Ptf (h) from that of
P0f (h).

The current paper is concerned with the study of possible asymptotic expansions of the various
quantities Ptf (h), P̂tf (h) and P̃tf (h) when H > 1/2. We will see that some nontrivial phenom-
ena appear. More precisely, we will show in Section 3 that P̂tf (h) does not admit an asymptotic
expansion in the scale of the fractional powers of h when t �= 0. Regarding P̂tf (h), the situations
when t = 0 and t > 0 are thus really different. On the other hand, unlike P̂tf (h), the quantities
Ptf (h) and P̃tf (h) admit, when t �= 0, an asymptotic expansion in the scale of the fractional
powers of h. However, the computation of this expansion is more difficult than in the case where
t = 0 (as carried out in [1], [7]). That is why we prefer to consider only the one-dimensional
case. As an illustration, let us consider the trivial equation dXt = dBt , t ∈ [0, T ], X0 = 0. That
is, Xt = Bt for every t ∈ [0, T ]. We have, thanks to a Taylor expansion,

P̃0f (h) =
n∑

k=1

f (k)(0)

k! E[(Bh)
k] + · · · =

	n/2
∑
k=1

f (2k)(0)

2kk! h2Hk + · · · ,
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while by a linear Gaussian regression, when t �= 0,

P̃tf (h) = E

[
f

((
1 + H

t
h − h2H

2t2H
+ · · ·

)
Bt + (h2H + · · ·)N

)
− f (Bt )

∣∣∣Bt

]
= HBtf

′(Bt )

t
h − Btf

′(Bt )

2t2H
h2H + · · ·

with N ∼ N (0,1) a random variable independent of Bt .
One of the key points of our strategy relies on the use of a Girsanov transformation and the

Malliavin calculus for fractional Brownian motion. We refer to [3], [10] for a deep insight of this
topic.

We will restrict the exposition of our asymptotic expansions to the case when σ = 1. Indeed,
under the assumption

(A) the function σ is elliptic on R, that is, it satisfies infR |σ | > 0

and using the change of variable formula (3), equation (2) can be reduced to a diffusion Y with a
constant diffusion coefficient,

Yt =
∫ Xt

0

dz

σ (z)
.

Moreover, since
∫ ·

0
dz

σ (z)
is strictly monotone from R to R under assumption (A), the σ -fields

generated by Xt (resp. by Xs , s ≤ t ) and Yt (resp. by Ys , s ≤ t ) are the same. Consequently,
assuming that σ = 1 is not at all restrictive since it allows the recovery of the general case under
assumption (A). We therefore consider in the sequel that X is the unique solution of

Xt = x +
∫ t

0
b(Xs)ds + Bt , t ∈ [0, T ], (5)

with b ∈ C∞
b and x ∈ R.

The paper is organized as follows. In Section 2, we recall some basic facts about fractional
Brownian motion, the Malliavin calculus and fractional stochastic differential equations. In Sec-
tion 3, we prove that P̂tf (h) does not admit an asymptotic expansion with respect to the scale of
fractional powers of h, up to order n ∈ N. We eventually show, in Section 4, that P̃tf (h) admits
an asymptotic expansion.

2. Preliminaries

We first briefly recall some basic facts about stochastic calculus with respect to a fractional
Brownian motion. One may refer to [9], [10] for further details. Let B = (Bt )t∈[0,T ] be a frac-
tional Brownian motion with Hurst parameter H ∈ (1/2,1) defined on a probability space
(�,A ,P). We mean that B is a centered Gaussian process with the covariance function
E(BsBt ) = RH (s, t), where

RH (s, t) = 1
2 (t2H + s2H − |t − s|2H ). (6)



Asymptotic expansions for fractional SDEs 825

We denote by E the set of step R-valued functions on [0, T ]. Let H be the Hilbert space defined
as the closure of E with respect to the scalar product〈

1[0,t],1[0,s]
〉
H

= RH (t, s).

We denote by | · |H the associate norm. The mapping 1[0,t] �→ Bt can be extended to an isometry
between H and the Gaussian space H1(B) associated with B . We denote this isometry ϕ �→ B(ϕ).

The covariance kernel RH (t, s) introduced in (6) can be written as

RH (t, s) =
∫ s∧t

0
KH (s,u)KH (t, u)du,

where KH (t, s) is the square-integrable kernel defined, for s < t , by

KH (t, s) = cH s1/2−H

∫ t

s

(u − s)H−3/2uH−1/2 du (7)

with c2
H = H(2H−1)

β(2−2H,H−1/2)
and β the Beta function. By convention, we set KH (t, s) = 0 if s ≥ t .

We define the operator KH on L2([0, T ]) by

(KH h)(t) =
∫ t

0
KH (t, s)h(s)ds.

Let K∗
H :E → L2([0, T ]) be the linear operator defined by

K∗
H

(
1[0,t]

) = KH (t, ·).
The following equality holds for any φ,ψ ∈ E :

〈φ,ψ〉H = 〈K∗
H φ,K∗

H ψ〉L2([0,T ]) = E(B(φ)B(ψ)).

K∗
H then provides an isometry between the Hilbert space H and a closed subspace of L2([0, T ]).
The process W = (Wt )t∈[0,T ] defined by

Wt = B
(
(K∗

H )−1(1[0,t]
))

(8)

is a Wiener process and the process B has the following integral representation:

Bt =
∫ t

0
KH (t, s)dWs.

Hence, for any φ ∈ H, we have

B(φ) = W(K∗
H φ).

If b,σ ∈ C∞
b , then (2) admits a unique solution X in the set of processes whose paths are

Hölder continuous of index α ∈ (1 − H,H). Moreover, X has the Doss–Sussman’s-type repre-
sentation (see, e.g., [5])

Xt = φ(At ,Bt ), t ∈ [0, T ], (9)
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with φ and A given, respectively, by

∂φ

∂x2
(x1, x2) = σ(φ(x1, x2)), φ(x1,0) = x1, x1, x2 ∈ R

and

A′
t = exp

(
−

∫ Bt

0
σ ′(φ(At , s))ds

)
b(φ(At ,Bt )), A0 = x0, t ∈ [0, T ].

Let b ∈ C∞
b and X be the solution of (5). Following [11], the fractional version of the Girsanov

theorem applies and ensures that X is a fractional Brownian motion with Hurst parameter H

under the new probability Q defined by dQ = η−1 dP, where

η = exp

(∫ T

0

(
K−1

H

∫ ·

0
b(Xr)dr

)
(s)dWs + 1

2

∫ T

0

(
K−1

H

∫ ·

0
b(Xr)dr

)2

(s)ds

)
. (10)

Let S be the set of all smooth cylindrical random variables, that is, of the form F =
f (B(φ1), . . . ,B(φn)), where n ≥ 1, f : Rn → R is a smooth function with compact support and
φi ∈ H. The Malliavin derivative of F with respect to B is the element of L2(�,H) defined by

DsF =
n∑

i=1

∂f

∂xi

(B(φ1), . . . ,B(φn))φi(s), s ∈ [0, T ].

In particular, DsBt = 1[0,t](s). As usual, D
1,2 denotes the closure of the set of smooth random

variables with respect to the norm

‖F‖2
1,2 = E[F 2] + E[|D·F |2H].

The Malliavin derivative D verifies the following chain rule. If ϕ : Rn → R is C1
b and if

(Fi)i=1,...,n is a sequence of elements of D
1,2, then ϕ(F1, . . . ,Fn) ∈ D

1,2 and we have, for any
s ∈ [0, T ],

Ds ϕ(F1, . . . ,Fn) =
n∑

i=1

∂ϕ

∂xi

(F1, . . . ,Fn)DsFi.

The divergence operator δ is the adjoint of the derivative operator D. If a random variable u ∈
L2(�,H) belongs to the domain of the divergence operator, that is, if there exists cu > 0 such
that

|E〈DF,u〉H| ≤ cu‖F‖L2 for any F ∈ S ,

then δ(u) is defined by the duality relationship

E(Fδ(u)) = E〈DF,u〉H
for all F ∈ D

1,2.
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3. Study of the asymptotic expansion of ̂Ptf (h)

Recall that P̂tf (h) is defined by (1), where X is given by (5).

Definition 1. We say that P̂tf (h) admits an asymptotic expansion with respect to the scale of
fractional powers of h, up to order n ∈ N, if there exist some real numbers 0 < α1 < · · · < αn

and some random variables C1, . . . ,Cn ∈ L2(�,FX
t ), not identically-zero, such that

P̂tf (h) = C1 hα1 + · · · + Cnh
αn + o(hαn) as h → 0,

where o(hα) stands for a random variable of the form hαφh, with E[φ2
h] → 0 as h → 0.

If P̂tf (h) admits an asymptotic expansion in the sense of Definition 1, we must, in particular,
have the existence of α > 0 verifying the following condition:

lim
h→0

h−αP̂tf (h) exists in L2(�) and is not identically zero.

However, we have the following.

Theorem 1. Let f : R → R ∈ C∞
b and t ∈ (0, T ]. Assume, moreover, that

Leb
({x ∈ R :f ′(x) = 0}) = 0. (11)

Then, as h → 0, h−αP̂tf (h) converges in L2(�) if and only if α < H . In this case, the limit is
zero.

Remark 1. Since P̂0f (h) = P̃0f (h), we refer to Theorem 2 for the case where t = 0.

Proof of Theorem 1. The proof is divided into two cases.
(i) First case: α ∈ (0,1]. Since H > 1/2, let us first remark that h−αP̂tf (h) converges in

L2(�) if and only if h−αf ′(Xt )E[Xt+h − Xt |FX
t ] converges in L2(�). Indeed, we use a Taylor

expansion:

|f (Xt+h) − f (Xt ) − f ′(Xt )(Xt+h − Xt)| ≤ 1
2 |f ′′|∞|Xt+h − Xt |2,

so ∣∣P̂tf (h) − f ′(Xt )E[Xt+h − Xt |FX
t ]∣∣ ≤ 1

2 |f ′′|∞E[|Xt+h − Xt |2|FX
t ].

Thus, applying Jensen’s formula:

h−2αE
[∣∣P̂tf (h) − f ′(Xt )E[Xt+h − Xt |FX

t ]∣∣2]
≤ 1

4 |f ′′|2∞h−2αE
[
E[|Xt+h − Xt |2|FX

t ]]2

≤ 1
4 |f ′′|2∞h−2αE[|Xt+h − Xt |4] = O(h4H−2α).

Since α ≤ 1 < 2H , we can conclude.
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By (11) and the fact that Xt has a positive density on R (see, e.g., [8] Theorem A), we have
that h−αf ′(Xt )E[Xt+h − Xt |FX

t ] converges in L2(�) if and only if h−αE[Xt+h − Xt |FX
t ]

converges in L2(�).
For X given by (5), we have that FX = FB . Indeed, one inclusion is obvious, while the other

can be proven using (9). Moreover, since b ∈ C∞
b and α ≤ 1, the term h−αE[∫ t+h

t
b(Xs)ds|FX

t ]
converges in L2(�) when h ↓ 0. Therefore, we have, due to (5) that h−αE[Xt+h − Xt |FX

t ]
converges in L2(�) if and only if h−αE[Bt+h − Bt |FB

t ] converges in L2(�).
Set

Z
(t)
h = h−αE[Bt+h − Bt |FB

t ] = h−α

∫ t

0

(
KH (t + h, s) − KH (t, s)

)
dWs,

where the kernel KH is given by (7) and the Wiener process W is defined by (8). We have

Var
(
Z

(t)
h

) = h−2α

∫ t

0

(
KH (t + h, s) − KH (t, s)

)2 ds

= h−2αc2
H

∫ t

0
s1−2H

(∫ t+h

t

(u − s)H−3/2uH−1/2 du

)2

ds.

We deduce

Var
(
Z

(t)
h

) ≥ h−2α

(
cH

H − 1/2

)2

t2H−1

×
∫ t

0
s1−2H

(
(t + h − s)H−1/2 − (t − s)H−1/2)2 ds

(12)

= h−2α

(
cH

H − 1/2

)2 ∫ t

0

(
1 − s

t

)1−2H (
(s + h)H−1/2 − sH−1/2)2 ds

= h2(H−α)

(
cH

H − 1/2

)2 ∫ t/h

0

(
1 − hs

t

)1−2H

g2(s)ds

with g(s) = (s + 1)H−1/2 − sH−1/2. Similarly,

Var
(
Z

(t)
h

) ≤ h−2α

(
cH

H − 1/2

)2

(t + h)2H−1

×
∫ t

0
s1−2H

(
(t + h − s)H−1/2 − (t − s)H−1/2)2

ds

= h−2α

(
1 + h

t

)2H−1(
cH

H − 1/2

)2

(13)

×
∫ t

0

(
1 − s

t

)1−2H (
(s + h)H−1/2 − sH−1/2)2 ds

= h2(H−α)

(
1 + h

t

)2H−1(
cH

H − 1/2

)2 ∫ t/h

0

(
1 − hs

t

)1−2H

g2(s)ds.
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Note that g2(s) ∼ (H − 1
2 )2s2H−3 as s → +∞. So, sg2(s) −→ 0 as s → +∞ and∫ +∞

0 |g2(s)|ds < +∞ since 2H − 3 < −1. Since s �→ sg2(s) is bounded on R
+, we have,

by the dominated convergence theorem, that∫ t/h

0

((
1 − hs

t

)1−2H

− 1

)
g2(s)ds =

∫ 1

0

(1 − u)1−2H − 1

u
g2

(
tu

h

)
tu

h
du

tends to zero as h → 0. Thus,

lim
h→0

∫ t/h

0

(
1 − hs

t

)1−2H

g2(s)ds =
∫ ∞

0
g2(s)ds < +∞.

Combined with (12)–(13), we now deduce that

Var
(
Z

(t)
h

) ∼ h2(H−α)

(
cH

H − 1/2

)2 ∫ ∞

0
g2(s)ds as h → 0. (14)

If Z
(t)
h converges in L2(�) as h → 0, then limh→0 Var(Z(t)

h ) exists and is finite. But, thanks to

(14), we have that limh→0 Var(Z(t)
h ) = +∞ when α > H . Consequently, Z

(t)
h does not converge

in L2(�) as h → 0 when α > H .

Conversely, when α < H , we have, from (14), that limh→0 Var(Z(t)
h ) = 0. Then Z

(t)
h

L2−→0
when α < H .

In order to complete the proof of the first case, it remains to consider the critical case where

α = H . We first deduce from (14) that Z
(t)
h

Law−→N (0, σ 2
H ), as h → 0, with

σ 2
H =

(
cH

H − 1/2

)2 ∫ ∞

0
g2(s)ds.

Let us finally show that the previous limit does not hold in L2. Assume for a moment that Z
(t)
h

converges in L2(�) as h → 0. In particular, {Z(t)
h }h>0 is Cauchy in L2(�). So, denoting by Z(t)

the limit in L2(�), we have E[Z(t)
ε Z

(t)
δ ] → E[|Z(t)|2] when ε, δ → 0. But, for any fixed x > 0,

we can show by using the same transformations as above that as h → 0,

E
(
Z

(t)
hxZ

(t)
h/x

) −→
(

cH

H − 1/2

)2

r(x) = E
(∣∣Z(t)

∣∣2)
,

where

r(x) =
∫ ∞

0

(
(s + x)H−1/2 − sH−1/2)((

s + 1

x

)H−1/2

− sH−1/2
)

ds

= x

∫ ∞

0
g(x2u)g(u)du.
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Consequently, the function r is constant on ]0,+∞[. The Cauchy–Schwarz inequality yields

|g|2L2 = r(1) = r
(√

2
) = 〈√

2g(2·), g〉
L2 ≤ √

2|g(2·)|L2 |g|L2 = |g|2L2 .

We thus have an equality in the previous inequality. We deduce that there exists λ ∈ R such that
g(2u) = λg(u) for all u ≥ 0. Since g(0) = 1, we have λ = 1. Consequently, for any u ≥ 0 and
any integer n, we get

g(u) = g

(
u

2n

)
−→
n→∞g(0) = 1,

which is absurd. Therefore, when α = H , Z
(t)
h does not converge in L2(�) as h → 0. This

concludes the proof of the first case.
(ii) Second case: α ∈ (1,+∞). If h−αP̂tf (h) converges in L2(�), then h−1P̂tf (h) con-

verges in L2(�) toward zero. This contradicts the first case, which concludes the proof of Theo-
rem 1. �

4. Study of the asymptotic expansion of ˜Ptf (h)

Recall that P̃tf (h) is defined by (1), where X is given by (5). The main result of this section is
the first point of the following theorem.

Theorem 2. Let t ∈ [0, T ] and f : R → R ∈ C∞
b . We write N for N

2 \ {(0,0)}. For (p, q) ∈ N ,
set

J2pH+q = {(m,n) ∈N : 2mH + n ≤ 2pH + q}.

1. If t �= 0, there exists a family {Z(t)
2mH+n}(m,n)∈N of random variables measurable with re-

spect to Xt such that for any (p, q) ∈ N ,

P̃tf (h) =
∑

(m,n)∈J2pH+q

Z
(t)
2mH+n h2mH+n + o(h2pH+q). (15)

2. If t = 0, for any (p, q) ∈ N , we have

P0f (h) = P̃0f (h) = P̂0f (h)

=
∑

(m,n)∈J2pH+q

( ∑
I∈{0,1}2m+n,|I |=2m

cI�I (f, b)(x)

)
h2mH+n + o(h2pH+q)

with cI and �I defined, respectively, by (17) and (19) below.

Remark 2. 1. In (15), Z
(t)
0H+1 coincides with the stochastic derivative of X with respect to its

present t , as defined in [2].
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2. The expansion (15) allows the expansion of Ptf (h) to obtained for t �= 0:

Ptf (h) = E[P̃tf (h)] =
∑

(m,n)∈J2pH+q

E
[
Z

(t)
2mH+n

]
h2mH+n + o(h2pH+q).

The following subsections are devoted to the proof of Theorem 2. Note that a quicker proof of
the first assertion seems to be as follows. Once t > 0 is fixed, we write

Xt+h = Xt +
∫ t+h

t

b(Xs)ds + B̃
(t)
h , h ≥ 0, (16)

where B̃
(t)
h = Bt+h − Bt is again a fractional Brownian motion. We could then think that an

expansion for P̃tf (h) directly follows from the one for P̃0f (h), simply by a shift. This is unfor-
tunately not the case, due to the fact that the initial value in (16) is not just a real number as in
the case t = 0, but a random variable. Consequently, the computation of E[B̃(t)

h |Xt ] is not trivial

since B̃
(t)
h and Xt are not independent.

4.1. Proof of Theorem 2, part (2)

The proof of this part is actually a direct consequence of Theorem 2.4 in [7]. But, for the sake of
completeness on one hand and taking into account that we are dealing with the one-dimensional
case on the other hand, we give all the details here. Indeed, contrary to the multidimensional case,
it is easy to compute explicitly the coefficients which appear (see Lemma 1 below and compare
with [1] Theorem 31 or [7] Proposition 5.4) which also has its own interest from our point of
view.

The differential operators �I appearing in Theorem 2 are recursively* defined by

�(0)(f, b) = bf ′, �(1)(f, b) = f ′

and, for I ∈ {0,1}k ,

�(I,0)(f, b) = b(�I (f, b))′, �(I,1)(f, b) = (�I (f, b))′ (17)

with (I,0), (I,1) ∈ {0,1}k+1. The constants cI are explained as follows. Set

dB
(i)
t =

{
dBt , if i = 1,
dt, if i = 0.

(18)

Then for a sequence

I = (i1, . . . , ik) ∈ {0,1}k,

*We can also use a rooted trees approach in order to define the �I ’s. See [7] for a thorough study, even in the multidi-
mensional case and where H > 1/3.
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we define

cI = E

[∫
�k[0,1]

dBI

]
= E

[∫ 1

0
dB

(ik)
tk

∫ tk

0
dB

(ik−1)
tk−1

· · ·
∫ t2

0
dB

(i1)
t1

]
. (19)

Set |I | = ∑
1≤j≤k ij . Equivalently, |I | denotes the number of integrals with respect to ‘dB’.

Since B and −B have the same law, note that we have

cI = cI (−1)|I |.

Thus, cI vanishes when |I | is odd. In general, the computation of the coefficients cI can be made
as follows.

Lemma 1. Let I ∈ {0,1}k . We denote by J = {j1 < · · · < jm} the set of indices j ∈ {1, . . . , k}
such that dB

(j)
t = dt . We then have that cI is given by∫ 1

0
dtjm · · ·

∫ tj2

0
dtj1E

[
(B1 − Btjm

)k−jm(Btj1
)j1−1

(k − jm)!(j1 − 1)!
m∏

k=2

(Btjk
− Btjk−1

)jk−jk−1

(jk − jk−1)!

]
.

The expectation appearing in the above formula can always be computed using the moment
generating function of an m-dimensional Gaussian random variable. For instance, we have

E

[∫ 1

0

∫ t3

0

∫ t2

0
dt1 dBt2 dBt3

]
= 1

2(2H + 1)
,

E

[∫ 1

0

∫ t3

0

∫ t2

0
dBt1 dt2 dBt3

]
= 2H − 1

2(2H + 1)
,

E

[∫ 1

0

∫ t3

0

∫ t2

0
dBt1 dBt2 dt3

]
= 1

2(2H + 1)
,

E

[∫ 1

0

∫ t4

0

∫ t3

0

∫ t2

0
dt1 dt2 dBt3 dBt4

]
= 1

2(2H + 1)(2H + 2)
,

E

[∫ 1

0

∫ t4

0

∫ t3

0

∫ t2

0
dt1 dBt2 dt3 dBt4

]
= H

(2H + 1)(2H + 2)
, (20)

E

[∫ 1

0

∫ t4

0

∫ t3

0

∫ t2

0
dt1 dBt2 dBt3 dt4

]
= 1

2(2H + 1)(2H + 2)
,

E

[∫ 1

0

∫ t4

0

∫ t3

0

∫ t2

0
dBt1 dt2 dBt3 dt4

]
= H

(2H + 1)(2H + 2)
,

E

[∫ 1

0

∫ t4

0

∫ t3

0

∫ t2

0
dBt1 dt2 dt3 dBt4

]
= H(2H − 1)

2(2H + 1)(2H + 2)
,

E

[∫ 1

0

∫ t4

0

∫ t3

0

∫ t2

0
dBt1 dBt2 dt3 dt4

]
= 1

2(2H + 1)(2H + 2)
.
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Lemma 2. When f : R → R ∈ C∞
b , we have

f (Xh) = f (x) +
n−1∑
k=1

∑
Ik∈{0,1}k

�Ik
(f, b)(x)

∫
�k[0,h]

dBIk (t1, . . . , tk)

(21)

+
∑

In∈{0,1}n

∫
�n[0,h]

�In(f, b)(Xt1)dBIn(t1, . . . , tn),

where, again using the convention (18), for g : R → R ∈ C∞
b ,∫

�k[0,h]
g(Xt1)dBIk (t1, . . . , tk) �

∫ h

0
dB

(ik)
tk

∫ tk

0
dB

(ik−1)
tk−1

· · ·
∫ t2

0
dB

(i1)
t1

g(Xt1).

Proof. Applying (3) twice, we can write

f (Xh) = f (x) +
∫ h

0
f ′(Xs)dBs +

∫ h

0
(bf ′)(Xs)ds

= f (x) + �(1)(f, b)(x)Bh + �(0)(f, b)(x)h

+
∑

I2∈{0,1}2

∫
�2[0,h]

�I2(f, b)(Xt1)dBI2(t1, t2).

Applying (3) repeatedly, we finally obtain (21). �

The remainder can be bounded by the following lemma.

Lemma 3. If n ≥ 2, ε > 0 (small enough) and g : R → R ∈ C∞
b are fixed, we have∑

In∈{0,1}n
E

∣∣∣∣∫
�n[0,h]

g(Xt1)dBIn(t1, . . . , tn)

∣∣∣∣ = O(hnH−ε).

Proof. This involves a direct application of Theorem 2.2 in [6], combined with the Garsia, Ro-
demich and Rumsey Lemma [4]. �

Thus, in order to obtain the asymptotic expansion of P̃tf (h), Lemmas 2 and 3 say that it is
sufficient to compute

E

[∫
�k[0,h]

dBIk (t1, . . . , tk)

]
for any Ik ∈ {0,1}k , with 1 ≤ k ≤ n − 1. By the self-similarity and the stationarity of fractional
Brownian motion, we have that∫

�k[0,h]
dBIk (t1, . . . , tk)

L= hH |Ik |+k−|Ik |
∫

�k[0,1]
dBIk (t1, . . . , tk).



834 S. Darses and I. Nourdin

Hence, it follows that

E

[∫
�k[0,h]

dBIk (t1, . . . , tk)

]
= hH |Ik |+k−|Ik |cIk

and the proof of point (2) of Theorem 2 is a consequence of Lemmas 2 and 3 above. �

4.2. Proof of Theorem 2, point (1)

Let f : R → R ∈ C∞
b and X be the solution of (5). We then know (see Section 2) that X is a

fractional Brownian motion with Hurst index H under the new probability Q defined by dQ =
η−1 dP, with η given by (10). Since b : R → R ∈ C∞

b , we observe that η ∈ D
1,2. Moreover, the

following well-known formula holds for any ξ ∈ L2(P) ∩ L2(Q):

E[ξ |Xt ] = EQ[ηξ |Xt ]
EQ[η|Xt ] .

In particular,

E[f (Xt+h) − f (Xt )|Xt ] = EQ[η(f (Xt+h) − f (Xt ))|Xt ]
EQ[η|Xt ] .

We now need the following technical lemma.

Lemma 4. Let ζ ∈ D
1,2(H) be a random variable. Then for any h > 0, the conditional expecta-

tion E[ζ(f (Bt+h) − f (Bt ))|Bt ] is equal to

H(2H − 1)f ′(Bt )

∫ T

0
duE[Duζ |Bt ]

∫ t+h

t

|v − u|2H−2 dv

+ 1

2
t−2H f ′(Bt )(BtE[ζ |Bt ] − E[〈Dζ,1[0,t]〉H|Bt ])

(
h2H − (t + h)2H + t2H

)
− H

2
t−2H f ′′(Bt )E[ζ |Bt ]

×
∫ t+h

t

(
(v − t)2H−1 − v2H−1)(t2H + v2H − (v − t)2H

)
dv

+ 1

2
f ′′(Bt )E[ζ |Bt ]

(
(t + h)2H − t2H

)
+ H(2H − 1)

∫ T

0
du

∫ t+h

t

|v − u|2H−2E
[
Duζ

(
f ′(Bv) − f ′(Bt )

)|Bt

]
dv

+ Ht−2H Bt

∫ t+h

t

(
(v − t)2H−1 − v2H−1)E

[
ζ
(
f ′(Bv) − f ′(Bt )

)|Bt

]
dv (22)
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− Ht−2H

∫ t+h

t

(
(v − t)2H−1 − v2H−1)E

[〈
Dζ,1[0,t]

〉
H

(
f ′(Bv) − f ′(Bt )

)|Bt

]
dv

− H

2
t−2H

∫ t+h

t

(
(v − t)2H−1 − v2H−1)(t2H + v2H − (v − t)2H

)
× E

[
ζ
(
f ′′(Bv) − f ′′(Bt )

)|Bt

]
dv

+ H

∫ t+h

t

E
[
ζ
(
f ′′(Bv) − f ′′(Bt )

)|Bt

]
v2H−1 dv.

Proof. Let g : R → R ∈ C1
b . We can write, using the Itô formula ([9], (5.44), page 294) and

basics identities of Malliavin calculus,

E
[
ζg(Bt )

(
f (Bt+h) − f (Bt )

)]
= E

[
ζg(Bt )δ

(
f ′(B·)1[t,t+h]

)] + H

∫ t+h

t

E
[
ζg(Bt )f

′′(Bv)
]
v2H−1 dv

= E
[
g(Bt )

〈
Dζ,1[t,t+h]f ′(B·)

〉
H

] + E
[
ζg′(Bt )

〈
1[0,t],1[t,t+h]f ′(B·)

〉
H

]
+ H

∫ t+h

t

E[ζg(Bt )f
′′(Bv)]v2H−1 dv

= H(2H − 1)

∫ T

0
du

∫ t+h

t

|v − u|2H−2E[f ′(Bv)g(Bt )Duζ ]dv

+ H(2H − 1)

∫ t

0
du

∫ t+h

t

(v − u)2H−2E[ζf ′(Bv)g
′(Bt )]dv

+ H

∫ t+h

t

E[ζg(Bt )f
′′(Bv)]v2H−1 dv.

But,

E[ζg(Bt )f
′(Bv)Bt ] = E

[〈
D(ζg(Bt )f

′(Bv)),1[0,t]
〉
H

]
= E[g(Bt )f

′(Bv)〈Dζ,1[0,t]〉H] + E[ζg′(Bt )f
′(Bv)]t2H

+ 1
2 E[ζg(Bt )f

′′(Bv)]
(
t2H + v2H − (v − t)2H

)
.

Consequently,

E
[
ζg(Bt )

(
f (Bt+h) − f (Bt )

)]
= H(2H − 1)

∫ T

0
du

∫ t+h

t

|v − u|2H−2E[f ′(Bv)g(Bt )Duζ ]dv

+ H(2H − 1)t−2H

∫ t

0
du

∫ t+h

t

(v − u)2H−2E[ζg(Bt )f
′(Bv)Bt ]dv
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− H(2H − 1)t−2H

∫ t

0
du

∫ t+h

t

(v − u)2H−2E
[
g(Bt )f

′(Bv)
〈
Dζ,1[0,t]

〉
H

]
dv

− 1

2
H(2H − 1)t−2H

∫ t

0
du

∫ t+h

t

(v − u)2H−2E[ζg(Bt )f
′′(Bv)]

× (
t2H + v2H − (v − t)2H

)
dv

+ H

∫ t+h

t

E[ζg(Bt )f
′′(Bv)]v2H−1 dv.

We deduce that

E
[
ζ
(
f (Bt+h) − f (Bt )

)|Bt

]
= H(2H − 1)

∫ T

0
du

∫ t+h

t

|v − u|2H−2E[f ′(Bv)Duζ |Bt ]dv

+ Ht−2H Bt

∫ t+h

t

(
(v − t)2H−1 − v2H−1)E[ζf ′(Bv)|Bt ]dv

− Ht−2H

∫ t+h

t

(
(v − t)2H−1 − v2H−1)E

[
f ′(Bv)

〈
Dζ,1[0,t]

〉
H

|Bt

]
dv

− H

2
t−2H

∫ t+h

t

(
(v − t)2H−1 − v2H−1)(t2H + v2H − (v − t)2H

)
E[ζf ′′(Bv)|Bt ]dv

+ H

∫ t+h

t

E[ζf ′′(Bv)|Bt ]v2H−1 dv.

Finally, (22) follows. �

First, we apply the previous lemma with ζ = η, E = EQ and B = X, with η given by (10),
dQ = η−1 dP and X given by (5). We note that η ∈ D

∞,2 (see, e.g., [9] Lemma 6.3.1 and [2] for
the expression of Malliavin derivatives via the transfer principle). We can particularly deduce that
each random variable Vk , recursively defined by V0 = η and Vk+1 = 〈DVk,1[0,t]〉H for k ≥ 0,
belongs to D

1,2.
In (22), the deterministic terms

∫ t+h

t
|v − u|2H−2 dv, (t + h)2H − t2H and

∫ t+h

t

(
(v − t)2H−1 − v2H−1)(t2H + v2H − (v − t)2H

)
dv

have a Taylor expansion in h of the type (15). Lemma 4 allows the first term of the asymptotic
expansion to be obtained using the fact that

∫ t+h

t
φ(s)ds = hφ(t) + o(h) for any continuous

function φ. By a recursive argument, again using Lemma 4, we finally deduce that (15) holds.
This concludes the proof of Theorem 2. �
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