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Let Y = X�Z′ + E be the growth curve model with E distributed with mean 0 and covariance In ⊗ �,
where �, � are unknown matrices of parameters and X, Z are known matrices. For the estimable para-
metric transformation of the form γ = C�D′ with given C and D, the two-stage generalized least-
squares estimator γ̂ (Y) defined in (7) converges in probability to γ as the sample size n tends to
infinity and, further,

√
n[γ̂ (Y) − γ ] converges in distribution to the multivariate normal distribution

N (0, (CR−1C′) ⊗ (D(Z′�−1Z)−1D′)) under the condition that limn→∞ X′X/n = R for some positive
definite matrix R. Moreover, the unbiased and invariant quadratic estimator �̂(Y) defined in (6) is also
proved to be consistent with the second-order parameter matrix �.

Keywords: asymptotic normality; consistent estimator; estimation; generalized least-squares estimator;
growth curve model

1. Introduction

The growth curve model is defined as

Y = X�Z′ + E, E ∼ G(0, In ⊗ �), (1)

where Y is an n × p matrix of observations, X and Z are known n × m (n > m) and p × q

(p > q) full-rank design matrices, respectively, � is an unknown m × q matrix, called the first-
order parameter matrix, and � is an unknown positive definite matrix of order p, called the
second-order parameter matrix. E follows a general continuous distribution G with mean matrix
0 and Kronecker product structure covariance matrix In ⊗ �.

Model (1) was proposed by Potthoff and Roy [11] under the normality assumption of the error
matrix E . Since then, parameter estimation, hypothesis testing and prediction of future values
have been investigated by numerous researchers, generating a substantial amount of literature
concerning the model.

In what follows, we give a brief review of the literature on large sample properties for the
growth curve model, a particular kind of multivariate regression model. Chakravorti [2] presented
the asymptotic properties of the maximum likelihood estimators. Žežula [15] investigated the
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asymptotic properties of the growth curve model with covariance components. Gong [4] gave
the asymptotic distribution of the likelihood ratio statistic for testing sphericity. Bischoff [1]
considered some asymptotic optimal tests for some growth curve models under non-normal error
structure. However, no work has been done on the asymptotic normality and consistency of two-
stage generalized least-squares estimators of the first-order parameter matrix for the growth curve
model (1).

In this paper, we shall investigate the consistency and asymptotic normality of a two-stage
generalized least-squares estimator γ̂ (Y) for the estimable parametric transformation of the form
γ = C�D′ with respect to the first-order parameter matrix �. In addition, we shall demonstrate
the consistency of a known quadratic covariance estimator �̂(Y) with the second-order parameter
matrix � (see Žežula [14]).

Readers are referred to Eicker [3], Theil [13] and Nussbaum [10] for results on the large sam-
ple properties of the least-squares estimators for ordinary univariate and multivariate regression
models.

This paper is divided into four sections. Some preliminaries are presented in Section 2. In par-
ticular, for the estimable parametric transformation of the form γ = C�D′, a two-stage gener-
alized least-squares estimator γ̂ (Y) is defined in (7). The consistency of the estimator γ̂ (Y) and
the consistency of the known quadratic estimator �̂(Y) defined in (6) are investigated in Sec-
tion 3. Finally, in Section 4, the asymptotic normality of the two-stage generalized least-squares
estimator γ̂ (Y) is obtained under a certain condition.

2. Preliminaries

Throughout this paper, the following notation is used. Let Mn×p denote the set of all n × p

matrices. Let A′ denote the transpose of the matrix A. Let tr(A) denote the trace of the matrix
A. Let In denote the identity matrix of order n. For a sequence of numbers {an} and a sequence
of numbers {bn}, we say that an = O(bn) if there is a constant c such that lim sup |an/bn| ≤ c;
we say that an = o(bn) if liman/bn = 0. For an n × p matrix Y, we write Y = [y1,y2, . . . ,yn]′,
yi ∈ 
p , where 
p is the p-dimensional real space, and vec(Y′) denotes the np-dimensional
vector [y′

1,y′
2, . . . ,y′

n]′. Here, the vec operator transforms a matrix into a vector by stacking the
columns of the matrix one under another. Y ∼ G(M, In ⊗ �) means that Y follows a general
continuous distribution G with E(Y) = M and that In ⊗ � is the covariance matrix of the vector
vec(Y′); see Muirhead [9], Section 3.1. The Kronecker product A ⊗ B of matrices A and B is
defined to be A ⊗ B = (aij B). We then have vec(ABC) = (C′ ⊗ A)vec(B). Let A+ denote the
Moore–Penrose inverse of A and PX = X(X′X)−X′ be the projection onto the column space
C(X) of a matrix X along the orthogonal complement C(X)⊥ of C(X).

Given A ∈ Mn×p and B ∈ Mp×s , a linear parametric function B′β is called estimable with
respect to A if there exists some T ∈ Mn×s such that E(T′Aβ) = B′β for all β ∈ 
p; see Hu and
Shi [6] for a more detailed description.

Note that the first-order parameter � in model (1) is defined before a design is planned and
observation Y is obtained. Thus, the rows of the design matrix X in model (1) are added one after
another and the term Z in model (1) does not depend on the sample size n; see the example in
Potthoff and Roy [11]. So, we shall only consider the case of full-rank matrices X and Z.
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As discussed in Potthoff and Roy [11], hypotheses of the form C�D′ = 0 under model (1) are
usually considered, where C ∈ Ms×m and D ∈ Mt×q . Thus, in this paper, we shall consider the
estimator of the parametric transformation γ = C�D′ of � with given matrices C ∈ Ms×m and
D ∈ Mt×q .

We shall begin by reviewing the case of a known second-order parameter matrix �, say �0.
According to the theory of least squares (see, e.g., Rao [12], 4a.2), the normal equations of model
(1) are X′X�Z′�−1

0 Z = X′Y�−1
0 Z. The least-squares estimator �̂0 of � is given by

�̂0 = (X′X)−1X′Y�−1
0 Z(Z′�−1

0 Z)−1. (2)

Since

(X′X)−1X′ = (X′X)−1X′PX

and

Z(Z′�−1
0 Z)−1Z′ = (PZ�−1

0 PZ)+, (3)

(2) can be written as

�̂0 = (X′X)−1X′PXY�−1
0 (PZ�−1

0 PZ)+Z(Z′Z)−1. (4)

Let

γ̂ 0 = C�̂0D′. (5)

The mean and covariance of γ̂ 0 are, respectively, C�D′and (C(X′X)−1C′)⊗(D(Z′�−1
0 Z)−1D′).

In addition, it follows from Rao [12], 4a.2, that γ = C�D′, for any matrices C ∈ Ms×m and
D ∈ Mt×q , is an estimable parametric transformation if matrices X and Z are of full rank. So, γ̂ 0
defined in (5) is said to be a least-squares estimator of the estimable parametric transformation
γ = C�D′. It is easily derived from 4a.2 of Rao [12] that γ̂ 0 is the best linear unbiased estimator
(BLUE) of γ .

Now, we shall focus our attention on the case of an unknown �.
Let

�̂(Y) = Y′WY, W ≡ 1

n − rank(X)
(I − PX). (6)

It is well known that �̂(Y)−1 is positive definite with probability 1 (see the proof of Muirhead [9],
Theorem 3.1.4). Žežula [14], Theorem 3.7, tells us that �̂(Y) is a uniformly minimum variance
unbiased invariant estimator of � under the assumption of normality. This estimator �̂(Y) is
often used to find the first-stage estimator; see, for example, Žežula [16]. We shall also take the
estimator as the first-stage estimator in our following discussion.

In (5), an unbiased least-squares estimator of γ is given when � is known. However, when � is
unknown, if we write �̂ ≡ (X′X)−1X′Y�−1Z(Z′�−1Z)−1, then the statistic γ̂ ≡ C�̂D′ depends
on �. In this case, we shall use a method called two-stage estimation to find an estimator, which
is denoted by γ̂ (Y): first, based on data Y, we find a first-stage estimator �̃ of �; second, replace
the unknown � with the first-stage estimator �̃ and then find �̂ through the normal equations of
model (1).
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We take �̂(Y) in (6) as the first-stage estimator �̃. Replacing � in (4) with �̂(Y), (5) can be
expressed as

γ̂ (Y) = C(X′X)−1X′Y�̂
−1

(Y)Z(Z′�̂−1
(Y)Z)−1D′. (7)

Let

H(Y) ≡ �̂
−1

(Y)(PZ�̂
−1

(Y)PZ)+. (8)

Then, by (3), (7) can be rewritten as

γ̂ (Y) = C(X′X)−1X′YH(Y)Z(Z′Z)−1D′. (9)

The estimator γ̂ (Y) is said to be a two-stage generalized least-squares estimator of the estimable
parametric transformation γ = C�D′.

In the special case of C and D being identity matrices, the estimable parametric transformation
γ is the first-order parameter matrix �. By (9) or (4), we have

�̂(Y) = (X′X)−1X′YH(Y)Z(Z′Z)−1. (10)

The following lemma concerns the unbiasedness of the estimator γ̂ (Y) under the assumption
that E is symmetric about the origin.

Lemma 2.1. Assume that the distribution of E is symmetric about the origin. Then the statistic
γ̂ (Y) defined in (9) is an unbiased estimator of the estimable parametric transformation γ .

Proof. Since �̂(Y) = �̂(E) = �̂(−E), γ̂ (Y) can be expressed as

γ̂ (Y) = C(X′X)−1X′X�Z′�̂−1
(E)Z(Z′�̂−1

(E)Z)−1D′

+ C(X′X)−1X′E�̂
−1

(E)Z(Z′�̂−1
(E)Z)−1D′.

Let

M(E) = C(X′X)−1X′E�̂
−1

(E)Z(Z′�̂−1
(E)Z)−1D′.

Then M(−E) = −M(E) and hence E(M(E)) = 0. Thus, E(γ̂ (Y)) = C�D′. This completes the
proof. �

3. Consistency

Since Y is associated with sample size n, we shall use Yn to replace Y in (9) and then investigate
the consistency of the estimator �̂(Yn), as well as the consistency of the related estimator γ̂ (Y),
as the sample size n tends to infinity. Note that X and E are also associated with the sample
size n.

Recall that an estimator of � of the form Y′
nW∗Yn is unbiased and invariant if and only if

tr(W∗) = 1 and W∗X = 0; see Žežula [14]. Hence, the statistic �̂(Yn) = Y′
nWY′

n defined in (6)
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is an unbiased and invariant estimator of � without the assumption of normality. Moreover, under
the assumption of normality, the estimator �̂(Yn) follows a Wishart distribution; see Hu [5].

Now, we shall investigate the consistency property of the estimator �̂(Yn).

Theorem 3.1. For model (1), the statistic �̂(Yn) defined in (6) is a consistent estimator of the
second-order parameter matrix �.

Proof. Since Y′
nWYn = (Yn − X�Z′)′W(Yn − X�Z′), in the following discussion we can

assume without loss of generality that X�Z′ = 0. So, by (6),

�̂(Yn) = n

n − m

(
1

n

n∑
l=1

E lE ′
l − 1

n
E ′PXE

)
, (11)

where E = (E1,E2, . . . ,En)
′ ∼ G(0, In ⊗ �).

Note that (E lE ′
l )

n
l=1 is a random sample from a population with mean E(E lE ′

l) = �. According
to Kolmogorov’s strong law of large numbers (see Rao [12], 2c.3 (iv)),

1

n

n∑
l=1

E lE ′
l converges almost surely to �. (12)

Letting ε > 0, by Chebyshev’s inequality and the fact that E(Y′WY) = tr(W)� + E(Y)′W ×
E(Y), we have

P

(∥∥∥∥ 1√
n

PXE
∥∥∥∥ ≥ ε

)
≤ 1

nε2
E[tr(E ′PXE)] = 1

nε2
tr(E[EE ′ ]PX)

= 1

nε2
tr(In tr(�)PX) = 1

nε2
tr(PX) tr(�).

Since tr(PX) = rank(X) is a constant, P(‖ 1√
n

PXE‖ ≥ ε) tends to 0 as the sample size n tends to
infinity. So,

1√
n

PXE converges in probability to 0. (13)

Since convergence almost surely implies convergence in probability, by (12) and (13), we obtain
from (11) that �̂(Yn) converges to � in probability. This completes the proof. �

Now, we focus our attention on the consistency of the estimator γ̂ (Yn). We first prove the
following lemma.

Lemma 3.2. H(Yn) converges in probability to H, where H(Yn) is defined in (8) and H =
�−1(PZ�−1PZ)+.
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Proof. Note that the function A to A+ is not continuous. Since �̂
−1

(Yn) is positive definite with
probability 1, by Lehmann [7], Lemma 5.3.2, and Theorem 3.1, we have

�̂
−1

(Yn) converges in probability to �−1. (14)

Write

PZ = O�O′, Qn = O′�̂(Yn)O,

where O is a p × p orthogonal matrix, � = diag[0, Iq ] with q = rank(Z) and

Q−1
n = O′�̂−1

(Yn)O =
[

G11(Yn) G12(Yn)

G21(Yn) G22(Yn)

]
= [Gij (Yn)]2×2

with G22(Yn) a q × q random matrix. By (14), for any i, j = 1,2, Gij (Yn) converges in proba-
bility to Gij . Note that (PZCPZ)+ = PZ(PZCPZ)+PZ . Then

H(Yn) = �̂
−1

(Yn)(PZ�̂
−1

(Yn)PZ)+ = OQ−1
n �O′(O�Q−1

n �O′)+O�O′

= O(Gij (Yn))2×2�O′(O�(Gij (Yn))2×2�O′)+O�Q′

= O
[

0 G12(Yn)

0 G22(Yn)

]
O′(O diag[0,G22(Yn)]O′)+O�O′

= O
[

0 G12(Yn)

0 G22(Yn)

]
diag[0,G−1

22 (Yn)]�O′ = O
[

0 G∗(Yn)

0 Iq

]
O′,

where G∗(Yn) = G12(Yn)G
−1
22 (Yn).

Similarly, H can be decomposed as

H = O
[

0 G12G−1
22

0 Iq

]
O′.

Since G∗(Yn) converges in probability to G12G−1
22 , we conclude that[

0 G∗(Yn)

0 Iq

]
converges in probability to

[
0 G12G−1

22
0 Iq

]
,

namely, H(Yn) converges in probability to H. This completes the proof. �

Based on Lemma 3.2, we obtain the following consistency result for the estimator γ̂ (Yn).

Theorem 3.3. Assume that

lim
n→∞

1

n
(X′X) = R, (15)

where R is a positive definite matrix. Then the statistic γ̂ (Yn) is a consistent estimator of the
estimable parametric transformation γ = C�D′.
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Proof. To prove that γ̂ (Yn) is a consistent estimator of γ , by Slutsky’s theorem (see Lehmann
and Romano [8], Theorem 11.2.11), it suffices to show that �̂(Yn) is a consistent estimator of
�.

Replacing Y with X�Z′ + E in (10), we decompose �̂(Yn) as En + Fn, where

En = (X′X)−1X′X�Z′H(Yn)Z(Z′Z)−1

and

Fn = (X′X)−1X′EH(Yn)Z(Z′Z)−1.

Note that A′A(A′A)−B = B if B is estimable with respect to A. Since Z′PZ = Z′, we obtain

En = �Z′�̂−1
(Yn)(PZ�̂

−1
(Yn)PZ)+Z(Z′Z)−1

= �Z′PZ�̂
−1

(Yn)PZ(PZ�̂
−1

(Yn)PZ)+Z(Z′Z)−1

= �Z′Z(Z′Z)−1 = �

and

Fn = n(X′X)−1
(

1√
n

X′
)(

1√
n

PXE
)

H(Yn)Z(Z′Z)−1.

By (15), X′/
√

n are bounded. In fact, the elements of X′/
√

n are at most of order n−1/2 (see the
proof of Lemma 4.1 below). Then, by (13), (15) and Lemma 3.2, Fn converges in probability
to 0. So, �̂(Yn) converges in probability to �. This completes the proof. �

4. Asymptotic normality

We investigated the consistency of the estimator γ̂ (Yn) in Section 3. In this section, we shall
investigate the asymptotic normality of

√
n[γ̂ (Yn) − γ ].

First, we shall prove the following lemma.

Lemma 4.1. Suppose that condition (15) holds. Let S = (X′X)−1X′ = (s1, s2, . . . , sn)m×n,
where sl is the lth column of (X′X′)−1X′. Then, for any l ∈ {1,2, . . . , n}, the m elements of√

nsl are O(n−1/2).

Proof. Write V = 1√
n

X′ = [v1,v2, . . . ,vn]. The transpose of vl is an m-element row vector,

v′
l =

(
1√
n
xl1,

1√
n

xl2, . . . ,
1√
n
xlm

)
,

where X = [xij ]n×m. By (15), VV′ = n−1X′X converges to a positive definite matrix R. So, the
elements of VV′ = v1v′

1 +v2v′
2 +· · ·+vnv′

n are bounded. We claim that for any l ∈ {1,2, . . . , n},
the m elements of vl are all O(n−1/2).
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If this is not true, we can assume, without loss of generality, that one element of vn is
O(np−1/2) with p > 0. Then one element of vnv′

n would be O(n2p−1). Hence, the correspond-
ing element in matrix VV′ = v1v′

1 + v2v′
2 + · · · + vnv′

n would be O(n2p), which is not bounded.
This contradicts condition (15).

Note that

(√
ns1,

√
ns2, . . . ,

√
nsn

) = √
n(X′X)−1X′ = n(X′X)−1 1√

n
X′

= n(X′X)−1[v1,v2, . . . ,vn],

namely, for l = 1,2, . . . , n,
√

nsl = n(X′X)−1vl . Thus, for l = 1,2, . . . , n, the m elements of√
nsl are also O(n−1/2). This completes the proof. �

Now, we shall show the following important result on the asymptotic normality of
√

n[γ̂ (Yn)−
γ ].

Theorem 4.2. Under the assumption of condition (15),
√

n[γ̂ (Yn)−γ ] converges in distribution
to Ns×t (0, (CR−1C′) ⊗ (D(Z′�−1Z)−1D′)).

Proof. First, by (8), we rewrite γ and γ̂ (Yn) as

γ = CSX�Z′H(Yn)KD′

and

γ̂ (Yn) = CSYnH(Yn)KD′,

where K = Z(Z′Z)−1. So,

γ̂ (Yn) − γ = CSYnH(Yn)KD′ − CSX�Z′H(Yn)KD′

= CS(Yn − X�Z′)H(Yn)KD′ (16)

= CSEH(Yn)KD′ = CLnH(Yn)KD′,

where Ln ≡ SE . Further, Ln is expressed as

Ln =
n∑

l=1

slE ′
l , (17)

where sl is the lth column vector of S and E ′
l is the lth row vector of the matrix E with E ∼

G(0, In ⊗ �).
Next, we shall find the limiting distribution of

√
n[γ̂ (Yn) − γ ] through showing that

√
nLn converges in distribution to Nm×p(0,R−1 ⊗ �). (18)
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Since {E ′
l}nl=1 are independent and identically distributed, for t ∈ Mp×m, the characteristic

function �n(t) of
√

nL′
n is given by

�n(t) = E
(
exp

{
i tr

(
t′
√

nL′
n

)}) = E
(
exp

{
i tr

(
t
√

nLn

)}) =
n∏

l=1

�
(√

ntsl

)
,

where �(·) is the characteristic function of E ′
l .

Recall that for u in the neighborhood of 0,

ln(1 − u) = −u + f (u) with f (u) = 1
2u2 + o(u2). (19)

If we write p(u) = f (u)/u, then from (19),

p(u) = o(u) as u → 0. (20)

Also,

�(x) = 1 − 1
2 x′�x + g(x) for x ∈ 
m and g(x) = o(‖x‖2) as x → 0. (21)

For ε > 0, there exists δ(ε) > 0 such that

|g(x)| < ε‖x‖2 as 0 < ‖x‖ < δ(ε). (22)

Therefore, by (19) and (21), the characteristic function of
√

nL′
n can be decomposed as

�n(t) = exp

{
n∑

l=1

ln
(
�

(√
ntsl

))}

= exp

{
n∑

l=1

ln

(
1 − n

2
s′
lt

′�tsl + g
(√

ntsl

))}
(23)

= exp

{
n∑

l=1

[
−1

2
ns′

lt
′�tsl + g

(√
ntsl

) + f

(
1

2
ns′

lt
′�tsl − g

(√
ntsl

))]}

= exp

{
−1

2
αn + βn + ηn

}
,

where

αn =
n∑

l=1

ns′
lt

′�tsl = tr

(
n∑

l=1

ns′
lt

′�tsl

)
,

βn =
n∑

l=1

g
(√

ntsl

)
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and

ηn =
n∑

l=1

f
( 1

2ns′
lt

′�tsl − g
(√

ntsl

))
.

For αn, we have

αn = tr(�tnSS′t′) = tr(�tn(X′X)−1t′). (24)

By (15),

lim
n→∞αn = tr(R−1t′�t) = (vec(t))′(R−1 ⊗ �)vec(t). (25)

For βn, by Lemma 4.1 and the continuity of tsl , for the δ(ε) > 0 in (22), there is an integer
N(ε) > 0 such that for n > N(ε),

0 <
∥∥√

ntsl

∥∥ < δ(ε) for all l = 1,2, . . . , n. (26)

If we take n > N(ε), then by (22) and (26),

∣∣g(√
ntsl

)∣∣ <
∥∥√

ntsl

∥∥2
ε. (27)

So,

|βn| <
n∑

l=1

∥∥√
ntsl

∥∥2
ε = ε tr(ntSS′t′) = ε tr(tn(X′X)−1t′).

So, by (15), lim supn→∞ |βn| ≤ ε tr(tR−1t′). Since ε > 0 is arbitrary, we obtain

lim
n→∞βn = 0. (28)

For ηn, let

λl = 1
2

(√
ntsl

)′
�

(√
ntsl

) − g
(√

ntsl

)
.

So, by (27),

|λl | < 1
2

(√
ntsl

)′
�

(√
ntsl

) + ∥∥√
ntsl

∥∥2
ε. (29)

Take n > N(ε). By Lemma 4.1, the continuity of tsl and (20), increasing N(ε) if necessary, we
may suppose that for all l, |p(λl)| < ε. Since f (λl) = p(λl)λl ,

|ηn| =
n∑

l=1

|f (λl)| =
n∑

l=1

|p(λl)||λl | ≤
n∑

l=1

ε|λl |.

So, by (29),

|ηn| ≤
n∑

l=1

[
ε

2
tr
(√

ns′
lt

′�t
√

nsl

) + ∥∥√
ntsl

∥∥2
ε2

]
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or

|ηn| ≤
n∑

l=1

[
nε

2
tr(t′�tsls′

l ) + tr
(√

ntsl

(√
ntsl

)′
ε2)],

namely,

|ηn| ≤ ε

2
tr(t′�tnSS′) + tr(tnSS′t′)ε2. (30)

Note that nSS′ = n(X′X)−1. Since ε is arbitrary, by (15) and (30),

lim
n→∞ηn = 0. (31)

By (25), (28) and (31), we obtain from (23) that

lim
n→∞�n(t) = exp

{− 1
2 (vec(t))′(R−1 ⊗ �)vec(t)

}
. (32)

So, by Lévy’s continuity theorem,
√

nLn in (17) converges in distribution to the normal distrib-
ution Nm×p(0,R−1 ⊗ �), as was claimed in (18).

Finally, by Lemma 3.2, (16), (18) and Muirhead [9], Theorem 1.2.6, we obtain that

√
n[γ̂ (Yn) − γ ] converges in distribution to Ns×t

(
0,CR−1C′ ⊗ (DK′H′�HKD′)

)
.

Replacing H and K with �−1(PZ�−1PZ)+ and Z(Z′Z)−1, respectively, we conclude that

√
n[γ̂ (Yn) − γ ] converges in distribution to Ns×t

(
0, (CR−1C′) ⊗ (DTD′)

)
,

where T = (Z′Z)−1Z′(PZ�−1PZ)+Z(Z′Z)−1 = (Z′�−1Z)−1 (see (3)). Thus, the proof is com-
plete. �

Under model (1), hypotheses of the form

H :γ ≡ C�D′ = 0

are usually considered; see Potthoff and Roy [11].
From Theorem 4.2 and Slutsky’s theorem, the following corollary provides the asymptotic

behavior of
√

nγ̂ (Yn) under H.

Corollary 4.3. Under the assumption of condition (15), if matrices C(X′X)−1C′ and

D(Z′�̂−1
(Yn) Z)−1D′ are non-singular, then the statistic (Cn(X′X)−1C′)−1/2√nγ̂ (Yn)(D(Z′ ×

�̂
−1

(Yn)Z)−1D′)−1/2 under H converges in distribution to Ns×t (0, I).

Remark 4.4. Lemma 2.1 tells us that γ̂ (Y) is an unbiased estimator of γ under the assumption of
E being symmetric about the origin. In general, it is very difficult to obtain the covariance matrix
of γ̂ (Y), even under the assumption of normality. However, under condition (15), Theorem 4.2
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gives us an approximate covariance matrix (C(X′X)−1C′) ⊗ (D(Z′�̂−1
(Y)Z)−1D′) of γ̂ (Y) for

large sample size n, without the assumption of normality.
We now conclude this paper by discussing the example in Potthoff and Roy [11]. No assump-

tion of normality is made in our discussion.

Example 4.5. There are m groups of animals, with r animals in the j th group and each group
being subjected to a different treatment. Animals in all groups are measured at the same p time
points, t1, t2, . . . , tp . The observations of different animals are independent, but the p observa-
tions on each animal are assumed to have a covariance matrix �.

Based on the problem and our discussion, m remains constant, while r tends to infinity.
For i = 1,2, . . . ,m, the growth curve associated with the ith group is

θi0 + θi1x + θi2x
2 + · · · + θ1q−1x

q−1.

Put

X = (x1,x2, . . . ,xm),

where xi = [δ1ie′
r , δ2ie′

r , . . . , δtie′
r ]′, er = (1,1, . . . ,1)′ ∈ 
r , δij are the Kronecker symbols,

n = rm,

θ i = (θi0, θi1, θi2, . . . , θi q−1), � = (θ ′
1, θ

′
2, . . . , θ

′
m)′

and

Z =

⎡
⎢⎢⎣

1 t1 t2
1 . . . t

q−1
1

1 t2 t2
2 . . . t

q−1
2

. . . . . . .

1 tp t2
p . . . t

q−1
p

⎤
⎥⎥⎦ .

The observation data matrix Yn can be written as

Yn = X�Z′ + E,

where E = (E1,E2, . . . ,En)
′ with E1,E2, . . . ,En being independent and identically distributed

with mean 0 and covariance �. Then, by (14),

R−1 = lim
r→∞n(X′X)−1 = mI.

By (10),

�̂(Yn) = m

n
X′Yn�̂

−1
(Yn)(PZ(�̂

−1
(Yn))PZ)+K.

For the estimable parametric transformation of the form γ = C�D′ with given C ∈ Ms×m and
D ∈ Mt×q , the two-stage generalized least-squares estimator is given by

γ̂ (Yn) = C�̂(Yn)D′.
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It follows from Theorem 4.2 that
√

n[γ̂ (Yn) − γ ] converges in distribution to the normal distri-
bution Ns×t (0, (mCC′) ⊗ (D(Z′�−1Z)−1D′)).

Moreover, if we try to test that all m growth curves are equal, except possibly for the additive
constant θi0, then we take C to be a matrix whose last column contains all −1’s and whose first
(m − 1) columns constitute the identity matrix, and D to be a (q − 1) × q matrix whose first
column contains all 0’s and whose last (q − 1) columns constitute the identity matrix, namely,
taking

C = [ Im−1 −1m−1 ](m−1)×m , D = [ 0 Iq−1 ](q−1)×q ,

where 1m−1 = (1,1, . . . ,1)′, and hypothesis H0 : C�D′ = 0. Obviously, matrices C(X′X)−1C′

and D(Z′�̂−1
(Yn)Z)−1D′ are non-singular. It follows from Corollary 4.3 that statistic (Cn(X′

X)−1C′)−1/2√nγ̂ (Yn)(D(Z′�̂−1
(Yn)Z)−1D′)−1/2 under H0 converges in distribution to

N(m−1)×(q−1)(0, I).
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