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Lévy-based growth models
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In the present paper, we give a condensed review, for the nonspecialist reader, of a new modelling framework
for spatio-temporal processes, based on Lévy theory. We show the potential of the approach in stochastic
geometry and spatial statistics by studying Lévy-based growth modelling of planar objects. The growth
models considered are spatio-temporal stochastic processes on the circle. As a by product, flexible new
models for space–time covariance functions on the circle are provided. An application of the Lévy-based
growth models to tumour growth is discussed.
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1. Introduction

Stochastic spatio-temporal modelling is of great importance in a variety of disciplines of nat-
ural science, including biology (Cantalapiedra et al. (2001), Brix and Chadoeuf (2002), Fewster
(2003), Gratzer et al. (2004)), image analysis (Feideropoulou and Pesquet-Popescu (2004)), geo-
physics (Calder (1986), Lovejoy et al. (1992), Sornette and Ouillon (2005)) and turbulence
(Schmiegel et al. (2004), Schmiegel et al. (2005)), to name just a few. In particular, the mod-
elling of tumour growth dynamics has been a very active research area in recent years (Delsanto
et al. (2000), Peirolo and Scalerandi (2004), Pang and Tzeng (2004), Schmiegel (2006)). In most
of the above-cited works, the model is given implicitly and the resulting dynamics are difficult
to control explicitly. However, for applications and for the theoretical understanding of the mod-
elling framework being employed it is essential to connect the ingredients of the model with
dynamical and spatial properties of the system under consideration. Furthermore, for a parsi-
monious description of systems which are different with respect to the dynamics and physical
mechanisms underlying the dynamics, it is desirable to have access to a flexible and, at the same
time, mathematically tractable modelling framework.

Lévy-based models provide a promising modelling framework to meet these requirements
concerning flexibility and dynamical control. Until now, Lévy-based models have mainly been
used for describing turbulent flows (Barndorff-Nielsen and Schmiegel (2004), Schmiegel et al.
(2004), Schmiegel et al. (2005)). In the present paper, we show that Lévy-based spatio-temporal
modelling also has important applications in stochastic geometry and spatial statistics. The main
focus is on Lévy-based growth models, but we will also briefly touch upon another emerging
area of application, that is, Lévy-driven Cox processes. We expect that the Lévy-based approach
will have many applications in stochastic geometry and spatial statistics.

Lévy-based spatio-temporal models are constructed from Lévy bases, that is, infinitely divisi-
ble and independently scattered random measures. This terminology was recently introduced in
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Barndorff-Nielsen and Schmiegel (2004). One example of such a model describes the growth of
a planar star-shaped object, using its radial function Rt(φ) at time t and angle φ. Here, Rt(φ)

is the distance from a reference point z to the boundary of the object at time t in the direction
φ ∈ [−π,π); see also Figure 2 below. The time derivative of the radial function is of the form

∂

∂t
Rt (φ) = μt(φ) +

∫
At (φ)

ft (ξ ;φ)Z(dξ), φ ∈ [−π,π),

where Z is a Lévy basis, At(φ) ⊆ [−π,π) × (−∞, t] is a subset of the past of time t , a so-
called ambit set (cf. Barndorff-Nielsen and Schmiegel (2004)), ft (·;φ) is a deterministic weight
function and μt a deterministic function. (In Latin, ambitus means either (1) the bounds or limits
of a place or district, or (2) a sphere of action, expression or influence.) The induced model for
the radial function is of the same type. An important advantage of these models is that explicit
expressions for

Cov(Rt1(φ1),Rt2(φ2))

can be derived in terms of the components of the model. This part of the paper is a natural
continuation of the work initiated in Schmiegel (2006), which was mainly directed toward an
audience of physicists. An introduction to different growth modelling approaches, including a
short treatment of the Lévy-based approach adopted in the present paper, may be found in the
SemStat contribution Jensen et al. (2006).

The paper is organized as follows. Section 2 provides some background on Lévy bases, which
is the essential component of the modelling approach. In Section 3, Lévy-based spatio-temporal
models are reviewed, while Lévy-based growth models are studied in Section 4. Section 5 con-
tains explicit results for the covariance functions. In Section 6, an application of the Lévy-based
growth models to tumour growth is discussed, while problems for future research are collected
in Section 7.

2. Lévy bases

This section provides a brief overview of the general theory of Lévy bases, in particular, the
theory of integration with respect to a Lévy basis. For a more detailed exposition, see Barndorff-
Nielsen and Schmiegel (2004). As mentioned in the Introduction, a Lévy basis is an infinitely
divisible and independently scattered random measure. Comprehensive accounts of the theory
of independently scattered random measures may be found in Kallenberg (1989), Rajput and
Rosinski (1989) and Kwapien and Woyczynski (1992).

Let R be a Borel subset of R
d , let B = B(R) be the Borel subsets of R and let Bb = Bb(R)

denote the class of bounded elements of B. A collection of random variables Z = {Z(A) :A ∈ B}
or Z = {Z(A) :A ∈ Bb} is said to be an independently scattered random measure if, for every
sequence {An} of disjoint sets in B (resp. Bb), the random variables Z(An), n = 1,2, . . . , are
independent and Z(

⋃
An) =∑Z(An) a.s., where, in the case Z = {Z(A) :A ∈ Bb}, we further

require
⋃

An ∈ Bb. We need to distinguish between the two cases B and Bb because the sums∑
Z(An) must also be controlled in case where Z can take both positive and negative values. If,
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moreover, Z(A) is infinitely divisible for all A ∈ B or Bb , Z is called a Lévy basis (cf. Barndorff-
Nielsen and Schmiegel (2004)).

For a random variable X, let us denote the cumulant function logE(eiλX) by C(λ ‡ X). When
Z is a Lévy basis, the cumulant function of Z(A) can, by the famous Lévy–Khinchine represen-
tation, be written as

C
(
λ ‡ Z(A)

)= iλa(A) − 1
2λ2b(A) +

∫
R

(
eiλu − 1 − iλu1[−1,1](u)

)
U(du,A), (1)

where a is a signed measure on B or Bb, b is a positive measure on B or Bb and U(du,A) is
a Lévy measure on R for fixed A and a measure on B or Bb for fixed du. The measure U will
be referred to as the generalized Lévy measure. The Lévy basis Z is said to have characteristics
(a, b,U). If b = 0, then L is called a Lévy jump basis and if U = 0, then L is a Gaussian basis;
see the examples below. It follows from (1) that any Lévy basis Z can be expressed as the sum
of a Lévy jump basis Z1 and an independent zero-mean Gaussian basis Z2.

Without loss of generality (for details, see Rajput and Rosinski (1989)), we can assume that
there exists a measure μ such that the generalized Lévy measure factorizes as

U(du,dξ) = V (du, ξ)μ(dξ),

where V (du, ξ) is a Lévy measure for fixed ξ . Furthermore, the measures a and b are absolutely
continuous with respect to the measure μ, that is,

a(dξ) = ã(ξ)μ(dξ), b(dξ) = b̃(ξ)μ(dξ),

and ã and b̃ are uniformly bounded by some constant C > 0. One possible choice (but not the
only one; see Rajput and Rosinski (1989)) for μ is

μ(A) = |a|(A) + b(A) +
∫

R

(1 ∧ r2)U(dr,A),

where |a| denotes the total variation measure of a and ∧ denotes minimum.
Let Z′(ξ) be a random variable with the cumulant function

C
(
λ ‡ Z′(ξ)

)= iλã(ξ) − 1
2λ2b̃(ξ) +

∫
R

(
eiλu − 1 − iλu1[−1,1](u)

)
V (du, ξ).

Then,

C
(
λ ‡ Z(dξ)

)= C
(
λ ‡ Z′(ξ)

)
μ(dξ). (2)

If ã(ξ), b̃(ξ) and the Lévy measure V (·; ξ) do not depend on ξ , then we call Z a factoriz-
able Lévy basis and Z′(ξ) = Z′ also does not depend on ξ . If, moreover, μ is proportional to
the Lebesgue measure, then Z is called a homogeneous Lévy basis and all finite-dimensional
distributions of Z are translation invariant.

The usefulness of the above definitions becomes clear in connection with the integration of
a measurable function f on R with respect to a Lévy basis Z. For simplicity, we denote this
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integral by f · Z. Important for many calculations is the following equation for the cumulant
function of the stochastic integral f · Z (subject to minor regularity conditions, cf., for instance,
Barndorff-Nielsen and Thorbjørnsen (2003))

C(λ ‡ f · Z) =
∫

C
(
λf (ξ) ‡ Z′(ξ)

)
μ(dξ). (3)

The result (3) can be heuristically derived from (2). A similar result holds for the logarithm of
the Laplace transform of f · Z (assumed to be finite),

K(λ ‡ f · Z) =
∫

K
(
λf (ξ) ‡ Z′(ξ)

)
μ(dξ). (4)

The function K will, in the following, be called the kumulant function.
We will now give a few examples of Lévy bases.

Example 1 (Gaussian Lévy basis). If Z is a Lévy basis with Z(A) ∼ N(a(A), b(A)), where a

is a signed measure and b is a positive measure, we call Z a Gaussian Lévy basis. The Gaussian
Lévy basis has characteristics (a, b,0) and its cumulant function is

C
(
λ ‡ Z(A)

)= iλa(A) − 1
2λ2b(A).

We have Z′(ξ) ∼ N(ã(ξ), b̃(ξ)), that is, C(λ ‡ Z′(ξ)) = iλã(ξ) − 1
2λ2b̃(ξ). Furthermore,

C(λ ‡ f · Z) =
∫

C
(
λf (ξ) ‡ Z′(ξ)

)
μ(dξ) = iλ(f · a) − 1

2λ2(f 2 · b). (5)

Note that f · Z ∼ N(f · a,f 2 · b).

Example 2 (Lévy jump basis). A Lévy basis is called a Lévy jump basis if the characteristics of
the basis are (a,0,U). In Table 1, we specify the functions V and ã for three important examples
of Lévy jump bases: the Poisson basis, the Gamma basis and the inverse Gaussian basis. We also
list the distribution of the random variable Z′(ξ), its cumulant function, mean and variance. All
parameters are positive.

Note that if Z is a Poisson basis, then Z(A) ∼ Po(μ(A)) with probability function

e−μ(A)μ(A)x

x! , x = 0,1,2, . . . .

If Z is a Gamma basis with α(ξ) ≡ α, then Z(A) ∼ �(βμ(A),α) with density

αβμ(A)

�(βμ(A))
xβμ(A)−1e−αx, x > 0,

while if Z is an inverse Gaussian basis with γ (ξ) ≡ γ , then Z(A) ∼ IG(ημ(A), γ ) with density

ημ(A)eημ(A)γ

√
2π

x−3/2 exp

{
−1

2

(
(ημ(A))2x−1 + γ 2x

)}
, x > 0.
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Table 1. The definition of three Lévy jump bases – the Poisson basis, the Gamma basis and the inverse
Gaussian basis – and the distribution of Z′(ξ), with the corresponding cumulant function, mean and vari-
ance

Poisson Gamma Inverse Gaussian

V (du, ξ) δ1(du) 1R+ (u)βu−1e−α(ξ)u du
η√
2π

1R+(u)u−3/2e(−1/2)γ 2(ξ)u du

ã(ξ) 1 β

(
1−e−α(ξ)

α(ξ)

)
η√
2π

∫ 1
0 u−1/2e−(1/2)γ 2(ξ)u du

Z′(ξ) Po(1) �(β,α(ξ)) IG(η, γ (ξ))

C(λ ‡ Z′(ξ)) eiλ − 1 −β log

(
1 − iλ

α(ξ)

)
ηγ (ξ)

(
1 −

√
1 − 2iλ

γ 2(ξ)

)
E(Z′(ξ)) 1 β

α(ξ)
η

γ (ξ)

V(Z′(ξ)) 1 β

α2(ξ)

η

γ 3(ξ)

The Poisson, Gamma and inverse Gaussian Lévy bases are examples of the random
G-measures introduced in Brix (1999). These measures are purely discrete and can be written as
(the Lévy–Itô representation)

Z(A) = a0(A) +
∫

R+
xN(dx,A), (6)

where N is a Poisson basis on R+ ×R with intensity measure U and

a0(A) = a(A) −
∫ 1

0
xU(dx,A).

Note that equation (6) can also be written as

Z(A) = a0(A) +
∑

(u,ξ)∈�

u1A(ξ), (7)

where � is a Poisson point process on R+ × R with intensity function U . If f is a measurable
function on R, we have

f · Z = f · a0 +
∑

(u,ξ)∈�

uf (ξ).

Finally, it should be noted that any Lévy process {Zt }t∈R induces a Lévy basis Z on R by

Z((a, b]) = Zb − Za, a, b ∈ R.
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3. Lévy-based spatio-temporal modelling

Let us consider a random variable Xt(σ ) depending on time t and a position σ in space. In the
following, we will assume that (σ, t) ∈ R = S × R, where S ⊆ R

n, say. A Lévy-based spatio-
temporal model for X = {Xt(σ ) : (σ, t) ∈ R} is based on the intuitive picture of an ambit set
At(σ ) associated with each point (σ, t) ∈ R, which defines the dependency on the past at time t

and position σ . The ambit set At(σ ) will always satisfy the following conditions:

(σ, t) ∈ At(σ ),

At (σ ) ⊆ S × (−∞, t].
An illustration is shown in Figure 1. The linear spatio-temporal Lévy model for X =
{Xt(σ ) : (σ, t) ∈ R} is then defined as

Xt(σ ) =
∫

At (σ )

ft (ξ ;σ)Z(dξ), (8)

where Z is a Lévy basis and ft (ξ ;σ) is a deterministic weight function, which is assumed to be
suitable for the integral to exist. The process

X̃ = {exp(Xt (σ )) : (σ, t) ∈R}
is said to follow an exponential spatio-temporal Lévy model.

The spatio-temporal Lévy models can be viewed as generalizations of the familiar moving
average processes in time series, extended (i) from discrete to continuous time, (ii) from one
dimension (time) to space-time, preserving a notion of causality in time (i.e., the ambit set lies
in the past of time t ) and (iii) from Gaussian white noise to more general infinitely divisible
processes.

Figure 1. The ambit set At (σ ).
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Using the key relation (3), we can derive expressions for moments in the linear spatio-temporal
Lévy model. Thus, we find

E(Xt (σ )) =
∫

At (σ )

ft (ξ ;σ)E(Z′(ξ))μ(dξ) (9)

and

V(Xt (σ )) =
∫

At (σ )

f 2
t (ξ ;σ)V(Z′(ξ))μ(dξ), (10)

where V is the notation used for variance. The covariances are of the form

Cov(Xt1(σ1),Xt2(σ2)) =
∫

At1 (σ1)∩At2 (σ2)

ft1(ξ ;σ1)ft2(ξ ;σ2)V(Z′(ξ))μ(dξ). (11)

If the weight function is constant, that is ft (ξ ;σ) ≡ f , and if the Lévy basis Z is factorizable,
then (11) reduces to

Cov(Xt1(σ1),Xt2(σ2)) = f 2
V(Z′)μ

(
At1(σ1) ∩ At2(σ2)

)
. (12)

In this case, the covariance structure depends only on the μ-measure of the intersection of the
two ambit sets.

Equation (4) enables us to calculate arbitrary mixed nth order moments of X̃t (σ ) =
exp(Xt (σ )). If the moments are finite, then

E
(
X̃t1(σ1) · · · · · X̃tn(σn)

)= exp

(∫
R

K

(
n∑

j=1

ftj (ξ ;σj )1Atj
(σj )(ξ) ‡ Z′(ξ)

)
μ(dξ)

)
. (13)

The corresponding expressions for the mixed nth order moments of Xt(σ ) are obtained from

E
(
Xt1(σ1) · · · · · Xtn(σn)

)= ∂n

∂λ1 · · · · · ∂λn

E(X̃
λ1
t1

(σ1) · · · · · X̃λn
tn

(σn))

∣∣∣∣
λ1=···=λn=0

, (14)

where

E
(
X̃

λ1
t1

(σ1) · · · · · X̃λn
tn

(σn)
)= exp

(∫
R

K

(
n∑

j=1

λjftj (ξ ;σj )1Atj
(σj )(ξ) ‡ Z′(ξ)

)
μ(dξ)

)
. (15)

The relative second-order moments of X̃t (σ ) have a particularly attractive form

E(X̃t1(σ1)X̃t2(σ2))

E(X̃t1(σ1))E(X̃t2(σ2))
= exp

(∫
At1 (σ1)∩At2 (σ2)

g(ξ ; t1, t2, σ1, σ2)μ(dξ)

)
, (16)

where

g(ξ ; t1, t2, σ1, σ2)

= K
((

ft1(ξ ;σ1) + ft2(ξ ;σ2)
)

‡ Z′(ξ)
)− K

(
ft1(ξ ;σ1) ‡ Z′(ξ)

)− K
(
ft2(ξ ;σ2) ‡ Z′(ξ)

)
.
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In the simple case where the weight functions are constant, that is, ft (ξ ;σ) ≡ f for all (σ, t) ∈R
and ξ ∈R, and where the underlying Lévy basis is factorisable, Z′(ξ) = Z′, (16) reduces to

exp
(
Cμ
(
At1(σ1) ∩ At2(σ2)

))
, (17)

where C = K(2f ‡ Z′) − 2K(f ‡ Z′). For a factorisable Lévy basis Z and a constant weight
function, one can express

E(X̃
λ1
t1

(σ1) · · · · · X̃λn
tn

(σn))

E(X̃
λ1
t1

(σ1)) · · · · · E(X̃
λn
tn

(σn))
(18)

in terms of different overlaps of the corresponding ambit sets (Schmieget et al. (2005)).

4. Lévy-based growth models

In this section, we demonstrate the potential of the Lévy setup in stochastic geometry and spatial
statistics by constructing Lévy-based stochastic models for growing objects. We focus on planar
objects, but generalisations to higher dimensions are straightforward. We denote the planar object
at time t by Yt ⊂ R

2 and will assume that Yt is compact and star-shaped with respect to a point
z ∈ Yt for all t . The boundary of the star-shaped object Yt can be determined by its radial function
Rt = {Rt(φ) :φ ∈ [−π,π)}, where

Rt(φ) = max{r : z + r(cosφ, sinφ) ∈ Yt }, φ ∈ [−π,π)

(cf. Figure 2).
The growth rate will be described by the equation

∂

∂t
Rt (φ) = μt(φ) +

∫
At (φ)

ft (ξ ;φ)Z(dξ). (19)

Here, the deterministic function μt : [−π,π) → R contributes to the overall growth pattern while
the stochastic integral determines the dependence structure in the growth process. The ambit set
At(φ) ⊆ [−π,π) × (−∞, t] relates to past events, ft (·;φ) : [−π,π) × R → R is a determinis-

Figure 2. The star-shaped object Yt is determined by its radial function Rt (φ) at time t and angle φ.
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tic weight function (assumed to be suitable for the integral to exist) and Z is a Lévy basis on
[−π,π) × R. The weight functions and ambit sets must be defined cyclically in the angle such
that the radial function Rt(φ) becomes cyclic. In the following, all angular calculations are re-
garded as cyclic.

Note that for nonnegative weight functions and nonnegative Lévy bases, ∂
∂t

Rt (φ) ≥ 0. In other
cases, equation (19) still has a growth interpretation if the right-hand side of (19) is non-negative
with probability one.

Using (9), the mean growth rate becomes

E

(
∂

∂t
Rt (φ)

)
= μt(φ) +

∫
At (φ)

ft (ξ ;φ)E(Z′(ξ))μ(dξ).

In the special case where Z is a zero-mean Gaussian Lévy basis, μt(φ) is indeed the mean growth
rate at time t in direction φ. In other cases, μt(φ) must be chosen such that the mean growth rate
becomes as desired. There is a large literature on deterministic modelling of growth. A classical
example is the Gompertz growth rate specified by

E

(
∂

∂t
Rt (φ)

)
= μt = κ0 exp

[
η

γ

(
1 − exp(−γ t)

)]
η exp(−γ t)

(cf., e.g., Steel (1977)).
The ambit set At(φ) plays an important role in this modelling approach and affects the degree

of dependence on the past. The extent of the dependence on the past may be specified by the
minimal time-lag T (t) such that

At(φ) ⊆ [−π,π) × [t − T (t), t], φ ∈ [−π,π).

For an illustration, see Figure 3. Note that it follows from the fact that Z is independently
scattered that the random growth rates at time t1 and t2 are independent if min(t1, t2) <

Figure 3. Two ambit sets At (φ) and At ′(φ′). Note the cyclic definition in the angle. The vertical lines are
φ = −π and φ = π, respectively.
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max(t1 − T (t1), t2 − T (t2)). The actual form of the ambit set At(φ) will depend on the specific
growth process being modelled. A number of examples are given below. The induced correlation
structure will be discussed in more detail in Section 5. A discrete version of (19) with a Gaussian
Lévy basis has earlier been discussed in Jónsdóttir and Jensen (2005).

For the interpretation of (19) as a growth model, it is helpful to represent the ambit set as
a stochastic subset of the growing object. This is possible if the stochastic time transformation
t → Rt(φ) is non-decreasing for each φ ∈ [−π,π). We can then represent the ambit set At(φ) as
a subset of Yt ,

Ãt (φ) = {(Rs(θ) cos θ,Rs(θ) sin θ) : (θ, s) ∈ At(φ)}.
It follows from the fact that At(φ) ⊆ [−π,π) × (−∞, t] that Ãt (φ) is actually a subset of
Yt . Furthermore, since (φ, t) ∈ At(φ), the set Ãt (φ) touches the boundary of Yt at the point
(Rt (φ) cosφ,Rt (φ) sinφ). It is the ‘events’ in Ãt (φ) that influence the growth rate at time t in
direction φ. Figure 4 illustrates the set Ãt (φ).

In the particular case where Z is a Poisson basis and � the associated Poisson point process
on [−π,π)×R, we can represent that part of the spatio-temporal point process � , arrived before
time t ,

�t = {(θi, ti) : ti ≤ t},
as a subset of Yt :

�̃t = {(Rti (θi) cos θi,Rti (θi) sin θi) : ti ≤ t}.
We can think of �̃t as consisting of locations of outbursts at time points before t . Finally, if we
let

f̃t ((s cos θ, s sin θ);φ) = ft ((θ, s);φ),

Figure 4. Illustration of the stochastic representation Ãt (φ) (shown hatched) of the ambit set
At (φ) = {(θ, s) : |θ − φ| ≤ �, t − T ≤ s ≤ t}.
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then the fundamental equation (19) can be written as

∂

∂t
Rt (φ) = μt(φ) +

∑
ξ̃∈�̃t∩Ãt (φ)

f̃t (ξ̃ ;φ). (20)

According to (20), the growth rate at time t in the direction φ depends on the outbursts at time
points before t which lie in the stochastic neighbourhood Ãt (φ). This Poisson model is closely
related to other recently suggested growth models (cf. Section 7.1).

Under (19), the induced model for Rt(φ) will be of the same linear form since

Rt(φ) = R0(φ) + μ̄t (φ) +
∫ t

0

∫
As(φ)

fs(ξ ;φ)Z(dξ)ds

= R0(φ) + μ̄t (φ) +
∫

Āt (φ)

f̄t (ξ ;φ)Z(dξ), (21)

where R0 is the radial function at time t = 0,

μ̄t (φ) =
∫ t

0
μs(φ)ds,

Āt (φ) =
⋃

0≤s≤t

As(φ)

and

f̄t (ξ ;φ) =
∫ t

0
1As(φ)(ξ)fs(ξ ;φ)ds. (22)

Note that the ambit sets associated with the radial function itself are increasing, that is,

t1 ≤ t2 ⇒ Āt1(φ) ⊆ Āt2(φ).

If t − T (t) is a non-decreasing function of t , then, because Z is independently scattered,

R≤t1−T (t1) = {Rt2(φ) : t2 ≤ t1 − T (t1),φ ∈ [−π,π)}
and

R>t1 − Rt1 = {Rt2(φ) − Rt1(φ) : t2 > t1, φ ∈ [−π,π)},
are independent.

The representation (21) is, of course, not unique. If, in particular,

At(φ) = Bt ∩ Cφ, (23)

then

Āt (φ) = B̄t ∩ Cφ,
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where

B̄t =
⋃

0≤s≤t

Bs

and we may choose, instead of (22),

f̄t (ξ ;φ) =
∫ t

0
1Bs (ξ)fs(ξ ;φ)ds.

Note that the only difference between the two versions of f̄t (ξ ;φ) is the indicator function 1Cφ .
In some cases, it might be more natural to formulate the model in terms of the time derivative

of ln(Rt (φ)),

∂

∂t
(ln(Rt (φ))) = μt(φ) +

∫
At (φ)

ft (ξ ;φ)Z(dξ).

In this case, the induced model is an exponential spatio-temporal Lévy model,

Rt(φ) = R0(φ) exp

(
μ̄t (φ) +

∫
Āt (φ)

f̄t (ξ ;φ)Z(dξ)

)
.

Mixed moments of Rt(φ) can be derived using the results in Section 3.
The choices of Lévy basis Z, ambit sets At(φ), weight functions ft (ξ ;φ) and μt(φ) com-

pletely determine the growth dynamics. These four ingredients can be chosen arbitrarily and
independently, which results in a great variety of different growth dynamics. We will now give a
number of examples.

Example 3. Consider a Lévy growth model for the time derivative of the radial function

∂

∂t
Rt (φ) = Z(At (φ)), (24)

where Z is a Poisson Lévy basis with intensity measure concentrated on [−π,π) × R+ of the
form

μ(dξ) = g(s)ds dθ, ξ = (θ, s).

Note that the corresponding point process in the Euclidean plane

{(s cos θ, s sin θ) : (θ, s) is a support point of Z}
constitutes a Poisson point process with intensity measure

μ̃(dx) = g(‖x‖)
‖x‖ dx, x ∈ R

2.

In particular, if g(s) = as, a > 0, then the Poisson point process in the plane is homogeneous.
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Let the ambit sets be given by

At(φ) =
{
(θ, s) : |θ − φ| ≤ �

s
,max(0, t − T ) ≤ s ≤ t

}
.

Represented as subsets of the Euclidean plane, they will, as t → ∞, approach rectangles of side
lengths 2� and T . Note that we can write the ambit set as

At(φ) = Bt ∩ Cφ,

where

Bt = {(θ, s) : max(0, t − T ) ≤ s ≤ t}
and

Cφ =
{
(θ, s) : s ≥ �

π
, |θ − φ| ≤ �

s

}
∪
{
(θ, s) : 0 ≤ s ≤ �

π

}
.

The mean growth rate at time t and in the direction φ is, for t > T + �
π ,

μ(At(φ)) = 2�

∫ t

t−T

g(s)

s
ds.

If g(s) = as, a > 0, then the mean growth rate is constant. Figure 5 shows simulations of this
model with constant mean growth rate.

Example 4. The size of the ambit sets plays an important role in the control of the local and
global fluctuations of the boundary of the object Yt . As an example, let us consider a Lévy
growth model of the form

Rt(φ) = μt + Z(At (φ)), (25)

Figure 5. Simulation of the Lévy growth model (24) for the derivative of the radial function at time points
t = 75, 100 and 125, using a Poisson Lévy basis. The parameters of the simulation are g(s) = 10s, T = 1
and � = 1/2.
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Figure 6. Simulation of the Lévy growth model (25) at time points t = 20, 45 and 80, using a Gaussian
Lévy basis. The upper row and lower row show simulations of two choices of the angular extension of
the ambit set �(s) = π

100 and �(s) = π
5 , respectively. Otherwise, the parameters of the simulation are

μ20 = 16, μ45 = 24, μ80 = 32, σ 2 = 1 and T (t) = t/5.

where

At(φ) = {(θ, s) : |θ − φ| ≤ �(s), t − T (t) ≤ s ≤ t}.
In Figure 6, simulations are shown under this model, using a normal Lévy basis with

Z(A) ∼ N(0, σ 2μ(A))

and μ equal to the Lebesgue measure on R. Note that μ(At(φ)) does not depend on φ. The
simulations are based on a discretization of Z on a grid with �t = 1 and �φ = 2π

1000 . The upper
and lower row of Figure 6 show simulations for two choices of angular extension of the ambit set
at three different time points. The angular extension of the ambit set is �(s) = π

100 for the upper
row and �(s) = π

5 for the lower row. For the smaller angular extension, we observe localized
fluctuations of the profiles, but the global appearance is circular. For the larger angular extension,
the fluctuations are on a much larger scale and the global appearance is more variable.

Example 5. In this example, we study a model similar to the one described in Example 4, but
now with a Gamma Lévy basis. The model equation is

Rt(φ) = μ̃t + Z(At (φ)), (26)

where At(φ) is defined as in Example 4,

Z(A) ∼ �(βμ(A),α),
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Figure 7. Simulation of the Lévy growth model (26) at time points t = 20, 45 and 80, using a Gamma Lévy
basis. The upper row and lower row show simulations of two choices of the angular extension of the ambit
set �(s) = π

100 and �(s) = π
5 , respectively. Otherwise, β = 1 and the remaining parameters are determined

by the parameters used in Example 4.

and μ denotes Lebesgue measure on R. The parameters α, β and μ̃t are chosen such that
E(Rt (φ)) and V(Rt (φ)) are the same as in the previous example. Here, we have used Table 1,
together with (9) and (10). Accordingly, the parameters are chosen such that

μ̃t = μt − σ
√

βμ(At(0)),

α =
√

β

σ 2
.

The only free parameter is β > 0, which determines the skewness of the Gamma distribution of
Z(At (φ)). For large values of β , the distribution will resemble the Gaussian distribution.

The resulting simulations for β = 1 are shown in the upper and lower rows of Figure 7 for two
choices of angular extension of the ambit set, �(s) = π

100 and �(s) = π
5 , respectively. Note that

more sudden outbursts are seen compared to the previous example.

Example 6. In Figure 8, we show simulations from the Lévy growth model

Rt(φ) = f (φ)
(
μt + Z(At (φ))

)
, (27)

where μt , At(φ) and Z are specified as in Example 4 and

ft (φ) = 0.35 exp

( |φ − π|
π

)
.
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Figure 8. Simulation of the model (27) at time points t = 20, 45 and 80, using a Gaussian Lévy basis, with
parameters as specified in Example 4. The weight function is given by ft (φ) = 0.35 exp(

|φ−π|
π ).

Clearly, the growth of the object is asymmetric. The weight function ft (φ) puts more weight on
the angle φ0 = 0.

5. The induced covariance structure

Lévy-based growth models lead to flexible new models for space-time covariance functions on
the circle, as we shall see in this section. The results presented here are of general interest for
spatio-temporal processes on the circle.

We will derive expressions for Cov(Rt1(φ1),Rt2(φ2)) under various assumptions on the Lévy
basis Z, the ambit sets At(φ) and the weight functions ft (ξ ;φ). We will concentrate on the Lévy
growth model (21) of linear form for Rt . Since we now are interested in covariances, it suffices
to look at the model equation

Rt(φ) =
∫

At (φ)

ft (ξ ;φ)Z(dξ),

where we, for simplicity, have omitted the bar on the ambit set and weight function. The covari-
ance structure of Rt(φ) is then given by (cf. (11))

Cov(Rt1(φ1),Rt2(φ2)) =
∫

At1 (φ1)∩At2 (φ2)

ft1(ξ ;φ1)ft2(ξ ;φ2)V(Z′(ξ))μ(dξ). (28)

Throughout this section, we will assume that

At(φ) = (φ,0) + At(0),

ft (ξ ;φ) = ft

(
(|θ − φ|, s);0

)
, (29)

V(Z′(ξ))μ(dξ) = g(s)ds dθ
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for all ξ = (θ, s) ∈ R and (φ, t) ∈ R. These conditions ensure that Cov(Rt1(φ1),Rt2(φ2)) only
depends on the cyclic difference between φ1 and φ2. Accordingly, the spatio-temporal process

{Rt(φ) : t ∈ R, φ ∈ [−π,π)}
will be second-order stationary in the space coordinate, but not necessarily in the time coordinate.

We will first consider the case where the angular extension of the ambit set is the full angular
space, but the weight functions are arbitrary. Second, we consider the case of constant weight
functions, but quite arbitrary ambit sets.

5.1. Ambit sets with full angular range

In this subsection, we consider ambit sets of the form

At(φ) = [−π,π) × [t − T (t), t].
In order to express the formulae as compactly as possible, we use, in the proposition below, the
notation t1 ∩ t2 for the time points shared by At1(·) and At2(·), that is,

t1 ∩ t2 =
{ [t̃1, t̃2], if t̃1 ≤ t̃2,

∅ otherwise,

where

t̃1 = max
(
t1 − T (t1), t2 − T (t2)

)
and t̃2 = min(t1, t2).

Using this notation, we can derive the following convenient and general expression for the co-
variances.

Proposition 7. Let us assume that the ambit set is of the form At(φ) = [−π,π) × [t − T (t), t]
for all (φ, t) ∈R and let

ft (ξ ;φ) = at
0(s) +

∞∑
k=1

at
k(s) cos

(
k(θ − φ)

)
, (30)

ξ = (θ, s), be the Fourier expansion of the weight function. The spatio-temporal covariances are
then

Cov(Rt1(φ1),Rt2(φ2)) = 2τ0(t1, t2) +
∞∑

k=1

τk(t1, t2) cos
(
k(φ1 − φ2)

)
, (31)

where

τk(t1, t2) = π
∫

t1∩t2

a
t1
k (s)a

t2
k (s)g(s)ds.
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Proof. The proof is straightforward. First, note that the actual form (30) of the Fourier expansion
of the weight function is a consequence of (29). We obtain that

Cov(Rt1(φ1),Rt2(φ2))

=
∫

At1 (φ1)∩At2 (φ2)

ft1(ξ ;φ1)ft2(ξ ;φ2)V(Z′(ξ))μ(dξ)

= π

[
2
∫

t1∩t2

a
t1
0 (s)a

t2
0 (s)g(s)ds +

∞∑
k=1

(∫
t1∩t2

a
t1
k (s)a

t2
k (s)g(s)ds

)
cos
(
k(φ1 − φ2)

)]
.

�

Example 8. Suppose that the weight function is of the form (30) with at
k(s) ≡ 0 if k �= 1. Then,

Cov(Rt1(φ1),Rt2(φ2)) = π cos(φ1 − φ2)

∫
t1∩t2

a
t1
1 (s)a

t2
1 (s)g(s)ds.

Since the covariance is a product of a spatial term and a temporal term, this model is separable
(cf. Stein (2005) and references therein). The sign of the covariance may be positive or negative.

Note that, according to (31), the covariance Cov(Rt1(φ1),Rt2(φ2)) depends on φ1 and φ2 only
via |φ1 − φ2|. For some choices of model parameters, the covariance also becomes stationary in
the time coordinate. For instance, if g(s) = 1, T (t) = T and at

k(s) = bk(t − s), then we have

τk(t1, t2) = π
∫ T +min(t1−t2,0)

max(t1−t2,0)

bk(u)bk(t2 − t1 + u)du.

The induced model (31) for the covariance function is not, in general, separable in the sense
that the covariance function can be written as a product of a term depending only on t1 and t2 and
a term depending only on φ1 and φ2. This may be regarded as a strength of the model because
separable covariance functions are often believed to give too simplistic a description of spatio-
temporal data (cf., e.g., Stein (2005)). If, nevertheless, such simplifying assumptions are made,
we obtain the following results.

Corollary 9. Let the assumptions be as in Proposition 7. Assume that at
k(s) = at

k . The spatial
correlations are then determined by the Fourier coefficients of the weight function f :

ρ(Rt (φ1),Rt (φ2)) := Cov(Rt (φ1),Rt (φ2))√
V(Rt (φ1))V(Rt (φ2))

= 2(at
0)

2 +∑∞
k=1(a

t
k)

2 cos(k(φ1 − φ2))

2(at
0)

2 +∑∞
k=1(a

t
k)

2
.

If, in addition, at
k = btck , then the covariance model (31) is separable. Furthermore, the spatial

correlations ρ(Rt (φ1),Rt (φ2)) do not depend on t , while the temporal correlations are deter-
mined by T (t) and the function g:

ρ(Rt1(φ),Rt2(φ)) =
∫
t1∩t2

g(s)ds

[∫ t1
t1−T (t1)

g(s)ds · ∫ t2
t2−T (t2)

g(s)ds]1/2
.
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The covariance model (31) provides a possibility for extending stationary covariance functions
on the circle (spatial covariance functions) to a spatio-temporal context. When Rt is a stationary
process on the circle, its covariance function can be expressed as

Cov(Rt (φ1),Rt (φ2)) = 2λt
0 +

∞∑
k=1

λt
k cos

(
k(φ1 − φ2)

)
. (32)

Such a covariance function can be obtained by choosing the Fourier coefficients of the weight
function to be

at
k(s) = at

k = 1√
π

[
λt

k

/∫ t

t−T (t)

g(s)ds

]1/2

.

Note that there is still freedom in the modelling by choosing an arbitrary time-lag T (t) and
function g.

Example 10. The pth-order model for a stationary covariance function on the circle, described
in Hobolth et al. (2003), has

λt
0 = λt

1 = 0, λt
k = [αt + βt (k

2p − 22p)]−1, k = 2,3, . . . .

The model is called a pth-order model because it can be derived as a limit of discrete pth-order
Markov models defined on a finite, systematic set of angles (cf. Hobolth and Jensen (2000)). This
covariance structure is obtained by choosing

at
0(s) = at

1(s) = 0,

at
k(s) =

[
π
∫ t

t−T (t)

g(s)ds

]−1/2

[αt + βt (k
2p − 22p)]−1/2, k = 2,3, . . . .

If αt and βt are proportional, then the simplifying assumptions of Corollary 9 are fulfilled. In
Jónsdóttir and Jensen (2005), this model has been used for the time derivative of the radial func-
tion. Only Gaussian Lévy bases are considered and neighbouring time points are assumed to be
so far apart that the increments can be regarded as independent. The more general approach of
the present paper allows for temporal correlations. Under the assumption at

k = btck , the temporal
correlations are particularly simple. For instance, suppose that T (t) ≡ 1 and t2 − 1 ≤ t1 ≤ t2. We
then get for g(s) = ae−bs, a, b > 0,

ρ(Rt1(φ),Rt2(φ)) = 1

eb − 1

[
e(1/2)b(t1−t2)+b − e(−1/2)b(t1−t2)

]
,

while, for g(s) = asα , a > 0, α ≥ 1,

ρ(Rt1(φ),Rt2(φ)) = tα+1
1 − (t2 − 1)α+1

[(tα+1
1 − (t1 − 1)α+1)(tα+1

2 − (t2 − 1)α+1)]1/2
.

Only in the first case are the temporal correlations always stationary.
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5.2. Constant weight functions

In this subsection, we consider the case of constant weight functions. Without loss of generality,
we assume that ft (ξ ;φ) ≡ 1 and so (28) reduces to

Cov(Rt1(φ1),Rt2(φ2)) =
∫

At1 (φ1)∩At2 (φ2)

V(Z′(ξ))μ(dξ) = V(Z′)μ
(
At1(φ1) ∩ At2(φ2)

)
, (33)

where the last equality holds if the Lévy basis is factorisable.
It is not difficult (but sometimes tedious) to find explicit expressions for Cov(Rt1(φ1),Rt2(φ2))

for specific choices of ambit sets. One simplifying assumption is to focus on ambit sets of the
form

At(φ) = Bt ∩ Cφ,

where

Bt = {(θ, s) : max
(
0, t − T (t)

)≤ s ≤ t
}
,

Cφ = {(θ, s) : |φ − θ | ≤ �(s)}.
Usually, it is easier to find expressions for the temporal covariances than for the spatial covari-
ances.

Evidently, (33) implies that Cov(Rt1(φ1),Rt2(φ2)) ≥ 0, which may be a severe restriction for
the spatial covariances. In the proposition below, the spatial covariances are expressed in terms
of the function delimiting the ambit set. The proposition provides insight into the class of spatial
covariances that can be modelled using this approach.

Proposition 11. Let μ(dξ) = g(s)ds dθ for ξ = (θ, s). Let us suppose that there exists a contin-
uous function ht : [−π,π) → R with the properties

ht (θ) = ht (−θ),

ht is decreasing on [0,π), (34)

ht (0) = t

such that

At(0) = {(θ, s) :ht (π) ≤ s ≤ ht (θ)}
(cf. Figure 9). Let

h̄t (φ) =
∫ ht (φ)

0
g(s)ds.

If the Fourier expansion of h̄t is (h̄t (φ) = h̄t (−φ))

h̄t (φ) =
∞∑

k=0

γ t
k cos(kφ), (35)
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Figure 9. Illustration of the ambit set At (0) bounded by the function ht (cf. (34)).

then

μ
(
At(0) ∩ At(φ)

)= ∞∑
k=0

λt
k cos(kφ), (36)

where

λt
0 =

∑
k odd

[
2π − 16

πk2

]
γ t
k − 2π

∑
k even

γ t
k ,

λt
j = 16

π

∑
k odd

1

(2j)2 − k2
γ t
k , j = 1,2, . . . .

Proof. It is not difficult to show that

μ
(
At(0) ∩ At(φ)

)= 2
∫ −π+φ/2

−π
h̄t (θ)dθ + 2

∫ π

φ/2
h̄t (θ)dθ − 2πh̄t (π), φ ∈ [0,π). (37)

Using (35), we find that

μ
(
At(0) ∩ At(φ)

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−4
∑
k odd

γ t
k

k
sin

(
k
φ

2

)
+ 2π

∑
k odd

γ t
k − 2π

∑
k even

γ t
k , if φ ∈ [0,π]

4
∑
k odd

γ t
k

k
sin

(
k
φ

2

)
+ 2π

∑
k odd

γ t
k − 2π

∑
k even

γ t
k , if φ ∈ [−π,0].



Lévy-based growth models 83

The result is now obtained by deriving a Fourier expansion of the latter expression and comparing
with (36). �

Example 12. In the particular case where g(s) = 1 and

h̄t (φ) = ht (φ) = γ t
0 + γ t

1 cosφ,

we find that

λt
0 =

[
2π − 16

π

]
γ t

1 − 2πγ t
0 ,

λt
j = 16

π
1

(2j)2 − 1
γ t

1 , j = 1,2, . . . .

It follows that

(λt
j )

−1 = αt + βtj
2, j = 1,2, . . . , (38)

where αt = −π/(16γ t
1) and βt = π/(4γ t

1). Under the assumption of a normal Lévy basis,
(38) is a special case of the pth order model considered in Jónsdóttir and Jensen (2005)
with p = 1 and α proportional to β . Note that requirements (34) imply that γ t

0 = t − γ t
1 and

γ t
1 > 0. It does not seem to be possible to obtain pth order models with p > 1 using this ap-

proach.

6. An application to tumour growth

In Schmiegel (2006), snapshots of a growing brain tumour in vitro were analyzed using the
approach described in this paper; see Figure 10. The data were first studied in Brú et al.
(1998).

A detailed initial analysis of the covariance structure showed negative spatial covariances and
a need for modelling both small and large scale fluctuations in the growth process. The model

Figure 10. Profiles of a growing brain tumour in vitro at time points t = 21, 25 and 55.
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used was an exponential spatio-temporal Lévy model of the form

Rt(φ) = exp

{
μt + α(t)

∫ t−t0(t)

t−T (t)

∫ π

−π
cos(φ − θ)Z(ds dθ)

(39)

+ β(t)

∫ t

t−t0(t)

∫ φ+ht (s−t+t0(t))

φ−ht (s−t+t0(t))

Z(ds dθ)

}
.

Here, ht is a deterministic and monotonically decreasing function defined on [0, t0(t)], satisfying
ht (t0(t)) = 0 and ht (0) = φ0(t)/2. Accordingly, the weight function is of the form

ft (ξ ;φ) = α(t) cos(φ − θ)1[t−T (t),t−t0(t)](s) + β(t)1[t−t0(t),t](s)1[0,ht (s−t+t0(t))](|φ − θ |).
The associated ambit set is shown in Figure 11. In Schmiegel (2006), a Gaussian Lévy basis was
used and the function ht was assumed to be of the form

ht (s) = φ0(t)

2
− φ0(t)

2t0(t)
s, s ∈ [0, t0(t)].

The parameters of model (39) were estimated by the method of moments, using the results given
in Section 3. The estimated parameters are given in Table 2 and a simulation under the model
with a Gaussian Lévy basis is shown in Figure 12.

Here, we will study the use of Gamma and inverse Gaussian Lévy bases. Simulations under the
latter basis are shown in Figure 13. The inverse Gaussian Lévy basis is chosen such that E(Rt (φ))

and V(Rt (φ)) are the same as in the case where a Gaussian basis is used. The upper row of
Figure 13 shows simulations where η = 316 and the lower row shows a simulation where η = 5.
For η = 316, the inverse Gaussian Lévy basis provides fits of a similar quality as the normal
basis, but for η = 5, more outbursts are observed, as is the case for the data. The difference is

Figure 11. The ambit set At (φ) for the model defined by (39).
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Table 2. The estimated parameters for model (39), using a Gaussian Lévy basis

t T (t) t0(t) α(t) β(t) φ0(t)

21 21 19 0.04 −0.033 0.19
25 25 17 0.02 −0.033 0.19
55 18 4 0.01 −0.067 0.23

due to the fact that the inverse Gaussian distribution has heavier right tails for the latter choice of
parameters. It should be noted that all of the profiles simulated under model (39) using the Lévy
basis mentioned in this section show slightly more fluctuations on a local scale than the observed
profiles. At present, we do not know whether this feature is caused by non-perfect model selection
and estimation of parameters or artefacts due to the discretization in the simulation procedure.

7. Discussion

In the present paper, we have given a condensed review of Lévy-based spatio-temporal modelling
and shown its potential use in stochastic geometry and spatial statistics by developing Lévy-based
growth models and space–time covariances on the circle. Below, we discuss further perspectives
and topics for future research.

7.1. Related growth models

In the growth literature, there is a variety of growth models for objects in discrete space (cf.,
e.g., Bramson and Griffeath (1981), Qi et al. (1993), Lee and Cowan (1994), Kansal et al. (2000)
and references therein). An important early example is the Richardson model, introduced in
Richardson (1973). Here, the growth is described by a Markov process. For a growing object
in the plane, the state at time t is a random subset Yt of Z

2 consisting of the ‘infected sites’.
An uninfected site is transferred to an infected site with a rate proportional to the number of
infected nearest neighbours. It can be shown that if Y0 consists of a single site, then Yt/t has a

Figure 12. Simulation of model (39) for time points t = 21, 25 and 55, using a Gaussian Lévy basis.
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Figure 13. Simulations of model (39) for time points t = 21, 25 and 55 using an inverse Gaussian Lévy
basis with η = 316 (upper row) and η = 5 (lower row).

non-random shape as t → ∞. Note that the growth model described in (20) of the present paper
may be regarded as a continuous analogue of the Richardson model.

A related growth model in continuous space has recently been discussed in Deijfen (2003).
For planar objects, the model is constructed from a spatio-temporal Poisson point process on R

3,

� = {(xi, ti )}.

The random growing object Yt ⊂ R
2 is a subset of

⋃
{i : ti≤t}

B(xi, r),

constructed such that Yt is always connected. Here, B(x, r) is a circular disc with centre x and
radius r . In this model, ti is thought of as a time point of outburst and xi as the location of
the outburst in the tumour, say. A closely related discrete-time Markov growth model has been
discussed in detail in Cressie and Hulting (1992). This model can be characterized as a sequence
of Boolean models,

Yt+1 = ∪{B(xi, r) :xi ∈ Yt },
where {xi} is a homogeneous Poisson point process in R

2; see also Cressie and Laslett (1987)
and Cressie (1991a, 1991b).

An issue of interest in growth modelling is the asymptotic shape of the growing object (cf., e.g.,
Durrett and Liggett (1981) and Deijfen (2003)). It is expected that it is also possible to obtain as-
ymptotic results for Lévy-based growth models using the fact that Lévy bases are independently
scattered random measures.
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7.2. Lévy-driven Cox processes

Another interesting application of spatio-temporal Lévy models in spatial statistics is provided
by Lévy-driven Cox processes (cf. Hellmund (2005), Hellmund et al. (2007) and Prokešová et al.
(2006)). As an example, we may use exp(Xt (σ )), where Xt(σ ) is given in (8), as driving random
intensity for a spatio-temporal Cox process. If Z is a Gaussian Lévy basis, then the resulting
Cox process is log-Gaussian. Another example is obtained by assuming that Z is a positive Lévy
basis, the Cox process driven by Xt(σ ) then being a spatio-temporal shot-noise Cox process.
Cox processes have been studied intensively in recent years (cf. Brix (1998), Wolpert and Ickstadt
(1998), Brix (1999), Brix and Diggle (2001), Brix and Møller (2001), Brix and Chadoeuf (2002),
Møller (2003)).

7.3. Estimation of model parameters

It still remains to develop inference procedures for Lévy-based growth models (and, more gen-
erally, for Lévy-based spatio-temporal models). There are several interesting problems here, in-
cluding nonparametric estimation of the ambit sets.

A Fourier expansion of the radial function may be useful when making inference about the
shape of the growing object (cf., e.g., Alt (1999) and Jónsdóttir and Jensen (2005)). Let us con-
sider the Fourier coefficients of Rt(φ),

At
k = 1

π

∫ π

−π
Rt(φ) cos(kφ)dφ, Bt

k = 1

π

∫ π

−π
Rt(φ) sin(kφ)dφ,

k = 0,1, . . . . Under the assumptions of Proposition 7, it can be shown that

At
k =

∫ π

−π

∫ t

t−T (t)

at
k(s) cos(kθ)Z(dθ ds), Bt

k =
∫ π

−π

∫ t

t−T (t)

at
k(s) sin(kθ)Z(dθ ds),

so the Fourier coefficients also follow a linear spatio-temporal Lévy model. It can be shown that,
for k �= j , t, t ′ ≥ 0,

Cov(At
k,A

t ′
j ) = Cov(Bt

k,B
t ′
j ) = Cov(At

k,B
t ′
j ) = 0

and

Cov(At
k,A

t ′
k ) = Cov(Bt

k,B
t ′
k ) = τk(t, t

′),

where τk(t, t
′) is given in Proposition 7.

In the case where Z is a Gaussian Lévy basis, this means that {At
k}t∈R and {Bt

k}t∈R, k =
0,1, . . . , are independent Gaussian stochastic processes with covariance functions τk(t, t

′). If
one observes At

k and Bt
k for some time points t = t1, . . . , tn and some orders k = 1, . . . ,Kt , the

likelihood function is tractable.
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