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A simple adaptive estimator of the integrated
square of a density
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Given an i.i.d. sample X1, . . . ,Xn with common bounded density f0 belonging to a Sobolev space of order
α over the real line, estimation of the quadratic functional

∫
R

f 2
0 (x)dx is considered. It is shown that the

simplest kernel-based plug-in estimator

2

n(n − 1)hn

∑
1≤i<j≤n

K

(
Xi − Xj

hn

)

is asymptotically efficient if α > 1/4 and rate-optimal if α ≤ 1/4. A data-driven rule to choose the band-
width hn is then proposed, which does not depend on prior knowledge of α, so that the corresponding
estimator is rate-adaptive for α ≤ 1/4 and asymptotically efficient if α > 1/4.

Keywords: adaptive estimation; kernel density estimator; quadratic functional

1. Introduction

The estimation of a quadratic functional of a density f0, in particular of
∫

f 2
0 , has attracted much

interest in the literature since Bickel and Ritov (1988) showed that such functionals can be esti-
mated at the rate 1/

√
n if f0 is α-Hölder of order α > 1/4 and that this rate cannot be achieved

if α < 1/4. Such functionals have several statistical applications. For instance,
∫

f 2
0 occurs in

Taylor expansions of more complex integral functionals, such as the entropy
∫

f0 logf0; see, for
example, Laurent (1996). They are also part of constants appearing in the exact expression of the
MISE of kernel density estimators and hence their estimates can be used in optimal bandwidth
selection. Bickel and Ritov (1988) constructed an efficient and

√
n-consistent kernel-based es-

timator for
∫

f 2
0 and Laurent (1996) achieved the same for an estimator based on orthogonal

series. The treatment of the bias term by these authors necessitated rather complicated expres-
sions for the actual estimators, which consist of the difference of two U-statistics. As a first goal
of this article, we show that the simplest ‘plug-in’ kernel density estimator introduced in Hall and
Marron (1987),

Tn(hn) := 2

n(n − 1)hn

∑
1≤i<j≤n

K

(
Xi − Xj

hn

)
, (1)

where Xi are i.i.d. with common density f0 on the real line, also does the job. (Tn is obtained as
follows. Estimate f0 by the usual kernel density estimator and estimate integration with respect
to f0 by integration with respect to the empirical measure, then delete the diagonal terms.) Our
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main point here consists of an observation on the bias term based on smoothing properties of
convolutions, borrowed in part from Giné and Nickl (2007). We note that in the context-of-
goodness of fit tests, Butucea (2007) considered a different (but related) kernel-based estimator
for

∫
f 2

0 , where K(x) must equal sin(x)/πx. Our results also hold for her estimator, without any
(other than the usual) restrictions on the kernel; see Remark 1 below. The same methods can be
applied, with the natural changes, to other quadratic functionals, such as

∫
(f

(k)
0 )2 for k > 0.

As is well known, efficient estimation of
∫

f 2
0 is possible if f0 is in a Sobolev space of order

α > 1/4, but in the ‘low regularity case’ α ≤ 1/4, the best rate of convergence is n−4α/(4α+1).
We show that Tn(hn) achieves this rate if one chooses the bandwidth hn of the right order,
where hn depends on the unknown quantity α. It is then natural to ask whether one can choose
the bandwidth in some data-dependent way, so as to obtain an estimator of

∫
f 2

0 which is rate-
adaptive over Sobolev balls if α ≤ 1/4 and efficient if α > 1/4. Using Lepski’s method (Lep-
ski (1990), Lepski and Spokoiny (1997)), we show that this is in fact possible for the simple
estimator Tn(hn). Rate-adaptive estimation of

∫
f 2

0 was first considered by Efromovich and
Low (1996), and more recently by, for example, Laurent and Massart (2000), Laurent (2005), Cai
and Low (2006) and Klemelä (2006). None of these authors used kernel-based estimators, and,
except for Laurent (2005), all of them worked in the context of a Gaussian white noise model.
Since we are interested in the low-regularity case where α < 1/4, the restriction to the Gaussian
white noise model is inconvenient, as it is not clear how asymptotic results in the Gaussian
white noise model translate into the usual density model in this case. It turns out that deriving
our results in the more general density model on the real line leads to no major complications.
Our derivations rely on elementary U-statistic theory, some simple Fourier analytical methods
and a recent exponential inequality for canonical U-statistics of order 2 due to Giné, Latała and
Zinn (2000), with constants obtained in Houdré and Reynaud-Bouret (2003). A discussion of the
relationship of our results to those in Laurent (2005) is given in Remark 5 below.

2. Basic setup

We will assume that the probability density f0 is bounded, that is, f0 ∈ L∞ := L∞(R), and con-
tained in a Sobolev space of order α > 0, defined as follows. First, denote by Lp := Lp(R, λ) the
usual spaces of measurable functions φ satisfying ‖φ‖p

p := ∫
R

|φ(x)|p dx < ∞ for 1 ≤ p < ∞.
For φ ∈ L1, we define the Fourier-transform by Fφ(u) = ∫

R
e−ixuφ(x)dx and extend it contin-

uously to L2. (F is, up to a multiplicative constant, the Fourier–Plancherel transform.) We then
set

Hα
2 = Hα

2 (R) := {
φ ∈ L2 :‖φ‖2,α = ∥∥Fφ(·)(1 + | · |2)α/2

∥∥
2 < ∞}

.

We note that a common equivalent characterization of Hα
2 is in terms of integrated L2-Hölder

conditions: for φ ∈ L2 and 0 < α < 1, define

Iα(φ) =
∫

R

∫
R

|φ(x − t) − φ(x)|2
|t |1+2α

dx dt.

It can then be shown that φ ∈ Hα
2 if and only if φ ∈ L2 and Iα(φ) < ∞ (cf. page 144 in Malli-

avin (1995)). Throughout the proofs, we will freely use these and other standard facts from
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Fourier analysis, as well as Young’s inequalities for convolutions. We refer, for example, to Chap-
ter III in Malliavin (1995) or Chapter 8 in Folland (1999). Also, unless otherwise indicated, all
integrals in this article will be over the real line.

It is also convenient to introduce U-statistic notation. For a symmetric function of two variables
R(x, y), we write

U(2)
n (R) = 2

n(n − 1)

∑
1≤i<j≤n

R(Xi,Xj ).

We recall (e.g., de la Peña and Giné (1999), page 137) that the Hoeffding projections of R are

π1R(x) = ER(x,X1) − ER(X1,X2),

π2(R)(x, y) = R(x, y) − ER(x,X1) − ER(y,X1) + ER(X1,X2),

which induce the Hoeffding decomposition

U(2)
n (R) − ER(X1,X2) = 2U(1)

n (π1R) + U(2)
n (π2R), (2)

where U
(1)
n (π1R) = n−1 ∑n

i=1(π1R)(Xi). Note that, by orthogonality,

E
(
U(1)

n (π1R)
)2 = n−1E((π1R)(X1))

2,

E
(
U(2)

n (π2R)
)2 = 2

n(n − 1)
E((π2R)(X1,X2))

2.

3. Estimation of
∫

R
f 2

0 (x)dx

The simple estimator Tn(hn) defined in (1) can be shown to be optimal, as we prove in this
section.

Here and elsewhere in this article, we take the kernel K in (1) to be a symmetric and bounded
function such that

∫
K(u)du = 1, as well as

∫ |K(u)||u|du < ∞ and 0 < hn → 0. For ease of
notation, we will often write Khn(x) := h−1

n K(x/hn). Also, we define the Sobolev ball Hα(R) =
{φ :‖φ‖2,α ≤ R} and B(L) = {φ :‖φ‖∞ ≤ L}.
Theorem 1. Let f0 ∈ Hα

2 ∩ L∞ for some 0 < α ≤ 1/2.
I. We have

sup
f0∈Hα(R)

∣∣∣∣ETn(hn) −
∫

R

f 2
0 (x)dx

∣∣∣∣ ≤ B(hn) := c1(R)h2α
n (3)

and

sup
f0∈Hα(R)∩B(L)

E

(
Tn(hn) − ETn(hn) − 1

n

n∑
i=1

Yi

)2

≤ c2
2(R)σ 2(hn,n)

(4)

:= c2
2(R)

(
1

n2hn

∨ Lh2α
n

n

)
,
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where Yi = 2(f0(Xi) − ∫
R

f 2
0 ) and where c1(R) and c2(R) are numerical constants depending

only on R and the function K .
II. As a consequence, taking hn so that hn ≈ n−2/(4α+1), we have the following:

(a) if 0 < α ≤ 1/4, then

Tn(hn) −
∫

R

f0(x)2 dx = OP

(
n−4α/(4α+1)

);
(b) if α > 1/4, and if τ 2 = [∫

R
f 3

0 − (
∫

R
f 2

0 )2], then

√
n

(
Tn(hn) −

∫
R

f0(x)2 dx

)
→d Z ∼ N(0,4τ 2).

Proof. We first treat the bias term, where we adapt an observation due to Giné and Nickl (2007),
Section 4.1.1, to the present situation. The bias equals

ETn(hn) −
∫

f 2
0 =

∫
R

∫
R

Khn(x − y)f0(y)dy f0(x)dx −
∫

R

f0(x)f0(x)dx

=
∫

R

∫
R

Khn(x − y)[f0(y) − f0(x)]f0(x)dy dx

=
∫

R

∫
R

K(u)[f0(x − uhn) − f0(x)]f0(x)dudx (5)

=
∫

R

K(u)

[∫
R

f̄0(uhn − x)f0(x)dx −
∫

R

f̄0(0 − x)f0(x)dx

]
du

=
∫

R

K(u)[(f̄0 ∗ f0)(uhn) − (f̄0 ∗ f0)(0)]du,

where f̄0(x) = f0(−x) and ∗ denotes convolution. The essential observation now is that the
smoothness of f̄0 ∗ f0 will be of order 2α instead of just α, due to the smoothing properties of
convolutions. The following elementary Fourier analytic lemma shows how this applies in our
setup.

Lemma 1. Suppose that f,g ∈ Hα
2 with 0 < α ≤ 1/2. Then, for any x ∈ R and t = 0,

|(f ∗ g)(x + t) − (f ∗ g)(x)|
|t |2α

≤ C‖f ‖2,α‖g‖2,α,

where 0 < C < ∞ is a fixed constant that does not depend on f,g, x or t .

Proof. As we will only use this lemma for f,g ∈ L1, and in order to avoid some technicalities,
we will prove it only in this case. Hence, f ∗ g is in L1 and is continuous and, since f,g are also
in L2, we also have F(f ∗ g) ∈ L1. Consequently, we can apply the Fourier inversion theorem
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to obtain

|(f ∗ g)(x + t) − (f ∗ g)(x)|
|t |2α

≤ |t |−2α‖F−1F [(f ∗ g)(· + t) − (f ∗ g)(·)]‖∞

≤ (2π)−1|t |−2α‖F [(f ∗ g)(· + t) − (f ∗ g)(·)]‖1

= (2π)−1|t |−2α

∫
R

|F(f ∗ g)(u)[e−iut − 1]|du

= (2π)−1
∫

R

|Ff ||u|α|Fg||u|α |e−iut − e−i0|
|u|2α|t |2α

du

≤ C‖f ‖2,α‖g‖2,α

since e−i(·) is bounded Lipschitz. �

This lemma and identity (5) now give, by the conditions on the kernel, that∣∣∣∣ETn(hn) −
∫

f 2
0

∣∣∣∣ ≤ c1h
2α
n ,

where c1 = C‖f0‖2
2,α

∫ |K(u)||u|2α du ≤ CR2
∫ |K(u)||u|2α du, that is, (3).

Next, we show (4). Setting

R(u, v) := Khn(u − v),

we can write, in U-statistic notation, Tn(hn) = U
(2)
n (R) or, if R̃(u, v) = R(u, v) − ER(X1,X2),

Tn(hn) − ETn(hn) = U(2)
n (R̃).

So, by Hoeffding’s decomposition (2), it remains to estimate the following statistics (note that
πiR = πiR̃, i = 1,2):

U(2)
n (R̃) − 1

n

n∑
i=1

Yi =
(

2U(1)
n (π1R) − 1

n

n∑
i=1

Yi

)
+ U(2)

n (π2R) =: S1 + S2.

First, we have, by Plancherel,

nES2
1 ≤ E

[∫
2Khn(X1 − y)f0(y)dy − 2f0(X1)

]2

≤ 4‖f0‖∞‖Khn ∗ f0 − f0‖2
2

(6)

= 4√
2π

‖f0‖∞‖(FKhn − 1)| · |−αFf0| · |α‖2
2

≤ 4√
2π

‖f0‖∞ h2α
n

(
sup
u

|FK(hnu) − FK(0)|
|uhn|α

)2

‖f0‖2
2,α
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= 4√
2π

‖f0‖∞ h2α
n sup

u

∣∣∣∣
∫

e−ixhnu − 1

|uhn|α K(x)dx

∣∣∣∣
2

‖f0‖2
2,α

≤ 8√
2π

‖f0‖∞
(∫

|K(x)||x|α dx

)2

‖f0‖2
2,αh2α

n .

Next, since π2 is a projection of L2(f0(x)dx), it follows from Young’s inequalities that

ES2
2 ≤ 2

n(n − 1)
ER2 = 2

n(n − 1)
E[Khn(X1 − X2)]2

= 2

n(n − 1)

∫
(K2

hn
∗ f0)(y)f0(y)dy (7)

≤ 2‖f0‖2
2‖K‖2

2

n(n − 1)hn

.

Now, (6) and (7) complete the proof of (4). The remaining claims in Part II follow by the choice
of the bandwidth and, in case (a) (and hence α ≤ 1/4), noting that we have n−1 ∑n

i=1 Yi =
OP (n−1/2) = OP (n−4α/(4α+1)) and, in case (b), from the central limit theorem for the random
variables Yi . �

Without loss of generality, we restricted ourselves to 0 < α ≤ 1/2 in Theorem 1. It is obvious
that Part II holds for all α > 0 and it can be seen that Part I does too, although this is not of
interest here.

Remark 1. A second plug-in estimator of
∫

f 2
0 is

T n(hn) = 2

n(n − 1)

∑
1≤i<j≤n

∫
Khn(x − Xi)Khn(x − Xj)dx,

obtained by integrating the square of the usual kernel density estimator and deleting the diagonal
terms. Although Theorem 1 could also be proved for this estimator, we choose to work with
Tn(hn) because it is simpler to compute. The results of Theorem 1 for T n can be derived by
similar computations. Here, we briefly consider the bias, which is really the main part, by relating
it to the bias of Tn (as in Bickel and Ritov (1988)): using (3) and (6), we have∣∣∣∣ET n(hn) −

∫
f 2

0

∣∣∣∣ =
∣∣∣∣ET n(hn) − 2ETn(hn) +

∫
f 2

0 + 2

(
ETn(hn) −

∫
f 2

0

)∣∣∣∣
≤

∣∣∣∣ET n(hn) − 2ETn(hn) +
∫

f 2
0

∣∣∣∣ + 2c1h
2α
n

=
∫

[(Khn ∗ f0)(x) − f0(x)]2 dx + 2c1h
2α
n

≤ 2√
2π

(∫
|K(u)||u|α du

)2

‖f0‖2
2,αh2α

n + 2c1h
2α
n .
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Butucea (2007) also obtains such a bound, but only for the special kernel K(x) = sin(x)/πx,
and it is the use of Lemma 1 that allows us to consider the case of general kernels.

Remark 2. Bickel and Ritov (1988) show that if |f0(x + h) − f0(x)| ≤ g(x)|h|α for some g ∈
L2 ∩ L∞, x ∈ R, |h| < 1 and α > 1/4, then

√
n

(
2Tn(hn) − T n(hn) −

∫
f 2

0

)
→d Z ∼ N(0,4τ 2)

with hn = n−2/(4α+1) (actually they consider a ‘decoupled’ version). Clearly, any such f0 is
contained in H

β

2 for all β < α and this implies, by Theorem 1, that the simpler estimator Tn(hn)

satisfies the same central limit theorem. (As a matter of fact, Lemma 1 and hence Theorem 1 also
holds for such f0, even without requiring g ∈ L∞; see Lemma 12 (and the discussion following
it) in Giné and Nickl (2007). However, the proofs there are much more technical, which is why
we prefer to work with Sobolev spaces here.)

4. Adaptive estimation of
∫

R
f 2

0 (x)dx

In Theorem 1, one must know α in order to choose hn in an optimal way, hn ranging between
n−2 and 1. We will now use Tn(hn) to construct a kernel-based rate-adaptive estimator of

∫
f 2

0
that requires only that

∫
f 2

0 is bounded by a known constant L and that f0 is a bounded function
contained in Hα

2 for some (unknown) α > 0. In practice, one can restrict oneself to 0 < α < 1/4+
ε with ε positive and arbitrary since the rate of convergence n−1/2 in part (b) of Theorem 1 could
not be improved if one knew that α were larger. In particular, it suffices to consider bandwidths
that are faster than n−1+δ for some arbitrarily small δ.

In what follows, we borrow in part from methods developed by Lepski and Spokoiny (1997)
for kernel-based pointwise adaptive estimation in the Gaussian white noise model. Our situation,
however, is substantially different in several respects. For instance, there is a critical breakpoint
in convergence rates at α = 1/4 and we do not have the convenience of immediate Gaussian tail
inequalities.

For any given n ∈ N, n > 1, we define a grid of bandwidths

H :=
{
h ∈

[
(logn)4

n2
,

1

n1−δ

]
:h0 = 1

n1−δ
, h1 = logn

n
,h2 = �(n)

n
,hk+1 = hk

ρ
, k = 2,3, . . .

}
,

where ρ > 1 and �(n) is any function such that �(n) → 0 and �(n) logn → ∞ as n → ∞, and
�(n) < logn for all n. (In particular, �(n) can be chosen to tend to zero as slowly as desired.) It
is easy to check that the number of elements in this grid is smaller than 3 + (logn)/(logρ) =
O(logn) and we shall use this estimate below. Next, we define the function d(h) for all h ∈
[n−2(logn)4, n−1+δ] as

d(h) =
√

2M log
h0

h
for h < h2 and d(h) = �(n)−1/2 for h0 ≥ h ≥ h2,
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where M := 122‖K‖2
2L and where we recall that L is a bound on

∫
f 2

0 . We also set σ̃ (h,n) =
n−1h−1/2. The bandwidth estimator is defined as

ĥn = max{h ∈H : |Tn(h) − Tn(g)| ≤ σ̃ (g, n)d(g) ∀g < h,g ∈H}.

Remark 3. If h equals the next to last element in the grid H and g is the last, then σ̃ (g, n)d(g)

is of the order (logn)−3/2, whereas |Tn(h) − Tn(g)| = OP ((logn)−2)), by Theorem 1. Hence,
ĥn exists with probability tending to 1 as n → ∞. In the next theorem, expectations that involve
events based on ĥn should be understood as taken over the event {ĥn exists}.

Remark 4. In cases (a) and (b) in Theorem 2 below, the rates of convergence obtained are, in fact,
slightly slower than those in Theorem 1. This is not surprising, as Efromovich and Low (1996)
showed that one must pay exactly these penalties if one wants to estimate

∫
f 2

0 adaptively.

Remark 5. Laurent (2005) considered adaptive estimation of
∫

R
f 2

0 by model selection. Her
results are comparable to our Theorem 2 below. (She considers f0 contained in the Besov space
Bα

2,∞ which is slightly more general in view of the imbeddings Bα+ε
2,∞ ⊆ Hα

2 ⊆ Bα
2,∞ for every

ε > 0.) In her Theorem 1, she assumes that an a priori bound for ‖f0‖∞ is known. Similarly,
we have the assumption of a known upper bound L for

∫
f 2

0 . In her Theorem 2, Laurent (2005)
proposes a remedy for this problem by estimating this upper bound. Similarly, we could estimate
the upper bound L by Tn(hmin) to achieve the same goal.

Theorem 2. Let f0 ∈ Hα
2 ∩ L∞ for some α > 0.

(a) If 0 < α < 1/4, then

Tn(ĥn) −
∫

R

f 2
0 (x)dx = OP

((√
logn

n

)4α/(4α+1))
.

(b) If α = 1/4, then

Tn(ĥn) −
∫

R

f 2
0 (x)dx = OP (n−1/2�(n)−1).

(c) If α > 1/4 and τ 2 = [∫
R

f 3
0 − (

∫
R

f 2
0 )2], then

√
n

(
Tn(ĥn) −

∫
R

f 2
0 (x)dx

)
→d Z ∼ N(0,4τ 2).

Proof. We first observe that σ̃ (h,n) = σ(h,n) whenever h ≤ h1, which will always be the case
in this proof. Define hf (= hf0) as h1 if α > 1/4, as h2 if α = 1/4 and, otherwise,

hf = max
{
h ∈ H : c1h

2α ≤ 1
4σ(h,n)d(h), h < h2

}
.

It is easily checked that hf exists and is of the order of (n/
√

logn)−2/(4α+1) if α < 1/4. By
construction in case α < 1/4 and by straightforward computations in the other two cases, we
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have, for n large enough,

B(hf ) ≤ 1
4σ(hf ,n)d(hf ). (8)

We estimate the expectation of∣∣∣∣∣Tn(ĥn) −
∫

R

f 2
0 (x)dx − 1

n

n∑
i=1

Yi

∣∣∣∣∣
over each of the two events {ĥn ≥ hf } and {ĥn < hf }. In the first case, we have

E

∣∣∣∣∣Tn(ĥn) −
∫

R

f 2
0 (x)dx − 1

n

n∑
i=1

Yi

∣∣∣∣∣I[ĥn≥hf ]

≤ E

[
|Tn(ĥn) − Tn(hf )| +

∣∣∣∣∣Tn(hf ) − ETn(hf ) − 1

n

n∑
i=1

Yi

∣∣∣∣∣ +
∣∣∣∣ETn(hf ) −

∫
f 2

0

∣∣∣∣
]
I[ĥn≥hf ]

≤ σ(hf ,n)d(hf ) + c2σ(hf ,n) + B(hf )

= O(σ(hf ,n)d(hf )),

where we use the definition of ĥn, Theorem 1 and (8). In the other case, where {ĥn < hf }, we
will rely on the following lemma, which will be proved below.

Lemma 2. Let h ∈ H and h < hf . There exists a constant D < ∞ so that, for all n large enough,
if h < h2, then,

Pr(ĥn = h) ≤ D(logn) exp(−d2(h)/M)

and if h = h2, then

Pr(ĥn = h2) ≤ D[exp(−d2(h2)/M) + (logn) exp(−d2(h3)/M)].

This lemma, Theorem 1, (8), the size of the grid and the definition of d(h) now give, for
α ≤ 1/4 and hence for hf ≤ h2,

E

(∣∣∣∣∣Tn(ĥn) −
∫

R

f 2
0 (x)dx − 1

n

n∑
i=1

Yi

∣∣∣∣∣I[ĥn<hf ]

)

=
∑

h∈H : h<hf

E

(∣∣∣∣∣Tn(h) −
∫

R

f 2
0 (x)dx − 1

n

n∑
i=1

Yi

∣∣∣∣∣I[ĥn=h]

)
(9)

≤
∑

h∈H : h<hf

E

([∣∣∣∣∣Tn(h) − ETn(h) − 1

n

n∑
i=1

Yi

∣∣∣∣∣ +
∣∣∣∣ETn(h) −

∫
f 2

0

∣∣∣∣
]
I[ĥn=h]

)
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≤
∑

h∈H : h<hf

(
E

∣∣∣∣∣Tn(h) − ETn(h) − 1

n

n∑
i=1

Yi

∣∣∣∣∣
2)1/2(

Pr(ĥn = h)
)1/2 + B(hf )

≤ c2D
1/2(logn)1/2n−δ

∑
h∈H : h<hf

h−1/2h + 1

4
σ(hf ,n)d(hf )

≤ D′n−δ(logn)3/2h
1/2
f + 1

4
σ(hf ,n)d(hf )

= Zn(α) + O(σ(hf ,n)d(hf )),

where D′ is an absolute constant and where Zn(α) = o(n−1/2) if α ≥ 1/4 and

Zn(α) = o

((√
logn

n

)4α/(4α+1))

otherwise (as can easily be seen from the definition of hf ). If α > 1/4 (and hence hf = h1), then
one must add the term(

E

∣∣∣∣∣Tn(h2) − ETn(h2) − 1

n

n∑
i=1

Yi

∣∣∣∣∣
2)1/2(

Pr(ĥn = h2)
)1/2

≤ D1/2(n�(n))−1/2[exp(−d2(h2)/M) + (logn) exp(−d2(h3)/M)]1/2

= o(n−1/2)

in the sum over h < hf in the line before (9), hence yielding the same result.
Summarizing these findings, we conclude that

E

∣∣∣∣∣Tn(ĥn) −
∫

R

f 2
0 (x)dx − 1

n

n∑
i=1

Yi

∣∣∣∣∣ = O(σ(hf ,n)d(hf )) + Zn(α) + o(n−1/2). (10)

By definition of hf , it follows that, if α > 1/4,

σ(hf ,n)d(hf ) ≈ n−1+(1/2)(logn)−1/2(�(n))−1/2 = o(n−1/2),

hence giving the central limit theorem in part (c) of the theorem by (10). Similarly, for part (b),
if α = 1/4 and hence hf = h2, we obtain

σ(hf ,n)d(hf ) ≈ n−1+(1/2)(�(n))−1/2(�(n))−1/2 = O(n−1/2�(n)−1)

and if α < 1/4, we have

σ(hf ,n)d(hf ) ≈
√

logn

n

(
n√

logn

)1/(4α+1)

= O

((√
logn

n

)4α/(4α+1))
,
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giving part (a). �

It hence remains to prove Lemma 2, where we will use Bernstein’s inequality and an exponen-
tial inequality for canonical U-statistics of order 2.

Proof of Lemma 2. Choose some h < hf , h ∈ H and let h+ = ρh be the previous element in
the grid. By definition of ĥn, we have

Pr(ĥn = h) ≤
∑

g∈H : g≤h

Pr
(|Tn(g) − Tn(h+)| > σ(g,n)d(g)

)
.

However,

|Tn(g) − Tn(h+)| ≤ ∣∣Tn(g) − ETn(g) − (
Tn(h+) − ETn(h+)

)∣∣ + B(g) + B(h+),

where g ≤ h < hf and also h+ ≤ hf since hf ∈H. Consequently, by (8),

B(g) + B(h+) ≤ 2B(hf ) ≤ 1
2σ(hf ,n)d(hf ) ≤ 1

2σ(g,n)d(g).

Hence,

Pr(ĥn = h) ≤
∑

g∈H : g≤h

Pr
(∣∣Tn(g) − ETn(g) − (

Tn(h+) − ETn(h+)
)∣∣ > 1

2σ(g,n)d(g)
)
. (11)

For ease of notation, we set

L(x, y) := Lg(x, y) = Kg(x − y) − Kh+(x − y)

and

Cn,g := 1

2
σ(g,n)d(g) = 1

2

d(g)

ng1/2
.

In particular, in U-statistic notation, we have

U(2)
n (L) − EU(2)

n (L) = (
Tn(g) − ETn(g)

) − (
Tn(h+) − ETn(h+)

)
and, recalling the Hoeffding decomposition (2), we have

U(2)
n (L) − EU(2)

n (L) = 2U(1)
n (π1L) + U(2)

n (π2L).

So, to estimate the right-hand side of (11), it suffices to bound

Pr
{∣∣U(1)

n (π1L)
∣∣ > τCn,g/2

}
and Pr

{∣∣U(2)
n (π2L)

∣∣ > (1 − τ)Cn,g

}
for some 0 < τ < 1. We will apply Bernstein’s inequality (e.g., de la Peña and Giné (1999), page
166) to the linear part (the first probability) and its generalization for canonical U-statistics of
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order 2 (Giné, Latała and Zinn (2000)) with constants (Houdré and Reynaud-Bouret (2003)) to
the second.

Linear term: Noting that Var(π1L) ≤ E(EX2L(X1,X2))
2 and that

E
(
EX2

(
Kg(X1 − X2)

))2 =
∫

(Kg ∗ f0)
2(y)f0(y)dy ≤ ‖K‖2

1‖f0‖2
2‖f0‖∞,

by Young’s inequalities, and likewise for Kh+ , we have

Var(π1L) ≤ 4‖K‖2
1‖f0‖2

2‖f0‖∞ =: D1.

Moreover, again by Young’s inequalities,

‖π1L‖∞ ≤ 4‖K‖1‖f0‖∞ := D2.

Hence, Bernstein’s inequality gives

Pr
(∣∣U(1)

n (π1L)
∣∣ > τCn,g/2

) ≤ 2 exp

{
− nτ 2C2

n,g/4

2D1 + (2/3)D2τCn,g/2

}
.

Since g ≥ n−2(logn)4, Cn,g → 0 as n → ∞ and since g ≤ h2 = n−1�(n), we have nC2
n,g ≥

d2(g)/�(n), where we recall that �(n) → 0, so we obtain, for any given τ , that there exist Nτ

such that, for all n ≥ Nτ ,

Pr
(∣∣U(1)

n (π1L)
∣∣ > τCn,g/2

) ≤ 2 exp{−d2(g)/M}. (12)

Second-order term: We first state the inequality for canonical U-statistics that we are going to
use (Theorem 3.4 in Houdré and Reynaud-Bouret (2003)): Let R(x, y) be a symmetric function
of two variables such that ER(X,x) = 0 for all x and let

2
1 = n(n − 1)

2
ER2,

2 = n sup{E(R(X1,X2)ζ(X1)ξ(X2) :Eζ 2(X1) ≤ 1,Eξ2(X1) ≤ 1},
3 = ‖nEX1R

2(X1, ·)‖1/2∞ , 4 = ‖R‖∞.

Then, for every ε > 0, there exist finite non-zero numbers η(ε), β(ε) and γ (ε) such that the
following is true for all u > 0 and n ∈ N:

Pr

(
n(n − 1)

2

∣∣U(2)
n (R)

∣∣ > 2(1 + ε)3/21u
1/2 + η(ε)2u + β(ε)3u

3/2 + γ (ε)4u
2
)

≤ 6 exp{−u}.
We apply this inequality for R = π2L and u = d2(g)/M to obtain the desired bound for
Pr(|U(2)

n (π2L)| > (1 − τ)Cn,g), with a small τ to be chosen below. So, we need to show that

2(1 + ε)3/21u
1/2 + η(ε)2u + β(ε)3u

3/2 + γ (ε)4u
2 ≤ (1 − τ)

n(n − 1)

2
Cn,g
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for the specified choice of u. First, since∫ ∫
K2

g (x − y)f0(x)f0(y)dx dy =
∫

(K2
g ∗ f0)(x)f0(x)dx

≤ ‖f0‖2
2‖K2

g‖1 = g−1‖K‖2
2‖f0‖2

2

and, likewise, if g is replaced by h+ > g, we obtain

2
1 ≤ 2n(n − 1)g−1‖K‖2

2‖f0‖2
2.

Taking ε and τ so that (1 + ε)3/2 = 1.1 and 12(1 − 2τ) = 11.4, it follows that, for all n such that√
n/(n − 1) ≤ 1.1,

2(1 + ε)3/21u
1/2 < (1 − 2τ)

n(n − 1)

2
Cn,g.

For the second term,∣∣E[(
Kg(X1 − X2)

)
ζ(X1)ξ(X2)

]∣∣ ≤ ‖Kg ∗ (ζf0)‖2‖ξf0‖2 ≤ ‖K‖1‖f0‖∞.

Similarly

|E[EX1Kg(X1 − X2)ζ(X1)ξ(X2)]| ≤ ‖K‖1‖f0‖∞,

|EKg(X1 − X2)| ≤ ‖K‖1‖f0‖∞

and also for Kh+ . Thus,

E[π2L(X1,X2)ζ(X1)ξ(X2)] ≤ 8‖K‖1‖f0‖∞

so that 2 ≤ 8‖K‖1‖f0‖∞n. This gives that

η(ε)2u = o(n2Cn,g)

since
√

gd(g) → 0 as n → ∞. For the third term, we have that for every x ∈ R,

n|EX1(π2L)2(X1, x)| ≤ 4n[‖K‖2
2‖f0‖∞g−1 + ‖K‖2

1‖f0‖2
2‖f0‖∞].

Then,

β(ε)3u
3/2 ≤ C

√
n/gd3(g),

which is o(n2Cn,g) because
√

n/d2(g) → ∞. As for the last term, we have 4 = ‖π2L‖∞ ≤
4‖K‖∞/g and hence 4u

2 ≤ Cd4/g, which is also o(n2Cn,g) because d3(g) is of the order of
(logn)3/2, whereas n

√
g ≥ n

√
hmin = (logn)2. We conclude that for the specified τ and for all

n large enough,

Pr
(∣∣U(2)

n (L)
∣∣ > (1 − τ)Cn,g/2

) ≤ 6 exp{−d2(g)/M}. (13)



60 E. Giné and R. Nickl

Inequalities (12) and (13) give

Pr
(∣∣Tn(g) − ETn(g) − (

Tn(h+) − ETn(h+)
)∣∣ > 1

2σ(g,n)d(g)
) ≤ 8 exp{−d2(g)/M}.

The lemma now follows from this bound, (11), the fact that if g ≤ h then

exp{−d2(g)/M} ≤ exp{−d2(h)/M}
and the definition of the grid H. �

Acknowledgements

We would like to thank Béatrice Laurent, Alexander Tsybakov and two anonymous referees for
helpful remarks.

References

Bickel, J.P. and Ritov, Y. (1988). Estimating integrated squared density derivatives: Sharp best order of
convergence estimates. Sankhyā Ser. A 50 381–393. MR1065550
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