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We prove that a positive self-similar Markov process (X,P) that hits 0 in a finite time admits a self-similar
recurrent extension that leaves 0 continuously if and only if the underlying Lévy process satisfies Cramér’s
condition.
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1. Introduction and main result

Let P = (Px, x ≥ 0) be a family of probability measures on Skohorod’s space D
+, the space of

càdlàg paths defined on [0,∞[ with values in R
+. The space D

+ is endowed with the Skohorod
topology and its Borel σ -field. We will denote by X the canonical process of the coordinates
and (Gt , t ≥ 0) will be the natural filtration generated by X. Assume that under P the canonical
process X is a positive self-similar Markov process (pssMp). That is, (X,P) is a [0,∞[-valued
strong Markov process with the following scaling property: there exists an α > 0 such that for
every c > 0,

({cXtc−1/α , t ≥ 0},Px)
Law= ({Xt, t ≥ 0},Pcx) ∀x ≥ 0.

We will further assume that (X,P) is a pssMp that hits 0 in a P-a.s. finite time T0 = inf{t >

0 :Xt = 0} and dies. So, P0 is the law of the degenerate path equal to 0. According to Lamperti’s
transformation [14], the family of laws P can be obtained as the image law of the exponential
of an R ∪ {−∞}-valued Lévy process ξ with law P, time-changed by the inverse of the additive
functional,

t →
∫ t

0
exp{ξs/α}ds, t ≥ 0. (1)

As usual, any function f : R → R is extended to R ∪ {−∞} by taking f (−∞) = 0. Thus, the
state {−∞} will be taken as a cemetery state for ξ and we denote by ζ its lifetime, namely
ζ := inf{t > 0 : ξt = −∞}, and by {Ft , t ≥ 0}, the filtration of ξ. A consequence of Lamperti’s
transformation is that the law of T0 under Px is equal to that of x1/αI under P, where I denotes
the exponential functional associated to ξ ,

I :=
∫ ζ

0
exp{ξs/α}ds.
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Lamperti proved the following characterization for pssMp that hit 0 in a finite time: either (X,P)

hits 0 by a jump and in a finite time

Px(T0 < ∞,XT0− > 0,XT0+t = 0, ∀ t ≥ 0) = 1 ∀x > 0,

which happens if and only if P(ζ < ∞) = 1, or (X,P) hits 0 continuously and in a finite time

Px(T0 < ∞,XT0− = 0,XT0+t = 0, ∀ t ≥ 0) = 1 ∀x > 0,

and this is equivalent to P(ζ = ∞, limt→∞ ξt = −∞) = 1. Reciprocally, the image law of the
exponential of any R∪{−∞}-valued Lévy process time-changed by the inverse of the functional
defined in (1) is the law of a pssMp that dies at its first hitting time of 0. For more details, see
[14] or [16].

The main purpose of this note is to continue our study, initiated in [16], on the existence
and characterization of positive-valued self-similar Markov processes X̃ that behave like (X,P)

before their first hitting time of 0 and for which the state 0 is a regular and recurrent state. Such
a process X̃ will be called a recurrent extension of (X,P). We refer to [16,17] and the references
therein for an introduction to this problem and for background on excursion theory for positive
self-similar Markov processes.

We say that a σ -finite measure n on (D+,G∞) having infinite mass is an excursion measure
compatible with (X,P) if the following are satisfied:

(i) n is carried by

{ω ∈ D
+|T0(ω) > 0 and Xt(ω) = 0,∀t ≥ T0};

(ii) for every bounded G∞-measurable H and each t > 0 and � ∈ Gt ,

n(H ◦ st ,� ∩ {t < T0}) = n
(
EXt (H),� ∩ {t < T0}

)
,

where st denotes the shift operator;
(iii) n(1 − e−T0) < ∞.

Moreover, we will say that n is self-similar if it has the following scaling property: there exists
a 0 < γ < 1, s.t. for all a > 0, the measure Han, which is the image of n under the mapping
Ha : D+ → D

+, defined by

Ha(ω)(t) = aω(a−1/αt), t ≥ 0,

is such that

Han = aγ/αn.

The parameter γ will be called the index of self-similarity of n. See Section 2 in [16] for equiva-
lent definitions of self-similar excursion measure.

The entrance law associated with n is the family of finite measures (nt , t > 0), defined by

n(Xt ∈ dy, t < T0) = nt (dy), t > 0.
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It is known that there exists a one to one correspondence between recurrent extensions of
(X,P) and self-similar excursion measures compatible with (X,P); see, for example, [16,17].
So, determining the existence of the recurrent extensions of (X,P) is equivalent to doing so
for self-similar excursion measures. We recall that the index of self-similarity of a self-similar
excursion measure coincides with that of the stable subordinator which is the inverse of the local
time at 0 of the associated recurrent extension of (X,P).

We say that a positive self-similar Markov process for which 0 is a regular and recurrent state
leaves 0 continuously (resp., by a jump) whenever its excursion measure n is carried by the paths
that leave 0 continuously (resp., that leave 0 by a jump)

n(X0+ > 0) = 0 [resp., n(X0+ = 0) = 0].
Vuolle-Apiala [17] proved, under some hypotheses, that any positive self-similar Markov process
for which 0 is a regular and recurrent state either leaves 0 continuously or by jumps. In fact, his
result still holds true in the general setting, as is proved in the following lemma.

Lemma 1. Let n be a self-similar excursion measure compatible with (X,P) and with index of
self-similarity γ ∈ ]0,1[. Then,

either n(X0+ > 0) = 0 or n(X0+ = 0) = 0.

Proof. Assume that the claim of the lemma does not hold. Let nc = c(c)n|{X0+=0} and nj =
c(j)n|{X0+>0} be the restrictions of n to the set of paths {X0+ = 0} and {X0+ > 0}, respectively,
and c(c) and c(j) be normalizing constants such that

nc(1 − e−T0) = 1 = nj (1 − e−T0).

The measures nc and nj are self-similar excursion measures compatible with (X,P) and with the
same self-similarity index γ. According to Lemma 3 of [16], the potential measure of nc and that
of nj are given by the same purely excessive measure

nc

(∫ T0

0
1{Xt∈dy} dt

)
= Cα,γ y(1−α−γ )/α dy = nj

(∫ T0

0
1{Xt∈dy} dt

)
, y > 0, (2)

where Cα,γ ∈ ]0,∞[ is a constant. So, by Theorem 5.25 of [11] on the uniqueness of purely ex-
cessive measures, the entrance laws associated with nc and nj are equal. Hence, by Theorem 4.7
of [6], the measures nc and nj are equal. This leads to a contradiction of the fact that the supports
of the measures nc and nj are disjoint. �

If nβ is a self-similar excursion measure with index γ = βα ∈ ]0,1[ and is carried by the paths
that leave 0 by a jump, then the self-similarity implies that nβ has the form nβ = cα,βPηβ , where
0 < cα,β < ∞ is a normalizing constant and the starting measure or jumping-in measure ηβ is
given by

ηβ(dx) = βx−1−β dx, x > 0.
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The choice of the constant cα,β depends on the normalization of the local time at 0 of the recurrent
extension of (X,P).

In [16], we provided necessary and sufficient conditions on the underlying Lévy process for the
existence of recurrent extensions of (X,P) that leave 0 by a jump. For the sake of completeness,
we include an improved version of that result.

Theorem 1. Let (X,P) be an α-self-similar Markov process that hits the cemetery point 0 in a
finite time a.s. and (ξ,P) the Lévy process associated with it via Lamperti’s transformation. For
0 < β < 1/α, the following are equivalent:

(i) E(eβξ1 ,1 < ζ) < 1;
(ii) E(Iαβ) < ∞;

(iii) There exists a recurrent extension of (X,P), say X(β), that leaves 0 by a jump and whose
associated excursion measure nβ is such that

nβ(X0+ ∈ dx) = cα,ββx−1−β dx, x > 0,

where cα,β is a constant.

In this case, the process X(β) is the unique recurrent extension of (X,P) that leaves 0 by a jump
distributed as cα,βηβ.

The equivalence between (ii) and (iii) in Theorem 1 is the content of Proposition 1 in [16] and
the equivalence between (i) and (ii) is a consequence of Lemma 2 below.

Thus, only the existence of recurrent extensions that leave 0 continuously remains to be estab-
lished. In this vein, we proved in [16] that under the hypotheses:

(H2a) (ξ,P) is non-arithmetic, that is, its state space is not a subgroup of rZ, for any r ∈ R,
(H2b) Cramér’s condition is satisfied, that is, there exists a θ > 0 s.t.

E(eθξ1 ,1 < ζ) = 1,

(H2c) for θ as in hypothesis (H2b), E(ξ+
1 eθξ1,1 < ζ) < ∞

and provided 0 < αθ < 1, there exists a recurrent extension of (X,P) that leaves 0 continuously.
In a previous work, Vuolle-Apiala [17] provided a sufficient condition on the resolvent of (X,P)

for the existence of recurrent extensions of (X,P) that leave 0 continuously. Actually, in [16],
we proved that in the case where the underlying Lévy process is non-arithmetic, the conditions
of Vuolle-Apiala are equivalent to the conditions (H2b)–(H2c) above. So, it is natural to ask if
the conditions of Vuolle-Apiala and those above are also necessary for the existence of recur-
rent extensions of (X,P) that leave 0 continuously. The following counterexample answers this
question negatively.

Counterexample 1. Let σ be a subordinator with law P such that its law is not arithmetic and
has some exponential moments of positive order, that is,

E := {λ > 0, 1 < E(eλσ1) < ∞} 	= ∅.
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Assume that the upper bound of E, say q, belongs to E ∩]0,1[ and that the function

m(x) := E
(
1{σ1>x}eqσ1

)
, x > 0,

is regularly varying at infinity with index −β, for some β ∈]1/2,1[. Let (ξ,P) be the Lévy
process with finite lifetime ζ, obtained by killing σ at an independent exponential time of para-
meter κ = log(E(eqσ1)). By construction, it follows that Cramér’s condition

E(eqξ1 ,1 < ζ) = 1

is satisfied and, by Karamata’s theorem, the function

m
(x) :=
∫ x

0
E

(
1{ξ1>u}eqξ1 ,1 < ζ

)
du, x ≥ 0,

is regularly varying at infinity with index 1 −β. As a consequence, the integral E(ξ+
1 eqξ1 ,1 < ζ)

is not finite. We will denote by P
 the Girsanov-type transformation of P via the martingale
(eqξs , s ≥ 0), namely P
 is the unique measure s.t.

P
 = eqξt P, on Ft , t ≥ 0.

Let (X,P) be the 1-pssMp associated with (ξ,P) via Lamperti’s transformation and let Vλ denote
its λ-resolvent, λ > 0. We claim that the following assertions are satisfied:

(P1) for any λ > 0,

lim
x→0+m
(log(1/x))

Vλf (x)

xq

= 1

�(β)�(1 − β)

∫ ∞

0
f (y)E


(
exp

{
−λy

∫ ∞

0
e−ξs ds

})
y−q dy

for every f : ]0,∞[→ R, continuous and with compact support;
(P2) the limit

lim
x→0+m
(log(1/x))

Ex(1 − e−T0)

xq
:= Cq

exists and Cq ∈]0,∞[;
(P3) there exists a recurrent extension of (X,P) that leaves 0 continuously.

That the properties (P1)–(P3) are satisfied in the framework of Counterexample 1 will be
proven in Section 3.

In the previous counterexample, we have constructed a pssMp that satisfies neither the hy-
potheses of Vuolle-Apiala [17] nor all of the hypotheses in [16], but nonetheless admits a recur-
rent extension that leaves 0 continuously. This allowed us to realize that only Cramér’s condition
is relevant to the existence of recurrent extensions of pssMp. That is the content of the main
theorem of this paper. To state the result, we need further notation.
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First, observe that if Cramér’s condition is satisfied with index θ, then the process M :=
(eθξt , t ≥ 0) is a martingale under P. In this case, we will denote by P
 the Girsanov-type trans-
form of P via the martingale M, as we did in Counterexample 1. Under the law P
, the process ξ

is an R-valued Lévy process with infinite lifetime and that drifts to ∞. We will denote by J the
exponential functional

J :=
∫ ∞

0
exp{−ξs/α}ds.

A direct consequence of Theorem 1 of [4] and the fact that (ξ,P
) is a Lévy process that drifts
to ∞ is that J < ∞, P
-a.s. More details on the construction of the probability measure P
 and
its properties can be found in Section 2.3 of [16]. We now have all of the elements necessary to
state our main result.

Theorem 2. Let (X,P) be an α-self-similar Markov process that hits its cemetery state 0 in a
finite time P-a.s. and (ξ,P) be the Lévy process associated with (X,P) via Lamperti’s transfor-
mation. The following are equivalent:

(i) there exists a 0 < θ < 1/α such that E(eθξ1 ,1 < ζ) = 1;
(ii) there exists a recurrent extension of (X,P) that leaves 0 continuously and such that its

associated excursion measure from 0, say n, is such that

n(1 − e−T0) = 1.

In this case, the recurrent extension in (ii) is unique and the entrance law associated with the
excursion measure n is, for any f positive and measurable, given by

n
(
f (Xt ), t < T0

) = 1

tαθ�(1 − αθ)E
(J αθ−1)
E


(
f

(
tα

J α

)
Jαθ−1

)
, t > 0, (3)

with θ as in condition (i).

Observe that condition (ii) of Theorem 2 implies that the inverse of the local time at 0 for
the recurrent extension of (X,P) is a stable subordinator of parameter αθ for some 0 < θ <

1/α. It is implicit in Theorem 2 that this is the unique θ > 0 that fulfills condition (i), and vice
versa. Moreover, the expression of the entrance law associated with n should be compared to
the entrance law of Bertoin and Caballero [1] and Bertoin and Yor [3] for positive self-similar
Markov processes that drift to ∞.

Besides, it is interesting to determine whether the recurrent extension in Theorem 2 is such
that the underlying Lévy process satisfies the hypothesis (H2c) above. That is the content of the
following corollary.

Corollary 1. Assume that there exists a recurrent extension of (X,P) that leaves 0 continuously
and let P̃ and n denote its law and excursion measure at 0, respectively. For θ as in Theorem 2,
the integrability condition

E(ξ+
1 eθξ1,1 < ζ) < ∞ (4)
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is satisfied if and only if

n(Xθ
1 ,1 < T0) < ∞ (5)

Furthermore, the latter holds if and only if

Ẽx(X
θ
t ) < ∞ ∀ x ≥ 0, ∀ t ≥ 0. (6)

During the elaboration of this work, we learned that in [10], P. Fitzsimmons essentially proved
the equivalence between (i) and (ii) in Theorem 2. He proved that Cramér’s condition and a
moment condition for the exponential functional I are necessary and sufficient for the existence
of a recurrent extension of (X,P) that leaves 0 continuously. Actually, the moment condition of
Fitzsimmons is a consequence of Cramér’s condition, as is proved in Lemma 2 below. Besides,
Fitzsimmons’ arguments and our own are completely different. He used arguments based on
the theory of Kuznetsov measures and time-changes of processes with random birth and death,
while our proof uses some general results on the excursions of pssMp obtained in our previous
work [16].

The rest of this note is organized as follows. Section 2 is mainly devoted to the proof of
Theorem 2 and in Section 3, we establish the facts claimed in Counterexample 1.

2. Proofs

To undertake our task, we need some notation. The Laplace exponent of (ξ,P) is the function
ψ : R → R ∪ {∞} defined by

E(eλξ1 ,1 < ζ) := eψ(λ), λ ∈ R.

Hölder’s inequality implies that ψ is a strictly convex function on the set E := {λ ∈ R : ψ(λ) <

∞}. So, if Cramér’s condition is satisfied, then the equation ψ(λ) = 0, λ > 0, has a unique root
that we will denote hereafter by θ. Observe that [0, θ ] ⊆ E, that ψ is derivable from the right at
0 and from the left at θ and that

E(ξ1,1 < ζ) = ψ ′+(0) ∈ [−∞,0[, E(ξ1eθξ1,1 < ζ) = ψ ′−(θ) ∈]0,∞].
Our first purpose is to prove that (i) and (ii) in Theorem 1 are equivalent and that in Theorem 2,

(i) implies (ii). To achieve this, we will need the following lemma.

Lemma 2. Let (ξ,P) be a Lévy process and assume that there is a β ∈]0,1/α[ such that

E(eβξ1 ,1 < ζ) ≤ 1.

We then have that

E(Iαβ−1) < ∞.

Furthermore,

E(eβξ1 ,1 < ζ) < 1, if and only if E(Iαβ) < ∞.
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Proof. For t > 0, let Qt denote the random variable

Qt :=
∫ t

0
exp{ξu/α}1{u<ζ } du.

The main argument of the proof uses the fact that E(Q
αβ
t ) < ∞ for all t > 0. Indeed, the strict

convexity of the mapping λ → E(eλξ1 ,1 < ζ) implies that for any p > 1, E(e(β/p)ξt , t < ζ ) =
etψ(β/p) < 1, t > 0. Thus, for p > 1, we have

E(Q
αβ
t ) ≤ tαβE

[
sup

0<u≤t

{
eβξu1{u<ζ }

}]

= tαβE
[(

sup
0<u≤t

{
e(β/p)ξu1{u<ζ }

})p]

≤ tαβE
[(

sup
0<u≤t

{
e(β/p)ξue−uψ(β/p)1{u<ζ }

})p]

≤ tαβ

(
p

p − 1

)p

E
[{

e(β/p)ξt e−tψ(β/p)1{t<ζ }
}p

]

≤ tαβ

(
p

p − 1

)p

e−tpψ(β/p),

using Doob’s Lp inequality and the fact that the process e(β/p)ξu−uψ(β/p), u ≥ 0, is a positive
martingale. We now prove the first claim in Lemma 2. On one hand, using the well-known in-
equality ∣∣|x|αβ − |y|αβ

∣∣ ≤ |x − y|αβ, x, y ∈ R,

we get that

E
[(∫ ∞

0
exp{ξs/α}1{s<ζ } ds

)αβ

−
(∫ ∞

t

exp{ξs/α}1{s<ζ } ds

)αβ]
≤ E(Q

αβ
t ) < ∞.

On the other hand, we have a.s.

(∫ ∞

0
exp{ξs/α}1{s<ζ } ds

)αβ

−
(∫ ∞

t

exp{ξs/α}1{s<ζ } ds

)αβ

= αβ

∫ t

0
exp{ξu/α}1{u<ζ }

(∫ ∞

u

exp{ξs/α}1{s<ζ } ds

)αβ−1

du

= αβ

∫ t

0
exp{βξu}1{u<ζ }

(∫ ∞

0
exp{̃ξr/α}1{r<ζ̃ } dr

)αβ−1

du,
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where ξ̃r = ξr+u −ξu, r ≥ 0 and ζ̃ = ζ −u. Thus, by taking expectations, using Fubini’s theorem
and the independence of the increments of ξ , we obtain the identity

E
((∫ ∞

0
exp{ξs/α}1{s<ζ } ds

)αβ

−
(∫ ∞

t

exp{ξs/α}1{s<ζ } ds

)αβ)

= αβ

∫ t

0
E

(
exp{βξu}1{u<ζ }

(∫ ∞

0
exp{̃ξr/α}1{r<ζ̃ } dr

)αβ−1)
du

= αβE(Iαβ−1)

∫ t

0
E

(
exp{βξu}1{u<ζ }

)
du.

The first claim in Lemma 2 follows. To prove the second assertion, we first assume that
E(eβξ1 ,1 < ζ) < 1. Thus, by letting t tend to infinity and integrating in the latter equation, we
obtain the identity

E(Iαβ) = αβ

ψ(β)
E(Iαβ−1). (7)

This relation is well known; see, for example, [4] and [15]. Together with the first assertion of
the lemma, this implies that E(Iαβ) < ∞. We now prove the reciprocal. If E(Iαβ) < ∞, then we
have

∞ > E
((∫ ζ

0
exp{ξs/α}ds

)αβ)

> E
((∫ ζ

1
exp{ξs/α}ds

)αβ

1{1<ζ }
)

(8)

= E
(

eβξ1 E
((∫ ∞

0
exp{(ξ1+s − ξ1)/α}1{1+s<ζ } ds

)αβ)
1{1<ζ }

)

= E
(
eβξ1 1{1<ζ }

)
E

((∫ ζ

0
exp{ξs/α}ds

)αβ)
,

due to the fact that ξ is a Lévy process. So, we have that, in this case, E(eβξ1 ,1 < ζ) < 1. �

Proof of Theorem 2: (i) implies (ii). The proof of this is based on Theorem 3 of [16], but to use
that result, we first need to establish some weak duality relations.

By assumption (i) and Lemma 2, we have that E(Iαθ−1) < ∞. Moreover, let (ξ, P̂
) :=
(−ξ,P
) denote the dual of (ξ,P
). Then, (ξ, P̂
) drifts to −∞ because (ξ,P
) drifts to ∞ and,
as a consequence, I < ∞, P̂
-a.s. Furthermore, (ξ, P̂
) satisfies the hypotheses of Lemma 2 with
β = θ , due to the identity

Ê
(eθξ1) = E
(e−θξ1) = E(e−θξ1 eθξ1 ,1 < ζ) ≤ 1.

Thus, we can also ensure that Ê
(Iαθ−1) < ∞. Now, let P̂

 be the law of the α-pssMp associ-

ated with (ξ, P̂
) via Lamperti’s transformation. (X, P̂

) is then an α-pssMp that hits 0 contin-
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uously and in a finite time, P̂

-a.s., and, according to Lemma 2 in [3], (X,P


) and (X, P̂

) are

in weak duality with respect to the measure α−1x1/α−1 dx, x > 0, and, given that the law P

 is

the h-transform of the law P via the invariant function h(x) = xθ for the semigroup of (X,P)

(see Proposition 5 of [16]), it then follows that (X,P) and (X, P̂

) are in weak duality w.r.t. the

measure α−1x1/α−1−θ dx, x > 0. Furthermore, we have that for any λ > 0,

α−1
∫ ∞

0
dxx1/α−1−θ

Ex(e
−λT0) < ∞, α−1

∫ ∞

0
dxx1/α−1−θ

Ê


x(e

−λT0) < ∞. (9)

Indeed, for λ > 0,

α−1
∫ ∞

0
dxx1/α−1−θ

Ex(e
−λT0) = α−1

∫ ∞

0
dxx1/α−1−θ E(e−λx1/αI )

= E
(

α−1
∫ ∞

0
dxx1/α−1−θ e−λx1/αI

)

= λαθ−1E(Iαθ−1)�(1 − αθ) < ∞.

The same calculation applies to the verification of the finiteness of the second integral in equa-
tion (9). This being said, Theorem 3 of [16] ensures that there exists a unique recurrent extension
of (X,P) such that the λ-resolvent of its excursion measure, say n, is given by

n
(∫ T0

0
e−λtf (Xt )dt

)
= 1

α�(1 − αθ)Ê
(Iαθ−1)

∫ ∞

0
f (x)x1/α−1−θ

Ê


x(e

−λT0)dx, (10)

for λ ≥ 0, and any function f, positive and measurable on [0,∞[. An easy calculation proves
that the λ-resolvent of n satisfies the self-similarity property in Lemma 2 of [16] and therefore
the excursion measure n is self-similar. In particular, n(1 − e−T0) = 1 and the potential of n is
given by

n
(∫ T0

0
f (Xt )dt

)
= 1

α�(1 − αθ)Ê
(Iαθ−1)

∫ ∞

0
f (x)x1/α−1−θ dx.

Compared with the result in Lemma 3 of [16], this implies that

Ê
(Iαθ−1) = E(Iαθ−1). (11)

Actually, Theorem 3 of [16] also establishes that there exists a recurrent extension of (X, P̂

)

with excursion measure n̂ such that

n̂
(∫ T0

0
e−λtf (Xt )dt

)
= 1

α�(1 − αθ)E(Iαθ−1)

∫ ∞

0
f (x)x1/α−1−θ

Ex(e
−λT0)dx.

Moreover, the recurrent extensions of (X,P) and (X, P̂

) associated with n and n̂, respectively,

are still in weak duality. To verify that n is carried by the paths that leave 0 continuously, we
claim that the image of n under time reversal at time T0 is n̂. This follows from the fact that
n and n̂ have the same potential and an application of a result for time reversal of Kuznetsov
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measures established in Section XIX.23 of Dellacherie, Maisonneuve and Meyer [8]. Thus, using
the Markov property and the fact that (X, P̂


) is a pssMp that hits 0 continuously and in a finite

time P̂

-a.s., given that the underlying Lévy process (ξ, P̂
) drifts to −∞, we get that n̂ is carried

by the paths that hit 0 continuously and therefore

0 = n̂(XT0− > 0) = n(X0+ > 0).

�

Proof of Theorem 2: (ii) implies (i). Assume that the hypothesis (ii) in Theorem 2 holds and
denote by X̃ a recurrent extension of (X,P) with excursion measure n. We claim that, in this
case, we have the inequality

E(eϑξ1 ,1 < ζ) ≤ 1 (12)

and that, in fact, the strict inequality is impossible, that is, Cramér’s condition is satisfied. Taking
for granted inequality (12), it is easy to see that the latter holds. Assume that E(eϑξ1 ,1 < ζ) < 1.
Theorem 1 would imply that (X,P) admits a recurrent extension that leaves 0 by a jump and with
jumping-in measure proportional to ηϑ . This implies that the measure m = 2−1n+2−1cα,ϑPηϑ is
a self-similar excursion measure compatible with (X,P) and with index of self-similarity αϑ; as
before, cα,ϑ is a normalizing constant. Therefore, there exists a recurrent extension of (X,P) with
excursion measure m that may leave 0 by a jump and continuously, which leads to a contradiction
of the fact that any recurrent extension of (X,P) either leaves 0 by a jump or continuously.

We will now prove that inequality (12) holds. It follows from Lemmas 2 and 3 of [16] that
there exists a ϑ ∈]0,1/α[ such that the potential of the measure n is given by

ν(dy) := n
(∫ T0

0
1{Xt∈dy} dt

)
= Cα,αϑy(1−α−αϑ)/α dy, y > 0,

for a constant 0 < Cα,ϑ < ∞ and that ν is the unique invariant measure for X̃; the uniqueness
holds up to a multiplicative constant. It follows that ν is an excessive measure for (X,P). Be-
sides, the Revuz measure of the additive functional B defined by Bt := ∫ t

0 X
−1/α
s ds, 0 ≤ t < T0,

relative to ν, is given by

νB(dy) := Cα,αϑy−1−ϑ dy, y > 0.

So, due to Lamperti’s transformation, the process (eξ ,P) is obtained by time-changing (X,P) by
the right-continuous inverse of B, thus the measure νB is excessive for (eξ ,P). It follows from
this that the measure e−ϑy dy, y ∈ R, is excessive for (ξ,P). The latter assertion implies that for
every positive and bounded function f : R → R, the following inequalities hold:∫

R

e−ϑxf (x)dx ≥
∫

R

e−ϑxEx

(
f (ξ1),1 < ζ

)
dx

= E
(∫

R

e−ϑ(y−ξ1)f (y)dy,1 < ζ

)
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=
∫

R

E(eϑξ1 ,1 < ζ)f (y)e−θy dy.

From these, inequality (12) follows. �

We have thus completed the proof of the equivalence between assertions (i) and (ii) in The-
orem 2. Observe that the θ in the proof of the implication (i) 
⇒ (ii) is equal to the ϑ in the
implication (ii) 
⇒ (i).

We next prove the uniqueness and characterization of the entrance law associated with the
excursion measure claimed in Theorem 2.

2.1. Uniqueness and characterization

Assume that there exist two recurrent extensions of (X,P) that satisfy the conditions of (ii) of
Theorem 2 and let n and n′ be its associated excursions measures. There then exist θ1 and θ2

such that Cramér’s condition is satisfied. The strict convexity of the mapping λ → E(eλξ1 ,1 < ζ)

implies that θ2 = θ = θ1. As a consequence, the potential of both excursion measures is given by
equation (2), with γ replaced by αθ. Therefore, arguing as in the proof of Lemma 1, we show
that n = n′, which completes the proof of uniqueness.

The characterization of the entrance law follows from our proof of the fact that (i) implies (ii)
in Theorem 2. On one hand, by construction, the resolvent of the excursion measure n is given
by equation (10). On the other hand,

n
(∫ T0

0
e−λtf (Xt )dt

)
=

∫ ∞

0
e−λt t−αθn

(
f (tαX1),1 < T0

)
dt

= n
(∫ ∞

0
duα−1u1/α−1−θf (u)X

θ−1/α

1 e−λu1/αX
−1/α
1 1{1<T0}

)
(13)

=
∫ ∞

0
duα−1u1/α−1−θf (u)n

(
X

θ−1/α

1 e−λu1/αX
−1/α
1 1{1<T0}

)
,

where we used Fubini’s theorem three times, combined with the scaling property of n and a
change of variables. Comparing the results in equations (10) and (13), we get the identity

n
(
X

θ−1/α

1 exp{−λu1/αX
−1/α

1 }1{1<T0}
) = 1

�(1 − αθ)Ê
(Iαθ−1)
Ê



u(e

−λT0)

for all λ ≥ 0 and a.e. u > 0. As a consequence,

n
(
X

θ−1/α

1 1{1<T0}
)
< ∞.

By the dominated convergence theorem, the latter identity holds for all λ ≥ 0 and all u > 0.

Recall that, by Lamperti’s transformation, T0 under P̂


u has the same law as u1/αI under P̂
. So,
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by the uniqueness of Laplace transforms, it follows that

n
(
X

θ−1/α

1 f (X
−1/α

1 )1{1<T0}
) = 1

�(1 − αθ)Ê
(Iαθ−1)
Ê
(f (I )).

The claim in Theorem 2 follows from this identity using the scaling property of n and the fact
that the law of I under P̂
 is equal to that of J under P
.

Having completed the proof of Theorem 2, we next prove Corollary 1.

2.2. Proof of Corollary 1

Due to the existence of the left derivative of ψ at θ , it follows from Proposition 3.1 of [7] that

E
(J−1) = Ê
(I−1) = −Ê
(ξ1) = E(ξ1eθξ1,1 < ζ)

and the leftmost quantity is finite if and only if E(ξ+
1 eθξ1,1 < ζ) < ∞. So, that (4) and (5) are

equivalent is an easy consequence of the representation of the entrance law obtained in Theo-
rem 2. We will next prove that (5) is equivalent to (6). Let Vλ denote the λ-resolvent of (X,P)

and Uλ be the λ-resolvent of the unique recurrent extension of (X,P) that leaves 0 continuously.
The invariance of h(x) = xθ , x > 0, implies that

n(Xθ
1 ,1 < T0) = n(Xθ

t , t < T0), t > 0.

Using a well-known decomposition formula and Fubini’s theorem, we get

λUλh(x) = λVλh(x) + Ex(e
−λT0)λUλh(0)

= h(x) + Ex(e
−λT0)

λn(
∫ T0

0 e−λth(Xt )dt)

n(1 − e−λT0)

= h(x) + Ex(e
−λT0)λ−αθ

∫ ∞

0
λe−λtn

(
h(Xt ), t < T0

)
dt

= h(x) + Ex(e
−λT0)λ−αθ n

(
h(X1),1 < T0

)
.

Thus, λUλh(x) < ∞ for all x if and only if n(Xθ
1 ,1 < T0) < ∞. From this, we get that if (5)

holds, then Ẽx(X
θ
t ) < ∞ for all x > 0 and a.e. t > 0. The self-similarity implies that, in this case,

the latter holds for all x > 0 and all t > 0. This completes the proof of Corollary 1.

3. Proof of Counterexample 1

A key tool in the establishment of (P1) and (P2) is the following version of Erickson’s renewal
theorem [9].
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Lemma 3 (Erickson’s renewal theorem [9]). Let G be a non-arithmetic probability distribution
function on R

+ such that 1−G is a regularly varying function at infinity with index γ ∈]1/2,1],
U the renewal measure associated with G and m(x) := ∫ x

0 (1 − G(u))du, x ≥ 0. Then:

(i) for any directly Riemann integrable function g : R+ → R
+,

lim
t→∞m(t)

∫ t

0
g(t − y)U(dy) = 1

�(γ )�(1 − γ )

∫ ∞

0
g(y)dy;

(ii) for any directly Riemann integrable function g : R → R
+,

lim
t→∞m(t)

∫ ∞

−∞
g(y − t)U(dy) = 1

�(γ )�(1 − γ )

∫ ∞

−∞
g(y)dy.

The statement in (i) of Lemma 3 is the content of Erickson’s renewal Theorem 3 and so only
(ii) requires a proof, which is postponed to the end of this section. Next, we proceed to prove
the claims in Counterexample 1. To that end, observe that the law P
 is that of a subordinator
with infinite lifetime, such that the tail probability P
(ξ1 > x) is a regularly varying function with
index β ∈]1/2,1[. Let U
 be the renewal measure of the subordinator with law P
, that is,

U
(dy) =
∫ ∞

0
P
(ξt ∈ dy)dt, y ≥ 0.

According to Bertoin and Doney [2], the measure U
 is the renewal measure associated with the
probability distribution function given by F(·) = P
(ξe ≤ ·), where e is a standard exponential
r.v. independent of ξ under P
. Let P


 be the law of the 1-pssMp associated with (ξ,P
) via
Lamperti’s transformation. The measure P


 is such that

P

 = X

q
t P on Gt , t ≥ 0.

It follows that the resolvents of (X,P

) and (X,P) are related by

V


λf (x) = Vλf hq(x)

hq(x)
, x ∈]0,∞[, (14)

with hq(x) := xq, x > 0. Moreover, we have that, for any function f : R+ → R
+ such that the

mapping y → f (ey)ey is directly Riemann integrable,

lim
x→0+m
(log(1/x))V



0 f (x) = 1

�(1 − γ )�(γ )

∫ ∞

0
f (y)dy. (15)

Indeed, by applying Lamperti’s representation and (ii) in Lemma 3, we obtain

m
(log(1/x))V


0 f (x) = m
(log(1/x))E


[∫ ∞

0
f (xeξt )xeξt dt

]

= m
(log(1/x))

∫
R

f
(
ey−log(1/x)

)
ey−log(1/x)U
(dy)
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−→
x→0+

1

�(1 − γ )�(γ )

∫
R

f (ey)ey dy

and by making a change of variables in the rightmost quantity, we obtain (15). Moreover, repeat-
ing the arguments at the beginning of Section 3 in [3], we prove that for every f : ]0,∞[→ R,

continuous and with compact support, and λ > 0,

lim
x→0+m
(log(1/x))V



λf (x) = 1

�(1 − γ )�(γ )

∫ ∞

0
f (y)E


[
exp

{
−λy

∫ ∞

0
e−ξs ds

}]
dy. (16)

Therefore, the claim in (P1) is a straightforward consequence of (14) and (16).
Besides, in Lemma 4 of [16] we proved that, in general, the exponential functional I satisfies

the equation in law

I
Law= Q + MĨ, with (Q,M) :=

(∫ 1

0
exp{ξs/α}1{s<ζ } ds, eα−1ξ11{1<ζ }

)
and I

Law= Ĩ ,

and the pair (Q,M) is independent of Ĩ . Moreover, under the hypotheses (H2) of Lemma 4
in [16], we obtained, as a consequence of Goldie’s Theorems 2.3 and 4.1 in [13], an estimate of
the tail probability of I . A perusal of the proofs provided by Goldie for those theorems allows us
to ensure that the arguments can be extended, using Erickson’s renewal theorem instead of the
classical renewal theorem, to prove the following lemma.

Lemma 4. Under the hypothesis of Counterexample 1, we have that

lim
t→∞m
(log(t))tqP1(T0 > t)

= 1

�(1 − γ )�(γ )
E

((∫ ∞

0
exp{ξs}1{s<ζ } ds

)q

−
(∫ ∞

1
exp{ξs}1{s<ζ } ds

)q)

= 1

�(1 − γ )�(γ )
qE(I q−1) ∈]0,∞[.

Therefore, Lemma 4 and Karamata’s Tauberian theorem together imply that the property (P2)
is satisfied.

Remark 1. The expression of the value of the limit in Lemma 4 is a consequence of the proof of
Lemma 2.

Finally, to prove that condition (P3) is satisfied, we argue, as in [17], pages 556–557, to ensure
that there exists a family of finite measures on ]0,∞[, say (nλ, λ > 0), such that

nλf = lim
x→0+

Vλf (x)

Ex(1 − e−T0)
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for any f, continuous and with compact support on ]0,∞[, and for λ > 0. Moreover, the family
(nλ, λ > 0) satisfies the resolvent-type equation for λ,µ > 0,

nλVµf = nµf − nλf

λ − µ
,

for any f continuous and with bounded support on ]0,∞[. Thus, Theorem 6.9 of [12] and The-
orem 4.7 of [6] imply that there exist a unique excursion measure n whose λ-potential is equal
to nλ,

n
(∫ T0

0
e−λt1{Xt∈dy} dt

)
= nλ(dy),

for any λ > 0. In fact, all of the results of Vuolle-Apiala [17] are still valid if we replace the power
function that gives the normalization in his hypotheses (Aa) and (Ab) by a regularly varying func-
tion. Therefore, Theorem 1.2 of [17] ensures that n(X0+ > 0) = 0. According to Blumenthal’s
theorem [5], associated with this excursion measure n, there exists a unique recurrent extension
of (X,P) that leaves 0 continuously. This completes the proof of Counterexample 1. Now, we
just have to prove that (ii) in Lemma 3 holds.

Proof of Lemma 3. The claim in (i) is Theorem 3 of Erickson [9] and that (ii) holds is a
consequence of the latter. We next prove the result for step functions and the general case fol-
lows by a standard argument. Let (ak, k ∈ Z) be a sequence of positive real numbers such that∑

k∈Z
ak < ∞ and h > 0 a constant. A consequence of Theorem 1 of Erickson [9] is that for any

k ∈ N,

m(t + kh)

∫
R

1{[kh,(k+1)h[}(y − t)U(dy) −→
t→∞Cγ

∫
R

1{[0,h[}(y)dy = Cγ

∫
R

1{[kh,(k+1)h[}(y)dy,

with Cγ = (�(γ )�(1 − γ ))−1, and uniformly in k. Thus, given that m is an increasing function,
we get that

m(t)

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y − t)U(dy)

≤
∑
k∈N

akm(t + kh)

∫
R

1{[kh,(k+1)h[}(y − t)U(dy).

Therefore,

lim sup
t→∞

m(t)

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y − t)U(dy) ≤ Cγ

∑
k∈N

ak

∫
R

1{[kh,(k+1)h[}(y)dy

≤ Cγ

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y)dy.
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Because m is regularly varying with positive index, the following limit

lim
t→∞

m(t)

m(t + kh)
= 1,

holds uniformly in k ∈ N. A standard application of Fatou’s theorem and an easy manipulation
gives that

lim inf
t→∞ m(t)

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y − t)U(dy) ≥ Cγ

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y)dy.

Let g be the step function defined by

g(t) =
∑
k∈Z

ak1[kh,(k+1)h[(t), t ∈ R.

It follows from the arguments above that

lim
t→∞m(t)

∫
R

g(y − t)1{y−t≥0}U(dy) = Cγ

∫
R

g(y)1{y≥0} dy.

Moreover, the assertion in (i) implies that

lim
t→∞m(t)

∫
R

g(y − t)1{y−t<0}U(dy) = lim
t→∞m(t)

∫ t

0
g
(−(t − y)

)
U(dy) = Cγ

∫ ∞

0
g(−y)dy,

from which the result follows. �
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