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We investigate the moment estimation for an ergodic diffusion process with unknown trend coefficient.
We consider nonparametric and parametric estimation. In each case, we present a lower bound for the risk
and then construct an asymptotically efficient estimator of the moment type functional or of a parameter
which has a one-to-one correspondence to such a functional. Next, we clarify a higher order property of the
moment type estimator by the Edgeworth expansion of the distribution function.
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1. Introduction

Suppose that a diffusion process {Xt,0 ≤ t ≤ T } is uniquely defined by the stochastic differential
equation

dXt = S(Xt )dt + σ(Xt )dWt, 0 ≤ t ≤ T , (1)

where {Wt, t ≥ 0} is a standard Wiener process, and X0 is an initial random variable indepen-
dent of {Wt, t ≥ 0}. We assume that {Xt,0 ≤ t ≤ T } is ergodic with the invariant probability
distribution µS (depending on S and σ ).

In our statistical problem, the diffusion coefficient σ is known to the observer, while the trend
coefficient S is unknown. Given a function F : R → R, we want to estimate the parameter

ϑ = ϑS = ES[F(ξ)] =
∫

F(y)µS(dy),

where ES denotes the expectation with respect to µS , and ξ denotes a “stationary” random vari-
able with distribution µS . If Xt is stationary, we take ξ = X0; if not, we may enlarge the original
probability space to realize ξ .

We are interested in the asymptotically efficient estimation of ϑ based on the observations
{Xt,0 ≤ t ≤ T } as T → ∞. We will consider nonparametric and parametric estimation prob-
lems.

Section 2 treats a nonparametric case where the function S is completely unknown. As usual
in such problems, we derive a minimax bound of the risks of all estimators and then show that
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the empirical moment estimator

ϑ∗
T = 1

T

∫ T

0
F(Xt )dt

is asymptotically efficient in that ϑ∗
T attains this lower bound.

In Section 3, we suppose that the function S belongs to a parametric family, that is, S =
S(γ, ·), γ ∈ �, and ϑ is a function of γ :ϑ = ϑ(γ ). Then it turns out that the maximum like-
lihood estimator (MLE) γ̂T (under certain regularity conditions) provides the asymptotically
efficient estimator ϑ̂T = ϑ(γ̂T ) of ϑ . However, the computation of the MLE in nonlinear models
is often not easy. To avoid this drawback, we consider the so-called one-step MLE introduced
by LeCam [6], which allows us to improve the empirical moment estimator to an asymptotically
efficient one in this parametric setting. Here the asymptotic efficiency is in the sense of Hajek
and LeCam.

After investigations of the first-order asymptotics, a natural direction of study is the second-
order approximation of the distribution of the estimator. In Section 4, we derive an asymptotic
expansion formula with the help of the local approach of the Malliavin calculus developed re-
cently by Yoshida [12–14] and Kusuoka and Yoshida [2].

2. Nonparametric estimation

We consider the diffusion process {Xt, 0 ≤ t ≤ T } described in Section 1.
In this section, S is unknown, while σ is a known continuous positive function. Let us denote

by S the class of functions S that satisfies

V (S, x) =
∫ x

0
exp

{
−2

∫ y

0

S(v)

σ (v)2
dv

}
dy → ±∞ as x → ±∞ (2)

and

G(S) =
∫ ∞

−∞
σ(y)−2 exp

{
2
∫ y

0

S(v)

σ (v)2
dv

}
dy < ∞. (3)

These conditions guarantee the existence of invariant probability measure µS with the density
function

fS(x) = G(S)−1σ(x)−2 exp

{
2
∫ x

0

S(v)

σ (v)2
dv

}
(4)

and the law of large numbers. We suppose that the initial value X0 = ξ has a probability density
function f (·), in particular, the process Xt, t ≥ 0, is stationary.

We would like to estimate the mathematical expectation

ϑS =
∫ ∞

−∞
F(y)fS(y)dy.
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To construct a lower minimax bound on the risks of all estimators, we define a nonparametric
vicinity of a fixed model as follows. Fix some S∗(·) ∈ S and δ > 0, and introduce the set

Vδ =
{
S(·) : sup

x∈R

|S(x) − S∗(x)| < δ

}
.

We suppose that S∗(·) is such that the conditions (2) and (3) are fulfilled for all S(·) ∈ Vδ and

sup
S(·)∈Vδ

G(S) < ∞, sup
S(·)∈Vδ

ES |F(ξ)| < ∞. (5)

The role of Fisher information in our problem will be played by the quantity

I(S) =
{

4ES

[(
MS(ξ)

σ (ξ)fS(ξ)

)2]}−1

, (6)

where MS(y) = ES[(F (ξ) − ϑS)χ{ξ<y}]. We put I∗ = I(S∗). We choose the polynomial loss
function �(u) = |u|p, p > 0.

Theorem 1. Let the conditions (5) be fulfilled and let I∗ > 0. Then

lim
δ→0

lim
T →∞

inf
ϑ̄T

sup
S(·)∈Vδ

ES

[
�
(
T 1/2(ϑ̄T − ϑS)

)] ≥ E[�(ηI−1/2∗ )], (7)

where L(η) = N (0,1) and inf is taken over all possible estimators ϑ̄T of the unknown parameter.

Proof. We follow the well known scheme described in Ibragimov and Khasminskii ([1], Chap-
ter 4); see also the proofs of similar results in Kutoyants [4].

Denote ϑ∗ = ϑS∗ and let ψ(·) be a continuous function with compact support such that Sh(·) =
S∗(·) + (h − ϑ∗)ψ(·)σ (·)2 ∈ Vδ for all h ∈ (ϑ∗ − γ,ϑ∗ + γ ). Here γ > 0 is a number chosen
in such a way that Sh(·) ∈ Vδ . For the process (1) with S(·) = Sh(·) we consider the parameter
estimation problem for h and recall the construction of the Hajek–LeCam minimax bound in this
situation.

The direct expansion of the function ϑh = ϑS∗+(h−ϑ)ψ(·)σ (·)2 by the powers of h − ϑ∗ gives
the representation

ϑh = ϑ∗ + 2(h − ϑ∗)
[

E
[
F(ξ)

∫ ξ

0
ψ(v)dv

]
− ϑ∗E

[∫ ξ

0
ψ(v)dv

]]
+ o(h − ϑ∗),

where we write E = ES∗ and Eh = ESh
. Therefore, if we take ψ(·) from the class

K =
{
ψ(·) : E

[
[F(ξ) − ϑ∗]

∫ ξ

0
ψ(v)dv

]
= 2−1

}
,

then ϑh = h + o(h − ϑ∗). The corresponding family of measures {P(T )
h , h ∈ (ϑ∗ − γ,ϑ∗ + γ )}

is locally asymptotically normal (LAN) at the point h = ϑ∗, therefore, we can apply the Hajek–
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LeCam inequality (see Ibragimov and Khasminski [1], Theorem 2.12.1) and write for ψ ∈ K,

lim
δ→0

lim
T →∞

inf
ϑ̄T

sup
S(·)∈Vδ

ES

[
�
(
T 1/2(ϑ̄T − ϑS)

)]
≥ lim

γ→0
lim

T →∞
inf
ϑ̄T

sup
|h−ϑ |<γ

Eh

[
�
(
T 1/2(ϑ̄T − ϑh)

)] ≥ E[�(ηI−1/2
ψ )].

Here η ∼ N(0,1) and Iψ = E(ψ(ξ)σ (ξ))2 is the Fisher information in the problem of estimation
of h.

Furthermore, using the integration-by-parts formula and the Cauchy–Schwarz inequality we
can write

2−1 = −
∫ ∞

−∞

∫ y

−∞
(
F(z) − ϑ∗

)
fS∗(z)dzψ(y)dy

+
[∫ y

−∞
(
F(z) − ϑ∗

)
fS∗(z)dz

∫ y

0
ψ(v)dv

]∞

−∞

≤ I1/2
ψ

{
E

[(
MS∗(ξ)

σ (ξ)fS∗(ξ)

)2]}1/2

.

Therefore,

Iψ ≥
{

4E
[(

MS∗(ξ)

σ (ξ)fS∗(ξ)

)2]}−1

≡ I∗.

We will have the equality if we choose

ψ(v) = ψ∗(v) ≡ C

σ(v)2fS∗(v)

∫ v

−∞
(
F(y) − ϑ∗

)
fS∗(y)dy

with the corresponding normalizing constant C > 0, but this function does not have compact
support and, therefore, it cannot belong to K. As usual in such situation (see Ibragimov and
Khasminski [1], page 218), we introduce a sequence of smooth functions {ψN(·)} with compact
supports approximating ψ∗(·) and such that

inf
ψ(·)∈K

Iψ = lim
N→∞ IψN

= I∗.

Then

sup
ψ(·)∈K

E�(ηI−1/2
ψ ) = E�(ηI−1/2∗ )

and we have the desired estimate (7). �

Definition 1. We say that the estimator ϑ̄T is asymptotically efficient for the loss function �(·) if

lim
δ→0

lim
T →∞ sup

S(·)∈Vδ

ES�
(
T 1/2(ϑ̄T − ϑS)

) = E�(ηI−1/2∗ ) (8)
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for all functions S∗(·) ∈ S.

Below we will show that the empirical estimator is an asymptotically efficient estimator of ϑ

in this sense.
The process {Xt }t∈R+ is stationary; therefore the estimator ϑ∗

T is unbiased: ESϑ∗
T = ϑS. If

the initial value X0 has another distribution, then the estimator ϑ∗
T is no longer unbiased but

nevertheless we have |ESϑ∗
T − ϑS | ≤ C

T
(see Kutoyants [3], Lemma 3.4.8) and the properties of

the estimator ϑ∗
T can be studied without assumption of stationarity as well.

Let us introduce the function

HS(y) =
∫ y

0

2

σ(x)2fS(x)

∫ x

−∞
[F(v) − ϑS]fS(v)dv dx

and the conditions that, for some p∗ > 0,

sup
S(·)∈Vδ

ES |HS(ξ)|p∗ < ∞, sup
S(·)∈Vδ

ES

∣∣∣∣ MS(ξ)

σ (ξ)fS(ξ)

∣∣∣∣
p∗

< ∞. (9)

Let

QS(y) = 2MS(y)

σ (y)fS(y)
.

Theorem 2. Suppose that conditions (5) and (9) for some p∗ > 2 are fulfilled, that the Fisher
information I(S) is continuous at S(·) = S∗(·) and that the law of large numbers holds uniformly
in S(·) ∈ Vδ , that is, for each κ > 0,

lim
T →∞ sup

S(·)∈Vδ

P(T )
S

{∣∣∣∣ 1

T

∫ T

0
QS(Xt )

2 dt − ESQS(ξ)2
∣∣∣∣ > κ

}
= 0. (10)

Then the empirical moment ϑ∗
T is an asymptotically efficient estimator of the parameter ϑS under

the loss function �(u) = |u|p with p < p∗.

Proof. Using the Itô formula, we rewrite the difference ηT = T 1/2(ϑ∗
T − ϑS) with a stochastic

integral as

ηT = HS(XT ) − HS(X0)√
T

− 1√
T

∫ T

0
QS(Xt)dWt (11)

under PS . The uniform version of the central limit theorem for stochastic integral (Kutoyants [3],
Theorem 3.3.7) allows us to show the weak convergence

LS

{
1√
T

∫ T

0
QS(Xt)dWt

}

⇒N (0, I(S)−1)

uniform in S(·) ∈ Vδ . Therefore, the empirical estimator is uniformly asymptotically normal

LS{T 1/2(ϑ∗
T − ϑS)} 
⇒N (0, I(S)−1). (12)
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For the polynomial loss functions we have to verify the uniform integrability of the family of
random variables {|ηT |p,T → ∞}, but it follows from the representation (11) and the conditions
(9) as it was done in Kutoyants [5]. �

Example 1. Let us consider the case where σ(y) ≡ 1 and, for some ρ > 0,A > 0 and L > 0,
define the class of functions

S(
,A,L) = {S(·) : |S(y) − S(z)| ≤ L|y − z| for |y|, |z| ≤ A,

sgn(y)S(y) ≤ −
, for |y| ≥ A}.
Then, for the function F(y) = |y|k with any k > 0, we can verify all the conditions of Theorem 2
to show that the estimator

ϑ∗
T = 1

T

∫ T

0
|Xt |k dt

is consistent, uniformly (in S(·) ∈ Vδ with δ < γ ) asymptotically normal and asymptotically
efficient for the polynomial loss functions �(u) = |u|p with any p > 0. The verification is quite
close to the one given in Kutoyants [5].

Remark 1. If we put F(y) = χ{y<x}, then ϑ = D(x) = P{ξ < x} is the value of the invariant
distribution function at point x. Theorems 1 and 2 yield the asymptotic efficiency of the empirical
distribution function

D̂T (x) = 1

T

∫ T

0
χ{Xt<x} dt; (13)

see Kutoyants [4] for details.

3. Parametric estimation

3.1. Maximum likelihood estimator

Below we consider the problem of estimation of the drift function of the observed diffusion
process described by

dXt = S(γ,Xt )dt + σ(Xt )dWt, X0 = x, 0 ≤ t ≤ T . (14)

The trend coefficient S(·) is supposed to be known up to an unknown parameter γ ∈ � = (α,β).
We suppose that the function σ(·) is known and positive, that the conditions (2) and (3) are
fulfilled for all S(·) = S(γ, ·), γ ∈ �, and that the equation (14) has a unique weak solution.
Therefore, the process Xt, t ≥ 0, has an ergodic property and the invariant density function is

f (γ, y) = G(γ )−1σ(y)−2 exp

{
2
∫ y

0

S(γ, v)

σ (v)2
dv

}
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with G(γ ) = G(S(γ, ·)).
The parameter ϑ is now a function of γ :

ϑ(γ ) =
∫ ∞

−∞
F(y)f (γ, y)dy, γ ∈ �.

Set � = {ϑ : ϑ = ϑ(γ ), γ ∈ �} and denote

ϑ̇(γ ) = 2Eγ

[
F(ξ)

∫ ξ

ζ

Ṡ(γ, v)

σ (v)2
dv

]
,

the derivative of ϑ(γ ) with respect to γ . Here ξ and ζ are two independent random variables
with the same density function f (γ, ·) and the dot means derivative with respect to γ .

The regularity condition will be the following:

Condition C1. The function S(γ, x), x ∈ R, γ ∈ �, has two continuous bounded derivatives
on γ , the function σ(v)2 ≥ κ1 > 0 for some κ1, the Fisher information

I(γ ) =
∫ ∞

−∞

(
Ṡ(γ, y)

σ (y)

)2

f (γ, y)dy

is uniformly positive, infγ∈� I(γ ) > 0, and the derivative of the function ϑ(γ ) is separated from
zero,

0 < inf
γ∈�

|ϑ̇(γ )| ≤ sup
γ∈�

|ϑ̇(γ )| < ∞. (15)

Under this regularity condition, the family of measures {P(T )
γ , γ ∈ �} is LAN at any point

γ0 ∈ � and we have the Hajek–LeCam lower bound on the risks of all estimators for the loss
functions �(u) = |u|p,p ≥ 1, that is,

lim
δ→0

lim
T →∞

inf
ϑ̄T

sup
|γ−γ0|<δ

Eγ

[
�
(
T 1/2(γ̄T − γ )

)] ≥ E
[
�
(
ηI(γ0)

−1/2)], (16)

where L(η) = N (0,1) (see Kutoyants [3], Theorems 3.3.8 and 3.3.4).
Therefore, the asymptotically efficient estimator in this parametric estimation problem will be

defined as follows:

Definition 2. We say that an estimator γ̄T is asymptotically efficient for the loss function �(·) if
the equality

lim
δ→0

lim
T →∞ sup

|γ−γ0|<δ

Eγ �
(
T 1/2(γ̄T − γ )

) = E�
(
ηI(γ0)

−1/2) (17)

holds for all γ0 ∈ �.

By condition (15), the above optimality is equivalent to the optimality of an estimator for
ϑ(γ ): let us put Iϑ0 = ϑ̇(γ0)

−2I(γ0).
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Definition 3. The estimator ϑ̄T is asymptotically efficient for the loss function �(·) if

lim
δ→0

lim
T →∞ sup

|γ−γ0|<δ

ES�
(
T 1/2(ϑ̄T − ϑ(γ )

)) = E�(ηI−1/2
ϑ0

). (18)

The condition ϑ̇(γ ) �= 0 yields one-to-one mapping � ↔ � and the maximum likelihood
estimator of the parameter ϑ is ϑ̂T = ϑ(γ̂T ), where γ̂T is the MLE of the parameter γ defined
by the equation

L(γ̂T , γ1,X
T ) = sup

γ∈�

L(γ, γ1,X
T ). (19)

Here γ1 is some fixed value and the conditional likelihood ratio is given by the formula (see
Liptser and Shiryayev [7])

L(γ,γ1,X
T ) ≡ dP(T )

γ

dP(T )
γ1

(XT )

= exp

{∫ T

0

S(γ,Xt ) − S(γ1,Xt )

σ (Xt )2
dXt

− 1

2

∫ T

0
[S(γ,Xt )

2 − S(γ1,Xt )
2]σ(Xt )

−2 dt

}
. (20)

It is known that the MLE γ̂T is uniformly consistent, asymptotically normal

Lγ {T 1/2(γ̂T − γ )} 
⇒N (0, I(γ )−1)

and asymptotically efficient for the polynomial loss function (see Kutoyants [5]).
These properties of γ̂T immediately give the consistency, asymptotic normality

Lγ

{
T 1/2(ϑ̂T − ϑ(γ )

)} 
⇒N (0, I−1
ϑ )

and asymptotic efficiency of the MLE ϑ̂T = ϑ(γ̂T ).
Therefore, this approach gives us the asymptotically efficient estimator of the moment ϑ , but

it has the following disadvantages. The calculation of the MLE γ̂T according to its definition
(19) and (20) requires the calculation of stochastic integrals, which are in general not continuous
with respect to the uniform topology, as well as maximization of certain nonlinear functional of
observations.

3.2. One-step estimator based on the empirical estimator

In this subsection, we propose another estimator, which is much easier to calculate and neverthe-
less is asymptotically efficient in the sense of Definition 2 for the polynomial loss functions.
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Note that the empirical estimator

ϑ∗
T = 1

T

∫ T

0
F(Xt)dt

given in Section 1 is consistent (with probability 1) and is asymptotically normal

Lγ

{
T 1/2(ϑ∗

T − ϑ(γ )
)} 
⇒N

(
0, I(S(γ, ·))−1),

where I(S) is defined in (6). Below we will improve this estimator to an asymptotically efficient
one. We suppose as well that the equation ϑ(γ ) = ϑ can be solved with respect to γ and we have
the function γ = γ (ϑ) too. This equation can be solved preliminarily, say, numerically because
it does not depend on observations and by the condition (15) the solution always exists.

For each locally integrable function a : R → R, define

Ga(x, γ ) = −
∫ x

0
G(S(γ, ·))pS(γ,·)(y)

(∫ ∞

y

2a(v)fS(γ,·)(v)dv

)
dy,

where

pS(γ,·)(y) = exp

(
−2

∫ y

0
σ(y)−2S(γ, v)dv

)

if
∫ ∞

0 |a(v)|fS(γ,·)(v)dv < ∞ (cf. Kutoyants [5] or Yoshida [13] for the estimate of the Green
function). Moreover, define a family of functions

Cγ =
{
a ∈ C↑(R) :

∫
R

a(x)fS(γ,·)(x)dx = 0, [a],Ga(·, γ ) ∈ C↑(R)

}
,

where

[a] = −σ∇Ga−〈a,fS(γ,·)〉(·, γ ), 〈a,fS(γ,·)〉 =
∫

a(x)fS(γ,·)(x)dx

and C↑(R) is the space of continuous functions of at most polynomial growth.
Put

�T (γ,XT ) = 1√
T

∫ T

0

(
Ṡ(γ,Xt )σ

′(Xt )σ (Xt )

− Ṡ(γ,Xt )S(γ,Xt ) − 1
2 Ṡ′(γ,Xt )σ (Xt )

2)σ(Xt )
−2 dt (21)

and define the estimator

γ̃T = γ ∗
T + �T (γ ∗

T ,XT )

I(γ ∗
T )

√
T

,
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where γ ∗
T = γ (ϑ∗

T ). This is the so-called one-step MLE introduced for LAN families by
LeCam [6]. It improves a consistent estimator to an efficient one. Note that the one-step esti-
mator

ϑ̃T = ϑ∗
T + ϑ̇(γ ∗

T )�T (γ ∗
T ,XT )

I(γ ∗
T )

√
T

coincides with ϑ(γ̃T ) up to first order. Thus, first we will consider the former estimator in the
sequel. However, γ̃T is constructed based on our empirical estimator and it is different from the
one-step estimator treated in Kutoyants [5].

We will use the following assumptions:

Condition C2. (i) There exists a constant C such that for H(x, γ ) = ∂
j
γ ∂i

xS(γ, x), 0 ≤ i ≤ 1,0 ≤
j ≤ 3 and σ(x),

sup
γ

|H(x, γ )| ≤ C(1 + |x|C)

for all x ∈ R.
(ii) S(γ, ·) ∈ S(ρ,A,L) for some constants ρ,A, and L.
(iii) For aγ := Ṡ(γ, ·)2σ(·)−2 − I(γ ), aγ ∈ Cγ for every γ and

sup
γ

Eγ [|Gaγ (ξ)|] + sup
γ

Eγ [[aγ ]2(ξ)] < ∞.

Theorem 3. Suppose that C1 and C2 are fulfilled. Then the estimator γ̃T based on the initial
empirical estimator is uniformly consistent, asymptotically normal

Lγ

{
T 1/2(γ̃T − γ )

} 
⇒N (0, I(γ )−1)

and asymptotically efficient for the polynomial loss function. In particular, one-step estimator
ϑ̃T based on the empirical initial estimator has the same asymptotic properties with asymptotic
normality:

Lγ

{√
T (ϑ̃T − ϑ(γ ))

} 
⇒N (0, I−1
ϑ ).

Remark 2. The result may seem to be a corollary to a known general result. However, Lp in-
tegrability of the estimator comes from a particular property of the initial estimator such as the
empirical estimator we adopted here. Moreover, even if they have the same first-order asymptotic
property, one-step estimators are different from each other, depending on the choice of the initial
estimator. It will be understood more clearly if we consider the second-order asymptotics.

Proof of Theorem 3. Denote the true value of γ by γ0 and use γ as a variable. Define a random
field

�̄T (γ,XT ) = 1√
T

∫ T

0

Ṡ(γ,Xt )

σ (Xt )2
[dXt − S(γ,Xt )dt].
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Then, under P
(T )
γ0 ,

�̄T (γ,XT ) = 1√
T

∫ T

0

Ṡ(γ,Xt )

σ (Xt )
dWt

− 1√
T

∫ T

0

Ṡ(γ,Xt )

σ (Xt )2
[S(γ,Xt ) − S(γ0,Xt )]dt

= 1√
T

∫ XT

X0

Ṡ(γ, y)

σ (y)2
dy − 1√

T

∫ T

0

Ṡ(γ,Xt )

σ (Xt )2
S(γ0,Xt )dt

− 1

2
√

T

∫ T

0
∂x

[
Ṡ(γ, x)

σ (x)2

]∣∣∣
x=Xt

σ (Xt )
2 dt

− 1√
T

∫ T

0

Ṡ(γ,Xt )

σ (Xt )2
[S(γ,Xt ) − S(γ0,Xt )]dt

= 1√
T

∫ XT

X0

Ṡ(γ, y)

σ (y)2
dy

− 1√
T

∫ T

0

[
s(γ,Xt ) + Ṡ(γ,Xt )S(γ,Xt )

σ (Xt )2

]
dt,

where

s(γ, x) = 1

2
σ(x)2∂x

[
Ṡ(γ, x)

σ (x)2

]
.

Given that

s(γ, x) + Ṡ(γ, x)S(γ, x)

σ (x)2
= − 1

σ(x)2

{
Ṡ(γ, x)σ ′(x)σ (x)

− 1

2
Ṡ′(γ, x)σ (x)2 − Ṡ(γ, x)S(γ, x)

}
,

we have

�̄T (γ,XT ) = 1√
T

∫ XT

X0

Ṡ(γ, y)

σ (y)2
dy + �T (γ,XT ). (22)

The right-hand side of (22) does not involve Itô stochastic integrals, so it provides a smooth
version of the random field �̄T (γ,XT ).

Put

p(x, γ ) =
∫ x

0

Ṡ(γ, y)

σ (y)2
dy.
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It is easily seen that under P
(T )
γ0 ,

√
T (γ̃T − γ0) = √

T (γ ∗
T − γ0)

+ �T (γ0,X
T )

I(γ ∗)
+ 1

I(γ ∗
T )

[�T (γ ∗
T ,XT ) − �T (γ0,X

T )]

= 1

I(γ ∗
T )

√
T

∫ T

0

Ṡ(γ0,Xt )

σ (Xt )
dWt + RT (γ0),

where RT (γ0) = R1,T (γ0) + R2,T (γ0) with

R1,T (γ0) = − 1

I(γ ∗
T )

√
T

[p(XT ,γ0) − p(X0, γ0)]

and

R2,T (γ0) = √
T (γ ∗

T − γ0) + 1

I(γ ∗
T )

[�T (γ ∗
T ,XT ) − �T (γ0,X

T )].

It follows from Condition C2 that for T > 1,

sup
γ0

Eγ0[|R1,T (γ0)|] ≤ C√
T

.

Next, we will estimate the second residual R2,T (γ0). Denote by Lγ the generator of the diffu-
sion process Xt that corresponds to the parameter γ ,

Lγ = S(γ, x)
d

dx
+ 1

2
σ(x)2 d2

dx2
,

and put M(γ,x) = ∂γ (Lγ p)(x, γ ). Then obviously M(γ,x) = Lγ ṗ(x, γ ) + Ṡ(γ, x)2σ(x)−2.
We have

R2,T (γ0) = R3,T (γ0)

I(γ ∗
T )

√
T (γ ∗

T − γ0),

where

R3,T (γ0) = − 1

T

∫ T

0
M(γ ∗∗

T ,Xt )dt + I(γ ∗
T ).

Then R3,T (γ0) = ∑8
i=4 Ri,T (γ0) with

R4,T (γ0) = I(γ ∗
T ) − I(γ0),

R5,T (γ0) = − 1

T

∫ T

0
Ṡ(γ0,Xt )

2σ(Xt )
−2 dt + I(γ0),
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R6,T (γ0) = − 1

T

∫ T

0
[Ṡ(γ ∗∗

T ,Xt )
2 − Ṡ(γ0,Xt )

2]σ(Xt )
−2 dt,

R7,T (γ0) = − 1

T

∫ T

0
(Lγ0 ṗ)(γ0,Xt )dt,

and

R8,T (γ0) = − 1

T

∫ T

0
[(Lγ ∗∗

T
ṗ)(γ ∗∗

T ,Xt ) − (Lγ0 ṗ)(γ0,Xt )]dt.

By using the uniform non-degeneracy of ϑ̇(γ ) (Condition C1) and the uniform estimate for ϑ∗
T ,

we obtain, for every p > 1,

sup
γ0

Eγ0

[∣∣√T (γ ∗
T − γ0)

∣∣p] ≤
(

sup
γ

|ϑ̇(γ )|
)p

· sup
γ0

Eγ0

[∣∣√T (ϑ∗
T − ϑ0)

∣∣p] ≤ Cp < ∞

for all T ∈ R+. Because supγ |İ(γ )| < ∞ as a consequence of Condition C2, we obtain for i = 4,

sup
γ0

Eγ0 [|Ri,T (γ0)|] ≤ C√
T

. (23)

In a similar fashion, we obtain the estimate (23) for i = 6,8. Also, R5,T and R7,T can be esti-
mated by using Itô’s formula, the Burkholder–Davis–Gundy inequality and Condition C2. Thus,
RT (γ0) is estimated uniformly in γ0. Finally, the uniform central limit theorem for the principal
term of the

√
T (γ̃T − γ0) implies the desired result.

The assertion for ϑ̃ is an easy consequence. �

Remark 3. If we are interested in estimating the distribution function [see Remark 1 with ϑ =
D(γ,x)] and if D̂T (x) is its empirical distribution function (13), then according to Theorem 3,
the estimator

D̃T (x) = D̂T (x) + Ḋ(γ ∗
T , x)�T (γ ∗

T ,XT )

I(γ ∗
T )

√
T

will be asymptotically efficient in the following sense:

lim
δ→0

lim
T →∞

sup
|γ−γ0|<δ

Eγ �
(
T 1/2(D̃T (x) − D(γ,x)

)) = E�(ηI−1/2
D0

).

Here γ ∗
T is the solution of the equation D(γ ∗

T , x) = D̂T (x), and I(γ0) and ID0 are the correspond-
ing Fisher informations (see Kutoyants [5]).

4. Asymptotic expansion

We are still considering the diffusion process Xt that satisfies the stochastic differential equation
(1) and the nonparametric estimator for the expectation ϑ = E[F(ξ)]. As shown in the previous
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sections,

ϑ∗
T = 1

T

∫ T

0
F(Xt )dt

is asymptotically normal and asymptotically efficient in a nonparametric sense. In this section,
we shall investigate the higher order distribution of our nonparametric estimator, more precisely,
the asymptotic expansion of its distribution will be presented.

The asymptotic expansion of the distribution of ergodic diffusions recently was obtained by
Yoshida [12–14] applying the Malliavin calculus. Among two possible methodologies, that is, the
global approach and the local approach, here we shall take the newly developed local approach
formalized by Kusuoka and Yoshida [2] for continuous-time processes and applied by Sakamoto
and Yoshida [8]. The support theorems serve to verify the non-degeneracy (see Yoshida [14]).

Let C∞↑ (R) be the space of smooth functions on R, all derivatives of which are of at most
polynomial growth, and let C∞

B (R) be the space of bounded smooth functions on R with bounded
derivatives. We denote by BG the set of bounded G-measurable functions. We assume that F,S ∈
C∞↑ (R), S′, σ ∈ C∞

B (R), and σ(x) > 0 for any x ∈ R, and that Xt is stationary. We may construct
a solution Xt over a (partial) Wiener space (�,P ), that is, � = R × W , where W = {w : R+ →
R, continuous w(0) = 0}, and P = ν ⊗ P̃ , P̃ being a Wiener measure on W and ν being the
stationary distribution of the diffusion process. Let

BX
I = σ [Xt : t ∈ I ] ∨N

for I ∈ R+, N being the σ -field generated by null sets. We later use the following conditions:
Condition A1. There exists a positive constant a such that

∥∥E
[
h|BX[s]

] − E[h]∥∥1 ≤ a−1e−a(t−s)‖h‖∞

for any s, t ∈ R+, s ≤ t , and for any h ∈ BBX
[t,∞).

Condition A2. Process X0 ∈ ⋂
p>1 Lp(P ).

A sufficient condition for A1 is provided, for example, in Veretennikov [10,11] and Kusuoka
and Yoshida [2]. Indeed, if σ ∈ C∞

B (R) and if there exists a function ρ ∈ C∞(R) such that ρ > 0,∫
R ρ(x)dx = 1 and lim sup|x|→∞ ρ(x)−1L∗ρ(x) < 0, where L∗ is the formal adjoint operator

of the generator L of this diffusion process, then Condition A1 holds true (see Kusuoka and
Yoshida [2]).

Put

ZT =
∫ T

0
q(Xt )dt,

where q(x) = F(x)−ϑ . As in Kusuoka and Yoshida [2], we define the r th cumulant function of
ZT /

√
T by

χT,r (u) =
(

d

dε

)r

0
log E

[
exp

(
iεu · ZT√

T

)]
.
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Then define function

�̂T ,k(u) = exp
( 1

2χT,2(u)
) +

k∑
r=1

T −r/2P̃T ,r (u),

where P̃T ,r (u) are defined by the formal Taylor expansion

exp

( ∞∑
r=2

1

r!ε
r−2χT,r (u)

)
= exp

(
1

2
χT,2(u)

)
+

∞∑
r=1

εrT −r/2P̃T ,r (u).

Denote by �T,k the signed measure defined as the Fourier inversion of �̂T ,k . For measurable
function h : R → R, let

ω(h, r) =
∫

R
sup{|h(x + y) − h(x)| : |y| ≤ r}φ(x;0, I−1

� )dx,

where φ(x;µ,�) denotes the probability density of the normal distribution N(µ,�) and I� is
an arbitrary positive number smaller than I∗. The Hermite polynomials are defined by

hk(z;�) = (−1)kφ(z;0,�)−1∂k
z φ(z;0,�)

for a positive constant �.
For a continuous function a : R → R, we define Ga : R → R by

Ga(x) =
∫ x

−∞
G(S)p(y)

(∫ y

−∞
2a(v)f (v)dv

)
dy,

where p(y) = exp(−2
∫ y

0 σ(v)−2S(v)dv) if the mapping

y �→ p(y)

(∫ y

−∞
a(v)f (v)dv

)

is in L1((−∞,0],dy). We write 〈a,f 〉 = ∫
R a(x)f (x)dx and

[a] = −σ∇Ga−〈a,f 〉.

Define the set of functions

C =
{
a ∈ C↑(R)|

∫ ∞

−∞
a(x)f (x)dx = 0;

p(·)
∫ ·

−∞
a(x)f (x)dx ∈ L1((−∞,0]); [a],Ga ∈ C↑(R)

}
.

Theorem 4. Let k ∈ N and let M,γ,K > 0. Suppose that F : R → R is not constant. Then
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(1) There exist constants δ > 0 and c > 0 such that for h ∈ E(M,γ ),

∣∣E[
h
(√

T (ϑ∗
T − ϑ)

)] − �T,k[h]∣∣ ≤ cω(h,T −K) + ε
(k)
T ,

where ε
(k)
T = o(T −(k+δ)/2). Here E(M,γ ) = {h : R → R, measurable, |h(x)| ≤ M(1 +

|x|)γ (x ∈ R)}.
(2) The signed measure d�T,1 has a density d�T,1(z)/dz = pT,1(z) with

pT,1(z) = φ
(
z;0, κ

(2)
T

)(
1 + 1

6κ
(3)
T h3

(
z;κ(2)

T

))
,

where κ
(r)
T is the r th cumulant of

√
T (ϑ∗

T −ϑ). Moreover, if q and [q]2 −〈[q]2, f 〉 belong
to C, then

pT,1(z) = p∗
T ,1(z) + RT (z),

where

p∗
T ,1(z) = φ(z;0, I−1∗ )

(
1 + 1

2
√

T
E

[[[q]2][q](ξ)
]
h3(z; I−1∗ )

)

and

lim
T →∞

√
T sup

z∈R
{|RT (z)| exp(bz2)} = 0

for some positive constant b. In particular,∣∣∣∣E[
h
(√

T (ϑ∗
T − ϑ)

)] −
∫

R
h(z)p∗

T ,1(z)dz

∣∣∣∣ ≤ cω(h,T −K) + ε̃T

for any h ∈ E(M,γ ), with ε̃T = o(1/
√

T ).

Proof. We consider the stochastic flow X̄(t, x) = (X(t, x),Z(t, x)) that satisfies the stochastic
differential equation

dX̄(t, x) = V̄0(X̄(t, x))dt + V̄ (X̄(t, x)) ◦ dWt, X̄(0, x) = (x,0),

where V̄0(x, z) = (S(x) − 2−1σ ′(x)σ (x), q(x)) and V̄ (x, z) = (σ (x),0). By assumption, F is
not constant; hence, there exists a point x0 ∈ R such that F ′(x) �= 0 in a neighborhood U of x0.
Easy calculus shows that

Span{V̄ (x0,0), [V̄ , V̄0](x0,0)} = R2.

In the same argument used to prove Theorem 4 of Kusuoka and Yoshida [2] or that in Example
2 of the same paper, Condition [A3′] of it can be verified. Indeed, take the sequence u(j) = j ,
v(j) = j + 1, j ∈ R, and let ψj = ϕ(Xj ) for some truncation function ϕ ∈ C∞(R; [0,1]) with
compact support in U taking value 1 near x0. For each j ∈ N, the Malliavin operator Lj is
constructed in the usual way so that Lj does not shift the path w outside of [j, j + 1]. Then it is
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known that for sufficiently small U , {(detσX̄(1,x))
−1;x ∈ U} is bounded in Lp(P ) for any p > 1.

Therefore, Condition [A3′] of Kusuoka and Yoshida [2] can be verified. Thus, the first assertion
has been obtained.

For the formula of pT,k with the validity, see Sakamoto and Yoshida [8,9]. To obtain the last
result, some calculations are involved. Given that q ∈ C,

1√
T

∫ T

0
q(Xt )dt = Gq(XT ) − Gq(X0)√

T
+ 1√

T

∫ T

0
[q](Xt )dWt (24)

and E[|Gq(ξ)|p] < ∞ for any p > 1. Let 0 < β < 1/2. The strong mixing property A1 induces
the so-called covariance inequality, which yields

E
[
Gq(XT ) · 1√

T

∫ T −T β

T β

[q](Xt )dWt

]

≤ 8α
(
B[0,T −T β ],B[T ,∞)

)1/r

∥∥∥∥ 1√
T

∫ T −T β

T β

[q](Xt )dWt

∥∥∥∥
p

‖Gq(XT )‖q

≤ a−1 exp

(
−aT β

r

)
,

where α is the coefficient of the strong mixing, a is some positive constant and 1/p + 1/q +
1/r = 1. A similar estimate holds even if Gq(XT ) above is replaced with Gq(X0). Accordingly,
we obtain

κ
(2)
T = 1

T

∫ T

0
E[[q]2(Xt )]dt + 2√

T
E

[(
Gq(XT ) − Gq(X0)

) · 1√
T

∫ T

0
[q](Xt )dWt

]

+ 1

T
E

[(
Gq(XT ) − Gq(X0)

)2]
= E[[q]2(ξ)] + o

(
1√
T

)
. (25)

Next, we consider the third cumulant κ
(3)
T . Put k = [q] and denote simply kt = k(Xt ). By

assumption, k ∈ C↑(R), and so we see by Itô’s lemma that

E
[(

1√
T

∫ T

0
kt dWt

)3]

= 3T −3/2E
[∫ T

0

(∫ t

0
ks dWs

)
k2
t dt

]

= 3T −3/2E
[∫ T

0

(∫ t

0
ks dWs

)
(k2

t − 〈k2, f 〉)dt

]

= 3T −1/2E
[

1√
T

∫ T

0
ks dWs · 1√

T

∫ T

0
(k2

t − 〈k2, f 〉)dt

]
.
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Because k2 − 〈k2, f 〉 ∈ C, the right-hand side equals

3√
T

E
[

1√
T

∫ T

0
ks dWs

{
Gk2−〈k2,f 〉(XT ) − Gk2−〈k2,f 〉(X0)√

T
+ 1√

T

∫ T

0
[[q]2](Xt )dWt

}]

= 3√
T

E
[[q]2[q](ξ)

] + o

(
1√
T

)
. (26)

In view of (24) and by a similar argument after it, it is possible to see that the cross terms [e.g.,
those between Gq(XT )−Gq(X0) and (T −1/2

∫ T

0 [q]dWt)
2] have asymptotically no contribution

to κ
(3)
T . It follows from (25) and (26) that

sup
z∈R

ebz2 |pT,1(z) − p∗
T ,1(z)| = o

(
1√
T

)

for some positive constant b. This completes the proof. �
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