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An approximation is derived for tests of one-dimensional hypotheses in a general regular parametric
model, possibly with nuisance parameters. The test statistic is most conveniently represented as a
modified log-likelihood ratio statistic, just as the R*-statistic from Barndorff-Nielsen (1986). In fact,
the statistic is identical to a version of R*, except that a certain approximation is used for the sample
space derivatives required for the calculation of R*. With this approximation the relative error for
large-deviation tail probabilities still tends uniformly to zero for curved exponential models. The rate
may, however, be O(n~") rather than O(n~") as for R*. For general regular models asymptotic
properties are less clear but still good compared to other general methods. The expression for the
statistic is quite explicit, involving only likelihood quantities of a complexity comparable to an
information matrix. A numerical example confirms the highly accurate tail probabilities. A sketch of
the proof is given. This includes large parts which, despite technical differences, may be considered an
overview of Barndorff-Nielsen’s derivation of the formulae for p* and R*.
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1. Introduction

The purpose of the present paper is to derive an explicit general approximation for testing a
one-dimensional, possibly composite, hypothesis in a well-behaved parametric model. By a
one-dimensional hypothesis is meant a hypothesis that a single coordinate of the parameter
vector assumes a particular value.

The entire approach and the result is highly related to and based on the line of theory
developed by Barndorff-Nielsen through the p* and the R* formulae (see, in particular,
Barndorff-Nielsen 1980; 1986; 1991). Thus, the paper deals with likelihood inference, and
what is described may be seen as an attempt to improve some of the classical, normal-based,
asymptotic results, especially the chi-squared approximation to minus twice the log-
likelihood ratio statistic. In the case of a one-dimensional hypothesis the signed square
root of this statistic has a standard normal distribution under the hypothesis, and the
simplest way of presenting the present result is as a modification of this statistic, quite
analogously to R*. This statistic, here denoted R, is given in formula (2) in combination
with formula (1) in Section 3.

The standard normal approximation to the tail probabilities of the distribution of R s of
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the large-deviation type for curved exponential models, i.e., the relative error of the tail
probability tends to zero uniformly in a region of large deviations. The rate at which this
relative error tends to zero is at least as good as O(rz_” %) under repeated sampling. For
comparison, the relative error for R* is O(n™).

The calculation of R involves only likelihood quantities of a computational complexity
comparable to that of the Fisher information matrix. These quantities are well defined for
any well-behaved parametric model, and the result is therefore not confined to curved
exponential families. However, the proof is presented for curved exponential families, and
for more general models some asymptotic results then follow by approximation to curved
exponential families (see Section 4).

The reason why the R formula cannot be applied to the problem addressed here is that
this statistic involves some sample space derivatives (see Barndorfi-Nielsen 1991, Sections 2
and 3). These are derivatives of likelihood quantities with respect to the maximum
likelihood estimate, through the minimal sufficient statistic. When the maximum likelihood
estimate is not sufficient an ancillary statistic must be specified for the calculation of such
sample space derivatives. The non-uniqueness of ancillaries that may be used for this
purpose and the difficulties involved in their specification make it difficult to calculate R* in
general.

Barndorff-Nielsen and Chamberlin (1991; 1994) solve the problem by approximating R*,
but at the price of losing the general large-deviation properties of the approximation. The
same is true for DiCiccio and Martin (1993), although their method of approximation is
quite different.

Jensen (1992) constructs a statistic similar to R* for curved exponential families by
specifying the ancillary statistic as a series of one-dimensional signed log-likelihood ratios
from the full exponential model down to the curved model. By means of this construction
he can prove remarkably good large-deviation properties of the approximation, but the
result may be hard to compute and may depend on the series of one-dimensional
hypotheses chosen.

The main idea behind the present approach is that an explicit general approximation can
be made to the sample space derivatives required. This approximation is sufficiently good to
keep large-deviation properties and sufficiently simple to make it possible to denive explicit
results.

In fact, in the case of no nuisance parameters, the approximate sample space derivatives
used here are identical to the sample space derivatives in Fraser and Reid (1988), who define
the ancillary statistic in terms of the sample space derivatives of the log-likelihood. The
present use of these derivatives is different though, namely as approximations to sample
space derivatives arising from ancillaries that are directed versions of the log-likelihood
ratio for testing the model against the full exponential family.

After the introduction of notation in Section 2, the main result is given in Section 3. Its
properties, especially in terms of asymptotic errors, are described in Section 4. This part of
the paper, possibly together with the numerical example in Section 3, should suffice for
readers who are not interested in the methods and proofs used. The proof is outlined for
curved exponential families, for which notation and basic concepts are introduced in
Section 6. A conceptual and mathematical description of anciilaries and sample space
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derivatives is given in Section 7, while the crucial approximation to the sample space
derivatives is discussed in Section § With this approximation substituted into the
expression for R* in Barndorff-Nielsen (1991) the result might be derived, but this would
not reveal the accuracy of the result. Partly for this reason, an entire outline of the proof
from the beginning is given in Section 9. Another reason for this is that some results in this
section may be of independent interest, in particular a numnber of intermediate results that
hold for any ancillary statistic, regardless of its distributional properties. Finally, the
discussion in Section 10 mainly points out some further problems.

2. Set-up and notation

Let { f(;8); 8 € B C R”} be a family of densities of the random variable Y, indexed by
the p-dimensional parameter [, possibly restricted to some subset B. The domain of ¥
and the underlying measure are of no importance in the present connection, except that
the asymptotic results require absolute continuity of the distribution of the canonical
sufficient statistic with respect to Lebesgue measure.

The problem is tc derive a test for a one-dimensional hypothesis. More specifically, let

6 = (ral: e sﬁp-—lsﬁp} = (a:"fl},
where a = (3,,...,8,-1) and ¢ = §3,; we wish to test the hypothesis
Hy : ¢ =y

Let B(y) =8 = (4, D) denote the maximum likelihood estimate of the full parameter
vector, and let 3(y) = 8 = (&, ) denote the maximum likelihood estimate under the
hypothesis.

The log-likelihood function is denoted
£(8) = £(8;y) = log f(y; 8),

where the first version is used when y or the value of some sufficient statistic is understood.
The kth derivative of the log-likelihood function is denoted D, i.e.,

k
=a_|6k

which is a k-sided array with p* entries. In particular, D is the score function.
The cumulants of the log-likelihood derivatives are denoted by y's, with indices
corresponding to the derivatives in question. Thus, for example,

Xi(B) = Es{Dr(B: Y )}, xam(B) = covg{Di(B: ¥), D, (53; ¥ )},

denote means and variances. For the more common information quantities we use the
special notation

Dy (B) = D (6 ) £ y),

HB) =x1(B) = ~x2(B),  j(B:y) = —Ds(B: y).

In particular, i(5) is the (expected) Fisher information.
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We use abbreviations such as €= £(8), {=i(8), f=j(8;y), and j=j(B y), and
frequently omit the argument y. Note that j is the observed Fisher information.

Finally, we need two less familiar quantities, § and S, defined below. These are based on
covariances of likelihood differences and derivatives. More specifically, let

x10(81, 823 B) = covg{D1(B; YL E(B; Y) — €(By; Y)Y,

and

x1{Br, Ba; B) = covg{Dy(B1; Y ), Dh{(By; Y'}},
and define

éleﬂ(81ﬁ~;£)7 §:Xl](315; ﬁ)
Note that § is a p-vector, while 7, f and § are p x p matrices.
The determinant of a matrix, M say, is denoted | M|, and its transpose is denoted M.

3. The approximate test

Standard asymptotic theory would suggest an asymptotic chi-squared test based on twice
the log-likelihood ratio

R* =2{¢(8) - ¢(B)}.
Alternatively, one-sided tests may be calculated from the standard normal distribution of
the directed log-likelihood ratio test statistic R, equipped with the sign of 1 — vy
Far better asymptotic performance is obtained by use of the modified signed log-
likelihood ratic introduced by Barndorff-Nielsen (1986; 1991) and given by

1
R*=R--§log(R/U),

where 7 is a quantity which unfortunately is difficult to calculate since it requires
specification of an ancillary statistic — or at least a local specification of the change of
the log-likelihood difference with a change of the estimate. When the estimate is not
sufficient this ‘sample space derivative’ is only defined in the conditional distribution given a
supplementary statistic which together with the estimate is sufficient. When this supple-
mentary statistic is chosen in a certain way the standard normal approximation to R*
becomes accurate to third order, i.e., with an error of order O(»~*/?) in repeated sampling
of n observations in a well-behaved model (see Barndorff-Nielsen 1986; 1991).

The point of the present paper is to provide an approximation, U, to U, which is easily
calculated and sufficiently accurate to maintajn the high-quality asymptotic behaviour,
although one order of magnitude may be lost compared to R”. This approximation is

U =[Sl 71 Faol 721171 ST, (1)

where [---], denotes the pth coordinate of the vector, and Jao denotes the upper left
(p — 1) x (p — 1) submatrix of j. Notice that j_, is simply the observed Fisher information
for the parameter a under the hypothesis.
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Insertion in the expression for R™ now defines the statistic
. i 3
R=R-Zlog(R/U) ©)

and the claim is, as for R*, that a standard normal distribution provides an accurate
appreximation te its distribution under the hypothesis. This statement will be made more
precise in the following section.

It may be noted that in terms of asymptotic approximation an entirely equivalent result
may be obtained by use of a different type of Laplace approximation to a tail integral, using
a method from Bleistein (1966), also known from Lugannani and Rice (1980). This gives the
right tail probability as

1-¢(R)+9%51(R/6r—1), (3)
instead of
1 — ®(R).

The asymptotic equivalence of the two expressions is proved in Jensen (1992, Lemma 2.1).
Numerical examples seem to indicate, however, that the R* version is preferable (see, for
example, Pierce and Peters 1992).

The quantities § and $ are usually of the same computational complexity as /, since they
are also covariances of ordinary likelihood quantities. Alternative expressions for § and §
are in terms of derivatives of the Kullback-Leibler distance

KL(B, 81} = Eg{log f(¥;8) — log f(¥3 81)},

from which we obtain

a8
x10(5: 61: 8) = 35 KL(3; 8))
and
g &
x11 (8,61 8) = Y aﬂKL(ﬁ;ﬁ])-

The first of these derivatives also appears in Sweeting (1995, Section 5).

4. Properties of the approximation

Since the expression for R only involves likelihood quantities it is well defined for all
sufficiently regular parametric models and does not require an embedding in an exponential
family. Furthermore, it is triviaily invariant under sufficient transformations of the data.
The expression is also invariant under relevant smooth one-to-one transformations of
the parameter, i.e., under transformations of the parameter of interest, 1%, and under
transformations of 3 preserving . There is no loss of generality in the formulation of the
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hypothesis as a hypothesis concerning a single coordinate since we can always make the
one-dimensional parameter of interest a coordinate.

Concerning the asymptotic properties, we confine curselves to the case of n independent
replications, although the approximation may well also be reasonable in other cases. The
results are stated in terms of right tail probabilities, but hold analogously for the left tail.
The asymptotic results are only valid for absoluiely continuous distributions.

Assume first that the model is a ‘curved exponential family’, i.e., a smooth submodel of
an exponential family. Let 7 denote the mean of the canonical sufficient statistic and let
W = W({) denote n™" times minus twice the log-likelihood ratio test statistic for testing the
model against the full exponential family. Scaling by the divisor » ensures that W depends
only on £, not on a. The conditional result below holds given any ancillary statistic of the
form 4 = A(f) which is such that W is a function of 4, combined with the requirement that
(8, A) is sufficient. Thus A is any ‘directed log-likelthood ratio’ as opposed to the ancillaries
used for R* which are direcied modified log-likelihood ratios. Any statistic A of the kind
used in the present paper will generally be a first-order ancillary statistic in the sense that its
standardized distribution is free of 3 under the model apart from a term of order n™'/2.

Now the resuit for the conditional tail probability, given any of the ancillary statistics of
the type mentioned above, is that, under the hypothesis,

1 - 8(F) = prg{ R 2 7|41+ O(n™") + O(|9 — woll [ 411)}

as n — oo uniformly over (i, A) in some fixed neighbourhood of (3, 0), where A=01s
chosen to correspond to W = 0. Since (1, 4) converges to its mean at rate n~ 2 thisis a
large -deviation region. Nonce however, that both of the normal deviations of 4 and

— 4y are of order n 172 but either ot both of them may becorme of order O(1) in a large-
dev1at10n region. Thus the result states that the error is of order ™! in a normal-deviation
region, whereas the relative error is of order n~'/? in a large-deviation region of either the
ancillary or the estimate, but not both.

Unconditionally this implies that the relative error is O(n~ 1/2) uniformly in a fixed set of
values of 1, i.e., in a large-deviation region. For comparison the relative error for R* is
O(n™"). For the numerical quality of the approximation it is presumably more important,
however, that the large-deviation property is kept, since this results in a far better tail
behaviour of the approximation than the central type of expansions that form the basis of
standard asymptotic theory.

For models that are not submodels of exponential models it is more difficult to derive
conditional resuits since it is hard to come up with useful ancillary statistics in a general
form. However, for analytic models (see Skovgaard 1990), it follows that unconditionally
we have

1 - ®(F) = pra{R > FH{1 + O + 0~ 12| — yyl| + n~¥prg{R > 7} )}

for any ¢ > 0 and K >0, uniformly in a fixed set of v around 1. With ¢ =0 the
uniform relative error would have been kept, so the result is that this is almost the case.
Since any analytic model can be approximated locally to any order by a curved
exponential family, this result follows almost immediately from this general approxi-
mation theory in Skovgaard (1990, Section 2.7), but the proof will not be given here. That
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the normal deviation error is of order O(n~'} is a trivial consequence, because then
19~ woll = O(~"72). )

As a final property it is worth noting that R agrees exactly with R* when no ancillary
variable is necessary, which essentially is when the model is a full exponential family.
However, the hypothesis may be curved, so for the Behrens—Fisher example given in Jensen
(1992) the two statistics are identical.

5. An example

As a numerical example we consider a one-way analysis of variance with random effects.
Thus, let i =1,...,m enumerate the groups and j=1,...,n; the observations within
groups, and iet X}; be normally distributed with mean x and variance w?. Observations
from different groups are assumed to be independent, while the within-group correlation is
p. We allow for negative correlations such that the lower bound for p becomes

P> —(Myax — l)_la

where ny,,. 15 the largest group size. Notice that the variance of the largest group mean tends
to zero as p approaches its lower bound.
Usually this random effects model is written in the form

Xij=p+Bi+ e (4)

where the B;’s and the ¢;;s are all independent with standard deviations o and o, respectively.
This formulation covers only cases with non-negative within-group correlations, however.

We wish to test the hypothesis . = 0 and consider three test statistics. First, R denotes the
unmodified directed square root of the log-likelihood ratio statistic. Second, the modified
statistic R from (2) is considered. Third, we compute an approximate F-test statistic based
on the approximation suggested by Satterthwaite (1946). This test is based on the ratio of
the between-group mean square to its estimated expectation which is a linear combination
of the same mean square and the residual mean square. The distribution of the ratio is then
approximated by an F-distribution for which the number of degrees of freedom for the
denominator is chosen to make the variance of the denominator correct. This third statistic,
denoted ‘Satterthwaite’ in Table 1, may not be as attractive as the likelihood ratio based
statistics for variance components in general, but it has the advantage of admitting
Satterthwaite’s approximation to the null distribution — an approximation known to be
quite accurate,

The computation of R is straightforward and uninteresting, so it will not be shown here.
It involves nothing beyond matrix inversions of the size of the information matrix, i.e. 3 x 3
matrices, and calculation of cumulants of order 4 or less in a normal distribution.

The distributions are, like the entire model, symmetric about zero, so only two-sided tail
probabilities will be considered. The approximate F-statistic is two-sided by construction
although it might easily be reformulated as a one-sided r-test.

Only one set of simulations will be shown. Others have been done which indicate the
same accuracy of the approximations. The example has § groups of sizes 1, 2, 3, 4, and 5,
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Table 1. Numbers of exceedances of nominal two-sided significance levels in 100000 simula-
tions of the one-way analysis of variance with random effects; the nominal significance levels
are given indirectly as the ‘expected’ numbers of exceedances

Expected 0000 20000 10000 20600 200 20 2

R 56635 27771 16399 4780 217 146 27
R 50061 20229 13128 2101 224 24 3
Satterthwaite 50470 19948 9875 1904 181 13 1

respectively, and 100000 samples were generated from the model (4) with 4 =0, ¢ = 1.0,
and op = 0.04. The pseudo-random number generator RAN2 from Press et al. (1986,
Chapter 7) was used. The numbers of exceedances of nominal two-sided tail probabilities
are seen in Table I, together with the nominal expected numbers according to the respective
approximate distribution,

The usual asymptotic approximation to the uncorrected log-likelihood ratio statistic, R,
rejects the hypothesis far 100 ofien in the tails. For the assessment of R this shows that
although the example is a fairly ‘nice’ one, standard likelihood asymptotic approximations
are not automatically of high quality. In contrast, the adjusted log-likelihood ratio test, R,
behaves well, even in the extreme tail. This type of behaviour is typical of approximations
with large-deviation properties as opposed to central approximations such as for R.

The approximation based on Satterthwaite’s method is of the same quality as R. This
method is known to give quite accurate approximations, but is limited to the approximate
F-tests, which may not be the most desirable tests in variance component models in general.
One reason is that there are many ways of constructing such tests for more complicated
models.

There was one case, not counted in the table, for which the two likelihood methods broke
down because the numerical algorithm searching for the solution to the likelihood equation
did not converge. In all other cases such a solution was found. However, stricily speaking,
the likelihood methods were inapplicable in all cases, because the likelihood function tends
to infinity when g is held equal to the mean of the largest group while the within-group
correlation tends to its lower bound. This is just one reason why the method of maximum
likelihood should not be used for variance compeonent models; the more structured
approach of restricted maximum likelihood should be used instead. It is an important
challenge to extend the type of methods described in the present paper to such structured
inference.

6. Curved exponential families

Consider an exponential family with densities

S(y:8) =exp{{8,1) — x(8)}

with respect to some underlying measure, where the parameter vector ¢ and the canonical
sufficient statistic ¢ = ¢(y) both belong to R¥, and {-, -} denotes the inner product in R*.
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We use the special notation
T(6) = Ep{t},  T(F) = vars{t}
for the first two derivatives of the cumulant generating function «. The representation is
assumed to be minimal, such that %(8) has full rank.
A curved exponential model is given by

6 = 6(8)

where 3 € R?. The derivatives of the mapping 6 at 4 are denoted D@(33), D*8(5), and so on,
and D8 is assumed to have rank p.

Assume that n independent observations are obtained from a distribution within this
model. The mean, {, of the » observations of ¢ is sufficient, and we may then write 7 in place
of y in all relevant statistics. The score statistic is

D,(8;1) = n(D#(G). - 7(8(B)))

where the inner product is taken over R*, such that D, becomes a p-vector. Similarly,
further differentiation yields

D(B:7) = n{{D*6(8),7— 7(8(8))} + x:{8(8)) }- (5)

The important thing to notice is that all these log-likelihood derivatives deviate from their
means by linear functions of the canonical sufficient statistic, £.
The maximum likelihood estimate, 3, solves the likelihood equation

(DBT—7y=0

with obvious abbreviations.
Some of the quantities entering the expression for U from (1) are

§=n(D)"5(6-9),
where § = §(5) is the estimate under the hypothesis, and
S = n(D§)"S(DE).

Notice that the computation of these quantities is of the same complexity as the computa-
tion of the information »(D8)"£(DF) and essentially requires only the covariance matrix of
¢ and the first derivative of the mapping 4.

To make it easier to see the power of the » appearing in the various expressions, we use £
to denote the function of 7 that is ‘free of #’, i.e.,

UB,T) = (8(8),7) — x(8(8)) = n™8(B; T).
For the same reason we define the information quantities
Q@ =nl1(B),  HBT) =n"(BT),

which depend on 2 and 7 only, not on ».

Note that all likelihood derivatives, D, and their cumulants are proportional to n, when
viewed as functions of 4 and 7.
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There is no loss of generality in considering » independent replications since all
expressions are equally valid for the special case with #» = 1, and hence i; = ¢, and so on.
Asymptotic results are, however, only proved for » independent replications.

7. Ancillaries and sample space derivatives

We continue to consider a curved exponential family, but shall from time to time, when
explicitly stated, revert to more general models.
Notice first that the likelihood equation may be rewritten as the orthogonality

T—4 LaaB(D) (6)

of the two vectors in the 7-space with respect to the variable inner product >~'. Thus the
observations of 7 that lead to the same estimate 3 are located ina (k — p)-dimensional linear
subspace, and the observation deviates from the estimated mean value by the vector f — 7 in
this subspace. The orthogonality, (6), of this subspace to the tangent space, spanned by
$£(D8), is the reason why it is convenient to work with the variable inner product, as will be
seen in Section 9.

In the development below, which goes through the 7 formula, it is necessary to be able to
write the sufficient statistic as a function of {3, 4), where 4 is some supplementary statistic
of dimension k — p. In the present paper we require that 4 = 4(7) is 2 smooth function of 7,
and that 7 and {3, 4) are in one-to-one correspondence. We shall refer to any such statistic
as a supplementary statistic and reserve the word ‘ancillary’ for a statistic for which further
properties are at least desired.

For fixed 4, the sufficient statistic 7 = 7{ 3, a) moves along a p-dimensional level surface
of A which may be thought of as ‘parallel’ to the model space {7 = 7(6(8))} parametrized
by 3.

The fact that 7 is a function of 5 and 4 means that derivatives of 7, and consequently of
likelihood quantities, may be defined with respect to 3 for fixed 4. From now on we reserve
a prime to denote such a derivaiive, i.e.,

! a? ¢ ¢ = 0 T A

t=— =081 =—= 85315, A).

25 (B;1) PY: (B (B, 4))

These derivatives are usually referred to as sample space derivatives. Notice that, for
example, D! = D}(f) means D,(8,1(8, 4)) differentiated with respect to 3 before § is
substituted for 3. Furthermore, we use the convention that a sample space derivative
corresponds to the ‘last index’ of an array, for example to the columns of the p x p matrix
Dj. From (5) it is seen that for curved exponential families we have

Di(8) = n(D*8(8).7"). ()

As ancillary statistic, 4 = A(f), for curved exponential families we shall consider statistics
with the first or both of the following two properties:

(A1) The model subspace {f = #} is a level surface of A. In this case we let 4 =0
represent this subspace.
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(A2) The log-likelihood ratio test statistic of the model against the full exponential
family is a function of A, i.e., 4 s a directed log-likelihood ratio.

The asympiotic result of the paper, as stated in Section 4, requires an ancillary statistic with
both of the properties.

Let ¢ denote the maximum likelihood estimate of 4 in the full exponential family, i.e.,
# = 7~(7). Then minus twice the log-likelihood ratio test statistic for the model against the
full exponential family is

W = 2n(Z(#) — £(§)).

Since the model subspace corresponds to the set { W = 0}, which is of the same dimension
as any level subspace for 4, Property (A2) implies Property (Al).

8. Approximation of sample space derivatives

The most important point of the present paper is to show that the sample space
derivatives needed for calculation of the tail probability corresponding to the R* formula
from Barndorff-Nielsen (1986; 1991) may be approximated sufficiently well to obtain a
large-deviation approximation.

To do this we first need to define a tangent space projection related to the orthogonality
in (6). Thus, let # denote the orthogonal projection

B = 5D (DT (8)
on £{Df) with respect to the variable metric, or inner product, £ This is the projection
on the subspace for 7 tangent to the model space at +.

The approximation of the sample space derivative used in the present paper is now
simply given by

'~ PT), (9)
the point being that this has the unique explicit expression
B(i') = £(DO)iT(DOTT = S(DEYi ' D) = S0V, (10)

since (D@)T7' = (D6, i’y = n~' D|. This result holds for any supplementary statistic.
For general, non-exponential, models the projection may be defined as a regression of the
log-tikelihood derivatives on the score statistic, i.e.,

P(Dy) = xx + Xurxii D1, (11)
which is then used at 3. This gives
P(D) = xu XD = %uai Y, (12)

because of the well-known relation
Di=j
which is immediately obtained by differentiation of the equation D;(4: y(8, A)) = 0 with
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respect to 3. This relation may be found, for example, in Barndorfi-Nielsen and Cox (1994,
Section 5.2).

It may easily be checked that the general definition of the projection agrees with that for
curved exponential families. At the same time, it gives a more statistical interpretation of
the projection.

Our first, quite simple, result concerning approximation {9) is the following.

Lemma 1. For any supplementary statistic, A, satisfying cona'itf'on (A1), approximation (9) is
exact on the model subspace, which may be characterized by Dy, = %, for all k.

This result follows trivially from (10) because on the model subspace i, = j, and

T 5 A
{ ¢ >
Y 7(0(8)) = £(DF).

It turns out that the sample space derivatives needed are £ "8 ) — £'(8) and D{, where the
data point argument in all functions is 7 = 1{3, A). One of the main points in the present
paper is that these sample space derivatives can be calculated explicitly in general when
approximation (9) is used, and that this approximation is sufficiently accurate.

Lemma 2. If P(D;) is substituted for Dj, for all k, we obtain

g -Gy =41 (13)
and
D =8TY (14)

The relative error due to the substitution is O(|B — B||JAl) in both cases, for any
supplementary statistic with Property (Al).

Proof. To see this, consider first the log-likelihood sample space derivative in (13). Expand
the log-likelihood difference in an infinite Taylor series about 3 as

LB ~2(B)=Dy(B-B) +i5:B- B+,

where a suitable notation should be adopted to make this multivariate Taylor series
expansion formally correct. Now differentiate the series with respect to 3 to obtain

£'(8) - €8y =Di(B-B) +1D:(B - ) +
because the log-likelihood derivatives with respect to the parameters vanish at the
maximum values considered. Substitution of P(D}) from equation (12) for D{ now leads
to an infinite sum which, except for the sign reversal, may be identified with the right-hand
side of expression (13). One way of doing this 18 to check that the expansions of the two
expressmns agree. Since D] = P(D}) is an exact relation, the error from the approximation
D} =~ P(Dy)in the mﬁmte sum is O(|| 8 — 81211 D; — B(D})|), which is known from Lemma
1 10 be O(n||8— B|I*|4)), because of the smoothness of Dy — P(Dk) which vanishes
when 4 = 0. Since the leading term, D{ (8 — 8) =j(8 ~ 8),is of order nj| 3 — §|), the result
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for the first sample space derivative follows. The resuit for D{ is obtained in a similar
way. a

9, Derivation of the result

In this section we sketch the proof of the result for n independent replications from a curved
exponential family for which the distribution of the canonical sufficient statistic is
absolutely continuous. The line of proof summarizes the development from Barndorfi-
Nielsen (1980; 1986; 1991), with some technical differences. The notation from the previcus
sections is used, in particular the r-free functions Z, i) and j, from the end of Section 6. The
development assumes that the ancillary, 4, has Properties (Al) and (A2) from Section 7,
but several intermediate results of some general interest hold for any supplementary
statistic, or assume only Property (Al). The assumptions will be explicitly stated in these
cases.

9.1. APPROXIMATE CONDITIONAL DENSITY OF 3

We use f; generically to denote the S-density of any of the statistics considered with
respect to Lebesgue measure on the space in question. We start by transforming the density,
fa(7), of Tto the density of (4, 4). It turns out to be convenient to use the variable metric £
to czlcutate the Jacobian of the transformation, which we may do if we multiply the density
of T by ||/, since the Riemannian measure corresponding to this metric has density
|5|-1/2 with respect to Lebesgue measure. Determinants with respect to the variable metric
are denoted |-|*.

The point is that we know that 87/84 belongs to the space which, in the variable metric,
is orthogonal to £(D#), since § is constant when only A is changed. )

Recall the definition of P from (8). The Jacobian of the transformation from 7 to (3, 4A)
may be written

"

of

6 —
3 oA

(s

where the determinants on the right are generalized determinants, ie.,

I- " Tialkd
,A)‘ = [P(7)]

|M|* = |MTE" M2 (15)

for M = P(f') or M = 31/9A. Generalized determinants and related computations may be
found in Tjur (1974, Section 11).
From equations (10) and (15) we see that

[PED = 1AL A = | AlA'



Thus the density of (3, 4) becomes
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f5(8.4) = £ 0 A 17T

o1 or
()= @)
for any supplementary statistic 4.

We now wish to isolate factors that mainly depend on A. The precise meaning of this is as
follows.

(16)

Definition 1. A function h(8, A) is called an A-function if it is consiant on the model space
given by {f = 7}, or equivalently by {A = 0} if A satisfies Property (A1).

With ancillary statistics that are directed log-likelihood statistics, we can now show the
following result.

Lemma 3. For any supplementary statistic satisfying Property (A2},
[81/8A|" is an A-funcrion. (17)

Proof. First note that at A = 0 we have
51 = £TUR(T) = (DO)iY, = Dé,
according to Lemma 1 and the fact that i = j when 7= 7.

Since W = 2n(€(§) — £(6)) is assumed to be constant on level surfaces of 4 its derivative
with respect to 8 is zero, 1.,

(8-0,7")=0.
The second derivative of this equation with respect to A at 0 is the suitably symmetrized
version of
0t oOf Ot o~y OF
. | 1 1
<E 54’ 3A> A(E P S Ba De) (18)
where A(#) = (8/86)2(8) and we have used the notation ﬁx( -,»,-) to denote a matnx-like

multiplication of the three arguments on the three sides of the symmetric p*-dimensional
array A.

This equation turns out to be what is needed to show that the derivative of {37/84]" is
zero oh A4 = 0, To see this we simply calculate the denvative

8 [ (BTN oy (BTN (0T &/ 00 L 8T o, OF
(e = (o)) =2(50) 5 (5e) - A (5 o = 0 29).
which vanishes according te (18). This proves (17}. O

The final step in the rewriting of the density fﬁ(,@,A) from (16) uses the standard
saddlepoint approximation

fi() = a S@) 1+ o),
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where ¢, = {n/(27)}*/%, and the expansion holds uniformly for 7 in some bounded set.
Some simple manipulations then give

fa(B, 4) = e nb(@DN A EO-EN (1 4 07"y, (19)
and
b(7) = QSIS (4| o=,

where we notationally allow £ to be a function of § as well as of 3. Note that the two factors
in parentheses are A-functions, since § = § when [ = 7. Also |97/34|" has been shown to be
an A-function when Property (A2) holds, and the exponential depends on (3, A} only
through 4. Thus, b(f) is a function of 4 multiplied by an A-function. It is noteworthy that »
only appears in the factor which is exactly independent of 3 — a direct consequence of
Property (AZ2) of the supplementary statistic, A. )

The marginal density of 4 is obtained by a Laplace-type integration over 3 using the fact
that the exponent in (19) is maximal at 8 = #. This involves some quantities defined at the
point 7, = 7{/3, 4). For fixed 4, we have

62 T n = — ' - . -

55,3( (B) - €(8)) = (&, DO(B)) = "' D{(B; o) = j1(B: To)

at B = B. Thus, a Laplace approximation to the integral of the density in equation (19) over
3 gives

To(A) = cip nb(B) (1 + O(n™"))

uniformiy in 4 in some bounded neighbourhood of zero. An inspection of this result shows
that A4, satisfying Property (A2), is a first-order ancillary statistic in the sense of having a
limiting standardized distribution which is independent of 3.

Division of f3(83, 4) by f3{A) now gives the conditional density approximation

Fo(B14) = ¢, | Ji[2 EO-EED 1p(7) 167} (1 + O(n™))
= ¢, | 'R EO-EN (L Oy + 01 B - Bl 141D, (20)

where the omission of the factor b{f)/b(7%)) induces the relative error of order
O(|| 8 — 8|l || 4||) because the factor is 1 if either 3 = B or A4 = 0. This is why the 4-functions
are collected in the factor #(r). Notice that the factor omitted does not depend on n,
because the ancillary has been chosen such that the exponentials in (7 ) and b{f,) cancel
exactly,

Formula (20) is identical to the simpie version of the p* formula from Barndorff-Nielsen
(1980; 1983), using the general approximative constant ¢, , instead of renormalizing the
density. Also, several of the arguments used above, especially the omission of some factors
in b(1), may be recognized from the original proof in the 1980 paper.



160 LM, Skovgaard

9.2. TRANSFORMATIONS AND JACOBIANS

Having derived the density of § given 4, we next transform it in two steps to the conditional
density of (@, R). In Section 9.3 we get rid of &, essentially by means of marginalization.
Consider the equation for the maximum likelihood estimate under the hypothesis,

Dy(B) - Je, =0, (21)

where A eRisa Lagrangg multiplier, and e, is the vector (0,...,0, l)T‘ The value of A at
the maximum is denoted X.

The following lemma gives the Jacobian for the transformation from 3 to (&, X). It would
be more correct to include A as a third component in the transformation, but since it is kept
fixed throughout we omit it from the notation.

Lemma 4. For any supplementary statistic, A, the Jacobian of the transformation from B to
(@, A) is

66 =1 7
—| =D ool 22
la{&,)\) D1 ool (22)
and the partial derivatives are
33_ Sev=1p 7
“35—(90 {F)an (23)

where (j )., denotes the first p — 1 columns of j, and

aJBA /=1
% (D1)" e (24)
Proof. Differentiation of equation (21) with respect to & for fixed A gives

where S(a) is the mapping a — (e, ¥p). This gives equation (23) since postmultiplication by

the matrix D3(&) has the effect of picking out the first p — 1 columns of the previous matrix.
Differentiation of equation {21) with respect to A for fixed & gives

<, (86
DF —= | — &= ¢
from which equation (24) follows. The determinant is now easily computed. O

Up to this point ail the approximations and derivations can be made for multivariate
hypotheses with only trivial modifications. The statistic R is, however, one-dimensional by
construction and the analogue of the following transformation for multivariate hypotheses
is not obvious.
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We wish to transform (&, ) to (&, R). Since & is unchanged we only need to work out
B8A/8R.

Lemma 5. For any supplementary statistic, A, the relevant partial derivative of the
transformation from (&, X) to (&, R) is

O = R - BB, -

where | -], denotes the last coordinate of the vector. At 3 = J3 the limiting value replaces the
expression.

Proof. The equation defining R, apart from the sign, is
IR = £(5) - €(B),
which may be differentiated with respect to R for fixed & to give

. N AN
R={(p) ¢ —|l=]-
@@ - @) (a ,\) (a R)
Substitution of the partial derivative from (24) now immediately gives the result. O

A combination of the results above shows that for any supplementary statistic, 4, we
have the relation

N e 88 |lax
fala, Rj4) ~fﬁ(f3|f1)‘m 8_R1
= fa(BI DI | faal RLE(B) — € (BB, (26)

which is an exact transformation result on the domain where the transformation from
(8, A) 10 (&, R, A4) is one-to-one. This may be useful in, for example, transformation models
where the p* formula is known to apply, but the ancillary is different from here. For the
special type of ancillaries used here the expressions for the sample space derivatives from

Lemma 2 may be inserted to give a complete approximation to the conditional density of
(&, R).

9.3. ELIMINATION OF NUISANCE PARAMETERS

As a final step, we need to eliminate the nuisance parameter o and its estimate &. The two
obvious ways of doing this are to condition on & and to marginalize from (&, R) to R. Both
lead to the same result, to the order considered here, but they also both lead to the same
technical difficulty which has to do with the fact that the parameter a does not disappear
from the marginal or conditional density approximation for R.

Let us consider the marginalization and return to the modifications needed to resolve the
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difficulty mentioned above. Starting from the density (26) and the approximation (20) we
approximate the integral over & by a Laplace approximation. The exponent

n{8(8) — £(6)} = n{E(8) ~ £(B)} -}

considered as a function of & for fixed R, is maximal at 3 = 3, or equivalently at & = a.
Differentiation with respect to & yields

0 > _ ! Iy 66
a5 B —E(B)} = {£(8) - £ (.3)}(£),
and by use of equation (23) we see that minus the second derivative at the point & = a is
T rs OO o
(DB(@))" B (a—ﬁ) = (/{8 )aa:

where 7, denotes the data point given by & = &, R and 4. Also this result holds for any
supplementary statistic, A,

Using the approximation (20) and the notation R = R/y/n, which is a function of f only,
the Laplace integration of (26) now gives

S5(R|4) = \/; F g (RIA)(1+ Oy + 018 - BI IAI), (27)
where
2a(R|A) = | /121D11 7 ol PRI (B) = £/(B))(D)),
= 7172l PHSIT R/IS TG  + 01 8- Bl 14y, (28

and with the modification that everything should be evaluated at the data point 7,. This is
exactly the technical difficulty referred to above, for two reasons: first, the nuisance
parameier o enters the approximation; and second, the data point 7, is awkward since
its determination requires specification of the ancillary.

One method of overcoming this difficulty is used by Barndorfi-Nielsen (1991) and by
Jensen (1992). First, we simply substitute & for o in the approximation for the density. Then
we continue to derive R*, or R, from this approximation. Having derived the expressmn for
R, we then go back to the density of (&, R) and transform this to a density of (&, R) and
again integrate out & by Laplace’s method. The resulting distribution is then shown to agree
with a standard normal distribution to the order considered.

The problem with the substitution of & for « in the density approximation above is that
the right-hand side then depends on [ through & as well as through R and 4, which is
unfortunate since it is supposed 1o approximate the density of R given 4. Thus, the
approximation becomes random and difficult to formalize, which is why it is more
convenient to revert to the transformation to (&, R). We shall not go through these
computations which have nothing new to say, but instead continue the derivation formally
from the point where formula (27) has been proved with the data point  appearing instead
of f, in this formula as well as in expression (28).
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Note that gz(0|4) = | and that the n’s cancel in gz(R| A) so that » only appears in (27)
where it is explicitly written. For such density approximations, tail probabilities may be
approximated either by the Lugannani—Rice method, which gives

protR > Fld} ~ 1~ B(/57) + f ga(F14) — 1},

or by the R* method, giving

I -
pratR 2 Fla}x 1 - (Vi - L log a7 14))

with a relative error of order O(n~" + || 3 — 3| |4])) in both cases. As mentioned, the
unpleasant fact that & appears on the right in these expressions is avoided by a rigorous
reformulation as in Barndorff-Nielsen (1991} or Jensen (1992).

Formuia (2) for R, or the equivalent Lugannani~Rice type approximation (3), with
expression (1) for U, now follows by substitution of expression (28} for gs(R|A). The
relative error is as stated in Section 4, because || 4 — 3] = O(||% — o))

10. Discussion

The positive side of the result of the present paper is that an explicit expression has been
obtained which may be of sufficient accuracy for general use, and which may therefore serve
as a replacement for the usual normal-based approximations in a number of situations.
There are, however, several questions, limitations and open problems, some of which are
discussed below.

First of all, the present development and result deal exclusively with one-dimensional
hypotheses. Generalizations to multivariate hypotheses are definitely within reach,
although it is not obvious which is the best way to proceed. One way to obtain large-
deviation properties for multivariate hypotheses is to use a directional approach (see Fraser
and Massam 1985; Skovgaard 1988). This approach would be based on a conditioning on
the direction of the score statistic from the estimate under the hypothesis, thereby effectively
reducing the problem to one dimension. Other statistics than the score statistic might be
considered, however, but the convenient transformation to A in Section 9, which is
essentially the score statistic, makes this an obvious choice. In contrast, the maximum
likelihood estimate, ¢, of the parameter of interest would not lead to a parametrization-
invariant resuit.

The elimination of nuisance parameters is included here, but it is far from obvious
whether the approach is sufficiently effective to deal with a large number of nuisance
parameters. Presumably this will not always be the case. There are also some technical
problems in connection with the elimination of these parameters, as pointed out in Section
9, and it would be nice to have a more convincing technique for this. There do not seem to
be important differences between results obtained from marginalization and conditioning
on the estimates, but conditioning seems more appealing because it leads to a complete



164 ILM. Skovgaard

elimination when the nuisance parameters are canonical parameters in an exponential
family. A study such as Pierce and Peters (1992), investigating the effects of the various
correction factors, might throw some light on these problems.

As discussed in relation to the example in Section 5, the method of maximum likelihood
is not always reasonable, and, in fact, breaks down in the example. For variance component
models most statisticlans would prefer restricted maximum likelihood, which uses a
marginal likelihood to estimate the variance parameters. This method does not suggest a
reasonable general way of testing hypotheses about the means, however. For transforma-
tion models in general, partition of the likelihood function into marginal and conditional
parts seems intuitively correct, and an adaptation of modified likelihood methods to such
structured inferences would be of great practical value.

A more technical question has to do with the properties of the approximation based on
R. The asymptotic behaviour stated here has been proved, although the proof was not given
in all its details, but it has not been established whether the properties might be even
better. In Barndorff-Nielsen and Wood (1995) it is shown that the difference between the
R*-statistic obtained from conditioning on the modified and on the unmodified directed
log-likelihood is negligible to the order considered. This suggests that R is equally valid as
an approximation to the R” obtained from the modified ancillary, as from the unmodified
as used here. However, conditional statements based on the two anciliaries are not the
same. The consequences of this result in the present connection are not quite clear,
however.
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