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In this note we introduce the notion of Newton–Côtes functionals corrected by Lévy areas, which enables us
to consider integrals of the type

∫
f (y)dx, where f is a C2m function and x, y are real Hölderian functions

with index α > 1/(2m+ 1) for all m ∈ N
∗. We show that this concept extends the Newton–Côtes functional

introduced in Gradinaru et al., to a larger class of integrands. Then we give a theorem of existence and
uniqueness for differential equations driven by x, interpreted using the symmetric Russo–Vallois integral.
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1. Introduction

In stochastic modelling, differential equations driven by a fractional Brownian motion BH ,

Xt = x0 +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dBH

s , t ∈ [0,1], (1.1)

are popular generalizations of classical stochastic differential equations (SDEs) driven by Brown-
ian motion, relevant especially in finance; see, for example, Cheridito [2], Cutland, Kopp and
Willinger [7], Comte and Renault [4] and the references therein. Since fractional Brownian mo-
tion (fBm for short) BH is a semimartingale if and only if its Hurst index H equals 1/2 (i.e.,
when BH is the standard Brownian motion), for H �= 1/2 the meaning of

∫ t

0 σ(Xs)dBH
s in (1.1)

is not the usual one and has to be made precise. Let us give a brief sketch of the three theories
of integration with respect to fBm that are frequently used nowadays, referring to the survey by
Coutin [5] for a further account:

(a) Russo and Vallois [19] introduced a symmetric integral defined by

∫ t

0
Zs d◦BH

s = lim
ε→0

ε−1
∫ t

0

Zs+ε + Zs

2
(BH

s+ε − BH
s )ds, (1.2)

provided the (uniform in probability) limit exists. When the integrand Z is of the type Zs =
f (BH

s ), Cheridito and Nualart [3] and Gradinaru et al. [10] showed that
∫ t

0 f (BH
s )d◦BH

s exists
for all f : R → R regular enough if and only if H > 1/6. When Zs = h(BH

s ,Vs) with V a
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process of bounded variation and h : R2 → R a regular function, it is easily shown in using a
Taylor expansion that

∫ t

0 h(BH
s ,Vs)d◦BH

s exists if H > 1/3. When H ≤ 1/3, one can extend the
definition (1.2) and give a meaning to

∫ t

0
h(BH

s ,Vs)dBH
s (1.3)

with the help of the m-order Newton–Côtes functional introduced in Gradinaru et al. [10]; see
Definition 2.1 thereafter. Choosing m sufficiently large exhibits a stochastic functional that makes
sense of (1.1) for all H ∈ (0,1); see Nourdin [14]. However, one needs to suppose somewhat
arbitrarily that the solution to (1.1) is a priori of the type h(BH

s ,Vs).
(b) Another formalism relies on the Malliavin calculus for fBm in the sense of Nualart and Za-

kai (see Nualart [16]), and more specifically on Skorohod’s integration operator δH . Combining
this formalism with fractional calculus techniques and Young integrals, one can then study (1.1)
for H > 1/2 in any dimension. We refer to Nualart and Rasçanu [18] and the survey article by
Nualart [17] for further topics on this theory.

(c) Finally, one can define (1.1) with the help of the rough paths theory pioneered by
Lyons [11]. Roughly speaking, the goal of this theory is to give a meaning to quantities such
as

∫
γ

ω, where ω is a differential 1-form and γ is a curve that has only Hölder continuous reg-
ularity. To do so, it is then necessary to reinterpret (1.1) using a differential 1-form, through the
formulation

Xt = x0 +
∫

γ ([0,t])
ω (1.4)

with γt = (BH
t , t,Xt ) ∈ R

3 and ω = σ(x3)dx1 + b(x3)dx2. Recent results by Coutin and
Qian [6] and Feyel and De la Pradelle [9] showed that one can solve (1.4) when H > 1/4, in
any dimension. Rough paths theory has rich ramifications—see the monograph by Lyons and
Qian [12]—but requires a formalism that is sometimes heavy.

It is quite natural to ask whether and how these different theories may intertwine. In Alòs and
Nualart [1], the following link is established between (a) and (b): fixing a time horizon T and
H ≥ 1/2, if u is a stochastic process that is regular enough (in the sense of Malliavin calculus),
then its symmetric integral along BH exists and is given by

∫ T

0
ut d◦BH

t = δH (u) + H(2H − 1)

∫ T

0

∫ T

0
DH

s ut |t − s|2H−2 ds dt,

where DH
s stands stands for the Malliavin derivative and δH stands for the Skorohod integral. In

the case H = 1/2, one retrieves the classical formula connecting Itô and Stratonovich integrals.
The present note wishes to link (a) and (c). We propose a correction of the Newton–Côtes

integrator dNC,m by some Lévy areas, which are the central objects in rough paths theory. Our
new integrator dA,m gives a meaning to

∫ t

0
f (ys)dA,mxs
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for all m ∈ N
∗ when f : R → R is C2m and x, y are any fractal functions of index α > 1/(2m+1)

(Theorem 2.5). Note that, compared to the works mentioned in (a), our class of integrands is more
satisfactory because y does not depend on x. Compared to (b) and (c), we also reach a lower level
for H . However, our approach has the main drawback of being genuinely one dimensional.

In the second part of the paper we focus on the specific case α > 1/3. Considering dA,1,
which is our generalization of the symmetric Russo–Vallois integrator d◦, we prove existence
and uniqueness for (1.1) under some standard conditions on the coefficients (Theorem 3.2). The
proof relies on Banach’s fixed point theorem. Finally, we notice that, for yt = g(xt , �t ) with � of
bounded variation, one can choose a Lévy area A of order 0 such that the operators dA,1 and d◦
actually coincide (Proposition 3.5). We are not sure whether an identification with Newton–Côtes
functionals can be pursued for m ≥ 2, because of the crucial Chasles relationship in the definition
of Lévy areas.

This paper was mainly inspired by Feyel and De la Pradelle [9], more precisely by their first
draft. For example, our Lemma 2.7, which is key in establishing Theorem 2.5, can be viewed
as a continuous analogue to the sewing lemma, Lemma 2.1, therein. The possibility of reaching
any value of H after considering families of Lévy areas was also strongly suggested by Feyel
and De la Pradelle [9]. However, our framework is continuous and, in particular, our integrals are
true integrals for H > 1/3, which may look more natural. Above all, we feel that this formalism
is one of the simplest possible, and provides a handy framework for a more advanced analysis
of (1.1), examples of which can be found in Neuenkirch and Nourdin [13] and Nourdin and
Simon [15].

2. Newton–Côtes integrals corrected by Lévy areas

Without loss of generality we will consider functions defined on the interval [0,1]. We fix
once and for all m ∈ N

∗ and α ∈ (1/(2m + 1),1). Denote by Cα the set of fractal functions
z : [0,1] → R of index α, that is, for which there exists L > 0 such that for all s, t ∈ [0,1],

|zt − zs | ≤ L|t − s|α.

Define a family of interpolation measures {νm,m ≥ 1} by

ν1 = 1
2 (δ0 + δ1), if m = 1,

νm =
2m−2∑
j=0

(∫ 1

0

(∏
k �=j

2(m − 1)u − k

j − k

)
du

)
δj/(2m−2), if m ≥ 2,

where δ stands for the Dirac mass. The signed measure νm is the unique discrete measure carried
by the numbers j/(2m − 2) that coincides with Lebesgue measure when integrated on polyno-
mials of degree smaller than 2m − 1. In Gradinaru et al. [10], the Newton–Côtes functional was
defined as follows:
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Definition 2.1. Let x : [0,1] → R, z : [0,1] → R
2 and h : R2 → R be continuous functions. The

quantity defined by∫ t

0
h(zs)dNC,mxs

def= lim
ε→0

ε−1
∫ t

0
ds (xs+ε − xs)

∫ 1

0
h
(
(1 − α)zs + αzs+ε

)
νm(dα), (2.5)

provided the limit exists, is called the m-order Newton–Côtes functional Im(h, z, x) of h(z) with
respect to x.

Remarks 2.2. (a) When m = 1, the Newton–Côtes functional is an integral that coincides with
the symmetric integral

∫ t

0 h(zs)d◦xs given in definition (1.2).
(b) When m ≥ 2, the Newton–Côtes functional is not an integral, because if h(z) = h̃(z̃), the

identification ∫ T

0
h(zs)dNC,mxs =

∫ T

0
h̃(z̃s)dNC,mxs

does not hold in general. This explains why we chose the terminology functional instead
of integral.

Notice that there is no reason a priori that the functional Im(h, z, x) exists. Nourdin [14] es-
tablished existence when z is of the form u �→ f (xu, �u), where � : [0,1] → R has bounded
variations and f : R2 → R is regular enough.

To extend the class of integrands, we wish to define a new concept of functional. To do so, we
first introduce the notion of Lévy area. If x : [0,1] → R and y : [0,1] → R are smooth functions,
and if γ : [0,1] → R

2 denotes the curve γt = (xt , yt ), the domain Dst between the path γ ([s, t])
and the affine chord from γs to γt is well defined and we easily verify (see Figure 1) that

Ars + Ast + Atr = −area(Trst )

for all r, s, t ∈ [0,1], where Ast is the (algebraic) area of Dst and Trst is the oriented triangle

Figure 1. Algebraic relation satisfied by a Lévy area of order 0 associated with γ .
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with vertices γr , γs and γt . Therefore, the following definition is quite natural:

Definition 2.3. Let m ∈ N
∗, α ∈ (0,1) and x, y : [0,1] → R be two functions in Cα . We say that

A is an α-Lévy area of order 2m−2 associated with γ if for all s, t ∈ [0,1] the map P → Ast (P )

is a linear map from P2m−2 (the space of polynomials in y with degree ≤ 2m − 2) into R, if for
all r, s, t ∈ [0,1], k ∈ {0, . . . ,2m − 2},

Ars(Y
k) + Ast (Y

k) + Atr(Y
k) = −

∫ ∫
Trst

ηk dξ dη, (2.6)

and if there exists a constant C > 0 such that for all s, t ∈ [0,1], k ∈ {0, . . . ,2m−2}, ζ ∈ [ys, yt ],
|Ast [(Y − ζ )k]| ≤ C|t − s|2mα. (2.7)

Remarks 2.4. (a) From (2.7), we see that Ass(P ) = 0 for all s ∈ [0,1] and P ∈ P2m−2. From
(2.6) and because

∫∫
Tsst

ηk dξ dη = 0, we see that Ast (P ) = −Ats(P ) for all s, t ∈ [0,1] and
P ∈ P2m−2.

(b) When k = 0, we write A instead of A(1), and conditions (2.6)–(2.7) become

Ars + Ast + Atr = −area(Trst ), (2.8)

|Ast | ≤ c|t − s|2α. (2.9)

We can now give the main result and the central definition of this paper:

Theorem 2.5. Let m ∈ N
∗, x, y ∈ Cα with α > 1/(2m + 1) and A be an α-Lévy area of order

2m − 2 associated with γ = (x, y). For f : R → R a C2m function, define

I γ
ε (f ) = ε−1

∫ 1

0
du (xu+ε − xu)

∫ 1

0
f

(
(1 − α)yu + αyu+ε

)
νm(dα)

+ ε−1
2m−2∑
k=0

1

(k + 1)!
∫ 1

0
f (k+1)(yu)Au,u+ε[(y − yu)

k]du

for every ε > 0. Then the family {Iγ
ε (f ), ε > 0} converges when ε ↓ 0. Its limit is denoted by

I γ (f ) =
∫ 1

0
f (yu)dA,mxu

and is called the m-order Newton–Côtes functional corrected by A of f (y) with respect to x. In
addition, these functionals are compatible in the sense that if α > 1/(2m + 1) for all n > m and
any α-Lévy area A of order 2n − 2 associated with γ, then∫ 1

0
f (yu)dA,nxu =

∫ 1

0
f (yu)dA,n−1xu = · · · =

∫ 1

0
f (yu)dA,mxu.

The proof of Theorem 2.5 relies on the two following simple lemmas.
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Lemma 2.6. Let m ∈ N
∗, x, y ∈ Cα with α > 1/(2m + 1), A be an α-Lévy area of order 2m − 2

associated with γ = (x, y) and f : R → R be a C2m function. Set

In(ε) = 2nε−1
∫ ε[1/ε]

0
du (xu+ε2−n − xu)

∫ 1

0
f

(
(1 − α)yu + αyu+ε2−n

)
νm(dα)

+ 2nε−1
2m−2∑
k=0

1

(k + 1)!
∫ ε[1/ε]

0
f (k+1)(yu)Au,u+ε2−n [(y − yu)

k]du

for every ε > 0 and n ∈ N. The sequence of functions {In, n ∈ N} converges uniformly on each
compact of ]0,1], and the limit I∞ satisfies

I∞(ε) = I γ
ε (f ) + O

(
ε[(2m+1)α−1]∧α

)
. (2.10)

Proof. First, assume that m = 1. In this case, we have

In(ε) = 2nε−1
(∫ ε[1/ε]

0

f (yu) + f (yu+ε2−n)

2
(xu+ε2−n − xu)du+

∫ ε[1/ε]

0
f ′(yu)Au,u+ε2−n du

)
,

where for simplicity we have written Ast instead of Ast (1). Decomposing the integral into dyadic
intervals and making a change of variable, we first get

In(ε) = 2nε−1
[1/ε]2n−1∑

k=0

∫ ε(k+1)2−n

εk2−n

[
f (yu) + f (yu+ε2−n)

2
(xu+ε2−n − xu)

+ f ′(yu)Au,u+ε2−n

]
du

=
[1/ε]2n−1∑

k=0

∫ 1

0

[
f (yn

k ) + f (yn
k+1)

2
(xn

k+1 − xn
k ) + f ′(yn

k )An
k,k+1

]
du,

where we have written xn
k = xε2−n(k+u), yn

k = yε2−n(k+u) and An
k,� = Aε2−n(k+u),ε2−n(�+u) for

simplicity. Dividing again in two, we find

In+1(ε) =
[1/ε]2n−1∑

k=0

∫ 1

0

[
f (yn+1

2k ) + f (yn+1
2k+1)

2
(xn+1

2k+1 − xn+1
2k ) + f ′(yn+1

2k )An+1
2k,2k+1

]
du

+
[1/ε]2n−1∑

k=0

∫ 1

0

[
f (yn+1

2k+1) + f (yn+1
2k+2)

2
(xn+1

2k+2 − xn+1
2k+1) + f ′(yn+1

2k+1)A
n+1
2k+1,2k+2

]
du.

On the other hand, after another change of variable, we can rewrite

In(ε) = 1

2

[1/ε]2n−1∑
k=0

∫ 1

0

[
f (yn+1

2k ) + f (yn+1
2k+2)

2
(xn+1

2k+2 − xn+1
2k ) + f ′(yn+1

2k )An+1
2k,2k+2

]
du
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+ 1

2

[1/ε]2n−1∑
k=0

∫ 1

0

[
f (yn+1

2k+1) + f (yn+1
2k+3)

2
(xn+1

2k+3 − xn+1
2k+1) + f ′(yn+1

2k+1)A
n+1
2k+1,2k+3

]
du.

Writing Jn(ε) = In+1(ε) − In(ε), yields

Jn(ε) = 1

2

[1/ε]2n−1∑
k=0

∫ 1

0

[
f ′(yn+1

2k )An+1
2k,2k+1 + f ′(yn+1

2k+1)A
n+1
2k+1,2k+2

− f ′(yn+1
2k )An+1

2k,2k+2 + f (yn+1
2k ) + f (yn+1

2k+1)

2
(xn+1

2k+1 − xn+1
2k )

+ f (yn+1
2k+1) + f (yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k+1)

− f (yn+1
2k ) + f (yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k )

]
du

+ 1

2

[1/ε]2n−1∑
k=0

∫ 1

0

[
f ′(yn+1

2k )An+1
2k,2k+1 + f ′(yn+1

2k+1)A
n+1
2k+1,2k+2

− f ′(yn+1
2k+1)A

n+1
2k+1,2k+3 + f (yn+1

2k ) + f (yn+1
2k+1)

2
(xn+1

2k+1 − xn+1
2k )

+ f (yn+1
2k+1) + f (yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k+1)

− f (yn+1
2k+1) + f (yn+1

2k+3)

2
(xn+1

2k+3 − xn+1
2k+1)

]
du

= 1

2

[1/ε]2n−1∑
k=0

∫ 1

0

[
f ′(yn+1

2k )An+1
2k,2k+1 + f ′(yn+1

2k )An+1
2k+1,2k+2

+ f ′(yn+1
2k )An+1

2k+2,2k + f (yn+1
2k ) + f (yn+1

2k+1)

2
(xn+1

2k+1 − xn+1
2k )

+ f (yn+1
2k+1) + f (yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k+1)

− f (yn+1
2k ) + f (yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k )

]
du

+ O
(
(ε2−n)3α−1)

+ 1

2

[1/ε]2n−1∑
k=0

∫ 1

0

[
f ′(yn+1

2k+1)A
n+1
2k+1,2k+2 + f ′(yn+1

2k+1)A
n+1
2k+2,2k+3
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− f ′(yn+1
2k+1)A

n+1
2k+1,2k+3 + f (yn+1

2k+2) + f (yn+1
2k+3)

2
(xn+1

2k+3 − xn+1
2k+2)

+ f (yn+1
2k+1) + f (yn+1

2k+2)

2
(xn+1

2k+2 − xn+1
2k+1)

− f (yn+1
2k+1) + f (yn+1

2k+3)

2
(xn+1

2k+3 − xn+1
2k+1)

]
du

+ O
(
(ε2−n)α∧(3α−1)

)

= 1

2

[1/ε]2n−1∑
k=0

∫ 1

0

[
f ′(yn+1

2k )area(Tγ2k+2γ2k+1γ2k
)

+ f (yn+1
2k+2) − f (yn+1

2k+1)

2
(xn+1

2k − xn+1
2k+1)

− f (yn+1
2k ) − f (yn+1

2k+1)

2
(xn+1

2k+2 − xn+1
2k+1)

]
du

+ 1

2

[1/ε]2n−1∑
k=0

∫ 1

0

[
f ′(yn+1

2k+1)area(Tγ2k+3γ2k+2γ2k+1)

+ f (yn+1
2k+3) − f (yn+1

2k+2)

2
(xn+1

2k+1 − xn+1
2k+2)

− f (yn+1
2k+1) − f (yn+1

2k+2)

2
(xn+1

2k+3 − xn+1
2k+2)

]
du

+ O
(
(ε2−n)α∧(3α−1)

)

= 1

2

[1/ε]2n−1∑
k=0

∫ 1

0
f ′(yn+1

2k )

[
area(Tγ2k+2γ2k+1γ2k

)

+ yn+1
2k+2 − yn+1

2k+1

2
(xn+1

2k − xn+1
2k+1)

− yn+1
2k − yn+1

2k+1

2
(xn+1

2k+2 − xn+1
2k+1)

]
du

+ 1

2

[1/ε]2n−1∑
k=0

∫ 1

0
f ′(yn+1

2k+1)

[
area(Tγ2k+3γ2k+2γ2k+1)

+ yn+1
2k+3 − yn+1

2k+2

2
(xn+1

2k+1 − xn+1
2k+2)
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− yn+1
2k+1 − yn+1

2k+2

2
(xn+1

2k+3 − xn+1
2k+2)

]
du

+ O
(
(ε2−n)α∧(3α−1)

)
,

where area(Tabc) stands for the oriented area of the triangle Tabc, and where the correction terms
come from (2.7), the C2-regularity of f and the fact that x, y are α-Hölder. Now given that

1
2 [(yc − yb)(xa − xb) − (ya − yb)(xc − xb)] = area(Tabc), (2.11)

we finally obtain

In+1(ε) − In(ε) = O
(
(ε2−n)α∧(3α−1)

)
,

which yields the desired uniform convergence of {In, n ∈ N} toward some I∞. In addition, be-
cause I0(ε) = I

γ
ε (f ), we have

I∞(ε) = I γ
ε (f ) + O

(
εα∧(3α−1)

)
.

This completes the proof in the case m = 1. Let us explain briefly the extension to the general
case m ≥ 2. Let �n be the set of dyadics of order n on [0,1] and use the notation t ′ = t + 2−n

and τ = t+t ′
2 for t ∈ �n. Let {wn} be the sequence defined by

wn =
∑
t∈�n

(xt ′ − xt )

∫ 1

0
f

(
(1 − α)yt + αyt ′

)
νm(dα)

+
2m−2∑
k=0

1

(k + 1)!
∑
t∈�n

f (k+1)(yt )Att ′ [(y − yt )
k].

Using a Taylor expansion, we can show that there exists a decomposition wn+1 − wn = Un + Vn

with |Un| ≤ C2n(1−(2m+1)α) for some constant C and

Vn =
2m−2∑
k=0

1

(k + 1)!

(∑
t∈�n

{
f (k+1)(yτ )Aτt ′ [(y − yτ )

k] − f (k+1)(yt )Att ′ [(y − yt )
k]}

)
.

Hence, |Vn| ≤ C2n(1−(2m+1)α) and the sequence {wn} converges absolutely. One can then finish
the proof exactly as in the case m = 1. �

Lemma 2.7. The function I∞ given in Lemma 2.6 is constant on [0,1].

Proof. As in the proof of Lemma 2.6, we consider only the case m = 1 because the general case
m ≥ 2 can be handled completely analogously, with heavier notation. Once again, we set Ast for
Ast (1). It is clear from the definition of In and the uniqueness of the limit I∞ that

I∞(1) = I∞(2−1) = I∞(2−2) = · · · = I∞(2−n) = · · · (2.12)
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for all n ∈ N. We next prove that I∞ is constant on dyadics. From (2.12) and an induction
argument, it suffices to prove that if k2−n and (k + 1)2−n are two dyadics such that I∞(k2−n) =
I∞((k + 1)2−n) = �, then I∞((k + 1/2)2−n) = �. Using the notation km

n = k2−(n+m) we have,
for all m ∈ N,

Im

((
k + 1

2

)
2−n

)
= 2n+m

2k + 1

∫ 1

0

[
f (yu) + f

(
yu+(k+1/2)mn

)](
xu+(k+1/2)mn

− xu

)
du

+ 2n+m+1

2k + 1

∫ 1

0
f ′(yu)Au,u+(k+1/2)mn

du

= 2n+m

2k + 1

∫ 1

0

[
f (yu+1m

n+1
) + f

(
yu+(k+1)mn

)](
xu+(k+1)mn

− xu+1m
n+1

)
du

+ 2n+m

2k + 1

∫ 1

0
f ′(yu+1m

n+1
)Au+1m

n+1,u+(k+1)mn
du + O(2−mα)

= 2k + 2

2k + 1
Im((k + 1)2−n) − 1

2k + 1
In+m+1(1) + O

(
2−m[(3α−1)∧α])

+ 2n+m

2k + 1

∫ 1

0
[f (yu+1m

n+1
) − f (yu)]

(
xu+(k+1)mn

− xu+1m
n+1

)
du

− 2n+m

2k + 1

∫ 1

0

[
f

(
yu+(k+1)mn

) − f (yu+1m
n+1

)
]
(xu+1m

n+1
− xu)du

+ 2n+m+1

2k + 1

∫ 1

0
f ′(yu)

(
Au+1m

n+1,u+(k+1)mn
− Au,u+(k+1)mn

+ Au,u+1m
n+1

)
du

= 2k + 2

2k + 1
Im((k + 1)2−n) − 1

2k + 1
In+m+1(1) + O

(
2−m[(3α−1)∧α]),

where the last line comes from (2.11). Making m → ∞ yields

I∞
((

k + 1

2

)
2−n

)
= 2k + 2

2k + 1
� − 1

2k + 1
� = �,

which proves that I∞ is constant on the dyadics of [0,1]. Now because In(ε) is obviously con-
tinuous in ε and because the convergence in Lemma 2.6 is uniform, Dini’s lemma entails that
I∞(ε) is continuous. Hence, I∞ is constant on [0,1], as desired. �

Proof of Theorem 2.5. From Lemma 2.7 and (2.10), we have

I γ
ε (f ) = I∞(0) + O

(
ε((2m+1)α−1)∧α

)
which, because α > 1/(2m+1), proves the convergence of {Iγ

ε (f ), ε > 0} toward some limit I γ .

Finally, because any α-Lévy area of order 2n − 2 is also an α-Lévy area of order 2m − 2 for
n > m, the compatibility relationships follow straightforwardly from the fact that the correction
term is in O(ε((2m+1)α−1)∧α). �
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3. Differential equations in the case α > 1/3

Recent works study equations of type (1.1) in the Russo–Vallois setting and in a Stratonovich
sense. For example, in Errami and Russo [8], existence and uniqueness are proved for H > 1/3
with the following definition: a solution X to (1.1) is a process such that (X,BH ) is a symmetric
vector cubic variation process and such that for every smooth ϕ : R2 → R and every t ≥ 0,

∫ t

0
Zs d◦Xs =

∫ t

0
Zsb(Xs)ds +

∫ t

0
Zsσ(Xs)d◦BH

s − 1
4

∫ t

0
σσ ′(Xs)d[Z,BH ,BH ]s ,

where Zs = ϕ(Xs,B
H
s ) and [Z,BH ,BH ]s denotes the cubic covariation. In Nourdin [14], an-

other type of equation is proposed, relying on the Newton–Côtes integrator and allowing any
value of H , but the solution is supposed to be a priori of the type Xs = h(BH

s ,Vs) with V of
bounded variation.

In this section we present yet another approach, which is more general and, hopefully, sim-
pler. Fix α > β > 1/3, a time horizon T = 1 and x : [0,1] → R ∈ Cα once and for all. From
Theorem 2.5, we know that

∫ 1

0
f (ys)dA,1xs

def= lim
ε→0

ε−1
∫ 1

0

f (ys) + f (ys+ε)

2
(xs+ε − xs)ds + ε−1

∫ 1

0
f ′(ys)As,s+ε ds

exists as soon as y : [0,1] → R ∈ Cβ , f : R → R ∈ C2 and A is a β-Lévy area of order 0 associ-
ated with γ = (x, y); that is, it verifies (2.8) and (2.9) with β instead of α.

Consider the formal equation

dyt = b(yt )dt + σ(yt )dxt , t ∈ [0,1], y(0) = y0 ∈ R, (3.13)

where the unknown function y is assumed to belong to Cβ . The following definition is inspired
by rough paths theory:

Definition 3.1. A solution to (3.13) is a couple (y,A) that verifies the following statements:

• y : [0,1] → R belongs to Cβ .
• A is a β-Lévy area of order 0 associated with γ = (x, y).
• For all t ∈ [0,1],

yt = y0 +
∫ t

0
b(ys)ds +

∫ t

0
σ(ys)dA,1xs.

In this definition, we see that the meaning given to

∫ t

0
σ(ys)dxs

in (3.13) is contained in the concept of solution. We now state the main result of this section:
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Theorem 3.2. Let σ : R → R be a C2-function and let b : R → R be a Lipschitz function. Assume
moreover that σ,σ ′, σ ′′ and b are bounded. Then, for any β ∈ ( 1

3 , α), the equation (3.13) admits
a unique solution (y,A) in the sense of Definition 3.1.

For the proof of Theorem 3.2 we need the following key lemma, which estimates the behavior
of

∫ t

s
f (yu)dA,1xu when t − s is small:

Lemma 3.3. Let β ∈ ( 1
3 , α), y : [0,1] → R ∈ Cβ , A be a β-Lévy area of order 0 associated with

γ = (x, y) and f : R → R be a C2-function. Assume that f,f ′ and f ′′ are bounded. Then, for
all s, t ∈ [0,1],∣∣∣∣

∫ t

s

f (yu)dA,1xu − f (ys)

t − s

∫ t

s

(xu+t−s − xu)du − f ′(ys)

t − s

∫ t

s

Au,u+t−s du

∣∣∣∣
(3.14)

≤ cf,x(|y|β + |y|2β + |y|β |A|2β)(t − s)α+β,

where cf,x denotes a constant that depends only on f (and its derivatives) and x.

Proof. Considering
∫ t

s
instead of

∫ 1
0 in the proof of Lemma 2.6 (in the case m = 1), we can write∣∣∣∣

∫ t

s

f (yu)dA,1xu − 1

t − s

∫ t

s

f (yu) + f (yu+t−s)

2
(xu+t−s − xu)du

− 1

t − s

∫ t

s

f ′(yu)Au,u+t−s du

∣∣∣∣
= |I∞(t − s) − I0(t − s)| ≤ cf,x(|y|β |A|2β + |y|2β)(t − s)3β,

but ∣∣∣∣ 1

t − s

∫ t

s

(
f (yu) + f (yu+t−s)

2
− f (ys)

)
(xu+t−s − xu)du

∣∣∣∣
≤ 1 + 2β

2
|f ′|∞|x|α|y|β(t − s)α+β

and ∣∣∣∣ 1

t − s

∫ t

s

(
f ′(yu) − f ′(ys)

)
Au,u+t−s du

∣∣∣∣ ≤ |f ′′|∞|y|β |A|2β |t − s|3β,

which entails (3.14). �

Proof of Theorem 3.2. Without loss of generality we can assume that y0 = 0. Consider Eβ the
set of couples (y,A) with y : [0,1] → R in Cβ and A a β-Lévy area of order 0 associated with
(x, y), endowed with the norm

N(y,A) = |y|β + |A|2β = sup
t �=s

|yt − ys |
|t − s|β + sup

t �=s

|Ast |
|t − s|2β

< +∞.
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With this norm, Eβ is a Banach space. Besides, for every δ > 0, if E
β
δ denotes the set of re-

strictions of (y,A) ∈ Eβ to [0, δ], then E
β
δ is also a Banach space endowed with the norm N .

Considering (y,A) ∈ E
β
δ , define

ỹt =
∫ t

0
σ(ys)dA,1xs +

∫ t

0
b(ys)ds, t ∈ [0, δ],

and

Ãst =
∫ t

s

xuσ (yu)dA,1xu +
∫ t

s

xub(yu)du − 1
2 (xt + xs)(ỹt − ỹs), (s, t) ∈ [0, δ]2.

Note here that, in the definition of Ã, we need to give a meaning to∫ t

s

xuσ (yu)dA,1xu

and not only to
∫ t

s
σ (yu)dA,1xu. Following exactly the same arguments as in the proof of Theo-

rem 2.5, there is no difficulty to consider integrals of this type and also to obtain the equivalent
to Lemma 3.3 for this case.

Thanks to Lemma 3.3, we have

|ỹt − ỹs | ≤ |σ |∞|x|α|t − s|α + |σ |∞|A|2α|t − s|2α

+ cσ,x

(|y|β + |y|2β + |y|β |A|2β

)
(t − s)α+β + |b|∞|t − s|,

so that ỹ ∈ Cβ . Condition (2.8) for Ã is easily verified, while condition (2.9) with α replaced by
β also holds, because, using the equivalent of Lemma 3.3 for

∫ t

s
xuσ (yu)dA,1xu, we can write

|Ãst | ≤ 1
2 |x|2α|σ |∞|t − s|2α + 1

2 |x|α|σ ′|∞|A|2β |t − s|2β+α + 2|x|∞|b|∞|t − s|
+ cσ,x

(|y|β + |y|2β + |y|β |A|2β

)
(t − s)3β .

In other words, (ỹ, Ã) ∈ E
β
δ and we get

N(ỹ, Ã) ≤ cσ,b,x

(
1 + δα−βN(y,A) + δα−βN(y,A)2) (3.15)

for a certain constant cσ,b,x that depends only on σ , b and x. Because the set

U = {u ∈ R
∗+ : cσ,b,x(1 + δα−βu + δα−βu2) < u}

is not empty as soon as β is small enough, we deduce that the ball E
β
δ (R) = {(y,A) ∈

E
β
δ :N(y,A) ≤ R} is invariant by T :Eβ → Eβ defined by T (y,A) = (ỹ, Ã) for β small enough

and R ∈ U. Moreover, T is actually a contraction provided δ is chosen small enough.
Given that we are working in E

β
δ (R), we can apply a standard fixed point argument for T ,

whose details are left to the reader. This leads to a unique solution to equation (3.13) on a small
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interval [0, δ]. Notice now that the estimate (3.15) does not depend on the initial condition y0,
because b and σ , together with its derivatives, are bounded. This makes it possible to obtain
the unique solution on an arbitrary interval [0, kδ], k ≥ 1, using a constant step δ and patching
solutions on [jδ, (j + 1)δ]. �

We now show how our concept of corrected symmetric integral extends the Russo–Vallois
(RV) symmetric integral when the class of integrands is more specific. First, we define the Lévy
area adapted to RV integrals:

Lemma 3.4. Let x : [0,1] → R be a function in Cα , h : R2 → R be a C2,1-function and
� : [0,1] → R be a function of bounded variation. Define y : [0,1] → R by yt = h(xt , �t ). Then
y ∈ Cα and the Russo–Vallois symmetric integral

∫ s

r
y d◦x exists for all r, s ∈ [0,1]. Moreover,

the function A defined by

Ars =
∫ s

r

y d◦x − yr + ys

2
(xs − xr) (3.16)

is an α-Lévy area of order 0 associated with γ = (x, y), satisfying

|Ars | ≤ L|s − r|3α (3.17)

for all r, s ∈ [0,1] and some universal constant L.

Proof. For simplicity we consider only the case yt = h(xt ) with h : R → R a C2-function. The
general case can be proved analogously. The fact that y ∈ Cα and that

∫ s

r
h(x)d◦x exists for all

r, s ∈ [0,1] is well known and easy to obtain using a Taylor-type expansion. In addition, we know
that

∫ s

r
h(x)d◦x = H(xs) − H(xr) for any primitive function H of h. With the help of another

Taylor expansion, it is then easy to show (3.17). Finally, the condition (2.6) is ascertained readily
using the identity (2.11), which proves that A is an α-Lévy area of order 0 and finishes the proof
of the lemma. �

The desired extension now follows readily:

Proposition 3.5. With the same notation as in Lemma 3.4, we have∫ b

a

f (ys)dA,1xs =
∫ b

a

f (ys)d◦xs

for any function f : R → R of class C2.

Proof. Thanks to (3.17), we have

lim
ε→0

ε−1
∫ 1

0
f ′(yu)Au,u+ε du = 0,

which entails the required identification. �
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Remark 3.6. We do not know if it is possible to construct a Lévy area A such that

∫ b

a

f (ys)dA,mxs =
∫ b

a

f (ys)dNC,mxs

with the notation of Lemma 3.4, for any function f : R → R of class C2m, in the case m ≥ 2. An
area like

Ars(y
q) = 1

q + 1

(∫ s

r

y
q+1
u d◦xu − (xs − xr)

∫ 1

0

(
yr + θ(ys − yr)

)q+1
νm(dθ)

)

for q ≤ m − 1 would be the most natural candidate, but unfortunately only

|Ast [(y − ξ)q ]| ≤ c|t − s|3α

is fulfilled, in general, and not (2.7).

Finally, the next corollary shows that our solution process in Theorem 3.2 coincides with those
given in Errami and Russo [8] or Nourdin [14] through a Doss–Sussmann’s representation. If we
could give a positive answer to the above remark, then the identification with Nourdin [14] would
hold for all m ≥ 2.

Corollary 3.7. When m = 1 and α > β > 1/3, the unique solution (y,A) to (3.13) can be rep-
resented as follows: The function y : [0,1] → R is given by yt = u(xt , at ), where u : R2 → R is
the unique solution to

∂u

∂x
(x, v) = σ(u(x, v)) and u(0, v) = v for all v ∈ R, (3.18)

and a : [0,1] → R is the unique solution to

dat

dt
=

{
∂u

∂a
(xt , at )

}−1

b ◦ u(xt , at ) and a0 = y0. (3.19)

The function A is the β-Lévy area associated with γ = (x, y) given by (3.16).

Proof. It is clear that y ∈ Cα ⊂ Cβ and we know from Proposition 3.5 that

∫ t

0
σ(ys)dA,1xs =

∫ t

0
σ(ys)d◦xs.

The easily established Itô–Stratonovich’s formula verified by d◦ shows that

u(xt , at ) = u(0, a0) +
∫ t

0

∂u

∂x
(xs, as)d◦xs +

∫ t

0

∂u

∂a
(xs, as)das (3.20)
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for all t ∈ [0,1]. Hence, thanks to (3.18) and (3.19),

yt = y0 +
∫ t

0
σ(ys)d◦xs +

∫ t

0
b(ys)ds = y0 +

∫ t

0
b(ys)ds +

∫ t

0
σ(ys)dA,1xs

and, consequently, (y,A) is the solution to (3.13). �
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