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A kernel type nonparametric density
estimator for decompounding
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Given a sample from a discretely observed compound Poisson process, we consider estimation of the den-
sity of the jump sizes. We propose a kernel type nonparametric density estimator and study its asymptotic
properties. An order bound for the bias and an asymptotic expansion of the variance of the estimator are
given. Pointwise weak consistency and asymptotic normality are established. The results show that, asymp-
totically, the estimator behaves very much like an ordinary kernel estimator.
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1. Introduction

Let N(λ) be a Poisson random variable with parameter λ and let Y1, Y2, . . . be a sequence of
independent and identically distributed random variables that are independent of N(λ), have a
common distribution function F and have density f . Consider a Poisson sum of Y s:

X =
N(λ)∑
j=1

Yj .

Assume λ is known. The statistical problem we consider is nonparametric estimation of the
density f based on observations on X. Because adding a Poisson number of Y s is referred to as
compounding, we refer to the problem of recovering the density f of Y s from the observations
on X as decompounding. The problem of estimating the density f is equivalent to the problem of
estimating the jump size density f of a compound Poisson process X′ = (X′

t )t≥0 with intensity
λ when the process is observed at equidistant time points (rescaling if necessary, the observation
step size can be taken to be equal to 1). Compound Poisson processes have important applications
in queueing and risk theory (see, e.g., Embrechts et al. [7] and Prabhu [11]), for example, the
random variables Y1, Y2, Y3, . . . can be interpreted as claims of random size that arrive at an
insurance company or as the number of customers who arrive at a service point at random times
with exponentially distributed interarrival time.

The problem of nonparametric estimation of the distribution function F in the case of both
continuous and discrete laws was treated by Buchmann and Grübel [1]. Their estimation method
is based on a suitable inversion of the compounding operation (i.e., transition from the distrib-
ution of Y to the distribution of X) and use of an empirical estimator for the distribution of X,
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thus resulting in a plug-in type estimator for the distribution of Y . A further ramification of this
approach in the case of a discrete law was given by Buchmann and Grübel [2]. To the best of our
knowledge, the present paper is the first attempt to (nonparametrically) estimate the density f .
A very natural use of nonparametric density estimators is informal investigation of the properties
of a given set of data. The estimators can give valuable indications about the shape of the density
function, for example, such features as skewness and multimodality. The knowledge of these
features might come in handy in applications, for example, in insurance, where f is a claim size
density.

One possible way to construct an estimator for the density f (suggested in Hansen and Pitts
[9]) is via smoothing the plug-in type estimator Fn of the distribution function F , that was defined
by Buchmann and Grübel [1], with a kernel, but at present no theoretical results for this estimator
seem to be available. We opt for an alternative approach based on inversion of the characteristic
function φf , an approach that is in spirit similar to the use of kernel estimators in deconvolution
problems (the latter were first introduced by Liu and Taylor [10] and Stefanski and Caroll [15];
for a more recent overview, see Wand and Jones [19]). Before we proceed any further, we need to
specify the observation scheme. Zero observations provide no information on the Y s and, hence,
an estimator of f should be based on nonzero observations. In a sample of fixed size there are
a random number of nonzero observations. We want to avoid this extra technical complication,
so we assume that we have observations X1, . . . ,XTn on X, where Tn is the first moment we get
precisely n nonzero observations (Tn of course is random). We denote the nonzero observations
by Z1,Z2, . . . ,Zn.

We turn to the construction of the estimator of the density f. First note that the characteristic
function of X is given by

φX(t) = E[eitX] = e−λ+λφf (t),

where φf denotes the characteristic function of a random variable with density f. Rewrite the
characteristic function of X as

φX(t) = e−λ + (1 − e−λ)
1

eλ − 1

(
eλφf (t) − 1

)
.

Denote the density of X given N > 0 by g. It follows that the characteristic function of X given
N > 0 is equal to

φg(t) = 1

eλ − 1

(
eλφf (t) − 1

)
.

Because φf vanishes at plus and minus infinity, so does φg . By inverting the above relationship,
we get

φf (t) = 1

λ
Log

(
(eλ − 1)φg(t) + 1

)
.

Here Log denotes the distinguished logarithm (in general, we cannot use a principal branch of
the logarithm) and we refer to Chung ([4], Theorem 7.6.2) and Finkelestein et al. [8] for details
of its construction. Notice that whenever λ < log 2, the distinguished logarithm reduces to the
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principal branch of an ordinary logarithm. By Fourier inversion, if φf is integrable, we have

f (x) = 1

2πλ

∫ ∞

−∞
e−itx Log

(
(eλ − 1)φg(t) + 1

)
dt. (1.1)

This relation suggests that if we construct an estimator of g (and hence of φg), we will automati-
cally get an estimator for f by a plug-in device. Let w denote a kernel function with characteristic
function φw and let h denote a positive number—the bandwidth. The density g will be estimated
by the kernel density estimator

gnh(x) = 1

n

n∑
j=1

1

h
w

(
x − Zj

h

)
.

Properties of kernel estimators can be found in recent books such as Devroye and Györfi [6],
Prakasa Rao [12], Tsybakov [16] and Wand and Jones [19]. The characteristic function φgnh

serves as an estimator of φg and is equal to φemp(t)φw(ht), where φemp denotes the empirical
characteristic function

φemp(t) = 1

n

n∑
j=1

eitZj .

In view of (1.1) it is tempting to introduce an estimator

1

2πλ

∫ ∞

−∞
e−itx Log

(
(eλ − 1)φemp(t)φw(ht) + 1

)
dt, (1.2)

but there are two problems. First, the measure of those ωs from the underlying sample space �

for which the path (eλ − 1)φgnh
(t) + 1 can become zero is positive (although as n → ∞, this

probability tends to zero) and the distinguished logarithm cannot be defined for such ωs. Second,
there is no guarantee that the integral in (1.2) is finite. Therefore, we will make the adjustments

f̂nh(x) = (
Mn ∧ fnh(x)

) ∨ (−Mn), (1.3)

where for those ωs for which the paths (eλ − 1)φemp(t)φw(ht)+ 1 do not vanish, fnh is given by

fnh(x) = 1

2πλ

∫ 1/h

−1/h

e−itx Log
(
(eλ − 1)φemp(t)φw(ht) + 1

)
dt

and is zero otherwise. Here M = (Mn)n≥1 is a sequence of positive real numbers that converge
to infinity at a suitable rate. We also assume that φw is supported on [−1,1]. Of course, for the
truncation in (1.3) to make sense, fnh(x) must be real-valued, but this is easy to check through
the change of the integration variable from t into −t.

The rest of the paper is organized as follows. Section 2 contains the main results of the paper.
In it we derive an order bound for the bias and an asymptotic expansion of the variance of f̂nh at
a fixed point x, and we show that the estimator is weakly consistent and asymptotically normal.
Section 3 provides some simulation results. All the proofs are collected in Section 4.
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2. Asymptotic properties of the estimator

As is usual in nonparametric estimation, the nonparametric setting forces us to make some
smoothness assumptions on the density f. Let β,L1 and L2 denote some positive numbers and
let l = �β� denote the integer part of β. If l = 0, then by definition set f (l) = f. Recall the
definition of Hölder and Nikol’ski classes of the functions (cf. Tsybakov [16], pages 5, 19).

Definition 2.1. A function f is said to belong to the Hölder class H(β,L1) if its derivatives up
to order l exist and verify the condition∣∣f (l)(x + t) − f (l)(x)

∣∣ ≤ L1|t |β−l .

Definition 2.2. A function f is said to belong to the Nikol’ski class N (β,L2) if its derivatives
up to order l exist and verify the condition

[∫ ∞

−∞
(
f (l)(x + t) − f (l)(x)

)2 dx

]1/2

≤ L2|t |β−l .

We formulate the condition on the density f.

Condition F. The density f belongs to H(β,L1) ∩N (β,L2). Moreover, tβφf is integrable and
the derivatives f ′, . . . , f (l) are integrable.

The following lemma holds true. It is proved in Section 4.

Lemma 2.1. Assume that Condition F holds. Then the density g belongs to H(β,L1) ∩
N (β,λeλ(eλ − 1)−1L2). Moreover, tβφg(t) is integrable.

We will use this fact in the proofs of Propositions 2.1 and 2.2 and Theorems 2.1 and 2.2. The
requirement that g ∈ N (β,λeλ(eλ − 1)−1L2) is motivated by the fact that in the proofs we will
make use of the expansion of the mean integrated squared error of a kernel density estimator
gnh (cf. Tsybakov [16], page 21), while g ∈ H(β,L1) is a standard condition in ordinary kernel
density estimation (see Tsybakov [16], Proposition 1.2). The integrability of f ′, . . . , f (l) is used
in the proof of Lemma 2.1.

Definition 2.3. A function w is called a kernel of order l if the functions ujw(u), j = 0, . . . , l,
are integrable and verify the condition∫ ∞

−∞
w(u)du = 1,

∫ ∞

−∞
ujw(u)du = 0 for j = 1, . . . , l − 1.

Because it is generally recognized that the choice of a kernel is less important for the perfor-
mance of an estimator (see Wand and Jones [19], page 31), we feel free to impose the following
condition on the kernel.
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Condition W. The kernel function w satisfies the following conditions:

1. w is a bounded symmetric kernel of order l.
2. The characteristic function φw has a support on [−1,1].
3.

∫ ∞
−∞ |u|β |w(u)|du < ∞.

4. lim|u|→∞ |uw(u)| = 0.
5. φw is continuously differentiable.

To get a consistent estimator, we need to control the bandwidth, so we impose the following
restriction.

Condition H. The bandwidth h depends on n and is of the form h = Cn−γ for 0 < γ < 1, where
C is some constant.

We also formulate the condition on the truncating sequence M = (Mn)n≥1 (see Section 1).

Condition M. The truncating sequence M = (Mn)n≥1 is given by Mn = nα, where α is some
strictly positive number.

As the performance criterion, we select the mean squared error

MSE[f̂nh(x)] = E
[(

f̂nh(x) − f (x)
)2]

.

By standard properties of mean and variance

MSE[f̂nh(x)] = (
E[f̂nh(x)] − f (x)

)2 + Var[f̂nh(x)],
the sum of the squared bias and variance at x.

First we study the behaviour of the bias of the estimator f̂nh(x).

Proposition 2.1. Suppose Conditions F, W, H and M are satisfied. Then the bias of the estimator
f̂nh(x) admits an order bound

E[f̂nh(x)] − f (x) = O

(
hβ + 1

nh

)
.

In ordinary kernel estimation, under the assumption g ∈ H(β,L1), the bias is of order hβ (see
Tsybakov [16], Proposition 1.2). We have an additional term of order (nh)−1 that comes from
the difficulty of the decompounding problem. Under standard conditions h → 0 and nh → ∞,
the bias will asymptotically vanish.

Remark 2.1. If β = 2, then as in our technical report [17], it is possible to derive an exact
asymptotic expansion for the bias. The leading term in bias expansion will be

−h2 σ 2(eλ − 1)

4πλ

∫ ∞

−∞
e−itx t2φg(t)

(eλ − 1)φg(t) + 1
dt.
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Now let us study the variance of the estimator f̂nh(x).

Proposition 2.2. Suppose that apart from Conditions F, W, H and M, an additional condition
nh1+4β → 0 holds true. Then the variance of the estimator f̂nh(x) admits the decomposition

Var[f̂nh(x)] = 1

nh

(eλ − 1)2

λ2
g(x)

∫ ∞

−∞
(w(u))2 du + o

(
1

nh

)
. (2.1)

We see that the variance of our estimator is of the same order as the variance of an ordinary
kernel estimator (cf. Tsybakov [16], Proposition 1.4). Under the standard assumption nh →
∞, it will vanish. From a practical point of view, the restriction nh1+4β → 0 is not restrictive,
especially in view of Proposition 2.3 given below.

By combining Propositions 2.1 and 2.2, we get the following corollary.

Corollary 2.1. Suppose Conditions F, W, H and M hold. The estimator f̂nh(x) is pointwise
weakly consistent under the additional assumption nh1+4β → 0.

Recall that the bandwidth hopt that asymptotically minimizes the mean squared error of a
kernel estimator is called optimal. From Propositions 2.1 and 2.2 it is now possible to determine
the order of the optimal bandwidth for the estimator f̂nh.

Proposition 2.3. The optimal bandwidth hopt is of order n−1/(2β+1). Furthermore, the mean
squared error of the estimator f̂nh computed for the optimal bandwidth is of order n−2β/(2β+1).

Note that the optimal bandwidth is of order n−1/(2β+1), just as in the case of ordinary kernel
estimation.

Remark 2.2. When β = 2, then as in van Es et al. ([17], Proposition 3.3), it is possible to derive
an exact expression for hopt:

hopt =
(

4π2g(x)
∫ ∞
−∞(w(u))2 du

σ 4
(∫ ∞

−∞ e−itx t2φg(t)/((eλ − 1)φg(t) + 1)dt
)2

)1/5

n−1/5.

The extension of our results to the data-dependent bandwidth case is outside the scope of the
present paper.

It is interesting to verify whether our estimator is minimax. We refer to van Es et al. ([17],
Theorem 3.1), where for β = 2 we proved that the minimax convergence rate for a quadratic
loss function is at least n−2/5 and, that our estimator attains it for a fixed density f. This result
can be easily generalized to an arbitrary β > 0. Whether the estimator itself is minimax is an
open question. In any case, the results of the present section show that its behaviour is rather
reasonable.

Concluding this section, we will derive two asymptotic normality results for f̂nh.
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Theorem 2.1. Assume that the Conditions F, W, H and M hold, and that the bandwidth h satisfies
an additional condition nh2β+1 → 0 and g(x) �= 0. Then(

f̂nh(x) − f (x)√
Var[f̂nh(x)]

)
D→ N(0,1),

where N(0,1) is the standard normal distribution.

Asymptotic normality still holds if nh2β+1 → C, where C is some constant, but in this case
the limit will not be distribution-free; it will depend on the unknown function g. We cannot
select an optimal bandwidth to obtain (distribution-free) asymptotic normality, but this is also
the case in ordinary kernel estimation. This fact comes from the trade-off between bias and
variance, for the details, see the proof of the theorem. Now let us consider a different centering:
f̂nh(x) − E[f̂nh(x)]. Then the following theorem holds true.

Theorem 2.2. Suppose that Conditions F, W, H and M hold, g(x) �= 0 and nh1+4β → 0. Then
we have (

f̂nh(x) − E[f̂nh(x)]√
Var[f̂nh(x)]

)
D→ N(0,1).

We see that, in this case, the additional condition on the bandwidth is weaker than the one in
Theorem 2.1.

3. Simulation results and numerical aspects

In this section we present two simulations. They complement the asymptotic results of Theorems
2.1 and 2.2 and give some (although incomplete) indication of the finite sampling properties of
the estimator.

In the first example, the true density f is the standard normal density and λ = 0.3. The kernel
we used is from Wand [18] and it has the rather complicated expression

w(t) = 48t (t2 − 15) cos t − 144(2t2 − 5) sin t

πt7 ,

but its characteristic function looks much simpler and is given by

φw(t) = (1 − t2)31{|t |<1}.

The estimator is based on 1000 observations and the bandwidth equals 0.14 (the bandwidth was
selected by hand). To compute the estimator, we used the fast Fourier transform. The idea, which
in spirit is close to the method for numerical evaluation of option prices proposed by Carr and
Madan [3], is sketched as follows:
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(i) Notice that whenever λ < log 2, the distinguished logarithm in (1.2) reduces to the principal
branch of the logarithm.

(ii) The main use of truncation in (1.3) is to prove asymptotic properties of the estimator and,
in general, we do not need to use it in practice.

(iii) The computation of the empirical characteristic function can be significantly sped up by
grouping the observations, the idea used to numerically evaluate ordinary kernel density estima-
tors. However, we computed the empirical characteristic function directly, without grouping the
observations. Notice that we do not use the values of the empirical characteristic function in its
tails.

(iv) Notice that we can rewrite (1.2) as fnh(x) = f
(1)
nh (x) + f

(2)
nh (x), where

f
(1)
nh (x) = 1

2πλ

∫ ∞

0
e−itx Log

(
(eλ − 1)φemp(t)φw(ht) + 1

)
dt,

f
(2)
nh (x) = 1

2πλ

∫ ∞

0
eitx Log

(
(eλ − 1)φemp(−t)φw(ht) + 1

)
dt.

Using the trapezoid rule and setting vj = η(j − 1), f
(1)
nh (x) can be approximated by

f
(1)
nh (x) ≈ 1

2πλ

N∑
j=1

e−ivj xψ(vj )η.

Here we take N to be some power of 2 and ψ(vj ) = Log((eλ − 1)φgnh
(vj )+ 1). The application

of the Fast Fourier Transform to this sum will give us N values of f
(1)
nh and we employ a regular

spacing size δ, so that our values of x are

xu = −Nλ

2
+ δ(u − 1),

where u = 1, . . . ,N. Thus we have

f
(1)
nh (xu) ≈ 1

2πλ

N∑
j=1

e−iδη(j−1)(u−1)eivj Nδ/2ψ(vj )η

for u = 1, . . . ,N. To apply the Fast Fourier Transform, we note that we must take δη = 2π/N.

If we choose η small to obtain a fine grid for integration, then we will obtain values of f
(1)
nh at

values of xu that are relatively seperate from each other. We would like, therefore, to obtain an
accurate integration for larger values of η: to this end we incorporate Simpson weightings into
our summation, that is,

f
(1)
nh (xu) ≈ 1

2πλ

N∑
j=1

e−i(2π)/N(j−1)(u−1)eivj Nδ/2ψ(vj )
η

3

(
3 + (−1)j − δj−1

)
,

where δj is a Kronecker function. Similar reasoning applies to f
(2)
nh (x).
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Figure 1. Estimation of a normal density.

Figure 2. Estimation of a mixture of normal densities.

The result of this procedure for N = 16 384 and η = 0.01 is given in Figure 1 (the estimate is
represented by the bold dotted line).

In the second example we consider the case when f is a mixture of two normal densities with
means 0 and 3/2 and variances 1 and 1/9 with mixing probabilities 3/4 and 1/4, respectively.
The estimator is based on 1000 observations and the bandwidth equals 0.1; the kernel is the
same as in the first example. The result is given in Figure 2 (the estimate is plotted by the bold
dotted line). Note that the estimator captures the bimodal character of the density f in a quite
satisfactory manner.

4. Proofs

Proof of Lemma 2.1. We have |φg(t)| ≤ C|φf (t)|, which follows from the relationship

φg(t) = 1

eλ − 1

(
eλφf (t) − 1

)
.
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Indeed,

∣∣eλφf (t) − 1
∣∣ = |−1 + 1 + λφf (t) + · · · | ≤ λ|φf (t)|eλ|φf (t)| ≤ λeλ|φf (t)|

and |φg(t)| ≤ C|φf (t)| follows, where C = λeλ(eλ − 1)−1. This implies that tβφg(t) is inte-
grable. Furthermore,

g(x) =
∞∑

n=1

f ∗n(x)P (N = n|N > 0),

where f ∗n denotes the n-fold convolution of f. By Parseval’s theorem,

∫ ∞

−∞
(
g(l)(x + t) − g(l)(x)

)2 dx =
∫ ∞

−∞
|ulφg(u)|2|eitu − 1|2 du, (4.1)

where we used the fact that |φg(l) (u)| = |ulφg(u)| (see Schwartz [13], pages 180–182). The latter
is true because the derivatives of g(x) up to order l are integrable, which can be verified by direct
computation employing formula (III, 2;8) of Schwartz [13]. From (4.1) it follows that

∫ ∞

−∞
(
g(l)(x + t) − g(l)(x)

)2 dx ≤
(

λeλ

eλ − 1

)2 ∫ ∞

−∞
|ulφf (u)|2|eitu − 1|2 du.

Applying Parseval’s theorem to the right-hand side and recalling that f belongs to N (β,L2), we
conclude that g belongs to N (β,λeλ(eλ − 1)−1L2). Now we will verify that g ∈ H(β,L1). We
have

g(l)(x) =
∞∑

n=1

f ∗(n−1) ∗ f (l)(x)P (N = n|N > 0).

Using this expression, we get

∣∣g(l)(x + t) − g(l)(x)
∣∣

=
∣∣∣∣∣

∞∑
n=1

P(N = n|N > 0)

∫ ∞

−∞
(
f (l)(x + t − u) − f (l)(x − u)

)
f ∗(n−1)(u)du

∣∣∣∣∣
≤ L1|t |β−l

∞∑
n=1

P(N = n|N > 0)

∫ ∞

−∞
f ∗(n−1)(u)du = L1|t |β−l .

This completes the proof of the lemma. �

Proof of Proposition 2.1. We may write

bw(n,h, x) = E
[
f̂nh(x)1[Jn≤δ] + f̂nh(x)1[Jn>δ] − f (x)1[Jn≤δ]

] − f (x)P (Jn > δ),
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where δ is any positive number and Jn denotes the integrated squared error of the estimator gnh.
We have ∣∣E[

f̂nh(x)1[Jn>δ]
]∣∣ ≤ MnP(Jn > δ).

This term is of order lower than hβ. To see this, recall the special form of Mn and h, and apply
the exponential bound to P(Jn > δ) that is valid for all n sufficiently large (see Devroye [5],
page 36, Remark 3). Also f (x)P (Jn > δ) = o(hβ).

Now we turn to

E
[(

f̂nh(x) − f (x)
)
1[Jn≤δ]

]
.

By selecting δ, we can achieve that φgnh
(t) is uniformly close to φg(t) on the set {Jn ≤ δ}. This

is true because if Jn ≤ δ, then

|φgnh
(t) − φg(t)| =

∣∣∣∣
∫ ∞

−∞
e−itx(gnh(x) − g(x)

)
dx

∣∣∣∣ ≤ Jn ≤ δ. (4.2)

This in turn implies that for δ small (e.g., δ = e−λ/2), (eλ − 1)φgnh
(t) + 1 is bounded away from

zero on the set Jn ≤ δ, because

|(eλ − 1)φg(t) + 1| = ∣∣eλφf (t)
∣∣ ≥ e−λ.

Therefore, the distinguished logarithm will be well defined on this set and log(|(eλ −1)φgnh
(t)+

1)|, that is, the real part of the distinguished logarithm Log((eλ −1)φgnh
(t)+1)) will be bounded

on {Jn ≤ δ}. The imaginary part of Log((eλ − 1)φgnh
(t) + 1) is also bounded. This holds true

because, for t sufficiently large, (eλ −1)φg(t)+1 is arbitrarily close to 1 and hence the argument
of the distinguished logarithm Log((eλ − 1)φg(t) + 1) cannot circle around zero infinitely many
times. To see the latter, we can argue as follows: there exists t∗ such that, for t ≥ t∗, (eλ −
1)φg(t) + 1 does not make a turn around zero, because as t → ∞, the function tends to eλ. If we
assume that (eλ − 1)φgnh

(t) + 1 in [0, t∗] makes an infinite number of turns around zero, then
its length on [0, t∗] must also be infinite (because the curve stays away from zero at a positive
distance). One can check that under given conditions on w, the latter is not true and, hence, also
(eλ − 1)φgnh

(t) + 1 can make only a finite number of turns around zero.
Thus on the set {Jn ≤ δ}, the argument of Log((eλ −1)φgnh

(t)+1) will be bounded for δ small
and, hence, on the set {Jn ≤ δ} for large n and small δ, the truncation becomes unimportant and
we have f̂nh(x) = fnh(x). Therefore,

E
[(

fnh(x) − f (x)
)
1[Jn≤δ]

]
= 1

2πλ
E

[(∫ 1/h

−1/h

e−itx Log
(
(eλ − 1)φgnh

(t) + 1
)

dt

−
∫ 1/h

−1/h

e−itx Log
(
(eλ − 1)φg(t) + 1

)
dt

)
1[Jn≤δ]

]

− 1

2πλ

∫ −1/h

−∞
e−itxφf (t)dtP (Jn ≤ δ) − 1

2πλ

∫ ∞

1/h

e−itxφf (t)dtP (Jn ≤ δ).
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The last two terms are of lower order than hβ. Indeed, we have, for example,

lim
h→0

1

hβ

∣∣∣∣
∫ ∞

1/h

e−itxφf (t)dt

∣∣∣∣
≤ lim

h→0

1

hβ

∫ ∞

1/h

|φf (t)|dt ≤ lim
h→0

∫ ∞

1/h

tβ |φf (t)|dt = o(1). (4.3)

Hence we need to study

1

2πλ
E

[(∫ 1/h

−1/h

e−itx Log
(
(eλ − 1)φgnh

(t) + 1
)

dt

−
∫ 1/h

−1/h

e−itx Log
(
(eλ − 1)φg(t) + 1

)
dt

)
1[Jn≤δ]

]

= 1

2πλ
E

[∫ 1/h

−1/h

e−itx Log(znh(t) + 1)dt1[Jn≤δ]
]
, (4.4)

where

znh(t) = (eλ − 1)(φgnh
(t) − φg(t))

(eλ − 1)φg(t) + 1
.

Note that znh is bounded. Rewrite (4.4) as

1

2πλ
E

[∫ 1/h

−1/h

e−itxznh(t)dt1[Jn≤δ]
]

+ 1

2πλ
E

[∫ 1/h

−1/h

e−itxRnh(t)dt1[Jn≤δ]
]
, (4.5)

where

Rnh(t) = Log
(
1 + znh(t)

) − znh(t).

Consider the first term in (4.5). We claim that the omission of 1[Jn≤δ] will result in an error of
order lower than hβ. In fact,

∣∣∣∣E
[∫ 1/h

−1/h

e−itxznh(t)dt1[Jn≤δ]
]∣∣∣∣

≤
∣∣∣∣E

[∫ 1/h

−1/h

e−itxznh(t)dt

]∣∣∣∣ −
∣∣∣∣E

[∫ 1/h

−1/h

e−itxznh(t)dt1[Jn>δ]
]∣∣∣∣.

The second term is bounded by Ch−1P(Jn > δ), where C is some constant, and this is of lower
order than hβ (recall the exponential bound of Devroye [5] on P(Jn > δ)).
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Using the fact that E[φemp(t)] = φg(t), we obtain

1

2πλ
E

[∫ 1/h

−1/h

e−itx (eλ − 1)(φemp(t)φw(ht) − φg(t))

(eλ − 1)φg(t) + 1
dt

]

= eλ − 1

2πλ

∫ 1/h

−1/h

e−itx φg(t)φw(ht) − φg(t)

(eλ − 1)φg(t) + 1
dt

= eλ − 1

2πλ

∫ 1/h

−1/h

e−itx(φg(t)φw(ht) − φg(t)
)

dt

+ eλ − 1

2πλ

∫ 1/h

−1/h

e−itx(φg(t)φw(ht) − φg(t)
)(

e−λφf (t) − 1
)

dt. (4.6)

The first summand in the latter expression differs from the bias of the kernel estimator gnh(x)

only by the absence of the term −∫ −1/h

−∞ φg(t)dt − ∫ ∞
1/h

φg(t)dt. This additional term is of lower

order than hβ (cf. (4.3)). Under Conditions W and F and due to Lemma 2.1, the bias of gnh(x)

is of order hβ (see Tsybakov [16], Proposition 1.2). As far as the second summand in (4.6) is
concerned, it is dominated by

λeλ eλ − 1

2πλ

∫ 1/h

−1/h

|φg(t)φw(ht) − φg(t)||φf (t)|dt, (4.7)

because ∣∣e−λφf (t) − 1
∣∣ ≤ λeλ|φf (t)|.

Application of the Cauchy–Schwarz inequality to the integral in (4.7) yields that it is bounded
from above by √∫ 1/h

−1/h

|φg(t)φw(ht) − φg(t)|2 dt

√∫ 1/h

−1/h

|φf (t)|2 dt .

The second factor in this expression is bounded uniformly in h thanks to the fact that φf is
integrable (|φf (t)|2 consequently is also integrable). As far as the first factor is concerned, by
Parseval’s theorem it is bounded by the integrated squared bias of the estimator gnh,∫ ∞

−∞
(
g ∗ wh(x) − g(x)

)2 dx,

where

wh(x) = 1

h
w

(
x

h

)
.

Because, under Conditions F and W, the integrated squared bias of gnh is of order h2β (see
Tsybakov [16], Proposition 1.8), we conclude that (4.6) is of order hβ. This gives us the order of
the leading term (4.6) in bias expansion.
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Now we turn to the second term in (4.5). We have∣∣∣∣E
[∫ 1/h

−1/h

e−itxRnh(t)dt1[Jn≤δ]
]∣∣∣∣ ≤ E

[∫ 1/h

−1/h

|Rnh(t)|dt1[Jn≤δ]
]
.

To deal with this term we will need the inequality∣∣Log
(
1 + znh(t)

) − znh(t)
∣∣ ≤ |znh(t)|2, (4.8)

provided that |znh(t)| < 1
2 . This inequality follows from the inequality

|ez − 1 − z| ≤ z2,

which is valid for |z| < 1/2 if we take z = Log(1 + znh(t)), because by choosing n large enough
and δ small, Jn ≤ δ will entail |znh(t)| < 1/2; see (4.2). Using the inequality (4.8), we obtain

E

[∫ 1/h

−1/h

|Rnh(t)|dt1[Jn≤δ]
]

≤ E

[∫ ∞

−∞
|znh(t)|2 dt

]

≤ KE

[∫ ∞

−∞
|φemp(t)φw(ht) − φg(t)|2 dt

]

= KE

[∫ ∞

−∞
(
gnh(t) − g(t)

)2 dt

]
= K MISEn(h), (4.9)

where K is a constant. Here we used the fact that |(eλ − 1)φg(t) + 1| = eλφf (t) is bounded
from below and applied Parseval’s identity. Using the bound on MISEn(h) (see Tsybakov [16],
page 21) and combining it with (4.6), we establish the desired result. �

Proof of Proposition 2.2. Throughout the proof we will frequently use the following ver-
sion of the Cauchy–Schwarz inequality: if ξ and η are random variables, then |Cov[ξ, η]| ≤√

Var[ξ ]√Var[η] provided that the variances exist. Hence, if the variance of η is negligible in
comparison to that of ξ, then Cov[ξ, η] also will be negligible in comparison to Var[ξ ] and,
therefore, Var[ξ + η] ∼ Var[ξ ]; that is, the leading term of Var[ξ + η] is Var[ξ ].

Now we turn to the proof of the proposition itself. We have

Var[f̂nh(x)] = Var
[
f̂nh(x)1[Jn≤δ] + f̂nh(x)1[Jn>δ]

]
.

The variance of f̂nh(x)1[Jn>δ] is of lower order than (nh)−1, because of the special form of
Mn = nα, the exponential bound on P(Jn > δ) and the inequality

Var
[
f̂nh(x)1[Jn>δ]

] ≤ E
[
(f̂nh(x))21[Jn>δ]

] ≤ M2
nP (Jn > δ).

Therefore, it suffices to consider Var[f̂nh(x)1[Jn≤δ]]. We have

Var
[
f̂nh(x)1[Jn≤δ]

] = Var
[
f̂nh(x)1[Jn≤δ] − f (x)

]
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and because again the variance of f (x)1[Jn>δ] is of a lower order than (nh)−1, we can consider
Var[(f̂nh(x) − f (x))1[Jn≤δ]] instead. As we have seen in the proof of Proposition 2.1, on the set
{Jn ≤ δ} for n large and δ sufficiently small, f̂nh(x) = fnh(x) and the distinguished logarithm is
well defined. Write

Var
[(

fnh(x) − f (x)
)
1[Jn≤δ]

]
= Var

[(
1

2πλ

∫ 1/h

−1/h

e−itxznh(t)dt + 1

2πλ

∫ 1/h

−1/h

e−itxRnh(t)dt

−
∫ ∞

1/h

e−itxφf (t)dt −
∫ −1/h

−∞
e−itxφf (t)dt

)
1[Jn≤δ]

]
.

The variances of the last two terms are negligible. Indeed, we have, for example,

Var

[∣∣∣∣
∫ ∞

1/h

e−itxφf (t)dt

∣∣∣∣1[Jn≤δ]
]

=
∣∣∣∣
∫ ∞

1/h

e−itxφf (t)dt

∣∣∣∣
2

Var
[
1[Jn>δ]

] ≤ CP(Jn > δ)

with some constant C.
Hence we have to deal with

Var

[(
1

2πλ

∫ 1/h

−1/h

e−itxznh(t)dt + 1

2πλ

∫ 1/h

−1/h

e−itxRnh(t)dt

)
1[Jn≤δ]

]

= Var[I + II]. (4.10)

We show that II has a negligible variance compared to that of I. Indeed, using the bound (4.9)
from the proof of Proposition 2.1,

nhVar

[∣∣∣∣
∫ 1/h

−1/h

e−itxRnh(t)dt1[Jn≤δ]
∣∣∣∣
]

≤ K2nhE[(ISEn(h))2]
= K2nhVar[ISEn(h)] + K2nh(MISEn(h))2,

where K is a constant. Due to the conditions nh → ∞ and nh1+4β → 0, we see that
nh(MISEn(h))2 tends to 0.

We deal with nhVar[ISEn(h)]. Let us write the integrated squared error as

ISEn(h) = 1

n2h

n∑
j=1

∫ ∞

−∞
(w(t))2 dt + 1

n2h

∑
j �=k

w ∗ w

(
Zj − Zk

h

)

− 2

nh

n∑
j=1

∫ ∞

−∞
w

(
t − Zj

h

)
g(t)dt +

∫ ∞

−∞
(g(t))2 dt,
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using that

1

h

∫ ∞

−∞
w

(
t − Zj

h

)
w

(
t − Zk

h

)
dt = w ∗ w

(
Zj − Zk

h

)

because w is symmetric. Here w∗w denotes the convolution of w with itself. From this it follows
that

nhVar[ISEn(h)]

= 1

n3h
Var

[∑
j �=k

w ∗ w

(
Zj − Zk

h

)
− 2n

n∑
j=1

∫ ∞

−∞
w

(
t − Zj

h

)
g(t)dt

]
. (4.11)

We study the variance of each term between the brackets in (4.11) separately. For the second
term we have

1

n3h
Var

[
2n

n∑
j=1

∫ ∞

−∞
w

(
t − Zj

h

)
g(t)dt

]

= 4

nh

n∑
j=1

Var

[∫ ∞

−∞
w

(
t − Zj

h

)
g(t)dt

]

= 4

h
Var

[∫ ∞

−∞
w

(
t − Z1

h

)
g(t)dt

]

≤ 4

h
E

[(∫ ∞

−∞
w

(
t − Z1

h

)
g(t)dt

)2]
. (4.12)

Through a change of the integration variable it is easily seen that

∫ ∞

−∞
w

(
t − Z1

h

)
g(t)dt = h

∫ ∞

−∞
w(u)g(uh + Z1)du

≤ hA

∫ ∞

−∞
|w(u)|du,

where we used the fact that g is bounded. Hence (4.12) vanishes as h → 0. Now we arrive at the
computation of the variance of the first term between the brackets in (4.11). We have

1

n3h
Var

[∑
j �=k

w ∗ w

(
Zj − Zk

h

)]

= 4

n3h
Var

[∑
j<k

w ∗ w

(
Zj − Zk

h

)]
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= 4

n3h

∑
i<j

∑
k<l

Cov

[
w ∗ w

(
Zi − Zj

h

)
,w ∗ w

(
Zk − Zl

h

)]
.

We have three possibilities:

1. i, j, k, l are distinct. Then, because of the independence, the corresponding covariances
are 0.

2. i = k, j = l. The number of such possibilities is of order n2 and because the covariances in
(4.12) are bounded (because the convolution w ∗w is bounded), the sum of such terms will
be of order n2.

3. The last possibility is that three indices out of four are distinct, for example, i = k, j �= l.

The number of such terms is of order n3. Thus we have to study the behaviour of for
example,

1

h
Cov

[
w ∗ w

(
Zi − Zj

h

)
,w ∗ w

(
Zi − Zl

h

)]
.

Writing out this covariance yields

1

h
Cov

[
w ∗ w

(
Zi − Zj

h

)
,w ∗ w

(
Zi − Zl

h

)]

= 1

h
E

[
w ∗ w

(
Zi − Zj

h

)
w ∗ w

(
Zi − Zl

h

)]

− 1

h

(
E

[
w ∗ w

(
Zi − Zj

h

)])2

≤ 1

h
E

[
w ∗ w

(
Zi − Zj

h

)
w ∗ w

(
Zi − Zl

h

)]
.

Note that because w is bounded, therefore w ∗ w is also bounded and it is sufficient to study the
behaviour of

1

h
E

[∣∣∣∣w ∗ w

(
Zi − Zj

h

)∣∣∣∣
]
. (4.13)

To do this, first note that Zi − Zj has density

m(x) =
∫ ∞

−∞
g(t − x)g(t)dt.

Using the change of variable formula and Fubini’s theorem, we see that (4.13) can be written as∫ ∞

−∞
1

h

∣∣∣∣w ∗ w

(
x

h

)∣∣∣∣m(x)dx =
∫ ∞

−∞

∫ ∞

−∞
1

h

∣∣∣∣w ∗ w

(
x

h

)∣∣∣∣g(t − x)g(t)dx dt.

Due to the fact that lim|u|→∞ |w(u)| = 0 and applying the dominated convergence theorem, we
conclude that this double integral converges to 0 as h → 0. Hence (4.11) tends to zero. Thus
Var[II] is indeed negligible in comparison to Var[I].
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Now we need to study (cf. (4.10))

Var

[
1

2πλ

∫ 1/h

−1/h

e−itxznh(t)dt 1[Jn≤δ]
]
.

Once again, applying the by now standard argument, instead of
∫ 1/h

−1/h
, we take

∫ ∞
−∞ and substi-

tute 1[Jn≤δ] with 1, because the error will be of a lower order than (nh)−1. Furthermore,

Var

[
1

2πλ

∫ ∞

−∞
e−itxznh(t)dt

]
= Var[Anh(x) + Bnh(x)],

where

Anh(x) = eλ − 1

2πλ

∫ ∞

−∞
e−itx(φemp(t)φw(ht) − φg(t)

)
dt = eλ − 1

λ

(
gnh(x) − g(x)

)
,

Bnh(x) = eλ − 1

2πλ

∫ ∞

−∞
e−itx(φemp(t)φw(ht) − φg(t)

)(
e−λφf (t) − 1

)
dt.

For the variance of gnh(x) we have the expansion

Var[gnh(x)] = 1

nh
g(x)

∫ ∞

−∞
(w(t))2 dt + o

(
1

nh

)
,

see Tsybakov ([16], Proposition 1.4).
We will show that the variance of Bnh(x) is of a smaller order than (nh)−1. Indeed,

nhVar[Bnh(x)] = nhVar

[
eλ − 1

2πλ

∫ ∞

−∞
e−itx

(
1

n

n∑
j=1

eitZj φw(ht)

)(
e−λφf (t) − 1

)
dt

]

= (eλ − 1)2

(2πλ)2
hVar

[∫ ∞

−∞
e−it (x−Z1)φw(ht)

(
e−λφf (t) − 1

)
dt

]
.

Now note that ∣∣∣∣
∫ ∞

−∞
e−it (x−Z1)φw(ht)

(
e−λφf (t) − 1

)
dt

∣∣∣∣ ≤
∫ ∞

−∞
∣∣e−λφf (t) − 1

∣∣dt

and that the right-hand side is finite thanks to the fact that φf (t) is integrable. Because we
have Var[ξ ] ≤ K2, for a random variable |ξ | bounded by a constant K , we conclude that
Var[Bnh(x)] = o( 1

nh
).

By combining all the intermediate results, we see that the leading term of the Var[f̂nh(x)] is

1

nh

(eλ − 1)2

λ2
g(x)

∫ ∞

−∞
(w(u))2 du
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and that the other terms are of lower order than (nh)−1. �

Proof of Proposition 2.3. The result follows immediately from the decomposition

MSE[f̂nh(x)] = Var[f̂nh(x)] + (bw(n,h, x))2

and Propositions 2.1 and 2.2. �

Proof of Theorem 2.1. The proof is based on repeated applications of Slutsky’s theorem (see
Serfling [14], Section 1.5.4); that is, we will show that we can separate a sequence that gives as-
ymptotic normality from our normalized sum and show that the remainder term converges to zero
in probability. Then Slutsky’s theorem will imply that the normalized sum is itself asymptotically
normal. Write

f̂nh(x) − f (x)√
Var[f̂nh(x)]

= f̂nh(x) − f (x)√
Var[f̂nh(x)]

1[Jn≤δ] + f̂nh(x) − f (x)√
Var[f̂nh(x)]

1[Jn>δ]. (4.14)

If we take n large and δ small, then

f̂nh(x) − f (x)√
Var[f̂nh(x)]

1[Jn≤δ] = fnh(x) − f (x)√
Var[f̂nh(x)]

1[Jn≤δ].

We treat the first term in (4.14). We have

fnh(x) − f (x)√
Var[f̂nh(x)]

1[Jn≤δ]

= 1√
Var[f̂nh(x)]

1[Jn≤δ]
(

1

2πλ

∫ 1/h

−1/h

e−itx Log
(
1 + znh(t)

)
dt

− 1

2π

∫ ∞

1/h

e−itxφf (t)dt − 1

2π

∫ −1/h

−∞
e−itxφf (t)dt

)

= 1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ 1/h

−1/h

e−itx Log
(
1 + znh(t)

)
dt

− 1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2π

∫ ∞

1/h

e−itxφf (t)dt

− 1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2π

∫ −1/h

−∞
e−itxφf (t)dt. (4.15)
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Let us denote the second and third expressions by I and II. We can write (4.15) as

1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ 1/h

−1/h

e−itx Log
(
1 + znh(t)

)
dt

− (I − E[I]) − (II − E[II]) − E[I] − E[II].

The second and third terms of this expression converge to zero in probability. This follows from
the application of Chebyshev’s inequality and the facts that

Var
[
1[Jn≤δ]

] = Var
[
1[Jn>δ]

] ≤ P(Jn > δ) ∼ e−Cn,

Var[f̂nh(x)] ∼ 1

nh
.

The application of Slutsky’s theorem shows that we can neglect them. Now we take a further step
and rewrite (4.15) as

1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ 1/h

−1/h

e−itxznh(t)dt

+ 1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ 1/h

−1/h

e−itxRnh(t)dt − E[I + II].

Denote the second term in this expression by III. Rewrite the above expression as

1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ 1/h

−1/h

e−itxznh(t)dt

+ (III − E[III]) − E[I + II − III].

Again, (III−E[III]) converges to zero in probability and, therefore, we can neglect it. After doing
so, we rewrite the above expression as

1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ ∞

−∞
e−itxznh(t)dt

− 1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ ∞

1/h

e−itxznh(t)dt

− 1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ −1/h

−∞
e−itxznh(t)dt − E[I + II − III].
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Denote the second and third terms in this expression by IV and V. Then we can write

1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ ∞

−∞
e−itxznh(t)dt

− (IV − E[IV]) − (V − E[V]) − E[I + II − III + IV + V].

There is nothing random in IV and V except 1[Jn≤δ]. Due to Chebyshev’s inequality, (IV−E[IV])
and (V − E[V]) converge to zero in probability and, therefore, can be neglected. We then have to
deal with (recall the definition of znh)

1√
Var[f̂nh(x)]

1[Jn≤δ]
eλ − λ

λ

(
gnh(x) − g(x)

)

+ (VI − E[VI]) − E[I + II − III + IV + V − VI],

where

VI ≡ 1√
Var[f̂nh(x)]

1[Jn≤δ]
1

2πλ

∫ ∞

−∞
e−itx(eλ − 1)

(
φgnh

(t) − φg(t)
)(

e−λφf (t) − 1
)

dt.

The argument from the proof of Proposition 2.2 shows that the variance of VI converges to zero
and, hence, by Chebyshev’s inequality, VI − E[VI] converges to zero in probability. Therefore,
we can neglect it. Thus we have

1√
Var[f̂nh(x)]

1[Jn≤δ]
eλ − λ

λ

(
gnh(x) − g(x)

)

− E[I + II − III + IV + V − VI].

Now rewrite this as

1√
Var[f̂nh(x)]

1[Jn≤δ]
eλ − λ

λ

(
gnh(x) − E[gnh(x)])

+ (VII − E[VII]) − E[I + II − III + IV + V − VI − VII], (4.16)

where

VII ≡ 1√
Var[f̂nh(x)]

1[Jn≤δ]
eλ − λ

λ

(
E[gnh(x)] − g(x)

)
.

Due to Chebyshev’s inequality, VII − E[VII] converges to zero in probability and, therefore,
can be neglected. The asymptotically normal term stems from the first term in (4.16), because
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1[Jn≤δ] → 1 in probability and because(
gnh(x) − E[gnh(x)]√

Var[gnh(x)]
)

D→ N(0,1),

which can be verified along the lines of pages 61–62 of Prakasa Rao [12] by checking Lyapunov’s
condition. It is easy to see that

E[I + II − III + IV + V − VI − VII] = E

[
fnh(x) − f (x)√

Var[f̂nh(x)]
1[Jn≤δ]

]
.

Adding the second term in (4.14) to this expression results in

bw(n,h, x)√
Var[f̂nh(x)]

+ f̂nh(x)1[Jn>δ] − E[f̂nh(x)1[Jn>δ]]√
Var[f̂nh(x)]

− f (x)1[Jn>δ] − E[f (x)1[Jn>δ]]√
Var[f̂nh(x)]

.

The first term goes to zero because we assume that nh2β+1 → 0. Two other terms converge
to zero in probability. Thus, thanks to Slutsky’s theorem, these terms can be neglected and we
establish the desired result. �

Proof of Theorem 2.2. Write

f̂nh(x) − E[f̂nh(x)]
= (

f̂nh(x) − f (x)
)
1[Jn≤δ] + (

f̂nh(x) − f (x)
)
1[Jn>δ] + (

f (x) − E[f̂nh(x)]).
Using the same type of arguments as in Theorem 2.1 (note that we will not need nh2β+1 → 0,
because the bias divided by the root of variance will be cancelled in intermediate computations),
we see that we have to deal with

eλ − 1

λ

gnh(x) − E[gnh(x)]√
Var[f̂nh(x)]

− f̂nh(x) − f (x)√
Var[f̂nh(x)]

1[Jn>δ]

− E[(f̂nh(x) − f (x))1[Jn>δ]]√
Var[f̂nh(x)]

.

The first term gives asymptotic normality, while the last two terms tend to zero in probability.
The application of Slutsky’s theorem yields the desired result. �
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