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Layered stable (multivariate) distributions and processes are defined and studied. A layered stable

process combines stable trends of two different indices, one of them possibly Gaussian. More

precisely, over short intervals it is close to a stable process, while over long intervals it approximates

another stable (possibly Gaussian) process. The absolute continuity of a layered stable process with

respect to its short-range limiting stable process is also investigated. A series representation of layered

stable processes is derived, giving insights into the structure both of the sample paths and of the short-

and long-range behaviours of the process. This series representation is further used for simulation of

sample paths.

Keywords: layered stable distributions and processes; Lévy processes; stable distributions and

processes;

1. Introduction and preliminaries

Stable processes form one of the simplest class of Lévy processes without Gaussian

component. They have been thoroughly by many in several fields, such

as statistical physics, queuing theory and mathematical finance. A major reason for their

attractiveness is the scaling property induced by the structure of the corresponding Lévy

measure. Sato (1999) and Samorodnitsky and Taqqu (1994) give many basic facts on

stable distributions and processes. Recent generalizations of stable processes can also be

found, for example, in Barndorff-Nielsen and Shepard (2002) and Rosiński (2004).

In the present paper, we introduce and study further generalizations which we call layered

stable. These are defined in terms of the structure of their Lévy measure whose radial

component behaves asymptotically as an inverse polynomial, of different orders, near zero

and at infinity. The inner and outer (stability) indices correspond respectively to these

orders of polynomial decay. This simple layering leads to the following properties: the

moment properties are determined by the outer index (Proposition 2.1), while the variational

properties depend on the inner index (Proposition 2.2). On the other hand, the inner and

outer indices also correspond to the short- and long-range behaviour of the sample paths.

Over short intervals, a layered stable process behaves like a stable one with the

corresponding inner index (Theorem 3.1). The long-range behaviour has two modes
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depending on the outer index. When the outer index is strictly less than 2, a layered stable

process is close to a stable process with this index, while it behaves like Brownian motion

if the outer index is strictly greater than 2 (Theorem 3.2). In relation to the short-time

behaviour, we also investigate the mutual absolute continuity of a layered stable process and

of its short-time limiting stable process (Theorem 4.1). A shot noise series representation

reveals the nature of layering and also gives direct insights into the properties of layered

stable processes. We present typical sample paths of a layered stable process, which are

simulated via the series representation, for various combinations of stability indices in order

to cover all the possible short- and long-time behaviours.

Let us begin with some general notation which will be used throughout the text. Rd is

the d-dimensional Euclidean space with norm k � k, Rd
0 :¼ Rdnf0g, B(Rd

0 ) is the Borel � -

field of Rd
0 , Sd�1 :¼ fz 2 Rd : kzk ¼ 1g. The symbol 9 is used to denote transpose, so

z9 ¼ (z1, . . . , zd) 2 Rd , while A9 is the transpose of the matrix A. We denote by k � ko the

operator norm of a linear transformation, so if A 2 Rd3d , then kAko ¼ supkxk<1kAxk.

f (x) � g(x) indicates that f (x)=g(x) ! 1, as x ! x0 2 [�1, 1], while f (x) � g(x) is used

to mean that there exist two positive constants c1 and c2 such that c1 g(x) < f (x) < c2 g(x),

for all x in an appropriate set. L(X ) is the law of the random vector X , while

¼L and !L denote respectively equality and convergence in distribution, or of the finite-

dimensional distributions when random processes are considered. Moreover, !d is used for

the weak convergence of random processes in the space D([0, 1), Rd) of cadlag functions

from [0, 1) into Rd equipped with the Skorokhod topology, while !v denotes convergence

in the vague topology. For any r . 0, Tr is a transformation of measures on Rd given, for

any positive measure r, by (Trr)(B) ¼ r(r�1B), B 2 B(Rd). PjF t
is the restriction of a

probability measure P to the � -field F t, while ˜X t denotes the jump of X at time t, that

is, ˜X t :¼ X t � X t�. Finally, all multivariate or matrix integrals are defined component-

wise.

Recall that an infinitely divisible probability measure � on Rd , without Gaussian

component, is called stable if its Lévy measure is given by

�(B) ¼
ð
Sd�1

� (d�)

ð1
0

1B(r�)
dr

r1þÆ
, B 2 B(Rd

0 ),

where Æ 2 (0, 2) is the stability index and � is a finite positive measure on Sd�1. It is well

known that the characteristic function of � is given by

b��(y) ¼ exp ihy, �i þ
ð
Rd

0

(eih y,zi � 1 � ihy, zi1fkzk<1g(z))�Æ(dz)

" #
(1:1)

¼

exp ihy, �Æi � cÆ

ð
Sd�1

jhy, �ijÆ 1 � i tan
�Æ

2
sgnhy, �i

� �
� (d�)

� �
, if Æ 6¼ 1,

exp ihy, �1i � c1

ð
Sd�1

jhy, �ij þ i
2

�
hy, �ilnjhy, �ij

� �
� (d�)

� �
, if Æ ¼ 1,

8>>>>><>>>>>:
for some � 2 Rd , where cÆ ¼ jˆ(�Æ)cos(�Æ=2)j when Æ 6¼ 1 c1 ¼ �=2,and while
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�Æ ¼ �� (1 � Æ)�1
Ð
Sd�1 �� (d�) when Æ 6¼ 1 and �1 ¼ �� (1 � ª)

Ð
Sd�1 �� (d�),

ª (¼ 0:5772 . . .) being the Euler constant. A Lévy process fX t : t > 0g such that

L(X1) � � is called a stable process. Stable processes enjoy the self-similarity property,

that is, for any a . 0,

fXat : t > 0g¼Lfa1=ÆX t þ bt : t > 0g,

for some b 2 Rd . Next, we recall a shot noise series representation of stable processes on a

fixed finite horizon [0, T ], T . 0. Related results can be found, for example, in Theorem

1.4.5 of Samorodnitsky and Taqqu (1994). The centring constants given below are obtained in

Proposition 5.5 of Rosiński (2004).

Lemma 1.1. Let T . 0. Let fTigi>1 be a sequence of independent and identically distributed

(i.i.d.) uniform random variables on [0, T ], let f îgi>1 be the arrival times of a standard

Poisson process, and let fVigi>1 a sequence of i.i.d. random vectors in Sd�1 with common

distribution � (d�)=� (Sd�1). Also let

z0 ¼
0, if Æ 2 (0, 1),ð
Sd�1

�� (d�)

� (Sd�1)
, if Æ 2 [1, 2),

8><>:
and

bT ¼

0, if Æ 2 (0, 1),

� (Sd�1)T (ªþ ln(� (Sd�1)T )), if Æ ¼ 1,

Æ

� (Sd�1)T

� ��1=Æ

� 1
Æ

� �
, if Æ 2 (1, 2),

8>>>><>>>>:
where � denotes the Riemann zeta function. Then the stochastic process

X1
i¼1

Æ î

� (Sd�1)T

� ��1=Æ

Vi1(Ti < t) � Æi

� (Sd�1)T

� ��1=Æ

z0

t

T

" #
þ bT z0

t

T
: t 2 [0, T ]

( )
,

converges almost surely uniformly in t to an Æ-stable process fX t : t 2 [0, T ]g satisfying

E[eih y,XT i] ¼ �̂�(y)T , where �̂� is given by (1.1) with

� ¼
1

1 � Æ

ð
Sd�1

�� (d�), if Æ 6¼ 1,

0, if Æ ¼ 1:

8<:
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2. Definition and basic properties

its Lévy measure in polar coordinates.

Definition 2.1. On Rd, let � be an infinitely divisible probability measure without Gaussian

component. Then � is called layered stable if its Lévy measure on Rd
0 is given by

�(B) ¼
ð
Sd�1

� (d�)

ð1
0

1B(r�)q(r, �)dr, B 2 B(Rd
0 ), (2:1)

where � is a finite positive measure on Sd�1, and q is a locally integrable function from

(0, 1) 3 Sd�1 to (0, 1) such that as r ! 0,

q(r, �) � c1(�)r�Æ�1, (2:2)

and as r ! 1,

q(r, �) � c2(�)r�	�1, (2:3)

for � -almost every � 2 Sd�1, where c1 and c2 are positive, integrable (with respect to � )

functions on Sd�1, and where (Æ, 	) 2 (0, 2) 3 (0, 1).

Let us call q(�, �) the q-function of � or of its Lévy measure �. Clearly, � is well defined

as a Lévy measure since it behaves like an Æ-stable Lévy measure near the origin while

decaying like a 	-Pareto density when sufficiently far away from the origin. Moreover, Æ
and 	 are respectively called the inner and outer (stability) index of � or of �.

For convenience, we henceforth denote by �1 and �2 the finite positive measures on Sd�1

defined respectively by

�1(B) :¼
ð
B

c1(�)� (d�), B 2 B(Sd�1), (2:4)

and

�2(B) :¼
ð
B

c2(�)� (d�), B 2 B(Sd�1), (2:5)

and by �Æ
� the positive measure on Rd

0 given by

�Æ
� (B) :¼

ð
Sd�1

� (d�)

ð1
0

1B(r�)
dr

rÆþ1
, B 2 B(Rd

0 ), (2:6)

where Æ 2 (0, 1) and � is a finite positive measure on Sd�1. Note that if Æ 2 (0, 2), �Æ
� is

simply an Æ-stable Lévy measure, while it is not well defined as a Lévy measure when Æ > 2.

Example 2.1. The following example of a layered stable Lévy measure is simple, yet

interesting:

a layered stable multivariate distribution by making precise

the structure of

We begin with  the definition of
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�(B) ¼
ð
B

1fkzk<1g(z)�
Æ
� (dz) þ

ð
B

1fkzk.1g(z)�
	
� (dz)

¼
ð
Sd�1

� (d�)

ð1
0

1B(r�)
dr

rÆþ11(0,1](r) þ r	þ11(1,1)(r)
, B 2 B(Rd

0 ): (2:7)

Its q-function is given by

q(r, �) ¼ r�Æ�11(0,1](r) þ r�	�11(1,1)(r), � 2 Sd�1,

which is independent of �. The measure � consists of two disjoint domains of stability, and

this construction results in two layers for the radial component associated with each

respective stability index. The name ‘layered stable’ originates from this special structure.

Recall that an infinitely divisible probability measure � on Rd is said to be of class L0,

or self-decomposable, if, for any b . 1, there exists a probability measure æb such thatb��(z) ¼ b��(b�1z) bæbæb(z). Equivalently, the Lévy measure of � has the formð
Sd�1

� (d�)

ð1
0

1B(r�)k�(r)
dr

r
, B 2 B(Rd

0 ),

where � is a finite positive measure on Sd�1 and k�(r) is a non-negative function measurable

in � 2 Sd�1 and decreasing in r . 0. Clearly, the Lévy measure (2.7) induces a self-

decomposable measure. Moreover, the classes Lm, m ¼ 1, 2, . . . , are defined recursively as

follows: � 2 Lm if, for every b . 1, there exists æb 2 Lm�1 such that b��(z) ¼ b��(b�1z) bæbæb(z). It

is then also clear that L0 � L1 � L2 � . . .. Let h�(u) :¼ k�(e�u), be the so-called h-function

of �, or of its Lévy measure. Then, alternatively, � 2 L0 is shown to be in Lm if and only if

h�(u) 2 Cm�1 and h( j) > 0, for j ¼ 0, 1, . . . , m� 1; see Sato (1980) for more details. The h-

function of the Lévy measure (2.7) is given by

h�(u) ¼ eÆu1(0,1)(u) þ e	u1(�1,0](u),

which is in C0 but not in C1. Therefore, the infinitely divisible probability measure induced

by (2.7) is in L1 but not in L2.

The following result asserts that layered stable distributions have the same probability tail

behaviour as 	-Pareto distributions, or 	-stable distributions if 	 2 (0, 2).

Proposition 2.1 (Moments). Let � be a layered stable distribution with Lévy measure � given

by (2.1) and let �2 be the measure given by (2.5). If �2(Sd�1) 6¼ 0, thenð
Rd

kxk p�(dx)
, þ1, p 2 (0, 	),

¼ þ1, p 2 [	, 1):

(
Moreover,

Ð
Rd kxk p�(dx) , 1, p > 	, and

Ð
Rd eŁkxk�(dx) , 1, Ł . 0, if and only if

�2(Sd�1) ¼ 0.

Proof. By Theorem 25.3 of Sato (1999), it is enough to show that the restriction of � to the

set fz 2 Rd
0 : kzk . 1g has the corresponding moment properties.
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First, assume that �2(Sd�1) 6¼ 0. Observe that
Ð
kzk.1

kzk p�(dz) ¼
Ð
Sd�1 � (d�)

Ð1
1

r pq(r, �)dr, and then by (2.3), the right-hand side is bounded from above and below by

constant multiples of �2(Sd�1)
Ð1

1
r pdr=r	þ1, if p 2 (0, 	), while it is otherwise clearly

infinite.

Next, assume that �2(Sd�1) ¼ 0 and let p 2 [	, 1). Then there exists M . 0 such thatÐ
kzk.1

kzk p�(dz) �
Ð
Sd�1 � (d�)

Ð M
1

r pq(r, �)dr and
Ð
kzk.1

eŁkzk�(dz) �
Ð
Sd�1 � (d�)

Ð M
1

eŁr 3

q(r, �)dr. Conversely, if �2(Sd�1) 6¼ 0 and p 2 [	, 1), then
Ð
kzk.1

kzk p�(dz) ¼ þ1 as

already shown and, once again, by (2.3),
Ð
kzk.1

eŁkzk�(dz) ¼
Ð
Sd�1 � (d�)

Ð1
1

eŁrq(r, �)dr

¼ þ1. h

Let us define the associated Lévy processes.

Definition 2.2. A Lévy process, without Gaussian component, is called layered stable if its

Lévy measure is given by (2.1).

Henceforth, fX LS
t : t > 0g denotes a layered stable process in Rd . Its characteristic

function at time 1 is given by

E[eih y,X LS
1
i] ¼ exp ihy, �i þ

ð
Rd

0

(eih y,zi � 1 � ihy, zi1fkzk<1g(z))�(dz)

" #
, (2:8)

where � is the Lévy measure given by (2.1) and � 2 Rd . For convenience of notation, we

write fX LS
t : t > 0g � LSÆ,	(� , q; �) when (2.8) holds. Similarly, for Æ 2 (0, 2),

fX (Æ)
t : t > 0g denotes an Æ-stable Lévy process. Its characteristic function at time 1 is

given by

E[eih y,X
(Æ)

1
i] ¼

exp ihy, �i þ
ð
Rd

0

(eih y,zi � 1)�Æ
� (dz)

" #
, if Æ 2 (0, 1),

exp ihy, �i þ
ð
Rd

0

(eih y,zi � 1 � ihy, zi1fkzk<1g(z))�1
� (dz)

" #
, if Æ ¼ 1,

exp ihy, �i þ
ð
Rd

0

(eih y,zi � 1 � ihy, zi)�Æ
� (dz)

" #
, if Æ 2 (1, 2),

8>>>>>>>>>>><>>>>>>>>>>>:
(2:9)

where �Æ
� is given by (2.6), and we write fX (Æ)

t : t > 0g � SÆ(� ; �) when (2.9) holds.

Recall that a stochastic process fX t : t 2 [0, T ]g is said to have almost surely finite pth

variation if

P sup
�2P

X
t i2�

kX ti � X ti�1
k p , 1

 !
¼ 1,

where P is the set of all the finite partitions � of [0, T ], of the form 0 ¼ t0
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< t1 < . . . < t n�1 < tn ¼ T , n > 1. A layered stable process shares the variational

properties of a stable process with inner index Æ.

Proposition 2.2 (pth variation). Let X :¼ fX LS
t : t > 0g � LSÆ,	(� , q; �).

(i) If �1(Sd�1) . 0, then X has almost surely finite first variation on every interval

of positive length if and only if Æ 2 (0, 1).

(ii) If �1(Sd�1) . 0, (Æ, 	) 2 [1, 2) 3 (1, 1) and � ¼ �
Ð
Sd�1 �� (d�)

Ð1
1

rq(r, �)dr,

then X has almost surely finite pth variation on every interval of positive length

if and only if p . Æ.

(iii) If �1(Sd�1) ¼ 0, then X has almost surely finite first variation on every interval

of positive length.

Proof. (i) Recall that, near the origin, the radial component of the layered stable Lévy

measure behaves like an Æ-stable Lévy measure. The first claim then follows immediately

from Theorem 3 of Gikhman and Skorokhod (1969).

(ii) Since X is now centred, III b of Bretagnolle (1972) directly applies.

(iii) Letting � be the Lévy measure of X , there exists 
 2 (0, 1) such that

�(fz 2 Rd
0 : kzk < 
g) , þ1 and so

Ð
kzk<1

kzk p�(dz) , þ1, p > 1. As in (i), the result

follows from Theorem 3 of Gikhman and Skorokhod (1969). h

Let us now consider a series representation for a general layered stable process

fX LS
t : t > 0g � LSÆ,	(� , q; 0). Fix T . 0. Let fTigi>1 be a sequence of i.i.d. uniform

random variables on [0, T ], let f îgi>1 be Poisson arrivals with rate 1, and let fVigi>1 be a

sequence of i.i.d. random vectors in Sd�1 with common distribution � (d�)=� (Sd�1).

Assume, moreover, that the random sequences fTigi>1, f îgi>1, and fVigi>1 are all

mutually independent. Also, let

Qq(u, �) :¼ inf r . 0 : � (Sd�1)

ð1
r

q(s, �)ds , u

	 

,

and let fbigi>1 be a sequence of constants given by

bi ¼
ð i
i�1

E Qq
s

T ,
V1

� �
V11 Qq

s

T ,
V1

� �
< 1

� �� �
ds:

Then, by Theorem 5.1 of Rosiński (2001), the stochastic process

X1
i¼1

Qq î

T ,
Vi

� �
Vi1(Ti < t) � bi

t

T

� �
: t 2 [0, T ]

( )
, (2:10)

converges almost surely uniformly in t to a Lévy process whose marginal law at time 1 is

LSÆ,	(� , q; 0).

Example 2.2. The Lévy measure (2.7) leads to a highly illustrative series representation.

Indeed,
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Qq(r, �) ¼ 	r

� (Sd�1)

� ��1=	

1(0,� (Sd�1)=	](r) þ
Ær

� (Sd�1)
þ 1 � Æ

	

� ��1=Æ

1(� (Sd�1)=	,1)(r),

and so the stochastic process

X1
i¼1

	 î

� (Sd�1)T

� ��1=	

1(0,� (Sd�1)T=	]( î)

 "(

þ Æ î

� (Sd�1)T
þ 1 � Æ

	

� ��1=Æ

1(� (Sd�1)T=	,1)( î)

!
Vi1(Ti < t) � biz0

t

T

#
: t 2 [0, T ]

)
, (2:11)

where

bi ¼
	

� (Sd�1)T

� ��1=	
(i ^ � (Sd�1)T=	)1�1=	 � ((i� 1) ^ � (Sd�1)T=	)1�1=	

1 � 1=	
,

converges almost surely uniformly in t to a Lévy process whose marginal law at time 1 is

LSÆ,	(� , q; 0), with z0 ¼
Ð
Sd�1 �� (d�)=� (Sd�1). This series representation directly reveals

the nature of the layering; all the jumps with absolute size greater than 1 are due to the 	-

stable shot noise (	 î=� (Sd�1))�1=	Vi, while smaller jumps come from the terms

(Æ î=� (Sd�1) þ 1 � Æ=	)�1=ÆVi, whose jump size is very close to the Æ-stable shot noise

when î is sufficiently large.

3. Short- and long-range behaviour

We now present the first main result of this section by giving the short-range behaviour of a

layered stable process. The results of this section were motivated by Section 3 of Rosiński

(2004). Recall that �1 and �2 are the finite positive measures respectively given in (2.4) and

(2.5), and that, for any r . 0, Tr transforms the positive measure r via (Trr)(B) ¼
r(r�1B), B 2 B(Rd). For convenience, we will use, throughout this section, the notation

�Æ,	
� ,q for the Lévy measure of a layered stable process LSÆ,	(� , q; �).

Theorem 3.1 (Short-range behaviour). Let fX LS
t : t > 0g � LSÆ,	(� , q; 0), let

�Æ,	 ¼

ð
Sd�1

�� (d�)

ð1

0

rq(r, �)dr, if Æ 2 (0, 1),

�
ð
Sd�1

�� (d�)

ð1
1

rq(r, �)dr, if (Æ, 	) 2 (1, 2) 3 (1, 1),

0, otherwise,

8>>>>>><>>>>>>:
and let
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bÆ,	 ¼
1

Æ� 1

ð
Sd�1

��1(d�), if (Æ, 	) 2 (1, 2) 3 (0, 1],

0, otherwise:

8<:
Then, as h ! 0, h . 0,

fh�1=Æ(X LS
ht þ ht�Æ,	) � tbÆ,	 : t > 0g!d fX (Æ)

t : t > 0g,

where fX (Æ)
t : t > 0g � SÆ(�1; 0).

Proof. Since a layered stable process is a Lévy process, by a theorem of Skorokhod (see

Theorem 15.17 of Kallenberg 2002), it suffices to show the weak convergence of its

marginals at time 1. To this end, we will show the proper convergence of the generating

triplet of the infinitely divisible law, following Theorem 15.14 of Kallenberg (2002).

For the convergence of the Lévy measure, we need to show that as h ! 0,

h(Th�1=Æ�Æ,	
� ,q)!v �Æ

� 1
,

or equivalently that

lim
h!0

ð
Rd

0

f (z)h(Th�1=Æ�Æ,	
� ,q)(dz) ¼

ð
Rd

0

f (z)�Æ
� 1

(dz),

for all bounded continuous functions f : Rd
0 ! R vanishing in a neighbourhood of the origin.

Let f be such a function with j f j < C , 1 and f (z) � 0 on fz 2 Rd
0 : kzk < 
g, for some


 . 0; then by (2.2) we obtainð
Rd

0

f (z)h(Th�1=Æ�Æ,	
� ,q)(dz) ¼ h

ð
Sd�1

� (d�)

ð1
0

f (h�1=Æ r�)q(r, �)dr

!
ð
Sd�1

c1(�)� (d�)

ð1
0

f (r�)
dr

rÆþ1
,

as h ! 0, where the last convergence is justified as follows. For h 2 (0, 1), we have

h

ð
Sd�1

� (d�)

ð1
0

f (h�1=Æ r�)q(r, �)dr

¼ h

ð
Sd�1

� (d�)

ð

h1=Æ


f (h�1=Æ r�)q(r, �)dr þ h

ð
Sd�1

� (d�)

ð1



f (h�1=Æ r�)q(r, �)dr:

Since j f j < C, and since the function q is locally integrable, that is, integrable over any

compact subset of (0, 1) 3 Sd�1, condition (2.3) ensures that the second iterated integral

above is bounded independently of h. Hence, as h ! 0, the second term above goes to zero.

For the first term, note that the conditions on q and f ensure that

lim
h!0

h

ð

h1=Æ


f (h�1=Æ r�)q(r, �)dr ¼
ð1



f (r�)c1(�)
dr

rÆþ1
,
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for � -almost every � 2 Sd�1, and then dominated convergence allows us to conclude.

Next, the convergence of the Gaussian component holds since, for each k . 0,

ð
kzk<k

zz9h(Th�1=Æ�Æ,	
� ,q)(dz) ¼

ð
Sd�1

��9� (d�)

ð h1=Æk

0

r2h1�2=Æq(r, �)dr

¼
ð
Sd�1

��9� (d�)

ðk
0

r2h1þ1=Æq(h1=Æ r, �)dr

!
ð
Sd�1

��9�1(d�)

ðk
0

r2 dr

rÆþ1
¼
ð
kzk<k

zz9�Æ
� 1

(dz),

as h ! 0. The passage to the limit is justified here by dominated convergence, since

condition (2.2) ensures that

lim
h!0

ðk
0

r2h1þ1=Æq(h1=Æ r, �)dr ¼ c1(�)

ðk
0

r2 dr

rÆþ1
,

for � -almost every � 2 Sd�1, and since, moreover, for sufficiently small h,

�����
ð
Sd�1

��9� (d�)

ðk
0

r2h1þ1=Æq(h1=Æ r, �)d r

�����
o

<
2k2�Æ

2 � Æ

�����
ð
Sd�1

��9�1(d�)

�����
o

, þ1:

For the convergence of the drift part, assume first that (Æ, 	) =2 (1, 2) 3 (0, 1]. For a � -

finite positive measure � on Rd
0 , let

CÆ(�) :¼

ð
kzk<1

z�(dz), if Æ 2 (0, 1),

0, if Æ ¼ 1,

�
ð
kzk.1

z�(dz), if Æ 2 (1, 2):

8>>>>>><>>>>>>:
(3:1)

Clearly �Æ,	 ¼ CÆ(�Æ,	
� ,q), and we show that for each k . 0, as h ! 0,

CÆ(h(Th�1=Æ�Æ,	
� ,q)) �

ð
k,kzk<1

zh(Th�1=Æ�Æ,	
� ,q)(dz) ! CÆ(�Æ

� 1
) �
ð
k,kzk<1

z�Æ
� 1

(dz),

where the integral
Ð
k,kzk< is understood to be �

Ð
1,kzk<k when k . 1. We have
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CÆ(h(Th�1=Æ�Æ,	
� ,q)) �

ð
k,kzk<1

zh(Th�1=Æ�Æ,	
� ,q)(dz)

¼

ð
Sd�1

�� (d�)

ð h1=Æk

0

rh1�1=Æq(r, �)dr, if Æ 2 (0, 1),

ð
Sd�1

�� (d�)

ð h
hk
rq(r, �)dr, if Æ ¼ 1,

ð
Sd�1

�� (d�)

ð1
h1=Æk

rh1�1=Æq(r, �)dr, if Æ 2 (1, 2),

8>>>>>>>>>>>><>>>>>>>>>>>>:
and it remains to show that, as h ! 0, each term above converges respectively toð

Sd�1

��1(d�)

ðk
0

r
dr

rÆþ1
, if Æ 2 (0, 1),ð

Sd�1

��1(d�)

ð1

k
r

dr

r2
, if Æ ¼ 1,ð

Sd�1

��1(d�)

ð1
k
r

dr

rÆþ1
, if Æ 2 (1, 2):

8>>>>>>>><>>>>>>>>:
First, for Æ 2 (0, 1),

h1�1=Æ

ð h1=Æk

0

rq(r, �)dr ¼
ðk

0

rh1þ1=Æq(h1=Æ r, �)dr ! c1(�)

ðk
0

r
dr

rÆþ1
,

while, for Æ ¼ 1, ð h
hk
rq(r, �)dr ¼

ð1

k
rh2q(hr, �)dr ! c1(�)

ð1

k
r

dr

r2
,

making use of the conditions on q. Next, for Æ 2 (1, 2), and for h 2 (0, 1),

h1�1=Æ

ð1
h1=Æk

rq(r, �)dr ¼ h1�1=Æ

ð1
k
rq(r, �)dr þ h1�1=Æ

ðk
h1=Æk

rq(r, �)dr:

The first integral on the right-hand side is bounded independently of h (by the conditions on

q and since 	 2 (1, 1)), and thus the corresponding first term converges to zero with h. For

the second integral,

h1�1=Æ

ðk
h1=Æk

rq(r, �)dr ¼
ð h�1=Æk

k
rh1þ1=Æq(h1=Æ r, �)dr ! c1(�)

ð1
k
r

dr

rÆþ1
, þ1,

where the conditions on q justify the convergence. Finally, assume (Æ, 	) 2 (1, 2) 3 (0, 1].

Then, for each k . 0, as h ! 0,
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ð
k,kzk<1

zh(Th�1=Æ�Æ,	
� ,q)(dz) ¼

ð
Sd�1

�� (d�)

ð1

k
rh1þ1=Æq(h1=Æ r, �)dr !

ð
Sd�1

��1(d�)

ð1

k
r

dr

rÆþ1
,

where the convergence can be justified as before, and we thus obtain,

�bÆ,	 �
ð
k,kzk<1

zh(Th�1=Æ�Æ,	
� ,q)(dz) ! �

ð
kzk.k

z�Æ
� 1

(dz),

which completes the proof. h

Our next result is also of importance. Unlike the short-range behaviour, the long-range

behaviour of a layered stable process depends on its outer stability index 	. This behaviour

is akin to a 	-stable process if 	 2 (0, 2), and to a Brownian motion if 	 2 (2, 1).

Theorem 3.2 (Long-range behaviour). Let fX LS
t : t > 0g � LSÆ,	(� , q; 0).

(i) Let 	 2 (0, 2), let

�Æ,	 ¼

ð
Sd�1

�� (d�)

ð1

0

rq(r, �)dr, if (Æ, 	) 2 (0, 1) 3 (0, 1),

�
ð
Sd�1

�� (d�)

ð1
1

rq(r, �)dr, if 	 2 (1, 2),

0, otherwise,

8>>>>>><>>>>>>:
and let

bÆ,	 ¼
1

1 � 	

ð
Sd�1

��2(d�), if (Æ, 	) 2 [1, 2) 3 (0, 1),

0, otherwise:

8<:
Then, as h ! þ1,

fh�1=	(X LS
ht þ ht�Æ,	) þ tbÆ,	 : t > 0gfX (	)

t : t > 0g,

where fX (	)
t : t > 0g � S	(�2; 0).

(ii) Let 	 2 (2, 1) and let

� ¼ �
ð
Sd�1

�� (d�)

ð1
1

rq(r, �)dr: (3:2)

Then, as h ! þ1,

fh�1=2(X LS
ht þ ht�) : t > 0gfWt : t > 0g, (3:3)

where fWt : t > 0g is a centred Brownian motion with covariance matrix
Ð
Rd

0
zz9�Æ,	

� ,q(dz).

Proof. Claim (i) can be proved similarly to Theorem 3.1. For the convergence of the Lévy

measure, we will show that
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lim
h!1

ð
Rd

0

f (z)h(Th�1=	�Æ,	
� ,q)(dz) ¼

ð
Rd

0

f (z)�	
� 2

(dz),

for all bounded continuous functions f : Rd
0 ! R vanishing in a neighbourhood of the origin.

Let f be such a function with j f j < C , 1 and f (z) � 0 on fz 2 Rd
0 : kzk < 
g, for some


 . 0; then by (2.3) we obtainð
Rd

0

f (z)h(Th�1=	�Æ,	
� ,q)(dz) ¼

ð
Sd�1

� (d�)

ð1
0

f (r�)h1þ1=	q(h1=	 r, �)dr

!
ð
Sd�1

c2(�)� (d�)

ð1
0

f (r�)
dr

r	þ1
,

as h ! 1, where the passage to the limit is, again, justified by dominated convergence with

the conditions on q and f .

For the convergence of the Gaussian component, we have, as h ! 1 and for each k . 0,ð
kzk<k

zz9h(Th�1=	�Æ,	
� ,q)(dz) ¼

ð
Sd�1

��9� (d�)

ðk
0

r2h1þ1=	q(h1=	 r, �)dr

!
ð
Sd�1

��9�2(d�)

ðk
0

r2 dr

r	þ1
¼
ð
kzk<k

zz9�	
� 2

(dz),

where the limit is obtained as in Theorem 3.1, making use of condition (2.3).

Finally, we prove the convergence of the drift part. Assume first that

(Æ, 	) =2 [1, 2) 3 (0, 1). Let C	(�) be the defined as in (3.1), but with 	 replacing Æ.

Clearly �Æ,	 ¼ C	(�Æ,	
� ,q). We then show that for each k . 0, as h ! 1,

C	(h(Th�1=	�Æ,	
� ,q)) �

ð
k,kzk<1

zh(Th�1=	�Æ,	
� ,q)(dz) ! C	(�	

� 2
) �
ð
k,kzk<1

z�	
� 2

(dz),

where the integral
Ð
k,kzk<1

is again understood to be �
Ð

1,kzk<k when k . 1. As in Theorem

3.1, we obtain, as h ! 1,

C	(h(Th�1=	�Æ,	
� ,q)) �

ð
k,kzk<1

zh(Th�1=	�Æ,	
� ,q)(dz) !

ð
Sd�1

��2(d�)

ðk
0

r
dr

r	þ1
, if 	 2 (0, 1),ð

Sd�1

��2(d�)

ð1

k
r

dr

r2
, if 	 ¼ 1,ð

Sd�1

��2(d�)

ð1
k

r
dr

r	þ1
, if 	 2 (1, 2):

8>>>>>>>><>>>>>>>>:
Next, let (Æ, 	) 2 [1, 2) 3 (0, 1). Then observe that, for each k . 0 and as h ! 1,

�bÆ,	 �
ð
k,kzk<1

zh(Th�1=Æ�Æ,	
� ,q)(dz) ! �

ð
kzk.k

z�Æ
� 1

(dz),

where the convergence holds true as before. This completes the proof of (i).

(ii) The random vector h�1=2X LS
h is infinitely divisible with generating triplet
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�
ð
kzk>1

zh(Th�1=2�Æ,	
� ,q)(dz), 0, (Th�1=2�Æ,	

� ,q)

 !
:

We first prove the vague convergence, to zero, of the Lévy measure h(Th�1=2�Æ,	
� ,q). Let f be a

bounded continuous function from Rd
0 to R such that j f j < C , 1 and f (z) � 0 on

fz 2 Rd : kzk < 
g, for some 
 . 0. Then, as h ! 1,

h	=2�1

ð
Rd

0

f (z)h(Th�1=2�Æ,	
� ,q)(dz) ¼

ð
Sd�1

� (d�)

ð1



f (r�)h	=2þ1=2q(h1=2 r, �)dr

!
ð
Sd�1

� (d�)

ð1



f (r�)
dr

r	þ1
,

where the conditions on q and f ensure the passage to the limit. Since 	 . 2, we conclude

that, as h ! 1, h(Th�1=2�Æ,	
� ,q)!

v
0.

For the convergence of the Gaussian component, we have, as h ! þ1 and for each

k . 0, ð
kzk<k

zz9h(Th�1=2�Æ,	
� ,q)(dz) ¼

ð
kzk<h1=2k

zz9�Æ,	
� ,q(dz) !

ð
Rd

0

zz9�Æ,	
� ,q(dz), (3:4)

which is clearly well defined since
Ð
Rd

0
kzk2�Æ,	

� ,q(dz) , 1. Finally, writeð
kzk.k

zh(Th�1=2�Æ,	
� ,q)(dz) ¼

ð
Sd�1

�� (d�)

ð1
k

rh3=2q(h1=2 r, �)dr, (3:5)

and with the conditions imposed on q, the dominated convergence theorem ensures that, as

h ! 1,

h	=2�1

ð1
k

rh3=2q(h1=2 r, �)dr ! c2(�)

ð1
k

r
dr

r	þ1
: (3:6)

Since 	 . 2, the convergence of the drift term is proved. h

For 	 ¼ 2, layered stable processes do not seem to possess any nice long-range property,

and this can be seen from the improper convergence of the Lévy measure, that is, as

h ! 1, h(Th�1=2�Æ,2
� ,q) converges vaguely toð

Sd�1

�2(d�)

ð1
0

1B(r�)
dr

r2þ1
, B 2 B(Rd

0 ),

which is not well defined as a Lévy measure. However, additional assumptions on �2 lead to

the weak convergence towards a Brownian motion as 	 approaches 2.

Proposition 3.3. Let fX LS
t : t > 0g � LSÆ,	(� , q; 0) in Rd .

(i) Let 	 2 (1, 2) and let � ¼ �
Ð
Sd�1 �� (d�)

Ð1
1

rq(r, �)dr. If �2 is uniform on Sd�1 such

that �2(Sd�1) ¼ d(2 � 	), then
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fh�1=	(X LS
ht þ ht�) : t > 0g !d fWt : t > 0g, as h ! 1, 	"2,

where fWt : t > 0g is a d-dimensional (centred) standard Brownian motion. (Here, the limit

is taken over h ! 1 first.)

(ii) Let 	 2 (2, 1) and let � be the constant defined in (3.2). If �2 is symmetric such that

�2(Sd�1) ¼ 	� 2, then

fh�1=2(X LS
ht þ ht�) : t > 0g !d fWt : t > 0g, as h ! 1, 	#2,

where fWt : t > 0g is a centred Brownian motion with covariance matrix
Ð
Rd

0
zz9�Æ,2

� ,q(dz).

(Here, the limit can be taken either over h ! 1 or over 	#2 first.)

Proof. (i) By Theorem 3.1, h�1=	(X LS
h þ h�)!L X

(	)
1 , as h ! 1, where fX (	)

t : t > 0g
� S	(�2; 0). Then, by E.18.8–18.9 of Sato (1999), we obtain E[eih y,X

(	)

1
i] ¼ exp[�c	,dkyk	],

where

c	,d ¼ ˆ(d=2)ˆ((2 � 	)=2)

2		ˆ((	þ d)=2)
�2(Sd�1):

Taking 	"2 and since ˆ(xþ 1) ¼ xˆ(x), x . 0, we obtain the result.

(ii) The vague convergence, to zero, of the Lévy measure h(Th�1=2�Æ,	
� ,q) can be proved just

as in Theorem 3.2(ii). Next, in view of (3.5)–(3.6), we have

lim
h!1

h	=2�1

�����
ð
kzk.k

zh(Th�1=2�Æ,	
� ,q)(dz)

����� ¼ k1�	

	� 1

�����
ð
Sd�1

��2(d�)

����� ¼ 0,

where the last equality holds by the symmetry of �2. Since 	 . 2, we obtain

lim
h!1

�����
ð
kzk.k

zh(Th�1=2�Æ,	
� ,q)(dz)

����� ¼ 0,

which proves the convergence of the drift component. Finally, in view of (3.4), we haveð
Rd

0

kzk2�Æ,	
� ,q(dz) ¼

ð
Sd�1

� (d�)

ð1
0

r2q(r, �)dr , 1,

using the conditions on q and since 	 . 2. The proof is complete. h

Remark 3.1. The short-range behaviour (Theorem 3.1) and the (non-Gaussian) long-range

behaviour (Theorem 3.2(i)) can also be inferred from the series representation (2.10). For

Letting X t :¼P1
i¼1Qq( î=T , Vi)Vi1(Ti < ), we have

h�1=ÆX ht ¼
X1
i¼1

h�1=ÆQq î

hT
, Vi

� �
Vi1(hTi < ht),

and so, for each u . 0 and each � 2 Sd�1 such that c1(�) 2 [0, 1), bounded convergence

gives

           .simplicity, consider the symmetric case  and  only  the  short-range  behaviour
t
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h�1=ÆQq(h�1u, �) ¼ h�1=Æinf r . 0 : � (Sd�1)

ð1
r

q(s, �)ds , h�1u

	 


¼ inf r . 0 : � (Sd�1)

ð1
r

h1þ1=Æq(h1=Æs, �)ds , u

	 


! inf r . 0 : c1(�)� (Sd�1)

ð1
r

s�Æ�1ds , u

	 

¼ Æu

c1(�)� (Sd�1)

� ��1=Æ

,

as h ! 0, which is indeed an Æ-stable shot noise.

4. Absolute continuity with respect to short-range limiting
stable process

Two Lévy processes, which are mutually absolutely continuous, share any almost sure local

behaviour. The next theorem confirms this fact in relation to the short-range behaviour

result obtained in Theorem 3.1. Indeed, given any layered stable process with respect to

some probability measure, one can find a probability measure under which the layered

stable process is identical in law to its short-range limiting stable process. This result should

be compared with Section 4 of Rosiński (2004).

Recall that c1 and c2 are the integrable (with respect to � ) functions on Sd�1 appearing

in (2.2) and (2.3), while �1 and �2 are the finite positive measures (2.4) and (2.5),

respectively. As before, we use the notation �Æ,	
� ,q for the Lévy measure of a layered stable

process X :¼ fX t : t > 0g � LSÆ,	(� , q; �), while �Æ
� is the measure (2.6).

Theorem 4.1. Let P, Q and T be probability measures on (�, F ) such that under P the

canonical process fX t : t > 0g is a Lévy process in Rd with L(X1) � LSÆ,	(� , q; k0), while

under Q it is a Lévy process with L(X 1) � SÆ(�1; k1), and let (F t) t>0 be the natural

filtration of fX t : t > 0g. Moreover, when 	 2 (0, 2) and under T, fX t : t > 0g is a Lévy

process with L(X1) � S	(�2; �), for some � 2 Rd . Then the following results hold:

(i) PjF t
and QjF t

are mutually absolutely continuous, for every t . 0, if and only if

k0 � k1 ¼

ð
Sd�1

�� (d�)

ð1

0

rq(r, �)dr, if Æ 2 (0, 1),ð
Sd�1

�� (d�)

ð1

0

r(q(r, �) � c1(�)r�Æ�1)dr, if Æ ¼ 1,

1

Æ� 1

ð
Sd�1

��1(d�) þ
ð
Sd�1

�� (d�)

ð1

0

r(q(r, �) � c1(�)r�Æ�1)dr, if Æ 2 (1, 2):

8>>>>>>>>><>>>>>>>>>:
(ii) If Æ 6¼ 	, then for any choice of � 2 Rd, PjF t

and TjF t
are singular, for every

t . 0.
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(iii) For every t . 0,

dQ

dP
jF t

¼ eUt ,

where fUt : t > 0g is a Lévy process defined on (�, F , P) by

Ut :¼ lim

#0

X
fs2(0, t] :k˜Xsk.
g

3 ln
q(k˜X sk, ˜X s=k˜X sk)

c1(˜X s=k˜X sk)k˜X sk�Æ�1

� �
� t(�Æ,	

� ,q � �Æ
� 1

)(fz 2 Rd
0 : kzk . 
g)

� �
, (4:1)

and where the convergence holds P-almost surely, uniformly in t on every

interval of positive length.

Proof. (i) By Theorem 33.1 and Remark 33.3 of Sato (1999), to prove the result it is

necessary and sufficient to show that the following three conditions hold:ð
fz:jj(z)j<1g

j(z)2�Æ
� 1

(dz) , 1, (4:2)ð
fz:j(z).1g

ej(z)�Æ
� 1

(dz) , 1, (4:3)ð
fz:j(z),�1g

�Æ
� 1

(dz) , 1, (4:4)

where the function j : Rd
0 ! R is defined by (d�Æ,	

� ,q=d�Æ
� 1

)(z) ¼ ej(z), that is,

j(z) ¼ ln
q(kzk, z=kzk)

c1(z=kzk)kzk�Æ�1

� �
, z 2 Rd

0 :

Now observe that

lim
kzk!0

j(z) ¼ lim
kzk!0

ln
c1(z=kzk)kzk�Æ�1

c1(z=kzk)kzk�Æ�1

� �
¼ 0, (4:5)

and that, as kzk ! 1,

j(z) � ln
c2(z=kzk)kzk�	�1

c1(z=kzk)kzk�Æ�1

� �
¼ ln

c2(z=kzk)

c1(z=kzk)

� �
þ (Æ� 	)lnkzk

!
�1, if Æ , 	,

þ1, if Æ . 	:

(
(4:6)

Conditions (4.2) and (4.4) are thus immediately satisfied, via (4.5) and (4.6) with Æ , 	. In
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view of (4.6) with Æ . 	, condition (4.3) is also satisfied since
Ð
fz:j(z).1g ej(z)�Æ

� 1
(dz) is

bounded from above and below by constant multiples ofð
kzk.1

q(kzk, z=kzk)

c1(z=kzk)kzk�Æ�1
�Æ
� 1

(dz) ¼ �Æ,	
� ,q(fz 2 Rd

0 : kzk . 1g):

When Æ ¼ 	 2 (0, 2), we have, by (4.5) and (4.6),

lim
kzk!0

j(z) ¼ 0, lim
kzk!1

jj(z)j ¼ lim
kzk!1

����ln c2(z=kzk)

c1(z=kzk)

� ����� , þ1:

Condition (4.2) is then satisfied since
Ð
fz:jj(z)j<1g j(z)2�Æ

� 1
(dz) is bounded from above and below

by constant multiples of
Ð
kzk.1

j(z)2�Æ
� 1

(dz), which is further bounded by a constant multiple of

�Æ
� 1

(fz 2 Rd
0 : kzk . 1g). Conditions (4.3) and (4.4) are also satisfied since the domains

fz 2 Rd
0 : j(z) . 1g and fz 2 Rd

0 : j(z) , �1g are contained in compact subsets of Rd
0 .

(ii) It suffices to show that either one of the following two conditions always fails:ð
fz :ł(z).1g

eł(z)�	
� 2

(dz) , þ1, (4:7)ð
fz :ł(z),�1g

�	
� 2

(dz) , þ1, (4:8)

where the function ł: Sd�1 ! R is defined via (d�Æ,	
� ,q=d�	

� 2
)(z) ¼ eł(z), that is,

ł(z) ¼ ln
q(kzk, z=kzk)

c2(z=kzk)kzk�	�1

� �
, z 2 Rd

0 :

As in the proof of (i), observe that

lim
kzk!1

ł(z) ¼ lim
kzk!1

ln
c2(z=kzk)kzk�Æ�1

c2(z=kzk)kzk�Æ�1

� �
¼ 0,

and that, as kzk ! 0,

ł(z) � ln
c1(z=kzk)kzk�Æ�1

c2(z=kzk)kzk�	�1

� �
¼ ln

c1(z=kzk)

c2(z=kzk)

� �
þ (	� Æ)lnkzk ! þ1, if Æ . 	,

�1, if Æ , 	:

	
Therefore, condition (4.7) fails when Æ . 	 sinceð

fz:ł(z).1g
eł(z)�	

� 2
(dz) ¼ �Æ,	

Æ,q(fz 2 Rd
0 : j(z) . 1g) ¼ þ1,

while (4.8) fails when Æ , 	 since �	
� 2

(fz 2 Rd
0 : ł(z) , �1g) ¼ þ1.

(iii) This is a direct consequence of (i) with the help of Theorem 33.2 of Sato (1999).

h

Remark 4.1. As in Example 2.1, let

q(r, �) ¼ r�Æ�11(0,1](r) þ r�	�11(1,1)(r), � 2 Sd�1:
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Then the Lévy process fUt : t > 0g given in (4.1) becomes

Ut ¼ (Æ� 	)
X

fs2(0, t]:k˜X sk.1g
ln(k˜X sk) � t

1

	
� 1

Æ

� �
� (Sd�1):

Intuitively speaking, the density transformation (dQ=dP)jF t
replaces all the 	-stable jumps of

a layered stable process up to time t (i.e., the jumps with absolute size greater than 1) by the

corresponding Æ-stable jumps with the same jump direction. Moreover, when Æ , 	, the

Lévy measure � of L(U1) is concentrated on (�1, 0) and is given by

�(�1, y) ¼ Æ�1� (Sd�1)exp
Æ

	� Æ

� �
y, y , 0,

while when Æ . 	, it is concentrated on (0, 1) and is given by

�(y, 1) ¼ Æ�1� (Sd�1)exp
Æ

	� Æ

� �
y, y . 0:

Let us next restate the absolute continuity result (Theorem 4.1) based on the fact that a series

representation generates sample paths of a Lévy process directly by generating every single

jump. For simplicity, we consider the symmetric case. Let fYt : t > 0g be an Æ-stable

process with L(Y1) � SÆ(� ; k1). By Lemma 1.1, there exists a version of fYt : t 2 [0, T ]g
given by

Y 9t ¼
X1
i¼1

Æ î

� (Sd�1)T

� ��1=Æ

Vi1(Ti < t) þ k1 t:

Also, let fX t : t > 0g be a layered stable process with L(X 1) � LSÆ,	(� , q; k0). In view of

the series representation (2.11), there exists a version of fX t : t 2 [0, T ]g given by

X 9t ¼
X1
i¼1

	 î

� (Sd�1)T

� ��1=	

1(0,� (Sd�1)T=	)( î)

"

þ Æ î

� (Sd�1)T
þ 1 � Æ

	

� ��1=Æ

1(� (Sd�1)T=	,1)( î)

#
Vi1(Ti < t) þ k0 t,

where all the random sequences are the same as those appearing in fY 9t : t 2 [0, T ]g above.

By Theorem 4.1, they are mutually absolutely continuous if and only if

k0 � k1 ¼
1

Æ� 1

ð
Sd�1

��1(d�), if Æ 2 (0, 1) [ (1, 2),

0, if Æ ¼ 1:

8<:
We infer that the Lévy process fUt : t 2 [0, T ]g in the Radon–Nikodym derivative of

Theorem 4.1(iii), that is,

dQ

dP

����
F t

¼ eUt ,
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has a version given by

dQ

dP
jF t

¼ eUt ,

has a version given by

U 9t ¼ �Æ� 	

Æ

X1
i¼1

ln
Æ î

� (Sd�1)T

� �
1(0,� (Sd�1)T=Æ]( î)1(Ti < t) � t

1

	
� 1

Æ

� �
� (Sd�1):

As a direct consequence, we have

P(X 2 B) ¼ EP[eU 9T 1B(Y 9)], B 2 B(D([0, T ], Rd)):

Moreover, in view of Theorem 33.2 of Sato (1999),

dP

dQ
jF t

¼ e�Ut ,

and so we can derive a version of fUt : t 2 [0, T ]g in terms of the jumps of the layered

stable process as follows:

U 0t ¼ �Æ� 	

	

X1
i¼1

ln
	 î

� (Sd�1)T

� �
1(0,� (Sd�1)T=	]( î1(Ti < t) � t

1

	
� 1

Æ

� �
� (Sd�1):

Similarly, we have

Q(Y 2 B) ¼ EQ[e�U 0T 1B(X 9)], B 2 B(D([0, T ], Rd)):

5. Concluding remarks

We conclude this paper with a number of observations.

First, the weak convergence towards a Brownian motion, proved in Proposition 3.3(i), is

interesting in the sense that a stable process with uniformly dependent components

converges in law to a standard Brownian motion. It is also interesting to see how a stable

process with independent components can converge towards a Brownian motion. To this

end, for i ¼ 1, . . . , d, let ai 2 [0, 1), let

b9iþ :¼ (0, . . . , 0, þ1, 0, . . . , 0), b9i� :¼ (0, . . . , 0, �1, 0, . . . , 0),

where þ1 and �1 are located at the ith component, and set

� (d�) :¼
Xd
i¼1

2 � Æ

2
ai(�biþ(d�) þ �bi� (d�)), � 2 Sd�1,

where � is the Dirac measure. Clearly, � is a symmetric finite positive measure on Sd�1.

Also, let fX (Æ)
t : t > 0g � SÆ(� ; 0). Then, if yi is the ith component of y, we have, by

E.18.8–18.9 of Sato (1999) and using ˆ(xþ 1) ¼ xˆ(x), x . 0,
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E[eih y,X
(Æ)

1
i] ¼ exp �ˆ(1=2)ˆ((2 � Æ)=2)

2ÆÆˆ((1 þ Æ)=2)

ð
Sd�1

jhy, �ijÆ� (d�)

� �

¼ exp � 1

2

Xd
i¼1

ˆ(1=2)ˆ(1 þ (2 � Æ)=2)

2Æ�2Æˆ((1 þ Æ)=2)
aijyijÆ

" #

! exp � 1

2

Xd
i¼1

aijyij2
" #

, as Æ"2:

Therefore, as Æ"2, we obtain fX (Æ)
t : t > 0gfWt : t > 0g, where fWt : t > 0g is a Brownian

motion with covariance matrix

a1 0 . . . 0

0 a2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . ad

0BBB@
1CCCA:

Second, by making use of the absolute continuity of Lévy measures, we can derive two

more forms of the series representation of a layered stable process corresponding to the

Lévy measure (2.7), with Æ , 	. With the notation of Theorem 4.1, we obtain, for z 2 Rd
0 ,

d�Æ,	
� ,q

d�Æ
�

(z) ¼ 1(0,1](kzk) þ kzkÆ�	1(1,1)(kzk) < 1

and

d�Æ,	
� ,q

d�	
�

(z) ¼ kzk	�Æ1(0,1](kzk) þ 1(1,1)(kzk) < 1:

Then, by the rejection method of Rosiński (2001), the summands fQq( î=T , Vi)Vigi>1 in

(2.11) can be respectively replaced by

Æ î

� (Sd�1)T

� ��1=Æ

1
d�Æ,	

� ,q

d�Æ
�

Æ î

� (Sd�1)T

� ��1=Æ

Vi

 !
> Ui

 !
Vi

( )
i>1

and

	 î

� (Sd�1)T

� ��1=	

1
d�Æ,	

� ,q

d�	
�

	 î

� (Sd�1)T

� ��1=	

Vi

 !
> Ui

 !
Vi

( )
i>1

,

where fUigi>1 is a sequence of i.i.d. uniform random variables on [0, 1], independent of all

the other random sequences.

Third, in complete similarity to the work presented in Houdré and Kawai (2006), it is

possible to define a notion of fractional layered stable motion. Then, as in that work, over

short intervals, fractional layered stable motion will be close to fractional stable motion

C. Houdré and R. Kawai272



(with inner index Æ) while over long intervals it will be close to either fractional Brownian

motion (if 	 . 2) or to fractional stable motion (with index 	 , 2).

Fourth, let us observe some sample paths of a layered stable process, generated via the

series representation (2.11). By Theorems 3.1 and 3.2, the entire situation is exhausted by

the following three cases:

(i) Æ , 	 , 2,

(ii) 	 2 (2, 1),

(iii) Æ . 	 with 	 2 (0, 2).

Figure 1 corresponds to case (i) and typical sample paths of a symmetric layered stable

process with (Æ, 	) ¼ (1:3, 1:9) are drawn in short-range, regular and long-range settings.

For better comparison, we also drew its corresponding 1:3-stable and 1:9-stable processes.

All these sample paths are generated via the series representation (2.11) for a layered stable

process, or the one given in Lemma 1 for stable processes. Three sample paths within each

figure are generated on a common probability space in the sense that a common set of

random sequences f îgi>1, fVigi>1 and fTigi>1 is used. The desired short- and long-range

behaviours are apparent.

For case (ii), we draw in Figure 2 typical sample paths of a symmetric layered stable

process with (Æ, 	) ¼ (1:1, 2:5), along with its corresponding 1:1-stable process and a

Brownian motion with a suitable variance. The layered stable process and the 1:1-stable

process are generated as before, while the Brownian motion is independent of the others. As

expected, the long-range Gaussian-type behaviour (Theorem 3.2(ii)) is clearly apparent.

These stable-type short-range and Gaussian-type long-range behaviours have long been

considered to be very appealing in applications. At the top in Figure 2, the layered stable

process and its short-range limiting stable process are almost indistinguishable in a

graphical sense (of course, not probabilistically).

Finally, for case (iii), we give in Figure 3 typical sample paths of a symmetric layered

stable process with (Æ, 	) ¼ (1:9, 1:3), along with its corresponding 1:9-stable and 1:3-

stable processes. Unlike the sample path behaviours observed in Figure 1, the path of the

layered stable processes behaves more continuously (like a 1:9-stable one) over short

intervals, but more discontinuously over long intervals (like a 1:3-stable one).

Fifth, we briefly introduce another generalization of stable processes. Again, on Rd , let �
be an infinitely divisible probability measure without Gaussian component. Then � is mixed

stable if its Lévy measure is given by

�(B) ¼
ð

(0,2)

ð
Sd�1

� (d�)

ð1
0

1B(r�)
dr

rÆþ1
j(dÆ), B 2 B(Rd

0 ), (5:1)

where j is a probability measure on (0, 2) such thatð
(0,2)

1

Æ(2 � Æ)
j(dÆ) , 1:

The simplest example of a mixed stable distribution is formed by convolution of stable

distributions of different orders. This can be constructed by setting j(dÆ) ¼
P

k ck�Æk
(dÆ),

where for all k, Æk 2 (0, 2), ck > 0, and
P

k ck ¼ 1.
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Recall that in Example 2.1 we defined the classes Lm, m ¼ 0, 1, . . .. Let L1 :¼ \1
m¼0Lm.

It is proved in Theorem 3.4 of Sato (1980) that an infinitely divisible probability measure

without Gaussian component is in L1 if and only if its Lévy measure has the form (5.1),

and that its characteristic function is given by

Figure 1. Typical sample paths of layered stable process with (Æ, 	) ¼ (1:3, 1:9), 1:3-stable process

(+), and 1:9-stable process (3)
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b��(y) ¼ exp ihy, �i �
ð

(0,2)

cÆ

ð
Sd�1

jhy, �ijÆ 1 � i tan
�Æ

2
sgnhy, �i

� �
� (d�)j(dÆ)

�

� j(f1g)c1

ð
Sd�1

jhy, �ij þ i
2

�
hy, �ilnjhy, �ij

� �
� (d�)

�
,

Figure 2. Typical sample paths of layered stable process with (Æ, 	) ¼ (1:1, 2:5), 1:1-stable process

(+), and a Brownian motion (3)
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for some � 2 Rd , and where cÆ ¼ jˆ(�Æ)cos(�Æ=2)j when Æ 6¼ 1 while c1 ¼ �=2. We have

seen in Example 2.1 that an infinitely divisible probability measure is in L0 if and only if the

corresponding Lévy measure has the formð
Sd�1

� (d�)

ð1
0

1B(r�)k�(r)
dr

r
, B 2 B(Rd

0 ),

Figure 3. Typical sample paths of layered stable process with (Æ, 	) ¼ (1:9, 1:3), 1:9-stable process

(+), and 1:3-stable process (3)
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where � is a finite positive measure on Sd�1 and where k�(r) is a non-negative function

measurable in � 2 Sd�1 and decreasing in r . 0. Recently, Barndorff-Nielsen et al. (2006)

defined a new class of infinitely divisible distributions by further requiring that the function

k�(r) be completely monotone in r for � -almost every �. Mixed stable distributions are

indeed in this class since
Ð

(0,2)
r�Æj(dÆ) is completely monotone.

Finally, note that the associated Lévy process that we call a mixed stable process

possesses an interesting series representation. For simplicity, assume that � in (5.1) is

symmetric. Let f îgi>1, fTigi>1 and fVigi>1 be random sequences defined as before. In

addition, let fÆigi>1 be a sequence of i.i.d. random variables with common distribution j.

Assume, moreover, that all these random sequences are mutually independent. Then, with

the help of the generalized shot noise method of Rosiński (2001), it can be shown that the

stochastic process

X1
i¼1

Æi î

� (Sd�1)T

� ��1=Æ i

Vi1(Ti < t) : t 2 [0, T ]

( )

converges almost surely uniformly in t to a mixed stable process whose marginal law at time

1 is mixed stable with the Lévy measure (5.1). Comparing this result with the series

representation of a stable process given in Lemma 1.1, a mixed stable process can be thought

of as a stable process with each of its jumps obeying a randomly chosen stability index. This

jump structure also implies that, unlike the layered stable process, the mixed stable process

does not alter its behaviour in terms of the time range.
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