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Performance characteristics of Bayes estimates are studied. More exactly, for each subject in a data

set, let î be a vector of binary covariates and let Y be a normal response variable, with

EfY jîg � f (î) and var fY jîg � 1. Here, f is an unknown function to be estimated from the data; the

subjects are independent and identically distributed. De®ne a prior distribution on f asP
k wkðk=

P
k wk , where ðk is standard normal on the set of f which only depend on the ®rst k

covariates and wk . 0 for in®nitely many k. Bayes estimates are consistent for all f. On the other

hand, if the ðk are ¯at, inconsistency is the rule.
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1. Introduction

Consider a sequence of independent pairs (Y1, î1), (Y2, î2), . . .. Given îi, suppose Yi is

normally distributed with conditional mean f (îi) and conditional variance 1. Thus,

Yi � f (îi)� åi, where åi � N (0, 1). Here, f is an unknown function to be estimated from

the data. A Bayesian approach postulates that f lies in some class of functions È and puts a

prior distribution ð on È. This generates a posterior distribution ~ðn, namely, the conditional

law of the regression function f given the data (Y1, î1), (Y2, î2), . . . , (Yn, în). The prior ð is

said to be consistent for f if ~ðn converges to point mass at f almost surely as n!1.

When È is ®nite-dimensional, ð will be consistent for any f in the support of ð; of

course, some additional regularity conditions are needed, but normality is not involved. If È
is in®nite-dimensional, the situation is quite different, and inconsistency is the rule rather

than the exception. See, for instance, Freedman (1963; 1965) and Diaconis and Freedman

(1988). This paper continues the story for normal models. We show that for conventional

hierarchical normal priors, consistency obtains ± provided the data are independent with a

common normal distribution. We use a nested increasing family of ®nite-dimensional

models with the usual normal prior in each dimension, but the dimension is itself a

hyperparameter with its own (discrete) prior. So far, the priors under discussion have been
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proper; and technical conditions are given below. With ¯at priors, inconsistency is the rule,

even under our regularity conditions.

In previous papers (Diaconis and Freedman 1993; 1995), we looked at nonparametric

binary regression. There, natural priors were generally seen to give consistent estimates; but,

under some circumstances, the estimates were inconsistent. This seemed quite mysterious, at

least to us. We now have a heuristic understanding of the basic reason for inconsistency ±

to be explained below ± and the present paper is a ®rst test of that heuristic. The following

paragraphs explain the background in more detail, and the heuristic. We also give a brief

literature review on nonparametric Bayesian regression and consistency theorems.

1.1. Binary regression

First we summarize results from Diaconis and Freedman (1993; 1995). There is a binary

response variable Y, which is related to a covariate î:

PfY � 1jîg � f (î): (1:1)

The problem is to estimate f from the data.

Following de Finetti (1959; 1972), we think of î as a sequence of 0s and 1s. Sequence

space is given the usual product topology, and the parameter space È is the set of

measurable functions f from sequence space to [0, 1]. The L2 topology is installed on È,

relative to coin-tossing measure ë in sequence space. A basic neighbourhood of f 2 È is

N( f , å) � g:

�
(g ÿ f )2 dë, å

� �
: (1:2)

We will consider a prior ð on È, with posterior ~ðn. Then ð is consistent at f provided
~ðnfN( f , å)g ! 1 almost surely, for all positive å.

The next step is to de®ne the hierarchical priors on È. Begin with a prior ðk supported

on the class of functions f that depend only on the ®rst k coordinates, or bits, in î. Under

ð0, the function f does not depend on î at all. Under ð1, f depends only on î1. And so

forth. Then treat k as an unknown `hyperparameter', putting prior weight wk on k. We refer

to k as the theory index; theory k says that f (x) depends only the ®rst k bits of x; and wk

is a theory weight. Our prior is of the form

ð �
X1
k�0

wkðk

�X1
k�0

wk , (1:3a)

where

wk . 0 for all k and
X1
k�0

wk ,1: (1:3b)

To complete the description of the prior, ðk must be speci®ed. According to ðk , only the

®rst k bits in î matter, so f depends only on î1, . . . , îk . Thus, ðk is determined by

specifying the joint distribution of the 2k possible values for f. More crudely, ðk involves
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2k free parameters ± the possible values of f on its intervals of constancy. For now, we take

these parameters to be independent and uniformly distributed over [0, 1].

We turn now to the data. For technical reasons, it is simplest to consider `balanced' data,

as in Diaconis and Freedman (1993); more conventional sampling plans are discussed in

Diaconis and Freedman (1995). At stage n, there are 2n subjects. Each has a covariate

sequence; the ®rst n bits of these covariate sequences cover all possible patterns of length

n; each pattern appears once and only once. The remaining bits from n� 1 onwards are

generated by coin tossing. Given the covariates, response variables are generated from (1.1);

the response of subject i depends only on the covariates for that subject. The preliminaries

are now ®nished, and we can state a theorem. (The present paper will make the extension

from binary data to normal data in Section 2.)

Theorem 1.1. With nonparametric binary regression, balanced data, and a hierarchical

uniform prior:

(a) ð is consistent at f unless f � 1
2
;

(b) Suppose f � 1
2
. Then ð is consistent at f provided that for some ä. 0, for all

suf®ciently large n, X1
k�n

wk , 2ÿn(1
2
�ä):

On the other hand, ð is inconsistent at f provided that for some ä. 0, for in®nitely many n,X1
k�n

wk . 2ÿn(1
2
ÿä):

The surprising part of this theorem is the inconsistency result in (b). Suppose the data are

generated by tossing a fair coin, so f � 1
2
. Theory 0 is true: f does not depend on î at all.

You do not know that, and allow theories of ®nite but arbitrary complexity in your prior,

according to (1.3). In the face of all these other theories, the posterior loses faith in theory

0 ± the curse of dimensionality strikes again.

Regression is a natural problem, hierarchical priors are often used, and the one de®ned

by (1.3) charges every weak star neighbourhood of the parameter space È. Still,

inconsistency may result. In high-dimensional problems, little can be taken for granted.

`Rational use of additional information' is not a slogan to be adopted without re¯ection.

1.2. Why inconsistency?

What is the root cause of the inconsistency? Suppose f � 1
2
, so the data result from coin tossing, and

the covariates do not matter. Thus, theory 0 is the truth. The statistician does not know this, however,

and high-order theories may be deceptively attractive because they have many parameters.

However, the `curse of dimensionality' only strikes under some circumstances. When? To

make this a little clearer, consider a design of order n, so there are 2n subjects. According
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to theory n, the response of each subject is determined by the toss of a coin, where the

probability is uniform on [0, 1]. Now one toss of a coin with a uniformly distributed

random p is just like one toss of a fair coin ± you get heads with probability 1
2

and tails

with probability 1
2
. Thus, theory n competes with theory 0. Indeed, the predictive probability

of the data under theory n is

ðnfdatag � 1

22 n :

Let S be the sum of the response variables ± the total number of heads. Under theory 0,

the predictive probability of the data is

ð0fdatag � (2n � 1)
2n

S

� �� �ÿ1

�
��������
ð=2

p
2n=2

ðnfdatag (1:4)

because S � 2n=2. Thus,

ðnfdatag � const: 2n=2ð0fdatag: (1:5)
The prior ð is a mixture

P1
k�0wkðk=

P1
k�0wk . The posterior is a similar mixture, the

posterior weight on theory k being wk times the predictive probability of the data under ðk.

If f � 1
2
, then, it is the theory weights wk that decide consistency. If wk declines rapidly,

for example, wk � 1=2k , the weight on theory n compensates for the factor 2n=2 in (1.5);

and the prior is consistent at f � 1
2
. On the other hand, if wk declines slowly, for example,

wk � 1=(k � 1)2, the factor 2n=2 dominates, and inconsistency is the result.

The heart of the problem seems to be that a mixture of Bernoulli variables is again

Bernoulli. Our heuristic, then, is that consistency obtains when mixing leads outside the

basic parametric family. For example, suppose the response variable takes three values, 0, 1

and 2; and, given the covariates î, the response is distributed as the number of heads when

an f (î) coin is tossed twice. A mixture of Bin (2, p) variables cannot be Bin (2, p); the

heuristic suggests that Bayes estimates will be consistent.

To prove this kind of theorem in any degree of generality, we would need to impose

smoothness conditions like those which underlie the usual asymptotics of maximum

likelihood estimates, including the Bernstein±von Mises theorem. We would also need

integrability conditions of the kind which underlie the usual theory of entropy bounds. The

second set of conditions would enable us to localize the problem, and the ®rst set would

enable us to make local estimates. Rather than pursue such technical issues here, we prove a

theorem for normal response variables ± which is dif®cult enough. Consistency obtains,

according to our heuristic, because a mixture of N (ì, 1) variates cannot be N (ì, 1). The

theorem is stated in Section 2, and proved in later sections. A second theorem shows that

Bayesian regression gets the order of the model right ± if the model is of ®nite order.

Inconsistencies arising from ¯at priors are also discussed, and an extended example is given.

1.3. Literature review on Bayesian regression

Roughly speaking, one observes

Yi � f (ti)� åi, (1:6)
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with f in some class of functions, ti in an interval (say), and åi independent and identically

distributed (i.i.d.) errors. A prior is assumed for f, a posterior is computed, and the posterior

mean is used to estimate f. Typically, the ti are taken as deterministic; our ti are random.

The earliest reference we know is PoincareÂ (1896). He used a Gaussian prior of the form

f (t) �Pi X i t
i for t in [ÿ1, 1], the X i being independent Gaussian variables with mean 0

and variances tending to 0. He assumed (1.6) with åi � 0. Invoking the `method of causes'

± the classical phrase for Bayes' theorem ± he computed the posterior mean of f (t) given

f (ti) for i � 1, . . . , n; his ti were deterministic. Poincare's beautiful calculations are

equivalent to what we now call the theory of `reproducing kernel Hilbert spaces'.

The subsequent history of Bayesian regression is traced in Diaconis (1988) and Traub et

al. (1988). There is closely related work on sieves and on model selection; see Geman and

Hwang (1982), Shibata (1981; 1986) or Stone (1982). Hierarchical priors for regression in

®nite-dimensional settings go back to Lindley and Smith (1972).

The simplest possible regression model has a constant mean function. That is the location

problem: Yi � ì� åi, where ì is an unknown constant and the errors åi are i.i.d. Diaconis

and Freedman (1988) studied nonparametric priors on ì and on the law of the errors; see

also Doss (1984; 1985a; 1985b). Some natural priors lead to inconsistent estimates, while

other priors give consistent results.

Nonparametric Bayesian regression also connects with the theory of splines (Kimeldorf

and Wahba 1970; Kohn and Ansley 1987); for a recent survey, see Wahba (1990). Cox

(1993) has an elegant mathematical treatment. He begins with the model (1.6) on [0, 1],

say, where f is con®ned by assumption to a given smoothness class (that is, a Sobolev

space). He speci®es a Gaussian prior by the Karhunen±Loeve representation,

f (t) �
X

i

ai X i gi(t), t 2 [0, 1]:

The X i are i.i.d. N (0, 1),
P

ia
2
i ,1, and the gi are an orthonormal basis in a suitable

Hilbert space ± a set-up rather similar to PoincareÂ's.

Cox computes the posterior for f given f (ti)� åi for i � 1, . . . , n, the åi being i.i.d. N (0, 1).

He shows that in this in®nite-dimensional setting, the Bernstein±von Mises theorem does not

apply: the posterior distribution (centred at the mean) may be radically different from the

frequentist distribution of the Bayes estimates (centred at truth). His set-up differs from ours in

several ways (recall that f is the true mean function in the sampling model that governs the data).

First, his f is L2 and smooth; our f is only L2. Second, his prior is different; indeed, it is probably

orthogonal to ours. Third, his tis are deterministic and equally spaced, rather than random. That

all said, an interesting heuristic connection between his results and ours can be made via wavelet

theory ± as pointed out by a very helpful referee. That discussion continues in Section 11 below.

There is a similar connection with the Gaussian white noise model, which is discussed in Brown

and Low (1996) and Donoho (1994). Also see Diaconis and Freedman (1997).

1.4. Literature review on consistency of Bayes estimates

Frequentist properties of Bayes rules have been studied since Laplace (1774), who showed

that in smooth, ®nite-dimensional problems, the posterior concentrates in a neighbourhood of
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the maximum likelihood estimates. Modern versions of the result can be found in Bernstein

(1934), von Mises (1964), Johnson (1967; 1970), LeCam (1982) or Ghosh et al. (1982).

These results hold for almost all data sequences. In very simple settings, we obtained bounds

that hold for all sequences (Diaconis and Freedman 1990).

Freedman (1963) considered nonparametric Bayes procedures, with a counterexample:

there is a prior supported on all of the parameter space, whose posterior converges almost

surely to the wrong answer. That paper introduced the Dirichlet and tail-free priors, and

showed them to be consistent. For reviews, see Ferguson (1974) or Diaconis and Freedman

(1988). Also see Schwartz (1965).

LeCam (1953) proved a version of what has come to be known as the Bernstein±von

Mises theorem; see also LeCam and Yang (1990). LeCam's theorems were almost sure

results, with respect to the true underlying measure that had generated the data; and he

proved convergence in total variation norm. Previous authors had demonstrated only

convergence of distribution functions, in probability. Furthermore, LeCam seems to have

been the ®rst to condition on all the data, not just summary statistics (such as the mean).

For more discussion, see Pollard et al. (1997).

Efforts are now under way to develop a uni®ed theory for consistency of Bayes estimates

in the in®nite-dimensional case: see Bunke and Milhaud (1994), Ghosal et al. (1997), Shen

(1996) and Barron et al. (1997). So far, the results are somewhat fragmentary; we do not

think our examples are covered by such theories.

2. The formal set-up

The set-up is virtually identical to that for the binary case, except that the response variables

are normal; details are repeated for ease of reference. The covariates î are a sequence of 0s

and 1s, sequence space is given the product topology, and the parameter space È is the set of

L2 functions f from sequence space to (ÿ1, 1). The L2 topology is installed on È, relative

to coin-tossing measure ë1 in sequence space C1. A basic neighbourhood of f 2 È is the

`ä-ball'

N( f , ä) � g 2 L2:

�
C1

(g ÿ f )2 dë1, ä2

� �
: (2:1)

Consider a prior ð on È, with posterior ~ðn. Then ð is consistent for f provided
~ðnfN( f , ä)g ! 1 almost surely, for all positive ä.

The prior ðk is supported on the class of functions f such that f (x) depend only on

the ®rst k coordinates in x � (x1, x2, : : :). Thus, ðk is determined by specifying the joint

distribution of the 2k possible values for f. These are independent N (0, 1) variables; we

refer to ðk as `standard normal'. We put prior weight wk on k, so our prior is of the

form

ð �
X1
k�0

wkðk

�X1
k�0

wk , (2:2a)
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where

wk . 0 for infinitely many k and
X1
k�0

wk ,1: (2:2b)

(If wk . 0 for ®nitely many k, then ð would be a conventional hierarchical normal prior.)

Turn now to the data, which are `balanced' in the sense of Diaconis and Freedman

(1993). At stage n, there are 2n subjects, indexed by t. Each has a response variable Y (t)

and a covariate sequence î(t). The ®rst n bits of the covariate sequences cover all possible

patterns of length n; each pattern appears once and only once. The remaining bits from

n� 1 onwards are generated by coin tossing. Given the covariates, response variables are

independent normals, with variance 1. The conditional mean response of subject t depends

only on the covariate string for that subject, through the function f:

Given the covariates, the response variables are independent across subjects,

normally distributed, with common variance 1 and EfY (t)jîg � f [î(t)]: (2:3)

This completes the set-up. The main theorems can now be stated.

Theorem 2.1. Suppose the design is balanced, and normal in the sense of (2.3). Suppose the

prior ð is hierarchical in the sense of (2.2), and the ðk are standard normal. Then ð is

consistent for all f 2 L2.

Let Èk be the class of functions f which depend only on the ®rst k bits of the argument

x; these increase with k. Recall that ~ðn is the posterior given the data at stage n.

Theorem 2.2. Suppose the design is balanced, and normal in the sense of (2.3). Suppose the

prior ð is hierarchical, and the ðk are standard normal. If f 2 Èk and wk . 0, then

~ðnfÈkg ! 1 almost surely as n!1.

Theorem 2.1 demonstrates consistency, while Theorem 2.2 says that the Bayesian gets the

order of a ®nite model right, at least if there is positive prior mass on the right order. This

is a bit surprising, because many selection algorithms estimate models that are too complex;

for instance, see Breiman and Freedman (1983).

We turn now to improper priors; ðk is `¯at' if the joint distribution of fès: s 2 Ckg is

Lebesgue measure on 2k-dimensional Euclidean space. With ¯at priors, consistency will

obtain only if the weights wk decay at a very rapid rate, as in (2.4a); condition (2.4b),

satis®ed if wk � 1=k2 or wk � 1=2k or wk � 1=k!, ensures inconsistency:

lim sup
n!1

1

2n
log

X1
k�n

wk

" #
,ÿ1

2
log (2ðe) (2:4a)

lim sup
n!1

1

2n
log

X1
k�n

wk

" #
.ÿ1

2
log (2ðe): (2:4b)
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Theorem 2.3. Suppose the design is balanced, and normal in the sense of (2.3). Suppose the

prior ð is hierarchical, and the ðk are ¯at. Then ð is consistent for all f 2 L2 if (2.4a)

holds. If (2.4b) holds, ð is inconsistent for all f 2 L2.

Theorem 2.3 will be proved in Section 8 and Section 9 gives an example. Until then, the

ðk will be normal. Flat priors present de®nitional problems, to be discussed in Section

10.

3. Proofs: the preliminaries

We will compute the predictive probability density of the data, under theory k; then the

posterior. Where possible, we follow the notation and arguments in Diaconis and Freedman

(1993). To review brie¯y, let Ck be the set of strings of 0s and 1s of length k. There are 2k

strings s 2 Ck . Let C1 be the set of in®nite sequences of 0s and 1s, in the product topology

and product ó-®eld. Let ë1 be coin-tossing measure on C1. The parameter space È consists

of all L2 functions from C1 to (ÿ1, 1); functions that are equal almost everywhere are

identi®ed. We endow È with the L2 metric and the Borel ó-®eld generated by the balls (2.1).

Of course, È is complete separable metric. As previously de®ned,

Èk is the closed set consisting of all f 2 È such that f (x)

depends only on the first k coordinates of x 2 C1: (3:1a)

If f 2 Èk , then

f (x1, : : : xk , xk�1, xk�2, : : :) � ès( f ), where s � (x1, . . . , xk) 2 Ck : (3:1b)

The probability ðk on È concentrates on Èk and makes ès independent and N (0, 1) as s

varies over Ck.

All random variables are de®ned on some probability triple (Ù, F , Pf ), where f 2 È.

At stage n, we have 2n independent subjects indexed by t 2 Cn, with response variables

Y (t) and covariate strings î(t), forming a balanced design of order n. In particular, (2.3)

holds. Furthermore, îi(t) � ti for 1 < i < n; for i . n the variables îi(t) are independent,

each being 0 or 1 with probability 1
2
: these are the `balance' conditions. Here, îi(t) is the

ith bit in the covariate sequence for subject t. To ease the notation, we sometimes write Yt

for Y (t) or î t for î(t).

As usual, ðk can be extended to a probability on È 3 Ù, by the formula

ðk(A 3 B) �
�

A

Pf fBgðkfd f g: (3:2)

In this formula, A is a measurable subset of È and B is a measurable subset of Ù;

f ! Pf fBg is measurable because

f !
� Y

t2C n

g t(Yt) dPf (3:3)

is continuous for bounded continuous functions gt.
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Fix k and n. The response variables Yt: t 2 Cn have a joint probability density ± the

predictive probability density ± with respect to ðk . This density will be denoted rkn, and

viewed as a function of 2n real variables Yt: t 2 Cn.

Lemma 3.1. For a balanced normal design of order n and the standard normal prior ðk, the

predictive probability density rkn may be computed as follows:

(a) If k < n, then log rkn � an ÿ bkn ÿ ckn � qkn.

(b) If k . n, then log rkn � log rnn.

In these formulae,

an � 1
2
2nlog (1=2ð)ÿ 1

2

X
t2C n

y2
t ; (3:4a)

bkn � 2k(nÿ k)1
2
log 2; (3:4b)

ckn � 2k1
2

log 1� 1

2nÿk

� �
; (3:4c)

qkn � 1
2
d kn2n 1

2k

X
s2C k

y2
s ; (3:4d)

d kn � 2nÿk

2nÿk � 1
; (3:4e)

ys � 1

2nÿk

X
t2C n

fyt: t extends sg for s 2 Ck : (3:4f)

Proof. (a). Fix k < n. For s 2 Ck, let

Vs � f(Yt, î t): t 2 Cn and t extends sg:

Each Vs is a 2nÿk-tuple of pairs of random variables. Recall ès from (3.1). Recall that ðk was

extended to È 3 Ù by (3.2).

Relative to ðk , as s ranges over Ck , the pairs (Vs, ès) are i:i:d: (3:5)

Consequently, the general case in claim (a) follows from the case k � 0. The latter is a

routine calculation. Abbreviate m � 2n. Let öv be the normal density with mean 0

and variance v. Let exp (x) � ex, á � (1=2ð)m=2, â � expfÿ1
2

P
t2C n

(yt ÿ y)2g, y �
1=m

P
t2C n

yt. Write � for convolution. Then
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r0n � á

�
exp ÿ1

2

X
t2C n

(yt ÿ è)2

( )
ö1(è) dè

� áâ

�
expfÿ1

2
m(yÿ è)2gö1(è) dè

� áâ
2ð

m

� �1=2

(ö1=m � ö1)(y)

� áâ
2ð

m

� �1=2

ö1�1=m(y)

� áâ
1

m

1

1� 1

m

0@ 1A1=2

exp ÿ1
2
y2

�
1� 1

m

� �( )
:

To verify the formula for q0n, combine the last equation with â:X
t2C n

(yt ÿ y)2 �
X
t2C n

y2
t ÿ my2

and

mÿ 1

1� 1

m

� m
m

m� 1
:

This completes the proof of claim (a), and (b) is routine. u

Let ~ðkn be the posterior distribution of f, computed relative to ðk , given the data from a

balanced normal design of order n. Lemma 3.2 computes this posterior for k < n; and

Lemma 3.3 does the job for k . n. Clearly, ~ðkn concentrates on Èk , as de®ned in (3.1).

As a notational principle, the functions de®ned in (3.4) will be denoted by capital letters,

when evaluated at fYtg rather than fytg. The following de®nitions will be used throughout.

De®nition 3.1. For k < n and s 2 Ck, let Ys be the average of Yt over t such that t 2 Cn is

an extension of s. For x 2 C1 and ù 2 Ù, let Ykn(x, ù) � Ys(ù), where s 2 Ck gives the

®rst k bits of x. And let Y (ù) � (1=2n)
P

t2C n
Yt(ù).

In other terms, Ykn(x) is obtained by averaging the Yt such that xi � ti for 1 < i < k.

This function depends, of course, on ù; however, for each s 2 Ck , x! Ykn(x, ù) is

constant on

hsi � fx 2 C1: xi � si for 1 < i < kg:
Recall ès from (3.1) and d kn from (3.4).
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Lemma 3.2. Suppose k < n and ðk is standard normal. According to the posterior ~ðkn,

given data from a balanced normal design of order n, the parameters ès are conditionally

independent as s ranges over Ck, and ès is normal:

EfèsjYt: t 2 Cng � d knYs

var fèsjYt: t 2 Cng � 1ÿ d kn � 2k

2n � 2k
:

Proof. In view of (3.5), only the case k � 0 needs to be argued, and this is routine. Relative

to ð0, there is only one parameter, è; this is N(0, 1). Given è, the Yt are independent N (è, 1).

Abbreviate m � 2n, and Y for the mean of the Ys. Unconditionally, Y is N (0, 1� [1=m]).

Furthermore, cov (è, Y ) � 1 and r2(è, Y ) � m=(m� 1). The balance of the argument is

omitted. u

Remark. If k < n, fYt: t 2 Cng and fî t: t 2 Cng are independent relative to ðk .

Recall that subjects are indexed by t 2 Cn, and subject t has covariate string î(t), with

î1(t) � t1, . . . , în(t) � tn. If k . n, there are 2k parameters, but only 2n observations: some

parameters are `observed', others are not. More formally, s 2 Ck is observed if there is a

t � ts 2 Cn with îi(t) � si for 1 < i < k. The set S of observed s is random, for S depends

on the covariates. If k . n, fYt: t 2 Cng and fî t: t 2 Cng are conditionally independent

relative to ðk , given the set S of observed indices s, and the covariates îk�1(ts), . . . , în(ts)

for s 2 S.

Lemma 3.3. Suppose k . n and ðk is standard normal. According to the posterior ~ðkn, given

data from a balanced normal design of order n, the parameters ès are independent as s

ranges over Ck, and ès is normal. If s is unobserved, ès is conditionally N (0, 1). If s is

observed,

EfèsjYt: t 2 Cng � 1
2
Ys

var fèsjYt: t 2 Cng � 1
2
:

Turn now to the posterior ~ðn, computed relative to the hierarchical prior ð de®ned in

(2.2). The `theory index' k in (2.2) is a parameter which has a posterior distribution relative

to ð. This will now be computed. Let

~wkn � wk Rkn; (3:6)

following our general notational principles, Rkn is the predictive density rkn evaluated at the

data fYtg; see (3.4). The posterior probability of theory k is

~wkn

�X1
k�0

~wkn: (3:7)
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Then ~ðn is a mixture of the posteriors ~ðkn, with weights ~wkn; the latter will be called

posterior theory weights. These (slightly informal) arguments prove the following:

Lemma 3.4. Suppose ð is a hierarchical prior, and the ðk are standard normal. Given the

data from a balanced normal design of order n, the posterior is

~ðn �
X1
k�0

~wkn~ðkn

�X1
k�0

~wkn:

For k < n, the posteriors ~ðkn were computed in Lemma 3.2; for k . n, these posteriors were

computed in Lemma 3.3.

4. Estimating the posteriors ~ð kn

The idea of the proof is simple, although details are quite tedious. We estimate the predictive

probabilities Rkn, and show that the posterior concentrates on ks which are considerably

smaller than n. In that range, the posteriors ~ðkn concentrate near their mean functions.

We turn now to rigour. Recall (3.4) and De®nition 3.1. In particular, for k < n and

s 2 Ck , Ys is the average of Yt over t such that t is an extension of s. And Ykn has domain

C1 3 Ù.

Lemma 4.1. Fix k < n. We have data from a balanced normal design of order n, and a

standard normal prior ðk. For all ù 2 Ù,�
È

�
C1

[g(x)ÿ d knYkn(x)]2ë1(dx)~ðkn(dg) � 2k

2n � 2k
:

Proof. The posterior ~ðkn concentrates on Èk , as de®ned in (3.1). Then use Lemma 3.2. u

De®nition 4.1. Let g be an L2 function on C1. Then gs is the average of g(î t) over t 2 Cn

that extend s 2 Ck . The domain may change to C1 as follows: g kn(x) � gs when x 2 C1
extends s. These functions are random, because they depend on the covariates. To emphasize

that dependence, we may write gkn(x,ù). Let æs be the average over t that extend s of

æ t � Yt ÿ f (î t).

Lemma 4.1 showed that ~ðkn concentrates near its mean function d knYkn. Next, we show

that Ykn can be well approximated by f kn, as in De®nition 4.1.

For t 2 Cn, let at be real. As is easily veri®ed.

k ! 1

2k

X
s2C k

1

2nÿk

X
fat: t extends sg

 !2

is monotone non-decreasing in k, for 0 < k < n:

(4:1)
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The following are immediate; calculations are relative to Pf .

As t ranges over Cn, the pairs (Yt, î t) are independent: (4:2a)

æ t � Yt ÿ f (î t) is N (0, 1): (4:2b)

fæ t: t 2 Cng is independent of fî t: t 2 Cng: (4:2c)

Corollary 4.1. Fix k < n. With a balanced normal design of order n,�
Ù

�
C1

(Ykn(x,ù)ÿ f kn(x,ù))2ë1(dx)Pf (dù) � 1

2nÿk
:

Proof. Clearly, Ykn(x)ÿ f kn(x) � æs, where s is the ®rst k bits of x. Then�
C1

(Ykn(x, ù)ÿ f kn(x, ù))2ë1(dx) � 1

2k

X
s2C k

æ
2

s : (4:3)

Now use (4.2). u

Proposition 4.1. Fix A . 2 and ä. 0. For Pf -almost all ù, for all suf®ciently large n, for all

k , nÿ Alog n, �
C1

[Ykn(x,ù)ÿ f kn(x,ù)]2ë1(dx) , ä2:

Proof. Use (4.1) with at � Yt ÿ f (î t), to see that only the maximal k in the given range

needs to be considered. For that k, use Chebyshev's inequality with Corollary 4.1 to estimate

the variance; the Borel±Cantelli lemma completes the proof. u

Proposition 4.1 shows that Ykn(:, ù)ÿ f kn(:, ù)! 0 in L2 as n!1, uniformly in

k , nÿ Alog n, for almost all ù. We need a similar but weaker estimate for k < nÿ B, as

given in Proposition 4.2. Indeed, convergence to 0 cannot be obtained: when k � nÿ B,

there are only 2B terms in each average Ys(ù): s 2 Ck . Lemma 4.2 is nearly standard; only

the case d � 1 needs to be veri®ed, and that follows by considering the Laplace transform.

Lemma 4.2. Let m and d be positive integers. For i � 1, . . . , m, let X 2
i be independent ÷2

variables, with d degrees of freedom. Fix å. 0. There is a r � r(å) , 1 such that

P

����Xm

i�1

(X 2
i ÿ d)

����. mdå

( )
, rmd :

Proposition 4.2. Fix ä. 0. There is a B � B(ä) ,1 so large that for Pf -almost all ù, for

all suf®ciently large n, for all k < nÿ B,

Äkn(ù) �
�

C1
[Ykn(x,ù)ÿ f kn(x,ù)]2ë1(dx) , ä2:
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Proof. Again, we need only prove this for k � nÿ B; see (4.1). With that choice of k, Äkn is

distributed as

X2nÿB

i�1

X 2
i

0@ 1A�2n,

the X 2
i being independent ÷2 variables with 1 degree of freedom; see (4.2) and (4.3). Fix

å. 0; ®x B so large that

2ÿB(1� å) , ä2:

Then use Lemma 4.2: for Pf -almost all ù, for all suf®ciently large n,

Äkn(ù) , 2nÿB(1� å)=2n � 2ÿB(1� å) , ä2: u

Let g be an L2 function on C1. By de®nition,

g k(s) �
�

C1
g(sw)ë1(dw) and g k(x) � gk(x1, . . . , xk): (4:4)

These are deterministic functions on Ck and C1, respectively; g k(x) is well de®ned for all x,

even though g may only be de®ned almost everywhere. By the usual martingale theorems,

g k ! g almost everywhere and in L2 as k !1, relative to ë1: (4:5a)

If j , k, then

�
g2

j ,

�
g2

k unless g j � gk : (4:5b)

The next step is to show that f kn can be well approximated by f k. We begin with a

version of the strong law. Recall that Pf makes the î t independent as t ranges over Cn.

Furthermore, if t 2 Cn, then îi(t) � ti for 1 < i < n; for i . n the îi(t) are independent,

each taking the values 0 or 1 with probability 1
2
. The î t are independent but not identically

distributed. Indeed,

The Pf -law of î t is just the ë1-law of x, given that

x 2 hti � fx 2 C1jxi � ti for 1 < i < ng: (4:6)

Theorem 4.1. Suppose h is a measurable function on C1. If h is L1 with respect to ë1, then

1

2n

X
t2C n

h(î t)!
�

C1
h(x)ë1(dx)

as n!1, with Pf -probability 1.

Proof. This is proved by a standard truncation argument, as in Feller (1968, p. 247). In more

detail, let h9 � h provided jhj < 2n, else let h9 � 0; the dependence on n is not shown. We

claim that

Pf -almost surely, for all sufficiently large n, for all t 2 Cn, h9(î t) � h(î t): (4:7)

Indeed, the Pf -probability of the complementary event is at most
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X
t2C n

Pf fjh(î t)j, 2ng �
X
t2C n

ë1fjh(x)j. 2njxi � ti for 1 < i < ng

� 2në1fjh(x)j. 2ng,
where the ®rst equality holds by (4.6). NowX1

n�1

2në1fjh(x)j. 2ng �
X1
n�1

2n
X1
m�n

ë1f2m , jh(x)j < 2m�1g

�
X1
m�1

Xm

n�1

2në1f2m , jh(x)j < 2m�1g

, 2
X1
m�1

2më1f2m , jh(x)j < 2m�1g

, 2

�
C1
jhj dë1,1:

The Borel±Cantelli lemma completes the proof of (4.7).

For t 2 Cn, let mt � 2n
�
h tih9 dë1, where ktl is the set of x 2 C1 with xi � ti for

1 < i < n. By (4.6), mt �
�
Ùh9(î t) dPf . By dominated convergence,

1

2n

X
t2C n

mt �
�

C1
h9 dë1 !

�
C1

h dë1 as n!1: (4:8)

We claim

1

2n

X
t2C n

[h9(î t)ÿ mt]! 0 as n!1, Pf -almost surely: (4:9)

To prove (4.9), ®x å. 0 and use (4.6):

Pf

���� 1

2n

X
t2C n

[h9(î t)ÿ mt]

����. å

( )
<

1

å2

1

4n

X
t2C n

var fh9(î t)g

<
1

å2

1

4n

X
t2C n

�
Ù

h9(î t)
2 dPf

<
1

å2

1

4n

X
t2C n

2n

�
h ti

h9(x)2ë1(dx)

� 1

å2

1

2n

X
t2C n

�
fjh(x)j<2ng

h(x)2ë1(dx)
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Furthermore, X1
n�1

1

2n

X
t2C n

�
fjh(x)j<2 ng

h(x)2ë1(dx) � A� B,

where

A �
X1
n�1

1

2n

�
fjh(x)j<1g

h(x)2ë1(dx) ,1

and

B �
X1
n�1

1

2n

Xn

m�1

�
f2 mÿ1,jh(x)j<2mg

h(x)2ë1(dx):

We now estimate B, as follows:

B �
X1
m�1

X1
n�m

1

2n

�
f2mÿ1,jh(x)j<2 mg

h(x)2ë1(dx)

, 2
X1
m�1

1

2m

�
f2mÿ1,jh(x)j<2 mg

h(x)2ë1(dx)

, 2

�
jh(x)jë1(dx) ,1:

The Borel±Cantelli lemma completes the proof of (4.9). Relations (4.7)±(4.9) prove the

theorem. u

Remark. Let W n � fî t: t 2 Cng, a set of 2n random variables. The joint distribution of W n,

as n varies, does not matter in Theorem 4.1.

We return to the idea of approximating f kn by f k ; on the former, see De®nition 4.1; the latter

is de®ned in (4.4).

Proposition 4.3. For Pf -almost all ù, as n!1,

max
0<k<n

�
C1

[ f kn(x,ù)ÿ f k(x)]2ë1(dx)! 0:

Proof. Use (4.1) with at � Yt ÿ f n(t), to see the maximum is attained for k � n. Write i´i
for the L2 norm relative to ë1. Fix ä. 0. Using (4.5), choose j so large that i f ÿ gi , ä,

where g � f j depends only on the ®rst j bits of x.

We claim that

gnn(x, ù) � gn(x) for all x 2 C1 and all ù 2 Ù, provided n . j: (4:10)

The only dif®culty here is the notation. Fix x. Let t � (x1, . . . , xn) 2 Cn. The left-hand side

of (4.10) is g(î t(ù)), by De®nition 4.1. By the balance conditions, î t(ù) � x1: : : xne1e2 . . . ,
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where ei � 0 or 1 depending on ù. However, g(x) � f j(x) only depends on the ®rst j bits of

x, by (4.4). So, the left-hand side of (4.10) boils down to f j(x1, . . . , xj). For future reference,

g nn(x, ù) � f j(x) for all x 2 C1 and all ù 2 Ù, provided n . j: (4:11)

The right-hand side of (4.10) is Eëfgjx1, . . . , xng, the expectation being taken relative to ë1,

by de®nition (4.4). However, g � f j only depends on x1, . . . , xj. So, the right-hand side of

(4.10) is also f j(x1, . . . , xj). This completes the proof of (4.10).

For all ù and all n . j,

i f nn(:, ù)ÿ f n(:)i < i f nn(:, ù)ÿ gnn(:, ù)i

� i gnn(:, ù)ÿ gn(:)i � i gn(:)ÿ f n(:)i: (4:12)

The middle term on the right-hand side of (4.12) vanishes, by (4.10). The last term may be

recognized as i f j(:)ÿ f n(:)i, whose limit as n!1 is less than ä, by construction. The

square of the ®rst term, by De®nition 4.1 and (4.11), is

1

2n

X
t2C n

[ f (î t)ÿ f j(î t)]
2,

whose Pf -almost sure limit as n!1 is, by Theorem 4.1,�
C1

[ f (x)ÿ f j(x)]2ë1(dx) , ä2,

again by construction. In short, for Pf -almost all ù,

lim sup
n!1

i f nn(:, ù)ÿ f n(:)i , 2ä: (4:13) u

Corollary 4.2. Fix ä. 0. There is a B � B(ä) ,1 so large that for Pf -almost all ù, for

suf®ciently large n, for all k < nÿ B,

(a)
�

C1[Ykn(x,ù)ÿ f k(x)]2ë1(dx) , ä2,

(b)
�

C1 [d knYkn(x,ù)ÿ f k(x)]2ë1(dx) , ä2.

Proof. Claim (a) is immediate from Propositions 4.2 and 4.3. Then (b) follows. Indeed, d kn is

uniformly close to 1 by de®nition (3.4); and
�

f 2
k <

�
f 2 by (4.4). u

Corollary 4.3. Fix ä. 0. There is a B � B(ä) ,1 so large that for Pf -almost all ù, for all

suf®ciently large n, for all k < nÿ B, ~ðknfN( f k , ä)g. 1ÿ ä; the ä-ball N was de®ned in

(2.1).

This is immediate from Lemma 4.1 and Corollary 4.2b, by the triangle inequality.

Corollary 4.3 completes our discussion of the posteriors ~ðkn, and we turn to the posterior

theory weights ~wkn.
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5. Estimating the theory weights ~wkn

As we will show, the posterior theory weights ~wkn tend to concentrate on theories k with

k , nÿ B. The ~wkn are computed from the predictive probability densities Rkn; see (3.6).

The Rkn in turn are driven by the quadratic Qkn; see (3.4). According to our notation, Rkn is

just rkn, with fYtg in place of fytg; likewise for Qkn and qkn. The ®rst lemma is useful, if

super®cial.

Lemma 5.1. Suppose g and h are L2 functions. Then

ji gi2 ÿ i hi2j < i g ÿ hi 3 [2i hi � i g ÿ hi]:

Lemma 5.2. Fix ä. 0. There is a B � B(ä) ,1 so large that for Pf -almost all ù, for all

suf®ciently large n, for all k < nÿ B,

(a) jiYkn(:, ù)i2 ÿ � f 2
k j, ä

(b) jQkn(ù)ÿ 1
2
d kn2n

�
f 2

k j, ä2n.

Proof. Only claim (a) needs to be argued. By Lemma 5.1 and (4.5),

iYkn(:, ù)2 ÿ f 2
k i < iYkn(:, ù)ÿ f k i 3 [2i f i � iYkn(:, ù)ÿ f k i]:

Finally, iYkn(:, ù)ÿ f k i is small, by Corollary 4.2. u

We must now consider theories with indices near n.

Lemma 5.3. Fix j � 0, 1, : : : . Let k � nÿ j. Let

Îkn(ù) � 1

2k

X
s2C k

Ys(ù)2:

For Pf -almost all ù,

Îkn(ù)!
�

C1
f (x)2ë1(dx)� 1

2 j
as n!1:

Proof. Recall De®nition 4.1. Then

Ys � f s � æs,

where the terms on the right are independent and æs is N (0, 1=2 j); see (4.2). Then Îkn may

be rewritten as �
C1

f kn(x, :)2ë1(dx)� 2

2k

X
s2C k

f sæs � 1

2k

X
s2C k

æ
2

s : (5:1)

In view of Lemma 5.1 and Proposition 4.3, the ®rst term in (5.1) is
�

f k(x)2 � o(1),
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almost surely. But
�

f 2
k �

�
f 2 � o(1), by (4.5). By Lemma 4.2, the last term in (5.1)

converges almost surely to 1=2 j.

Given the covariates, the middle term in (5.1) is normal with conditional mean 0 and

conditional variance

4

2 j�k

1

2k

X
s2C k

f
2

s �
4

2n

1

2k

X
s2C k

f
2

s ,
4

2n

1

2n

X
t2C n

f (î t)
2;

the equality holds because n � j� k, and the inequality holds by (4.1). Consequently, the

middle term in (5.1) has unconditional mean 0, and unconditional variance bounded above by

4
�

f 2=2n; it tends to 0 almost surely, by Chebyshev and Borel±Cantelli. u

Lemma 5.4. Let j � 1, 2, : : : .

(a) j(2 j � 1)=2 j increases with j.

(b) ( j=2 j) log 2 . 1=(2 j � 1).

Proof. (a). Fix j. We must show that

( j� 1)
2 j�1 � 1

2 j�1
. j

2 j � 1

2 j
,

which boils down to 2 j�1 � 1 . j.

(b). By (a), the case j � 1 is critical; but log 2 . 2
3
. u

Lemma 5.5. Fix j � 0, 1, : : :. Let k � nÿ j. For Pf -almost all ù,

lim sup
n!1

2

2n
[Qkn(ù)ÿ bkn ÿ ckn] ,

�
C1

f (x)2ë1(dx):

Proof. The notation is de®ned in (3.4). To begin with, by Lemma 5.3,

2Qkn

2n
� 2 j

2 j � 1

1

2k

X
s2C k

Ys(ù)2 ! 2 j

2 j � 1

�
f 2 � 1

2 j

� �
:

The Case j � 0. Now 2Qkn=2n ! 1
2

�
f 2 � 1

4
, bkn � 0, and 2ckn=2n � log 2. But log 2 . 1

4
.

The Case j . 0. Now k � nÿ j, 2bkn=2n � ( j=2 j) log 2, ckn . 0, and the result follows

from Lemma 5.4(b). u

We are close to proving Theorem 2.1. The next lemma establishes that early theories become

implausible, as the data come in. Recall that Rkn is the predictive density evaluated at fYtg.

Lemma 5.6. Fix j, k with j , k and f j 6� f k . Then Rjn=Rkn ! 0 as n!1, Pf -almost

surely.

Proof. Fix ä with 0 , ä, (
�

f 2
k ÿ

�
f 2

j)=10; see (4.5). By Lemma 5.2, for almost all ù, for

all suf®ciently large n,
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Qjn(ù) , 1
2
d jn

�
f 2

j � ä

� �
2n

Qkn(ù) . 1
2
d kn

�
f 2

k ÿ ä

� �
2n:

Because din ! 1 as n!1 for i � j or k, for all large n,

Qjn(ù) , 1
2

�
f 2

j � 2ä

� �
2n

Qkn(ù) . 1
2

�
f 2

k ÿ 2ä

� �
2n:

So Qkn(ù)ÿ Qjn(ù) . ä2n for n large. On the other hand, bknÿ b jn � O(n) and ckn ÿ
c jn � o(1) as n!1. The upshot is that log Rkn ÿ log Rjn !1 as n!1; see (3.4). u

Recall the hierarchical prior ð from (2.2). Given the data, the posterior probability on

theory j is ~ðnf jg, as computed in (3.7).

Corollary 5.1. Fix j, k with j , k, f j 6� f k , and wk . 0. Then ~ðnfjg=~ðnfkg ! 0 as n!1,

Pf -almost surely.

Lemma 5.6 showed that early theories become untenable; Lemma 5.7 shows that theories

n, nÿ 1, : : : and so forth are also quite implausible, a posteriori.

Lemma 5.7. Fix j � 0, 1, . . . . For any k, ®xed but suf®ciently large, Rnÿ j,n=Rk,n ! 0 as

n!1, Pf -almost surely.

Proof. By Lemma 5.5, there is a small positive å � å( j) such that, for all suf®ciently large n,

for almost all ù,

Qnÿ j,n(ù)ÿ bnÿ j,n ÿ cnÿ j,n , 1
2
2n

�
C1

f (x)2ë1(dx)ÿ å
� �

:

By (4.5), we can ®x a large k with �
f 2

k .

�
f 2 ÿ 1

3
å:

By Lemma 5.2, for all suf®ciently large n, for almost all ù,

Qk,n(ù) . 1
2
2n

�
C1

f (x)2ë1(dx)ÿ 1
2
å

� �
;

this uses limn!1 d kn � 1. As before,

bk,n � ck,n � O(n) as n!1,

so log Rk,n(ù)ÿ log Rnÿj,n(ù) . 1
4
å2n for n large enough; see (3.4). u
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Corollary 5.2. Fix B ,1. For any k suf®ciently large, ~ðnfj: j > nÿ Bg=~ðnfkg ! 0 as

n!1, Pf -almost surely.

Proof. This is immediate from Lemma 5.7, with Lemma 3.1(b) to handle j . n. u

If f is ®nitary, that is, f � f k for some k, then weight concentrates on the minimal k

with f � f k and wk . 0; that case will be handled in the next section. Otherwise, the

posterior weight on any particular k tends to 0.

We are now ready to prove Theorem 2.1, under the side condition

f � f j for no j, (5:3)

i.e. where f is not ®nitary.

Fix j. There is a k . j such that wk . 0 and f k 6� f j. This uses (5.3), (4.5) and the

assumption (2.2) that wk . 0 for arbitrarily large k. Theories in the range 0 to j become

unlikely relative to theory k, by Corollary 5.1. Furthermore, theories in the range

[nÿ B, 1) become unlikely by Corollary 5.2. In short, posterior mass concentrates on

theories k with j , k , nÿ B, where j and B are any large positive integers. For k in that

range, ~ðkn concentrates near f k by Corollary 4.3; and f k is close to f. The L2 metric is

used throughout.

This completes the proof of Theorem 2.1 under the side condition (5.3). Lemma (3.10) in

Diaconis and Freedman (1993) can be used to obtain bounds.

6. Finitary f

Suppose f � f k for some k; let k0 be the least such k. We must prove Theorems 2.1 and 2.2.

Let k1 be the least k > k0 with wk . 0; then f k1
� f . If j , k0, then ~ðnf jg=~ðfk1g ! 0 as

n!1, Pf -almost surely, by Corollary 5.1; if k0 < j , k1, then ~ðnf jg � 0. Theorem 2.1

follows, by Corollary 4.3 and Corollary 5.2. However, posterior mass does not drift towards

larger and larger theories.

Theorem 2.2 follows from Corollary 5.2 and the next result.

Proposition 6.1. For any B suf®ciently large,

~ðnf j: k1 , j < nÿ Bg=~ðnfk1g ! 0

as n!1, Pf -almost surely.

The proof of Proposition 6.1 is deferred. Only the case k1 � 0 needs to be argued: we

can assume that, for some constant c,

w0 . 0 and f � c: (6:1)

Since f � c,
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Qkn � 1
2
d kn 2nc2 � 2c

X
t2C n

æ t � Îkn

( )
, (6:2)

where

Îkn �
X
s2C k

2nÿkæ
2

s (6:3)

and æs is the average of æ t � Yt ÿ f (î t) over t 2 Cn that extend s 2 Ck . In particular, by

(4.2),

Îkn is ÷2 with 2k degrees of freedom: (6:4)

The next lemma is elementary; see also (5.17) in Diaconis and Freedman (1993). The

notation is laid out in (3.4).

Lemma 6.1.

(a) Fix n. Then k ! d kn is monotone decreasing for k � 0, 1, . . . , n.

(b) Fix n. Then k ! 2k(nÿ k) is monotone increasing for k � 0, 1, . . . , nÿ 2.

(c) Fix k. Then ckn=bkn ! 0 as n!1.

Recall Îkn from (6.3).

Lemma 6.2. Fix å. 0. Let B � 2=å. Almost surely, for all suf®ciently large n,

Îkn , å2k(nÿ k) for all k < nÿ B.

Proof. Let n9 � log n. Consider ®rst the k with n9 , k < nÿ B. Then å2k(nÿ k) > 2k�1,

because nÿ k > B. By Lemma 4.2 and (6.4), for r, 1,

X1
n�1

XnÿB

k�n9

Pf fÎkn . 2k�1g,
X1
n�1

X1
k�n9

r2 k

: (6:5)

Of course, 2k�1 > 2k � 1. Thus,

X1
k�n9

r2 k

, r2 n9

�
(1ÿ r) � rnlog 2

=(1ÿ r);

and the sum in (6.5) is ®nite.

Consider next the k with k < n9. Now 2k < nlog 2; and 2k(nÿ k) > n, the value at

k � 0, by Lemma 6.1(b). Let n� be the greatest integer with n� < nlog 2. We have

Pf fÎkn . å2k(nÿ k)g, Pf÷2
n� . ång

� O(n�=n2) � O(nlog 2=n2)
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by Chebyschev's inequality: varf÷2
n�g � 2n�, and Ef÷2

n�g � n� � o(n). ThenX1
n�1

Xn9

k�1

Pf fÎkn . ång,
X1
n�1

n9Pf÷2
n� . ång

, const:
X1
n�1

(log n)nlog 2=n2

,1:
The Borel±Cantelli lemma completes the proof. u

The next result is easily proved using Chebyshev's inequality; of course, much better

estimates are available.

Lemma 6.3. Let Sn �
P

t2C n
æ t. Fix å. 0. For all suf®ciently large n, for Pf -almost all ù,

jSn(ù)j, 2nå.

Corollary 6.1. Fix å. 0. For all suf®ciently large n, for all j , n, for Pf -almost all ù,

jSn(ù)j=(2nÿ j � 1) , åb jn.

Lemma 6.4. Fix å, with 0 , å, 1=10. Let B � 2=å. Condition (6.1) is in force. Almost

surely, for all suf®ciently large n, for all j with 1 < j < nÿ B,

log Rjn ÿ log R1n ,ÿn=20:

Proof. We evaluate log Rjn ÿ log R1n by Lemma 3.1, as

b1n ÿ b jn � c1n ÿ c jn � Qjn ÿ Q1n , A� B� C � D,

where

A � (1� å)b1n ÿ b jn

B � 1
2
(d jn ÿ d1n)2nc2

C � 1
2
[(d jn ÿ 1)ÿ (d1n ÿ 1)]2cSn

D � 1
2
d jnÎ jn ÿ 1

2
d1nÎ1n;

c1n was estimated by Lemma 6.1(c), ÿc jn , 0 was dropped, and Q was evaluated by (6.2).

Now B can be dropped; indeed, B , 0 by Lemma 6.1(a). In C, 1ÿ din � 1=(2nÿi � 1) for

i � 1 or j. In D, ÿ1
2
d1nÎ1n , 0 can be dropped.

The upper bound becomes

(1� å)b1n ÿ b jn � jcjjSnj=(2nÿ j � 1)� jcjjSnj=(2nÿ1 � 1)� 1
2
d jnÎ jn:

The two terms involving Sn can be bounded above using Corollary 6.1; the last term can be
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bouned above, using Lemma 6.2, to get (åb jn)=(log 2) , 2åb jn. We have an upper bound for

log Rjn ÿ log R1n of

(1� 2å)b1n ÿ (1ÿ 3å)b jn < (1� 2å)b1n ÿ (1ÿ 3å)b2n

by Lemma 6.1(b). Now use (3.4b) to get an upper bound of the form

(log 2)[(ÿ1� 8å)n� 6]: u

Proposition 6.1 is an immediate consequence.

7. Possible generalizations

According to our priors ðk , the 2k possible values ès for f were independent N (0, 1)

variables. Of course, N (ì, ó 2) would suf®ce. Furthermore, the problem can be broken down

and handled separately on each of the 2k pieces in Ck . In other words, according to ð j, the

mean and variance of ès can depend on s1, . . . , sk , provided j . k. Presumably, some sort of

limiting argument is feasible, so that moderately general prior means and variances can be

accommodated. Other possible generalizations are discussed in Diaconis and Freedman

(1995). For example, the ès might taken as independent, with densities subject to uniform

boundedness and smoothness conditions, as well as decay rates at �1. Another promising

class of priors ðk is given by Ylvisaker (1987); these have some built-in smoothness.

8. Flat priors

Recall that ðk is `¯at' if the joint distribution of fès: s 2 Ckg is Lebesgue measure on 2k-

dimensional Euclidean space. We prove Theorem 2.3 by showing how to modify previous

arguments. The predictive density, evaluated at the data, may be computed for k < n as

log Rkn � An ÿ bkn � ck � Qkn, (8:1)

where (as before)

An � 1
2
2nlog (1=2ð)ÿ 1

2

X
t2C n

Y 2
t , (8:2a)

bkn � 1
2
2k(nÿ k)log 2: (8:2b)

With ¯at priors,

ck � 1
2
2k log 2ð, (8:2c)

Qkn � 1
2
2n 1

2k

X
s2C k

Y
2

s : (8:2d)

Although Rnn � 1, the representation (8.1) is more convenient for present purposes.

For k . n, there is a de®nitional problem, since Rkn must be in®nite on sets of positive

Lebesgue measure. For instance, take k � 0 and n � 1; suppose the ®rst bit in x is 0. There
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are two parameters, è0 and è1, both subject to Lebesgue measure; the ®rst is observed, the

second unobserved. The `preditive measure' or `marginal measure' of fY 2 Ag is�1
ÿ1

�1
ÿ1

�
A

1������
2ð
p eÿ

1
2
( yÿè0)2

dy dè0 dè1 � 1:

Since this predictive measure assigns in®nite mass to any set of positive Lebesgue measure,

the usual disintegrations (and de®nitions of conditional measures) do not make much sense.

See Section 10 below.

The simplest way around this de®nitional issue is to treat each design as a separate

inference problem with its own prior. (Recall that the `objective' part of the model does not

require any particular speci®cation of joint distributions across n.) At stage n, the prior puts

weight wk on theory k , n, and weight 0 on theory k . n. For theory n, we can keep the

weight at wn, or set it to
P1

k�nwk ; the latter seems to make the algebra a little easier.

Thus, our convention is the following:

With flat priors, at stage n, the prior weight on theory k , n remains wk ; the prior weight

on theory k . n is set to 0; the prior weight on theory n is set to be
P1

k�n wk : (8:3)

We could also allow the Bayesian to ignore unobserved parameters when calculating

predictive distributions and posteriors: the posterior distribution of an unobserved parameter

stays ¯at. Arguments and results are essentially unchanged. Related papers that use improper

priors include Kohn and Ansley (1987) and Wahba (1990).

We now estimate Qkn; bounds are organized to prove the inconsistency result, but are

modi®ed later to make the consistency arguments.

Lemma 8.1. Suppose the design is balanced, and normal in the sense of (2.3). Suppose the

prior ð is hierarchical, and the ðk are ¯at. For any small positive ä, there is a B ®nite but so

large that, for Pf -almost all ù, for all suf®ciently large n,

(a) Qkn(ù) , 1
2
2n(
�

f 2 � ä)� 1
2
2k , for k � 0, 1, . . . , nÿ 1, n,

(b) Qkn(ù) . 1
2
2n(
�

f 2 ÿ ä)� 1
2
2k , for B < k < n.

Proof. Fix ä. 0. Use Lemma 5.2 for k < nÿ B, and Lemma 5.3 for k . nÿ B. u

Lemma 8.2. Let

ákn � ÿbkn � ck � 2k=2 � 1
2
2kf(k ÿ n)log 2� log 2ð� 1g:

Then

(a) ákn , 0 for k � 0, 1, . . . , nÿ 5,

(b) ákn . 0 for k � nÿ 4, . . . , n,

(c) ánn � 1
2
2nlog 2ðe.

Remark. k ! ákn is convex, monotone decreasing for k � 0, 1, . . . , nÿ 6, and monotone

increasing for k � nÿ 6, . . . , nÿ 1, n.
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Corollary 8.1. For any small positive ä, for Pf -almost all ù, for all suf®ciently large n, for

all k < nÿ 5,

log Rkn(ù)ÿ log Rnn(ù) ,ÿ1
2
2n(log 2ðeÿ 2ä):

Proof. For k < nÿ 5,

log Rkn(ù) , 1
2
2n

�
f 2 � ä

� �
� ákn � An

, 1
2
2n

�
f 2 � ä

� �
� An;

the ®rst inequality comes from Lemma 8.1(a) and the de®nitions; the second, from Lemma

8.2(a). On the other hand, by Lemma 8.2(b,c),

log Rnn(ù) . 1
2
2n

�
f 2 ÿ ä

� �
� ánn � An: u

Corollary 8.2. With data from a balanced normal design of order n, a hierarchical prior, and

¯at ðk , along subsequences of n for which

lim
1

2n
log

X1
k�n

wk

 !
.ÿ1

2
log 2ðe,

posterior mass concentrates on theories k with k > nÿ 4, almost surely. Convention (8.3) is

in force, so k < n.

Proof. Fix ä. 0 so that for all suf®ciently large n in the subsequence,X1
k�n

wk . exp ÿ1
2
2n(log 2ðeÿ 3ä)

� 	
: (8:4)

The total posterior weight on theories 0 to nÿ 5 is by Corollary 8.1 at mostX
k

wk

 !
exp ÿ1

2
2n(log 2ðeÿ 2ä)

� 	
Rnn(ù):

The total posterior weight on theories k with k > n is by (8.4) at least

exp ÿ1
2
2n(log 2ðeÿ 3ä)

� 	
Rnn(ù):

Comparing the last two expressions completes the proof. u

If k > nÿ 4, there are at most 24 observations per parameter, so the posterior remains

diffuse, and there is inconsistency. Lemmas 8.3±8.4 and (8.5) make this precise, and

complete the proof of the inconsistency assertion in Theorem 2.3. Clearly,

if k < n, ~ðkn is a proper probability measure, making fès: s 2 Ckg
independent N (Ys, 1=2nÿk): (8:5)
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The next result applies a bit more generally. To state it, let Pr be a joint distribution for

fès: s 2 Ckg, making them independent N (ìs, ó 2); the ìs may be any real numbers. We

can view Pr as a probability distribution on h 2 L2, as follows: Pr concentrates on Èk , the

set of h that depend only on the ®rst k bits of x; and the Pr law of

fh(sxk�1xk�2 : : :): s 2 Ckg is just the Pr law of fès: s 2 Ckg. If g 2 L2, the ä-ball

N (g, ä) around g was de®ned in (2.1).

Lemma 8.3. Pr fN (g,ä)g is maximized when g is piecewise constant, being ìs on the x that

extend s.

Proof. The leading special case is k � 0 and ó 2 � 1. Let U be N (ì, 1). Then

Pr fN (g, ä)g � Pr

�
C1

[U ÿ g(x)]2ë1(dx) , ä2

� �
:

Of course, �
(U ÿ g)2 � U ÿ

�
g

� �2

�
�

g ÿ
�

g

� �2

is minimized when g � c, and then�
(U ÿ g)2 � (U ÿ c)2

is stochastically smallest when c � E(U ). u

Lemma 8.4. Fix ä. 0 with ä2 , 1=2B�1. If nÿ B < k < n, the ~ðkn-mass of any ä-ball

tends to 0 as n!1.

Proof. Let Î be ÷2 with 2k degrees of freedom. By (8.4) and (8.5), the posterior mass in

question is bounded above by PfÎ, ä22ng, PfÎ, 2k=2g, because ä22n , 2k=2. Then use

Lemma 4.2. u

In particular, theories in the range [nÿ 4, n] cannot have posteriors concentrated near the

true f ± or anywhere else, for that matter. This completes the proof of inconsistency, and

we now sketch the argument for consistency.

Fix k. For any ä. 0, for all suf®ciently large n, almost surely,

log Rkn(ù) . 1
2
2n

�
f 2

k ÿ
ä

2

� �
� An: (8:6)

This is obvious from (8.1) and Lemma 5.2. Recall ákn from Lemma 8.2. Let

á j � 1

2n
ánÿ j,n � 1

2

1

2 j
(ÿ jlog 2� log 2ðe): (8:7)

This is negative for j > 5; see Lemma 8.2(a). Fix B, with 5 , B ,1. Then ®x ä. 0 so

small that á j ,ÿ2ä for 5 < j < B; choose k so large that wk . 0 and
�

f 2
k .
�

f 2 ÿ ä=2.
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We claim that, almost surely, for all suf®ciently large n,

theories in the range [nÿ B, nÿ 5] are negligible a posteriori, relative to theory k: (8:8)

Indeed, theories in the range [nÿ B, nÿ 5] have total posterior weight bounded above

(almost surely, for all suf®ciently large n) byX
i

wi

 !
exp 2n 1

2

�
f 2 � ä

� �
ÿ 2ä

� �
� An

� �
; (8:9)

see Lemma 8.1(a), and use the de®nition of the ás. On the other hand, theory k has posterior

weight bounded below by

wk exp 2n 1
2

�
f 2 ÿ ä

� �� �
� An

� �
; (8:10)

see (8.6). Comparing (8.9) and (8.10) proves (8.8).

Use condition (2.4a) to choose ä. 0 so that, for all suf®ciently large n,

X1
i�n

wi , exp fÿ2n[1
2
log 2ðe� 32ä]g: (8:11)

Choose k so large that wk . 0 and
�

f 2
k .
�

f 2 ÿ ä=2, for the new ä. Recall (8.3). We claim

that

theory n is negligible a posteriori, relative to theory k: (8:12)

Indeed, Qnn was bounded in Lemma 8.1. So, the total posterior weight on theory n is

bounded above by

X1
i�n

wi

 !
exp 2n 1

2

�
f 2 � ä

� �
� 1

2
log 2ðe

� �
� An

� �
, exp 2n 1

2

�
f 2 � ä

� �
ÿ 32ä

� �
� An

� �
:

(8:13)

Compare (8.13) with (8.10) ± based on the new ä ± to prove (8.12). The factor of 32 is quite

generous here, but will be needed below.

With the same ä and k, we claim that,

for j � 1, 2, 3, 4, theory nÿ j is negligible a posteriori, relative to theory k: (8:14)

Indeed,

wnÿ j ,
X1

i�nÿ j

wi , exp fÿ2nÿ j[1
2
log 2ðe� 32ä]g:

The posterior weight on theory nÿ j is bounded above by
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wnÿ j exp 2n 1
2

�
f 2 � ä

� �
� á j

� �
� An

� �

, exp 2n 1
2

�
f 2 � ä

� �
� á j ÿ 1

2 j
(1
2
log 2ðe� 32ä)

� �
� An

� �

, exp 2n 1
2

�
f 2 � ä

� �
ÿ 1

2 j
32ä

� �
� An

� �

, exp 2n 1
2

�
f 2 � ä

� �
ÿ 2ä

� �
� An

� �
because á j ,á0=2 j , (log 2ðe)=2 j�1 and 2 j < 16 (see (8.7)). Comparison with (8.10) proves

(8.14). Combining (8.8) with (8.14) shows that posterior mass concentrates on theories k with

k , nÿ B, and consistency follows as in the proof of Theorem 2.1.

9. An example

This section gives an example with ¯at priors and rapidly decreasing theory weights; the idea

is to show that posterior mass can accumulate on theories n or nÿ 1, whatever the time f

may be. Suppose wk � 0 for odd k; while wk � exp fÿC2kg for even k, where C is a

positive constant. Clearly,

lim
1

2n
log

X1
k�n

wk

 !
� ÿC as even n!1
ÿ2C as odd n!1:

�
If C .á0 � 1

2
log 2ðe, there is consistency. If 0 , C ,á0, inconsistency obtains. More

interesting is this. Suppose

C . 1
3
á0 � 1

6
log 2, (9:1a)

C ,á0 ÿ 1
6
log 2: (9:1b)

We claim that:

as odd n!1, posterior mass concentrates on theory nÿ 1; (9:2a)

as even n!1, posterior mass concentrates on theory n: (9:2b)

Only (9.2a) will be argued. Consider the odd n. Theories k < nÿ 5 are negligible, by

Corollary 8.2; theories nÿ 2 and nÿ 4 have prior mass 0. At stage n, by convention (8.3),

theory n is given prior mass wn�1 � wn�3 � : : : ; indeed, wn � wn�2 � : : : � 0. Thus, only

theories nÿ 3, nÿ 1, and n are in contention. The posterior theory weights can be computed

from (3.6) and (8.1)±(8.2), with Lemma 8.1 to estimate their magnitudes.

Let K n � An � 1
2
2n
�

f 2. For any ä. 0, almost surely, for all suf®ciently large odd n:

the posterior weight on theory nÿ 3 is bounded above by exp fK n � 2n(C3 � ä)g,
where C3 � (ÿC � á0 ÿ 3

2
log 2)=23; (9:3a)
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the posterior weight on theory nÿ 1 is bounded below by exp fK n � 2n(C1 ÿ ä)g,
where C1 � (ÿC � á0 ÿ 1

2
log 2)=2; (9:3b)

the posterior weight on theory n is bounded above by 2exp fK n � 2n(D� ä)],

where D � ÿ2C � á0: (9:3c)

The factor of 2 in (9.3c) results from the estimateX1
i�m

exp fÿC22ig, 2exp fÿC22mg,

which holds because eÿ4C0 , eÿC0=2 when C0 . 1
3
log 2. It remains only to check that C1 . D

and C1 . C3, which follow from (9.1a) and (9.1b), respectively.

10. A de®nitional issue with ¯at priors

You are about to observe independent normal variables X and Y. Both have variance 1.

Theory 1 is that X and Y have the same mean, è; there is a ¯at prior on è. Theory 2 is that X

has mean è and Y has mean ø; there is a ¯at prior on the pair (è, ø). To adjudicate between

the two theories, you put prior mass 0.5 on each, observe (X , Y ), and compute the posterior.

But now suppose Y is not observed. Theory 2 has an in®nite marginal `density' for X; surely,

that cannot tip the balance for theory 2. In this section, we review the calculus, and suggest a

`partial Bayes rule' convention: basically, the idea is to ignore Y and the prior on its

parameter. That makes theories 1 and 2 agree on the observables, as seems sensible: X is

N (è, 1) and è is uniform.

Let X be N (è, 1) and let Y be N (ø, 1). Suppose X and Y are independent. Let ë be

Lebesgue measure on the line. A Bayesian might assume a ¯at prior ð for (è, ø), that is,

ð � ë2. Let ì be the joint distribution of (è, ø, X , Y ): if A, B, C, D are linear Borel sets,

then

ìfè 2 A ^ ø 2 B ^ X 2 C ^ Y 2 Dg �
�
ø2B

�
è2A

�
y2D

�
x2C

f (xÿ è) f (yÿ ø) dx dy dè dø:

(10:1)

Of course, the `predictive' or `marginal' law of (X , Y ) relative to ì is ë2. Given X and Y, the

posterior law of è, ø is that of two independent N (X , 1) and N (Y , 1) variables. Indeed, let

Qxyfdè, døg be the proposed conditional. By Fubini's theorem,

ìfè 2 A ^ ø 2 B ^ X 2 C ^ Y 2 Dg �
�

y2D

�
x2C

QxyfA 3 Bgì0fdx, dyg (10:2)

where ì0 is the marginal law of X and Y, namely, ë2. The `disintegration' (10.2) makes

rigorous the idea of the posterior.

That much is staightforward. Now suppose that Y is not observed. Suddenly, there is a
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de®nitional crisis: the marginal law of X assigns in®nite mass to any set of positive

Lebesgue measure. Thus, it seems impossible to de®ne the posterior distribution of è, ø
given X by means of the usual disintegration formulas. For related calculations, see Eaton

(1992).

There is a natural convention to make:

(a) the predictive law of X is uniform; and

(b) the posterior law of è, ø given X is this: è is N (X , 1), ø is uniform, and the two are

independent.

With these conventions, the inconsistency results of Sections 8 and 9 go through; only minor

changes are needed in the arguments. Eliminating the weights on complex theories (k of

order n or larger) tends to speed up the rate of convergence for proper priors; eliminating the

prior mass beyond n ÿ 5 does wonders even for ¯at-prior Bayesians. Thus, the convention

followed in Section 8 seems more favourable to the Bayesians than the convention proposed

here; even so, inconsistency is the result.

11. Bayesian regression, splines and wavelets

This section sketches a heuristic connection between our results and those in Cox (1993), via

wavelet theory. Let f f jk : k � 1, 2, . . . , 2 jg index the Haar wavelet functions of level j. Our

covariates takes values in coin-tossing space, which is, of course, isomorphic to the unit

interval. Thus, our prior can in principle be viewed as the distribution of

X1
j�0

X2 j

k�1

X jk f jk :

Each X jk is a mixture of normal variates with mean 0, and the X jk are uncorrelated. We may

consider replacing X jk by Z jk, where the Z jk are independent, normal, and var (Z jk) �
var (X jk); the latter depends on j not k. Now

X1
j�0

X2 j

k�1

Z jk f jk

de®nes a prior of the kind studied by Cox.

This connection is interesting, but somewhat formal ± because the law of fZ jkg is quite

different from the law of fX jkg. In particular, we do not see how to derive our results from

his ± or his from ours. Nor do we see how do derive consistency and inconsistency results

of the kind we have previously demonstrated from wavelet theory. Cox's main result shows

that, in his set-up, Bayesian con®dence sets do not have good frequentist coverage

probability, but that does not establish inconsistency in our sense, because the distance from

the posterior mean to the true parameter is not bounded from below. Likewise, his estimates

do not imply consistency, at least directly. However, calculations like those in his paper
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should establish consistency, at least in his l 2 set-up. For more discussion, see Diaconis and

Freedman (1997).
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