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We study a bootstrap method for stationary real-valued time series, which is based on the sieve of
autoregressive processes. Given a sample X1, ..., X, from a linear process {X,};cz, we approximate
the underlying process by an autoregressive model with order p = p(n), where p(n)— oo,
p(n) = o(n) as the sample size n — oo. Based on such a model, a bootstrap process {X*},c7 is
constructed from which one can draw samples of any size.

We show that, with high probability, such a sieve bootstrap process {X7},cz satisfies a new type of
mixing condition. This implies that many results for stationary mixing sequences carry over to the
sieve bootstrap process. As an example we derive a functional central limit theorem under a
bracketing condition.
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1. Introduction

The bootstrap for AR(co) processes was proposed by Kreiss (1988; 1992). In Biihlmann
(1997) it was developed further and called the ‘sieve bootstrap’. This is because the set of
arbitrary but finite-order autoregressive processes can be viewed as an approximating family
of finite-dimensional parametric models for an underlying true autoregressive process of
order oo. Following Biihlmann (1997), first define an MA(oco) (or linear) process {X;} ez
with expectation E[X,;] = ux as follows:

Xi—px =) Yej o=l (1.1
J=0

where {&,},c7 is an i.i.d. sequence with common distribution F, E[¢,] =0, E|e,| < oo and
> ~ol;| <oc. The set of all joint distributions on RZ induced by such {X,},z is a semi-
parametric model indexed by {F : [xdF(x) = 0} X {{y;}[Z, € /1 : o = 1}. An alternative
definition leading to a slightly different set would be to require (1.1) for more restricted
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distributions F with E|e,|* <oo, E[e;] =0 but now with {¥,}720 € /2. We are concerned
here with a subset of the MA(oco) processes which we call AR(c0), namely all processes
representable as in (1.1) but also satisfying

Do X j—u) = po=1, (12)
=0
with Z;’;0|¢j| < 00. As is remarked in Biithlmann (1995), an MA(oco) process is AR(oco) if
W(z) = Z wjzj
=0

has no zeros for |z| < 1, z € C. Both the AR(c0) and a fortiori MA(o0) models are very rich.
In particular, all stationary Gaussian processes can be approximated weakly by AR(co)
models. The approximation we refer to is in the sense of weak convergence of finite-
dimensional distributions of any order. In fact the sets of stationary process distributions
obtainable as limits from (1.1) or (1.2) is quite large but far from exhaustive; see Bickel and
Biithlmann (1996; 1997). Various authors — in particular, Tsay (1992) implicitly and Hjellvik
and Tjestheim (1995) explicitly — view ‘linear processes’ as being AR(co) (or approximable
by AR(00)).

Given this point of view, and given a sequence {X,}_, from the process, it is reasonable
to try to detect departures from this hypothesis of ‘linearity’ using various test statistics.
This is the point of view of Hjellvik and Tjestheim (1995) and Tsay (1992), save that Tsay
considers parametric hypotheses such as Gaussian AR(p). When dealing with the AR(co)
hypothesis we face not only the choice of test statistics but also what critical value we
should refer these statistics to. It is natural to try to estimate these critical values using a
bootstrap appropriate to this hypothesis. Such a bootstrap for AR(co) processes was
suggested and its properties were explored by Kreiss (1988; 1992) and developed further in
Bithlmann (1997). Paparoditis and Streitberg (1992) use such a bootstrap for approximating
the distribution of vector autocorrelations, Franke and Kreiss (1992) consider in more detail
the bootstrap for real-valued finite-order ARMA processes. In Biihlmann (1997) it is
established that the sieve bootstrap we discuss below gives correct approximations to the
distributions of linear statistics such as Y ), A(X 1, ..., X(4m), where A is smooth, or
smooth functions thereof.

The statistics of Hjellvik and Tjestheim (1995), however, involve estimates of the
marginal densities of X;, and statistics proposed by other authors (see Subba Rao and Gabr
1980), quite naturally force us to look at complicated functionals of the empirical
distribution of the X;s, (X;, X;11)s, and so on.

In this paper we introduce and study a variant of the sieve bootstrap for which we can
show approximate validity of bootstrap critical values for such complicated nonlinear, non-
regular statistics. In particular, we prove a functional central limit theorem under a
bracketing condition for this sieve bootstrap. Such a result immediately implies that the
sieve bootstrap works for estimators 7, which can be written as 7, = T(P,), where T is a
(compactly) differentiable functional, in the sense of functional analysis, and P, is an
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empirical measure. In doing this we introduce some new notions of mixing which are of
independent interest.

2. The smoothed sieve bootstrap

We briefly recall Kreiss’s bootstrap as given in Biihlmann (1997). Let {X,},cz be a real-
valued, stationary linear process as given in (l.1) which also satisfies the infinite
autoregressive representation as in (1.2). Given data Xy, ..., X,, from such an AR(c0)
model as in (1.2), we use an autoregressive approximation as a sieve for the process {X,}c7.
In a first step we fit an autoregressive process, with increasing order p(n) as the sample size
n increases. We then estimate the coefficients gfbl,n, ) p.n corresponding to model (1.2),
usually (but not necessarily) by the Yule—Walker estimates, which allows us to calculate
centred residuals. Then we resample by the bootstrap as in Efron (1979) from these centred
residuals yielding &7, ¢ € Z. Finally, we construct a sieve bootstrap sample according to an
AR(p(n)) process with coefficients g&l,n, ) p.n» that is,

p(n)

z;é_/,n(XT_j ~X)=¢}. @.1)
=

It is shown in Biihimann (1997) that the sieve bootstrap process {X},cz can be again
inverted and represented as a linear process
o0
NP =X =Dl =, (2.2)
where the coefficients {1 ,}% j—o arise by inverting the estimated autoregressive transfer
function @ ,(z) = Zp(")gb, 22/, z € C, |z| <1, that is,

W,(2) = 1/D,(2) = Zﬂ)j,nzf, zeC, |z] < 1.
=0

Moreover, the behaviour of the coefficients {7, ,}° j—o 1s again controllable. Roughly
speaking, if Y% ey, "lp ;| <oo (r € Np) then there exists a random variable ng(w) such that
SUPp=ne > 1o =0/ "[};n] <oo almost surely; see Bithlmann (1995). However, the bootstrap
process as represented in (2.2) is not known to be mixing with mixing coefficients that can be
bounded in some uniform sense over all realizations @ of the underlying probability space.
This is due to the fact that the distribution of the innovations ¢ is discrete and also changing
with sample size n. All the literature for verifying some type of mixing property of a linear
process assumes that the distribution of the innovations has a density or that the distribution
is dominated by Lebesgue measure in some neighbourhood of the expectation of the
innovation; see Gorodetskii (1977), Doukhan (1994). We leave it as an open question if the
process in (2.1) or equivalently in (2.2) possesses some classical kind of mixing property
which holds uniformly over all ws.

On the other hand, some type of mixing property of the sieve bootstrap process is needed
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to describe and analyse the probabilistic behaviour of the bootstrap process as in (2.1) or in
(2.2). We basically want to say that if the underlying process of (1.1) is linear and mixing,
then the sieve bootstrap process is again linear and mixing. If so, many of the results for
the underlying process {X,}cz would carry over to the sieve bootstrap process {X }cz.
For example, we would like a result in the spirit of Giné and Zinn (1990), which says in the
i.i.d. set-up that the bootstrap for empirical processes works if and only if the corresponding
empirical process for the original observations converges properly.

We propose a modified sieve bootstrap process which meets some of these goals. The
idea is to resample residuals from a density estimate or, equivalently, to resample from a
smooth empirical distribution of the residuals. The concept of constructing bootstrap
schemes by resampling from a smooth empirical distribution is not new and has been
studied in the i.i.d. set-up by Silverman and Young (1987), Hall ef al. (1989), Falk and
Reiss (1989a; 1989b) and others. The reason we use it, ensuring some new notion of
mixing, is, however, entirely different than the second-order optimality invoked in the
literature.

Here is our bootstrap scheme. Denote by X, ..., X, a sample from the model as in
(1.2). We always assume that the distribution of the innovations &, has a density f.(.) with
respect to Lebesgue measure.

(1) Fit an autoregressive model of order p = p(n) — oo, p(n) = o(n) (n — oco) by
estimating the parameters by the Yule—Walker method (cf. Brockwell and Davis 1987,
Chapter 8.1). We denote the corresponding estimates by ¢y ,, ..., ¢, , and the residuals by

p(n)
Bn= $inX;j=X),  Gou=1 t=p+l ..., n
j=0

(2) Compute a kernel density estimate for f.(.), based on the residuals,

ORICENOR DY K(x ,f)

t=p+1

where /& = h(n) is a bandwidth with & = h(n) — 0, h(n)~! = o(n) (n — o). Then resample
eF iid. ~ fi(x + fto)dx, teZ,

where ji, = [*_ xf2(x)dx.
(3) Generate the smoothed sieve bootstrap process {X ;k}tez as in (2.1).

In the following we denote bootstrap quantities which correspond to this resampling
scheme by an asterisk *. The smoothed sieve bootstrap now inherits the approximating
order p = p(n) and the bandwidth 4 = h(n) which have to be chosen by the user.

Before giving all the technical details and derivations, we display a result which easily
follows from the new mixing property of the smoothed sieve bootstrap process and our
general results in empirical processes (see Sections 3 and 4). Consider a causal and
invertible ARMA(py, qo) process,
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2o q0
Xt:ZEth—jJFZGjSt—jJFSu 0= pg, go<oo,tcl, (2.3)
=1 =1

with transfer functions E(z) = 1 — 3 &2/, ©(2) = 1 4+ 3°9,0;2/(|z] < 1). We typically
assume
E(z) #0, O(z) # 0 for |z| < 14k (k>0) and E(.), ©(.) have no common zeros. (2.4)

Let

Zx)=n'"?Y (=g — F®), x€R,
t=1

Zyx)y=n"'? Z(l[xfsx] — F*(x)), xeR
=1

where F(.) and F*(.) denote the cdf of X, and X, respectively. Denote by = weak
convergence in the cadlag space &7(R) with respect to the supremum norm.

Corollary 2.1. Assume that {X;}.cz is an ARMA(po, qo) process as defined in (2.3) with
{e:}1ez an iid sequence, &, ~ f(x)dx, sup,cgfe(x) <oo, Ele,|* <oo and satisfying (2.4).
For estimating f(.), let K(x) = (2m)~'/?exp(—x2/2) and h(n) = o(1), h(n)~' = O(n'/?>~7)
(n — 00) (1>0). Moreover, assume that the autoregressive sieve grows as p(n)/C, log(n)
— 1 (n— o00) for Co = 2logl +«"))™!, 0<k’ < . Then

Z, = Z,

Z¥ = Z in probability,

where Z is the limiting Gaussian process given in Corollary 4.1.

The condition about p(n) is reasonable since the underlying ARMA process is geometrically
strong-mixing and hence the approximating order p(n) should grow very slowly. The proof of
Corollary 2.1 follows from much more general results; more precise arguments are given at
the end of Section 4.

3. Mixing property of smoothed sieve bootstrap process

We will establish in this section a type of mixing property for the linear process {X,},;c7z in
(1.1) or (1.2) and its smoothed sieve bootstrap counterpart {X;k}tez in (2.2) or (2.1),
respectively. Denote by .///JZ =0({X;; a < j < b}) the o-algebras with events that belong to
the ‘time interval’ [a, b]. Moreover, we denote the strong-mixing coefficients by

a(k) = sup |P[4 N B] — P[A]P[B]|.

Ae 1 Be Y

For the bootstrap we analogously define



418 PJ. Bickel and P Biihlmann

a*(k) = sup |P*[4 N B] — P*[4]P*[B]|,

Ae* 20 Be*

where * 72" = o({X];a<j=<b}).

We do not know whether the strong-mixing property for the smoothed sieve bootstrap
holds. We will introduce a weaker type of mixing condition which is still powerful enough
to establish quite general results and show that the smoothed sieve bootstrap satisfies this
weaker condition.

3.1. A new notion of mixing

The strong-mixing concept for a stationary process {X,},cz is based on the variational norm
between the joint probability and the product of the marginal probabilities. This definition
allows us to bound covariances

|COV(le ZZ)| < 8||le|q1||Z2||q2al/q3(k)s 1 =< q1> 92, 43 < 00, ql_l + q2_1 + q;l = 1,

for any measurable variable Z; el/é(loo, Z, € #7; see Doukhan (1994, Theorem 3,

Chapter 1.2.2). However, we often only need to bound

|COV(g1(X*d1+la B XO)) gZ(Xk’ cey Xk+d271))|s

with dy, d, € N, gy, g, measurable and ‘nice’ functions.

This suggests two generalizations. First, we only consider separation between finite-time
generated o-algebras, that is, we consider 0 4,+1 and .//Zlf'dz_l, dy, d» € N; this is not a
new generalization (see Doukhan 1994, Chapters 1.1 and 1.3). Second, we restrict ourselves
to bound covariances only for certain subclasses of bounded functions. Our restrictions on
the function classes are in the same spirit as the sufficient and necessary conditions for
uniformity classes in the theory of weak convergence (see Bhattacharya and Ranga Rao
1976). We restrict ourselves to such a subclass of functions so that we can estimate the
difference between the bootstrap and the underlying true covariances. In doing so we make
use of Berry’s smoothing lemma (see Lemma 5.4) which works under such more restrictive
assumptions. The new idea here is that we do not aim to bound a variational norm which
measures how close the expectations of any bounded functions are under the two measures,
but a weaker norm which gives us such an estimate only for bounded functions which are
not too rough.

Let {X,},cz be a stationary, real-valued process. Let w(A4) = supy,c4|g(y) — g(z)|,
g:RT =R, ACR?, B(x,0) ={y; [x—y|| <5} CR? x € R, 6 € R, |.| the Euclidean
norm in RY, d € N. Below we will also consider an averaged translated modulus of
oscillation. For this we denote by gy : R? — R, gy(x) = g(x +y) (x, y € R?) the translation
of the function g(.). We also let | gl =sups|g(xi, ..., xs)| and |gll, = (E|g(X1,
L XDV < g<oo), where the dependence on the probability distribution of
X1, ..., X4 is usually suppressed.

Our definition of mixing comes along with a class ¢ of measurable functions from R
to R which satisfies
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sup gl < o0,

gevd
w,. (B(x, 0
sup supJM dO(x) < const. &, 3.1
ger 4, g#£0 yeR9 ”g”OO

for all 0 <0 < 1, for some A >0, O a probability measure in R?, d € N.

We then say that (779, A, Q) satisfies (3.1). Often, the value A and the probability measure Q
are not of particular interest and we associate with # ¢ such a function class satisfying (3.1)
for some A and Q.

Example 3.1 Indicator functions of intervals in RY. The class of functions
£7={g: R" 5 R; g = o 1x..x(—s0ball> (b1, - -, ba) € R}

satisfies (3.1) with A =1 and distribution Q having a bounded density with respect to
Lebesgue measure.

Example 3.2 Simple functions of convex sets in R?. The class of functions
m

7= {g: R = R; g = chl[cj]; 0<K; <|¢| < K» <oo, C; € {convex sets in R} V]},
Jj=1

m € N fixed, satisfies (3.1) with 4 =1 and distribution Q having a density f, such that
Fx) = £(Ix]), [l.Il the Euclidean norm in R?, and f is differentiable with [[* |/"(y)|dy < oo
and lim,_. f(y) = 0; see Bhattacharya and Ranga Rao (1976, Theorem 3.1).

Example 3.3 Lipschitz functions of order A. Denote by ||.| the Euclidean norm in R?. The
class of functions

79={g: R' > R 0<K = |glw = Kz <oo, sup{|g(x) — gW)|/[[x - y|'} = C <o},
Xy
0 <A1 =<1, satisfies (3.1) with the same A and with any distribution Q.

We now present our new mixing notion and define what we call the v-mixing coefficient
for the stationary process {X,},cz as

v(k; 2, 0% =

sup {

where (29, 11, O)), (2%, A, O) satisfy (3.1),

cov(gi(X 41, -+ -» Xo)y &2(Xi, -+, Xkrar-1)) |,
4l g1llooll g2lloo ’

g1 € ((;/dl, 2 E@dz},

with possibly different 1;, 1, >0, Oy, O, and d;, d, € N. If g and/or g, in the definition of
v(k; 4, &%) is the zero function, we use the convention 0/0 = 0. Whenever we write
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v(.; £, %) we implicitly mean that (29, A1, Q)), (Z%, A5, Q) satisfy (3.1) for some
A1, 22>0, O, Oo. We say that the stationary process {X;};cz is v-mixing with respect to
(7, o) if vk, 9, 7%) — 0 for k — oc.

It is not hard to construct examples of stationary processes {X;},z and function classes
g, g% 5o that {X,}ez is v(; £%, Z%)-mixing but not strong-mixing, that is,
limy_oov(k; 4, %) =0 and liminf;_..a(k)>0. On the other hand, for a stationary
real-valued process and measurable functions g; and g,

leov(g1(X —ay 115 - > X0)s 82Xk -+ Xirar-1)| < 4 g1 ]locll g2/l c (),
(see Doukhan 1994, Lemma 3, Chapter 1.2.2), so that by the definition of v(.; #'%, &%),
v(k; £, %) < a(k),

where 2%, % (d,, d, € N) are classes of measurable functions that satisfy the condition
(3.1) for some A; >0, Oy and 4, >0, Q,, respectively. A more refined covariance inequality
in terms of v-mixing coefficients is given in Lemma 4.1.

For the smoothed sieve bootstrap process { X },z as described in Section 2 we define

COV*(gl(Xidl+la B X(>)k)7 gz(X*; ] X>};+d271)) .
4 g1llsoll 22/l ’

vi(k; o0, oty = sup{

g e ge !fdz}

with (%/"1, A1, O1), (@dz, A2, Or) satisfying (3.1), where Q; is the marginal distribution of
(X1, ..., Xg) (i=1,2) from the true underlying process {X,},cz. We again use the
convention 0/0 = 0 in the definition of v*(k; Z'41, &%),

3.2. Assumptions and main results

We now present the framework we are working with and make some general assumptions
about the stationary, real-valued process {X;},cz from which we observe a sample
X1, ..., X,

(A1) Model (1.2) holds with ®(z) = Z;’;()(pjzj bounded away from zero for |z| <1
(z € C) and the autoregressive coefficients decay as |¢;| = O(jP) (j — o0), B> 1.

(A2) The innovations {&,};cz are i.i.d., with E|e;|* <oo, s = 1, and have a distribution
which admits a density f(.) with respect to Lebesgue measure. Moreover,
7 1fe(x) = fe(x + ¢)|dx < const.c, V¢ € R.

As an example, ARMA(py, go) models (py <oo, go <oo) usually satisfy our assumption
(A1) with an exponential decay of the coefficients {¢;}2.
Theorem 3.1. Assume that (A1) with B> 1 and (42) with s = 1 hold. Then

-2
a(k) < const.k™”,  forally <Sﬁ% (k € N).
S
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Proof. By using existence of sth moments, this follows directly from Gorodetskii’s (1977)
result. O

For the mixing property of the smoothed sieve bootstrap we make, in addition to (Al)
and (A2), the following general assumptions.

(A3) p(n) — oo, p(n) = o((n/log(n))"/F=D)) (n — oo) for the same B as in (Al).

(A4) The kernel K(.) for estimating f(.) satisfies: K(.) is a density of a probability
measure with [* xK(x)dx =0, [* x?K(x)dx #0, [* |K(x)—K(x+o)|dx <
const.cVc € R, Jfooo |x|*K(x)dx < oo for the same s as in (A2). Moreover, the
bandwidth satisfies

h(n) = o(1), k(n)™" = o(n) (n — )
h(n)~" max{ p(n) >/, p(m)(log(n)/n)'/*} = O(1) (n — o0),
for some 3 € N, §<f — 1, S as in (Al).

(AS) The triples (2, A1, O1), (%, 22, On) (dy, d € N) that come along with the
definition of the v-mixing coefficients satisfy (3.1) for some 4;, 4, >0 and @, the
marginal distribution of (X, ..., Xz,) (i =1, 2) from the process {X;},z defined
by (Al) and (A2).

Remark 3.1. Assumption (A3) is common in autoregressive approximation; see An et al.
(1982) and Bithlmann (1995). If the approximating order is chosen by the data through the
Akaike information criterion (AIC), then Shibata (1980) has shown that paic ~ const.n'/G?
(if |@;] ~ const.j ¥ as j — o0), which satisfies (A3).

Remark 3.2. A slightly less general set of conditions for the parameters p(n), A(n) in (A3)
and (A4) is given by

p(n)/(const.n?) — 1 (n — 00), 0<¢, <1/2(B — 1)),
()™ = O(max{nr* /D nl/2=¢r Jlog(n)/2}),  h(n) = o(1),
or

p(n)/const. log(n)) — 1(n — o0),

h(n)™" = O((log(m))* /1), h(n) = o(1).

Remark 3.3. The assumption about the interplay between the bandwidth A(n) and the
approximating order p(n) in (A4) covers a wide range of situations. By taking
p(n) = const.n'/@P) (this is the order of paic) and h(n) = const.n='/> (this is the usual
order for estimating f.(.) with respect to the mean square error), (A4) holds for any > 4.
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The assumption about the interplay between #(n) and p(n) is in some sense counter-
intuitive. When choosing a small bandwidth 4, corresponding to small bias in density
estimation, we are forced to take a large enough p, corresponding again to small bias in
autoregressive approximation. The condition may be an artefact of our proof. It is needed
for controlling the v*-mixing coefficient for large separation lags: we obtain a bound which
only depends on the smoothness of the bootstrap innovations, and not on some closeness
between the bootstrap and the true underlying distribution, indicating that bias questions are
irrelevant for mixing bounds.

Assumption (AS5) will restrict our focus to function classes which inherit the probability
law Q from the underlying original process. Our mixing statements for the smoothed sieve
bootstrap exclusively correspond to such classes.

Theorem 3.2. Assume that (A1)—(A5) hold, with B=2 in (A1), s=4 in (A2) and
A =min{dy, A,} >0 in (45). Then

Plv*(k; 74, %) < const.k™" T a7 Yk € N] — 1 (n — o0),

where d =di +dy, y* =(G[Bl—s—2)/(s+ 1) if B¢N, y* =sf8—s5—-3/s+1if e N.

The proof is given in Section 5.

Theorem 3.2 describes the ‘loss’ for the decaying speed of the bootstrap compared to the
original mixing coefficients. By setting a(k) < const.k~" (see Theorem 3.1), we can always
write

(s — s —3)sA
B—s5s—2)(s(1+24+d)+d)’

If (A2) holds for all s € N, then L <A/(1 + 24 + d). Note that often the case dy = d, = 1
(d =2) and A =1 applies which then yields L<1/5. We further note that the decay of
vi(; 24, @,,) is still polynomial.

There is also some interest in the case where the autoregressive coefficients ¢; in model
(1.2) decay exponentially. As examples we mention ARMA(py, go) models
(po <00, go <o0). Then the mixing coefficients decay also at an exponential rate. Under
more restrictive assumptions than before, the smoothed sieve bootstrap process {X*},c7 is
again v-mixing with exponentially decaying coefficients. We strengthen the assumptions as
follows.

(A1) Model (1.2) holds with ®(z) = >°72¢;z/ bounded away from zero for |z| < 1+«
and »°7%|¢;|(1+ x)/ <oo for some x> 0.

(A3) p(n)/(Clogn)) — 1 (n — o0), C € R".

(A4’) The same assumptions for the kernal K(.) as in (A4), but the bandwidth satisfies

vk, 9, %) < const.k 7, L<

h(n)™" = O(max{n“e N, 11271},
for some 7 >0, for some 0 <A <min{x, exp(1/(2C)) — 1},

with the same x as in (Al’) and the same C as in (A3’).
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Assumption (Al’) is almost the same as in Kreiss (1988; 1992). Assumption (A3’) reflects
the behaviour of the AIC under the condition (Al’) since then pajc ~ const.log(n); cf.
Shibata (1980). However, we allow a general constant C € RT. We now briefly discuss a
specific choice of the constant C in (A3’") which then would simplify (A4’). The error for
estimating ®(z) in |z| <1 is given by

sup | ®,(z) — D(z)| = O((log(n)/n)"/?) + 0( i |¢_,|> almost surely.

ERS J=p(n)+1
A typical approach would be to choose p(n) such that >37° ¢, ~ const.n~1/2.
Assuming that [¢;| ~ const.(1 + k)™/ (j — 00), we then would choose p(n) = p(n) =
C.log(n) with C, = (2log(1 +x))~!. Then, for the condition on the bandwidth A(n) in
(A4"), A <i, nCilog1+A) — plog(14+A)/21og(145) and hence the only remaining condition on the
bandwidth would be

h(n)~" = O(n'/?>7") for some 5 >0, h(n) = o(1).

Theorem 3.3. Assume that (A1') with k>0 and (A2) with s = 1 hold. Then

a(k) < const.p*, for all (14 1)~V <p<1 (ke N).

Proof. This follows directly from Gorodetskii’s (1977) result. O
For the smoothed sieve bootstrap we can show:

Theorem 3.4. Assume that (A1') with k>0, (A2) with s = 4, (43') with C € RT, (44') and
(A5) with A = min{A,, A,} >0 hold. Then

Plv*(k; 2%, 2%) < const.(p*)*, Vk e N] = 1 (n — 00),
521
for all deterministic (1 + k) Groctmaa < p*<1,d = d, + d,,
where 0 <k <min{x, exp(1/(2C)) — 1} and Kk is restricted to be appropriately close to

min{x, exp(1/(2C)) — 1}. In particular, by choosing C = C,, = (2log(1 +x))~! in (43') we
have

A‘z A
(1 + K)_(x+l)(A(l+2;l+d)+d) <p>k < 1’ d= dl 4 dz.

The proof is outlined in Section 5.

Our results are stated in probability. One way to extend them to hold almost surely is to
assume higher moments in (A2) and a faster decay of the autoregressive coefficients in
(A1), and then to make use of the Borel-Cantelli lemma to show complete convergence.



424 PJ. Bickel and P Biihlmann

4. Smoothed sieve bootstrap and central limit theorems

We first establish more refined covariance inequalities in terms of the v-mixing coefficients.
To obtain them, we enlarge the function classes Z 9!, &> by some truncated functions. For
0< M <oo, let

[ g, if [g(x)| <
t(g)(x) = { sign(g(x)M,  if |g(x)|> M.
Define by
vle=7"0{g g=tg, ge v, C<M<x}, C=0,

the extension of the class 9, closed under all truncations tm(), C< M <oo.

Example 4.1 Extensions of single functions. Consider 79 = {g} (g #0) which satisfies
(3.1) for some A>0 and some Q. Assume 2'/%||g|,>C>0 for some 1 < g < oo. The
extension #¢ ext.c Plays an important role; see Lemma 4.1(i). For such C, the triple
(VextC’ A, Q) satisfies (3.1) again.

Example 4.2 Extensions of indicator and simple functions. For (£°¢, 1, Q) as in Examples
3.1 or 3.2, the extension VedxtO plays an important role; see Lemma 4.1(ii). Since truncated
indicator functions are either the function itself or the zero function, and similarly for simple

functions, the extension (VextO’ , O) satisfies (3.1) again.

Lemma 4.1. Let {X,},c7 be a stationary real-valued process and let 7', 7% (d,, d, € N)
be classes of measurable functions that satisfy the condition (3.1) for some Ay >0, Q| and
A2 >0, O, respectively.

Q) If % ={g1} and J”’z—{gz} and if leilly >0, leally,>0 for some
1 <gqy, ¢ < o0, thenforq1 —|—q —|—q3 =1,

lcov(g1(X—gy+15 - - X0), ©2(Xes - s Xirar—D)| < 8l gillg | g2l (ks e, 78 ),

where 0< Cy <||gi[|,2"/" and 0< C, < ||g2||q221/‘72.
(i) If g1 € 2N, g€ X%, then for qi' +q;' +¢5' =1 (1 <4q1, g2, ¢5 < 00),

Sup{|C0V(g1(Xd|+1, . Xo), g@2( X, ---,Xk+dr1))\

Terlle] € Fotr Vot 810 82 7 0}
91 92

Jd

ext,0

< 8%k 70

ext,0°

Remark 4.1. Theorem 3.2 and 3.3 give bounds for v*(k; # 9, &/%). If the extensions Vext s
9 gxt ¢, (C1, €2 >0) or the extensions ?/exto, 9 tho again satlsfy assumption (A5) in Section
3.2, then the same bounds (up to a constant w1th respect to k and n) apply for
V*(k e D8 ) (Cr, Cr>0) or v¥(k; 2, D%, ), respectively.

ext,C)° ext,C, ext 0> =~
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Proof. Assertions (i) and (ii) can be proved simultaneously. We note that a first step

leov(g1(X—ayi1s - > Xo)s @2(Xks - Xivar-1))| < 4l g1l g2llocv(ks 24, %)

follows immediately by the definition of the v-mixing coefficient. We now consider the case
where 0<g;!+¢;!' <1; the situation g;'+¢5;' =1 follows by Holder’s inequality.
Consider first the case 1 < g; <00, g = 0o. Define

M) = (g, g (x) = g(x) — g™ ().

Note that g** is in ¢ ’ext ¢, (C1 < M), satisfying (3.1). By writing gov for g™ (x) and

g\ for g™ (x), we thus have
lcov(g1(X a1, -+ X0)s 82X -+ Xieya,- 1) = Jeov(g?™ + &1y @2(Xis -+, Xipa, 1)

< 4M|gllv(k; Z g 7 + 2] g2llxElgi™ .

Since |g""| < |g1|]; lle| > m]» We have by Holder’s inequality E|g™| < ||g1|q‘M 71+1 By

choosing M such that || g|[; M™% = v(k; £, Z*), we arrive at
lcov(g1(X —ay 415 -+ Xo)s 82Xk -+ Xicrar )| < 6]l gillg | g2llocv' ™' (ks £ 00 7).

Note that we have chosen the truncation M = || gy, /v"/ 9 (k; £, o, 7%) = | gillg, 2,
since v(k; '8l ¢, %) < 27! for all k. We need to include the functions #/(g), g € 7,
in the extended class Z’thﬁcl so that C; < M, explaining the restriction about C; in assertion
).

Now consider the situation 1<<gq;, g, <oo. Analogously as above, we define g,™ and
glzow with a truncation point M'. Note that gl"W M s in & ezt o, (G2 <M"), satisfying (3.1).
Then with the covariance inequality above and Hdlder’s inequality,

lcov(gi(X—a,+15 - - - X0)s 82Xk, s Xiray—1))|

6M ”gl”on = l/ql(k §/extCI jg)itcz)+2M,||gl||(]1||g;pp||q1/(q171)'

Again by Holder’s inequality we get ||g2pl°||ql/(q1 b < ||g ||qZ(q1 quM’ o@-D/a+1 Now

choose M’ such that || g> ||q2(q' DI ppr=aa=D/ar = 1~ q‘(k (/g;t o e’“ac) which yields
the desired covariance 1nequahty Note that M' =gl 1qz(/’c N gitc) =

| g21l4,2"/%2. We need C, < M’, which explains the restriction about C, in assertion (i). [

Often one is interested in estimating covariances of products. Suppose that
(?fdl, A, Q1)s ey (?f’f’, Ar Q) all satisfy (3.1) for some A;,>0, Q;, d;eN
(i=1,...,r). Then we define

QL Cl =g .. g R SR gerl i=1,...,r} 4.1

1

Without loss of generality, we assume that the const.ant function g =1 is an element of
every 7% so that subproducts like g; +... g, G €{l, ..., rh i #iy G#J) j=1
., m, m<r, are elements of ®/_, 7%
The triple (®7_,7 %, A, Q) satisfies (3.1), where 4 =min{4;; 1 <i<r} and Q is any
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distribution on R¥=1% which has as marginal distributions Qy, ..., O,; for example,
Q=0 X...X Q,. This fact enables us to establish the same moment inequalities for
centred sums as for a-mixing sequences. We abbreviate by ®/ 7 ¢ =/ 79 with
ij":%"d fori=1,...,r

Lemma 4.2. Let {X,},c7 be a stationary real-valued process. Assume that g: R? — R € #¢
satisfying (3.1) for some A >0, Q. Then the following holds true.

(i) (Yokoyama's inequality.) If S ok 4 DO Cre0 (e (227712 D)o,
(®12,§1((”d)ext,0) < 00, 0>0, then
2r

n
_ 2
n~1/? E (X1, s Xivd) —EB[g(X a1, -, Xn)D| < Const.||g||2:+(;, reN,

where const. is universal for all g € 7.
(i) (Doukhan and Portal’s inequality) Denote by Z, = g(Xi 1,5 Xipa) —
Elg(Xi, ..., X2)], t€Z. Assume |Z|<1Vt, E|Z[>*<1*,0>0 and >3,
(k+1)*~ 2 ‘5/(2”‘3)(16 (@777 Dext0, (27717 Dext0) <00. Then

2r

n'? Z(g(xm, o Xiva) —EBlg(X i, -5 Xip)])
=1

< const.((n7?) + ... + (n7?)"), r €N,

where const. is universal for all g € 7.

Remark 4.2. For a single function g with |g||; >0, Lemma 42 also holds with
v(,; (®2’ ) e (®2’ 12 ) ext.c) for some C>0; see also Lemma 4.1(i).

Proof. By using Lemma 4.1(ii) the statements follow as in Yokoyama (1980) and Doukhan
and Portal (1987) or Andrews and Pollard (1994), respectively. O

4.1. Central limit theorems

In the context of time series one often estimates a functional which depends on the g¢-
dimensional marginal distribution of the underlying real-valued process {X,},cz. We study
here consistency of the smoothed sieve bootstrap for sums

n—q+1

Zy=(n—q+ )" > (f(Xe oo Xig ) —Ef(X1s ., Xig1)]) (g €N
t=1

The smoothed sieve bootstrap version is

n—q+1

ZX=m—qg+1)"2 Z X, XE ) —E f(XT, L XT DD
=1
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Theorem 4.1. Assume that (A1)—(A4) hold with > 1 in (Al), s = 4 in (42), f satisfies (3.1)
for some >0 and for Q, the marginal distribution of (X1, ..., X,) from the process
{X:}ez defined by (A1) and (A2); also, f has at most countably many discontinuities. In
addition, we assume that the parameters f3, s, A and the dimension q are such that

y*>s(1+2/1+12q)+2q’
s

is as in Theorem 3.2, depending on 3. Then,

where y*

.
d PN
Zy =170, 0%), 0% =Y cov(f(Xo, - Xy 1)s FXss -y Xicig-1)),

K=00

Zj: d—>./]/'(O, o?) in probability.

Remark 4.3. Theorem 4.1 is an extension of Theorem 3.3 in Bithlmann (1997) to possibly
non-differentiable functions f. Under a geometric decay of |¢;| as j — oo in (Al), Theorem
4.1 holds for all ¢ € N.

Proof. We remark here that f is (-continuous, Q being the probability measure of
(X1, ..., X,), which admits a density with respect to Lebesgue measure, that is, f is
continuous except on a set with Q-probability zero. This is a requirement we will need.

For simplicity, we sketch here the case ¢ = 1. The general case for ¢ € N is then
straightforward, but in a notationally more awkward way. We follow the same strategy as in
the proof of Theorem 3.3 in Bithlmann (1997, pp. 144-146) by applying a truncation
technique to the moving-average representation of X ;k; see (2.2). We write X ’,'fM =
Zjﬁioﬁz jn€r_; and define Z7 /() by means of the variables {X7,,}/_,. By exploiting the
M-dependence we obtain straightforwardly, as in Biithlmann (1997),

7z 4 7. in probability. 42
n,M p y

Here Z), is the limit based on the truncated X, ys, X,y = Ej”ioi/)je,,j.
Then we show that the effect of replacing Zf: by Z’,t, w and Z by Zy, becomes negligible
for large M. We first show that

PlZy<cl—P[Z<c](M— ), cecR 4.3)

Formula (4.3) follows by showing

M 00

> cov(f Xom) f[(KX k) = D cov(f(Xo), f(Xp) (M — o).

k=—M k=—o00

But this holds true by using the strodng—mixing property of {X;} .z, the boundedness and Q-
continuity of f and (Xo ., Xim)— (Xo, Xx) (M — 00); cf. Bhattacharya and Ranga Rao
(1976, Theorem 1.3).

Finally, we show that for all # >0 there exist an My(n) and an ny(x) such that
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var*(Zy y — Zy) <nonaset Ay, Yn = ny, VM = M, 4.4)

where P[4,] — 1 (n — o0).

We use a similar strategy to that for proving Theorem 3.2 (compare with formula (5.3)
and the covariance inequality for strong-mixing processes at the beginning of Section 3.1)
but now for the vectorized process { Y }ez = {X, X7/ }iez, and bound

oV (f (X 00) — FOXE), F(XF00) — FXON < loov(f(Xor) — f(Xo), f(X i) — F(X0)]
+ ooV (f(Xg ) — FOXE), f(X T4 — FXD) — cov(f(Xou) — f(Xo)s f(Xiar) — f(X0)|
< 32|/ (Xom) — f(Xo) — ELf (Xom)] + ELF (Xo)l,00¥/ @™ O(k) + B,,  6>0, (4.5)

where B, is the bound from Berry’s smoothing lemma (Lemma 5.2), which is bounded by
Op(h(n)ts#/s0+24+29)1+24}) . see Lemma 5.5. This inequality will be used for & not too large.
On the other hand, by Lemma 5.3,

|cov* (f (X 40) — F(XT)s (X0 — F(XD)
< 16||f|°.a* (k) < const.h(n)"" k7" in probability.  (4.6)

This inequality will be used for k large.
We then bound by (4.5) and (4.6), for 0 <k <1, 6 >0,

n—1

var'(Zhy—Z = 3 [eovi (f(X ) — FXD, f(XE ) — XD

k=—n+1
B;U*M
< Y G2lfXow) — f(Xo) = ELf (Xoan)] + ELf(X)l5,.5a/ (k) + B,,)
k=—8,""

+ const. Z h(n) k7"

|k| > B,
< const.|[f(Xo.m) — /(Xo) — EL[f (Xou0)] + ELf(X)ll3,5 + o(1) on a set 4,,

with P[4,] — 1 (n — oo0). We have used here the restrictions on the parameters y*, s, 1, ¢
in the assumptions (choose x>0 close to zero), which imply Z‘k‘ _ gaoh(n)™! K7 = op(1)
and also the summability of the mixing coefficients a®/?+9)()) (choose 0> 0 large enough).
Note also that E|f(Xou) — f(Xo) — E[f(Xoa)] + E[f(X0)]|*"° < const.E|f(Xo) —
f(X0)|?, since ||f]|loo <oc. But E|[f(Xo) — f(Xo.m)|*> — 0 (M — oc), hence we have shown
(4.4). .

By (4.2)—(4.4) we have shown Z;’; L Zin probability. O
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4.2. General empirical process
For (smooth) functionals, more general than in Section 4.1, depending on the g-dimensional

marginal distribution of the underlying real-valued process {X;};cz, one would like to have
consistency of the smoothed sieve bootstrap for empirical processes. We consider empirical

processes based on the vectorized samples {X,=(X, ..., X,+q71)};l;1qﬂ and
X =7, ..., X?‘+q71)}:’;1q+1, respectively; see Biihlmann (1994). We then need the v-

mixing property with respect to classes of functions R? — R and follow closely the approach
in Andrews and Pollard (1994), who consider empirical processes for strong-mixing,
stationary processes.

Let .79 be a class of measurable functions from R? — R. We now introduce some
notation and terminology. Denote by P a probability measure on (R?, .Z(RY)), . (RY) the
Borel o-algebra of R?, and let Pf = [ f(x)dP(x) for f € .7 9. Furthermore, we denote by
= weak convergence in the function space /*°(% 9) (in the Hoffmann—Jergensen sense; see
Giné and Zinn 1990) for the metric induced by |.||7«; here ||4]| 7« = sup er«|h(f)|, where
h: 79— R. We restrict ourselves to uniformly bounded classes .7 ¢ which satisfy a
bracketing condition in the following sense. Let p(f) = ||f. = (E|f(X1)[*)"/? be a pseudo-
norm in .# 4 and denote by N(.) = N(.; .7 9, p) the bracketing number, which is defined as

N(@) = mAiln{Elfl(é), vy fu(0) € 79 and by(0), ..., by (0) with p(b;(6)) < 6V i such that:

Vf € .7 93i for which |f — fi(0)| < bi(9)}.

Note that the bracketing functions b;(d) need not belong to .7 4. A bracketing condition now
assumes a certain decay of N(J) as a function of o.

We study here the smoothed sieve bootstrapped empirical process. The empirical process
{Z,(f)} rerq is defined by

n—q+1

Zif)=(n—q+ DR - PO, PN=—g+ 17> ox (),
=1

where Jy denotes the point mass at x € R?. Its smoothed sieve bootstrapped counterpart
{Z;‘:(f)}fe?q is defined by

n—q+1

ZH) =(n—q+ DXPLNH -EPIOD.  Pi(H=m—qg+ 17" Y ox ()
=1

For the purpose of applying the results on bounding v*(k; ., ., )-mixing coefficients, we
assume:

(A6) Let #4=79079075, where 79={f1—fo f1, /€79 and 5=
{b1(0), ..., by(0); 0<O <1} is the class of bracketing functions. Assume that
the extension # .o satisfies (3.1) for some 1>0 and for Q, the marginal
distribution of (X7, ..., X,) from the process {X,},z defined by (Al) and (A2).
Moreover, assume that every f €.7 ¢ has at most countably many discontinuities.
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Lemma 4.3 (Stochastic equicontinuity). Assume that (A1)—(A4) and (A6) hold with f>1
in (A1) and s = 4 in (A2). In addition, assume that the parameters f5 in (A1), s in (A2), A in
(A6) and the dimension q are such that
" SAC
14 <1,
(s(1 +24+4rq —2q9)+4rqg —2q)2r + C)

where r € N, C>0 and y* is as in Theorem 3.2, depending on . Moreover, assume that

1
J x~CICHON(x; 79, p*)Cdx < 00
0

for the same r and C and with p*(f) = (E* \f(XT)|2)1/2. Then for all >0 there exists a
0 >0 such that

limsup(B*| sup |ZF(f)— Zj(g)|2’)1/(2’) < in probability.
n—00 p(f—g)<o

Remark 4.4. Lemma 4.3 covers only ‘parametric’ function classes having bracketing numbers
N(x; .7 4, p*) which increase at most polynomially in 1/x as x — 0. Note also that the result
does not hold uniformly in .

Remark 4.5. The metric entropy condition in Lemma 4.3 is with respect to the bootstrap
pseudo-norm p*(.). We now give an important example which relates it directly to the metric
entropy N(.;.7 4, p).

Example 4.3 Indicator functions of intervals in RY. Consider the class / 1=
{lox; x €ER?} for g = 1. Notation is as in Section 4.3. Denote by FO*(x) =
P*[X* <x] and let U*=FO"X*) (t€2) and U* = (U, Then
U ~ Unif ([0, 1]). Denote for u < [0, 174,

n—q+1

Ziwy=n"'? Z (ur<u) — P*[U} < u)).

t=1

I+q 1)

Note that P*-as.,

n—q+1

~ _ * _ .
Ziw=Zi0 =13 (peey —PIIX =3 xi=FO)w), ie{l,....q}.
t=1

As also pointed out in the proof of Corollary 4.1 in Section 4.3, it is sufficient to work with
the empirical process Z*() and the function class .7 9 = {1(_ou; u € [0, 1]7}. For the
pseudo-norm, p*(u) = (E*|1 wr=u)l H2 = (PFUF <u))'/? < min1<,<q(u) 12 since U* ~
Unif ([0, 1]) for all ¢. This ylelds the metric entropy bound N(x;.7 7, p ) < constx
which is essentially the same as for N(x; .7 %, p) with p(u) = (E|1jy,<u |2)1/2.

Proof of Lemma 4.3. We use the v-mixing property of {X},cz with respect to the pair
(® 17, ®2’ 1.7 4) (see Theorem 3.2) and follow the proof of Theorem 2.2 in Andrews
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and Pollard (1994). In particular, we make use of our Lemma 4.2(ii). First, we work with
p*(f) = (E*|£(X])*)!/? and then use the fact that

fsugq\p*(f)2 — p(f)*| = op(1).

This inequality holds since X} d—>X1 in probability (cf. Lemma 5.5 below) and, by (A6), .7 ¢
is a uniformity class; see Theorem 2.4 of Bhattacharya and Ranga Rao (1976). l

Under the conditions of Lemma 4.3 but with the metric entropy condition with respect to
p, the empirical process Z,(.) converges weakly to some Gaussian process Z(.), indexed by
74, with p-continuous sample paths and with E[Z(f)] =0, f €.7 ¢ and

[o°]

cov(Z(f), Z(g) = Y cov(f(Xo), g(Xp);

k=—00

see Corollary 2.3 of Andrews and Pollard (1994). We assume below that weak convergence
of Z,(.) to Z(.) holds.

In the following we sometimes make statements about weak convergence, holding in
probability in a universal sense over all f €.79. Let R'(f) be a random variable with
respect to the bootstrap measure P* and R(f) a random variable of the underlying original
probability space. We say that

*
RED. - RE S R(A), .., R(f3) in probability universal over .77

if the following holds. For every continuity point x € R” of the distribution of
(R(f1), ---» R(f1n)), ¥ >0 there exist an ny = ny(y) and a sequence {4,},en of (universal)
sets such that

IPURED), - REG ) = X1 = PUR(/Y), -, R(/) = x| < 7 on the set A, Vn = ny,
P[A,] — 1 (n— o0),

where for each n € N, the set 4, is universal Vf1,..., [, €. 79, heN and x<y is
defined componentwise as x; <y; (i=1, ..., h).

Theorem 4.2. Assume the conditions of Lemma 4.3. Moreover, assume finite-dimensional
convergence

(Zj:(fl), ceey Z:(fh))d—*>(Z(fl), ..., Z(f1)) in probability universal over .7 9.

Then
Z, = Z in probability.

Proof. The result follows directly from finite-dimensional convergence and Lemma 4.3. [

Finite-dimensional convergence of Z* is usually not directly available because {X 7}z
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satisfies by Theorem 3.2 only a v-mixing property. This does not allow us to use one of the
usual blocking techniques.

Theorem 4.3. Assume the conditions of Lemma 4.3. Then

Z;’: = Z in probability.

Proof. It remains to show finite-dimensional convergence
Dy -ens ) — Dy ey 1)) in probability universal over .7 9.
z* 7S (2 Z(f4)) in probability universal over .7 ¢

But this follows from a multivariate version of Theorem 4.1 which can be established by the
Cramér—Wold device. The conditions of Theorem 4.1 are implied by the current
assumptions. O

We just remark that by replacing (Al), (A3) and (A4) by (Al’), (A3') and (A4')
respectively, we obtain better bounds on the v-mixing coefficients and hence need fewer
conditions on the bracketing numbers.

4.3. Empirical process on R

We now specialize our results from Section 4.2 to the classical empirical process on RY,
q € N, based on the vectorized observations {Xt}?:_lq+1 and {X} :':_I‘IH, respectively. That is,
T 1= {1(coox); X € RY}, where (—o0, X] = X?_,(—00, x;]. By Examples 3.1 and 4.2 we
know that (A6) holds for .77¢ with A = 1, if the g-dimensional marginal distribution of the
process {X;}cz has a bounded density. Note that the bracketing class .%“ can be taken a§ain
as a class of indicator functions. Denote the cdf of X, and X by F@(.) and F@"(.),
respectively. Defining ‘<’ componentwise, the empirical process and its bootstrap counterpart
can then be written as

n—q+1

Z)=(n—qg+ )" Y (=g - FOx),  xeBRY,

t=1
n—q+1
Zi0=(n—q+ DY (yeg- FO'®),  xeR

t=1

Corollary 4.1. Assume that (A1)—(A4) hold with B>1 in (Al), s=4 in (42) and
SUpyer fe(x) < oo. In addition, assume that the parameters s in (A2) and the dimension q
are such that

_ se—1)
r_
v (sG+4rqg —2q) +4rq —2q)(r + 7 — 1)

<lforsomer=qg+1,reN,

with y* as in Theorem 3.2, depending on .
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Then
Z, = Z in probability,

where Z is the limiting Gaussian process of Z, with mean zero and

o]

cov(Z(x), Z(y)) = > cov(lx,=x): Lpx,=y)-

k=—00

Remark 4.6. Under a geometric decay for |¢;| as j — oo in (Al), Corollary 4.1 holds for all
g € N. The choice r = ¢ + 1 is sufficient, since y* can be chosen arbitrary large.

Remark 4.7. The region for the parameters g, s, B satisfying the conditions in Corollary 4.1
can be identified. The condition on g, s, y* is equivalent to v(r; ¢, s, y*) <0 for some
r=gq+1, reN, where v(r; g, s, y*) is a cubic polynomial in r, namely

12
o(r; q, s, y™) = r*{16 4 16¢ + 16s + 16gs} + rz{—16 —32qg —4s — 32qs—|——s}
q

6s 2y* «
+rq4+20g — 145+ 20gs — — — —— ) —4g + 65+ 2y" — 4gs.
q q

The roots v; < v, < v; of the equation v(7; g, s, 7/*) = 0 can be computed in closed form.
Since y* = y*(s, /), these roots are of the form v; = vi(q, s, §), i = 1, 2, 3. The condition in
Corollary 4.1 on g, s, y* , or equivalently on g, s, B is then implied by v;(g, s, B)> g + 1.

Proof of Corollary 4.1. The result is basically a consequence of Theorem 4.3. Consider first
Zj:(.) as defined in Example 4.3. Since for u, v € [0, 1]9,

*k *
cov (lyz<up Tpuy<v) = €OV (xrc gty ixe<gorom 1oy, 1>

the process (U :k) ez 1s v-mixing with respect to 7 4 with coefficients bounded by the mixing
coefficients of (X7),cz with respect to .7 7 (we use the same notation as in Example 4.3).
Note that the assumption supycgfe(x)<<oo implies that the ¢-dimensional marginal
distribution of (X,, ..., X,4) has a bounded density and hence 4 =1 in assumption (A6)
which is needed to control the v*—mixing behaviour of (X f),ez. Moreover, as noted in
Example 4.3, N(x,.7 9, p*) < const.x 2. Thus, by using r>¢g2+ C)/2 (r € N), the
bracketing condition in Lemma 4.3 holds. (We then use 4 = 1 (see above) and the optimal
C=2r/q—2—mn (n>0 arbitrarily small) in Lemma 4.3.) Therefore

Z* = Z in probability, 4.7)

where Z(.) is a Gaussian process with E[Z(u)]=0 and cov(Z(u), Z(v)) =

Zfzfoocov(l[{F(])(Xi)}q:lsu], 1[{F(1)(X,»)}W*‘sv])(“’ v € [0, 1]9). Here we have used the fact
that o o
*

sup| FV" (x) — FO(x)| = op(1), (4.8)

xeR
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by continuity of F1(.).
It remains to show the convergence Z;':(.) = Z(.). This follows by applying the
continuous mapping theorem to the continuous maps,

H*: 2([0,1]%) — DR, z = zo (FO*, ..., FI5),
H: 2(0,119) — Z(RY), z — zo (FD, ..., F1),

where &/ denotes the cadlag space.

By (4.8) we get |[H*(z) — H(2)| 7« = op(1) for any continuous z € # ([0, 1]9). Using
this and (4.7) we can easily show H *(Z*) = H(Z) in probability. The proof is completed
by noting that H(Z) has the same distribution as Z(.). O

Proof of Corollary 2.1. We invoke the much stronger result in Theorem 3.4 about the
geometric v* mixing property of the sieve bootstrapped process. Conditions (Al’), (A2) with
s =4, (A3'), (A4") (see the discussion about the choice of p(n) and h(n) following
assumptions (Al"), (A2") and (A4’) in Section 3.2) and (A5) with A = 1 hold. Now the proof
follows as for Corollary 4.1; we can replace y™* by an arbitrary large value. The result follows
for any parameter value of s = 4. O

5. Proofs

In what follows we denote by .Z(S) the Borel o-algebra of a metric space S. We first outline
the idea for proving Theorem 3.2. The same idea is used for proving Theorem 3.4. The
strategy is to split the problem into two cases with small and large separation lags k.

If k is large (or arbitrary), we use Gorodetskii’s (1977) result by exploiting the linear
representation (2.2) and the fact that ¢ iid. ~ fg(x + ite)dx. We will show in Lemma 5.3
that a*(k) < const.i(n)"'k~7" in probability, yielding for k = h(n)"'/%, € R,

v¥(k; 79, %) < o* (k) < const.k"" "9 in probability. (5.1)
On the other hand, we first use the general fact that
vik; 29, 2%) < a(k)

+ Sup{|cov*(g1(X*d1+19 ceey X:)k)s gZ(X*5 ] X>]!c<+d2—1))

4 g1l ll g2lloc

E)

_cov(gi(X_gy+1, - -, Xo), 2(X, --~>Xk+d21))|}
4| g1lloll g2l
where the supremum is over all g € 7%, g, € .

For bounding the difference of the covariances we now introduce a moment (pseudo-)
norm
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fwwg(x)ﬁzﬁl —dOIM| dez}’ 52)

”Ql - QZHS{dl,ﬁ/dz = sup{

where Qy, Q, are probability measures on (RY1+%, Z(R%1+%)) (for the definition of ©" ® &
see (4.1)).

Using the fact that for g = g1+ g, [|g]~ = [lg1llc]|g2]l~, the difference of covariances
can now be bounded as

|cov*(g1(de1+], LX), XS, X}':erz_l))

ll€1llsoll 2/l
—cov(g1(X—aqy+15 ---» Xo), ©2(Xs -+ s Xirar—1))|

B 1
I g1lloc | g2]l00

|, & e - P

—J g1<x)dﬂﬂ>*(x>j gz(x)dp*(x)-FJ gl(x)d[@(x)j 20dP(x)
R4 R R4 R%

<|P*-P

wd gd + 2||[FD>k - I]:D”% ERZER
This means that we bound
Vil 20, 2% < ak) + 3P~ Pllya o (5.3)

In Lemma 5.5 we will give the bound |[P* — P|l, 4, o.e» = Op(b(n)), where b(n) is a function
of the tuning parameters p(n) and A(n) and of the sample size n. In particular, under the
assumptions about the bandwidth A(n) in (A4) we obtain |P* — P, 4 0, = Op(h(n)°) for
some ¢ € R*, yielding then for k < h(n)"V/%, [P* — P||,4, s, < const.k~5¢ in probability
and hence for k < h(n)"'/%,

v¥(k; 9, %) < const.k~5¢ in probability. 5.4

Putting (5.1) and (5.4) together, we minimize over C.

We now give some preliminary results. The first has to do with moving-average
representations of autoregressive approximations. We recall the definition for the coefficients
{9 j,n}joio, which arise by inverting the estimated autoregressive transfer function, (compare
with (2.1) and (2.2)).

Lemma 5.1. Assume that model (1.2) holds with ¢, iid., E[e,] = 0, E|e,|* < co. Suppose that
D(z) is bounded away from zero for |z| <1 (z€ C) (see (41)), Z?ioj’|¢j| <oo and
p(n) = o((n/log(n)" /@2, r € N. Then: ‘

(i) there exists a random variable nyo(w) such that

o0
sup Zj’|121_,~,n| < oo almost surely,

n=no(w) =0
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(it) for a(n) — oo, a(n) = o(n) (n — o),

s+a(n)

sup Z [V — ;| = Ola(n) p(n)~") + O(a(n)(log(n)/n)'/?) almost surely.
s€No j=s+1

Proof. Assertion (i) is Theorem 3.1 in Bithlmann (1995). Assertion (ii) follows from Theorem
3.2 in Biithlmann (1995). ]

Lemma 5.2. Assume the conditions of Lemma 5.1, and in addition that Ele,|* <oo, s = 4.
Suppose that the kernel K(.) for estimating f.(.) is a probability density and satisfies
fix;o xK(x)dx =0, ffcoo x?K(x)dx # 0, ono |x|*K(x)dx < oo for the same s, and the bandwidth
satisfies h(n) — 0, h(n)~' = o(n) (n — o). Then:

(i) E*[(£5)"] — El(e)"] = Op(h(m)?) + Op(p(m)(log(n)/n)'/2) + op(p(n) "), w < s,
(i) E*[eF]" = Op(1).

Proof. We have

E*[(ei‘)W]:J X" felx + fe)dx = (n — p)”! ZJ (hu+ &, — )" K(u)du

- t=p+17 -
=(n—p)" D ()" + Oplite + h(n)). (5.5)
t=p+1

We write

ét,n :31+Qr,n+Rz,n_(Y_ﬂX)Z¢j’ (56)
=0

where Oy = 327 0@ — $j)(X—j — X), Riw =YX 0(Pjn — p)(Xi—; — X). Here ¢, =
(P10, ---» $pn) are the solutions of the theoretical Yule—Walker equations I',¢p, = —v ,;

see Brockwell and Davis (1987, Chapter 8.1). Now in a similar manner to the proof of
Lemma 5.3 in Bithlmann (1997, pp. 137-138),

p(n)
W< max [@p; . —in X, i—X
(Qunl = | max 1.0 = ¢ \; =X
p —
= O((log(n)/m)"/*) Y "X, ; = X|, the O-term being a.s., (5.7)
Jj=0

(see Theorem 2.1 of Hannan and Kavalieris 1986), and

ERt,n|W<const.< 3 |¢_,-|> = o(p(n)™), (5.8)

Jj=p+1
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where we have used Baxter’s inequality (see the proof of (3.1) in Biihlmann 1995). Since
e :(n—p)’12?1p+lé,,n we complete the proof by using (5.5)—(5.8) and applying a
binomial expansion for (&, ,)".

Assertion (ii) follows immediately by using the representation as in (5.5). O

5.1. Mixing property for large separation lags

Lemma 5.3. Assume that (A1)—(A4) hold with > 1 in (A1) and s = 4 in (42). Then
Pla* (k) < const.h(n) 'k" Vk € N] = 1 (n — o),

where y* is defined as in Theorem 3.2.

Proof. We use representation (2.2) and use the result under existence of sth moments in
Gorodetskii (1977). His condition (i) follows immediately by (A4), (ii) follows by Lemma 5.2
and (iii) by (Al) and (A3); see Lemma 2.2 and Theorem 3.1 in Bithlmann (1995). The
constant ¥* shows up by using Lemma 5.1(i) (note that this lemma handles only r € N).
O

We remark here that Lemma 5.3 holds true if we weaken the assumptions on the
bandwidth %(n) in (A4) to the sole condition Ah(n)= o(1), h(n)™' = o(n) (n — o0).
Bounding bootstrap covariances for non-smooth functions of shortly lagged variables cannot
be done effectively with Lemma 5.3. An analysis such as that in the following Section 5.2
completes the establishment of useful bounds for short lags.

5.2. Moment norm between bootstrap and true measure

Denote by Pig.a,[C] =P[Xay+15 ---» Xo» Xiw ooy Xitay—1) € Cl, C€ ﬁ(Rd), d =
di +dy, k€ N. We define P?;dl’dz[.] analogously for the bootstrap. By the definition of
the v-mixing coefficients and the boundedness of g; € 779!, g, € 7> from above and below
we have, cf. (5.3),

—d —d * .
V*(kQ N, D) < ak) + 3||[|:Dk;dl,dz - Pk;dl,dz”‘(dl,f/dza ”-”%"1,‘( 4, as in (5.2).
Our next aim is to bound

Sup”Pj;;dl,dz - Pk;dhdz”‘(”l,ydz'
keN

To do so we will compare this quantity with the variational norm of a ‘smoothed difference’
P}'; d1.dy — Phdy.a,- The variational norm for a probability measure Q on (R?, A(R?)) is
defined as

1Qly:a =2 sup |QIC]I.

Cce AR

In the following we denote by Q) x O, the convolution of some signed measures Q; and O>.
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Lemma 5.4 (Berry’s smoothing lemma) . Let 0(n) = o(1) (n — 00) and {Ksy}nen be a
sequence of probability measures on RY with sup ,en Koiny({[X]| < 0(n)}) >4 Vn e N, ||| the
Euclidean norm in R?. Assume that (45) holds. Then ¥n € N,

* *
spl[P%., 0, = Prarasllyar oo < const.supl(P g sy = Prear.ar) * Kogmllvia + const.d(n,
keN keN
where A = min{Ay, A}, d = d, + d.

Proof. We use formula (11.26) in Bhattacharya and Ranga Rao (1976). To bound the moment
norm we need a bound for some type of modulus of oscillation; but our assumption (AS5) is
exactly tailored to this problem. The quantity to be bounded is

J @ g, (B(x, 0))
R

R=sup sup sup el
o0

keN gez @42 yeR?

dPra,.0,(x)  (d=di + dy).

Denote by g = g1+ g2 € £ @ Y%, y=(y1, y2) € R X R% and Q; the distributions of
(X1, ... X4) (i=1,2) as defined in (A5). Then, since ||g|l« = ||g1]ls/lg2lc0>

w g, (B(x, 9))

J —E e AP, (%)
re gl
g2l J gl
< O, (B ONOx) 7 E [, (B, 0 0x0x).
Igilollgalloo S5 lgilelgall Jan >

Hence by (A5) we bound R, as defined above, by const.6”, which is the second term on the
right-hand side in the assertion. O

We now make use of the smoothing idea: choose Ky, smooth such that its Fourier
transform vanishes for large arguments. Together with Berry’s lemma (Lemma 5.4) we will
show:

Lemma 5.5. Assume that (A1)—(45) hold with >1 in (A1), s=4 in (A2) and 1 >0 in
(A5). Then for all dy, dy € N,

k SA
SUPIP 0, = Pl on = OpENTHT), - d=di +ds,
€

where &(n) = max{h(n), p(n) (log(n)/n)'/?, p(n)_‘gz/(‘g“)}, 3<pB -1, 3 € N. Moreover, the
assumptions about the bandwidth h(n) in (A4) yield

AS/‘»
i“glln}}idl,dz —Praraslly o = Op(h(n)yT5a73),  d = dy + ds,
€

Proof. To simplify notation we always denote by 3 an integer less than § — 1. By Lemma 5.4
we want to bound

* %
Supl|(Pr.y, 0, — Prearar) * Kowllvia = 2sup sup [Py o, — Praray) * Kow[Cll.
keN keN ce(R4)
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We make a similar choice of Ky, as in (13.8)—(13.11) in Bhattacharya and Ranga Rao
(1976), that is, K, has a density

sin(ax) :
) m a density on R.
ax

n
H gé(n),Zs(xi)a ga,Zm(x) = const. (
i=1

Then sup,en K [[[X[| < 6(n)] >3 for n large enough (this is a condition in Lemma 5.4) and
for the Fourier transform of K,y we have

J exp(iy - X)Ks(n(dx) = 0 if y & [-250(n)~", 256(n) "1, (5.9)
[Rd

where y - x = Zil vix;; see (10.9) in Bhattacharya and Ranga Rao (1976).
In the following we let J(n; d) = [—2s6(n)~!, 256(n)~'1¢. Let C € A(RY). Then by
Fourier inversion

Sup‘(lpj:;dl,dz - Pk;dl,dz) * Ké(”)[C:H < COIlSt.J J sup |(p>/(c<;d1,d2(x) - ¢k;d|,d2(x)|dx dy,
keN cJind) keN

(5.10)

where @.q4,.4,(X) = E[exp(ix - X)], X = (X_g,+1, - - -» X0 Xk» - - - Xk+a,—1)', and analogously
for %4 4

To bound (5.10) much of the work boils down to estimating \gojé &1y (X = Py a,(X)]. We
use the linear representations (1.1) and (2.2) and write

o0 k+d,—1
P rear.ar(®) = exp(ix - wx 1) [ [ @e(hys - x) Pe(fj i - %),
j=0 j=1

0 k+dy,—1
Prear.an®) = exp(ix- XD [ [ pee (- x) [ e Frs - %),
j=0 j=1

where h; = () art1s o Vi Wirks o5 Virkrdr1)'s Tk = @k s Yhrar1-5)'s Bk
and f;; analogously with ;, instead of ; X=(x1,...Xq, Xd,+1, -, Xa)',
X = (Xa,+15 - - -» Xa)'s @e(x) = E[exp(ixo)], @ex(x) = E*[exp(ixey)], x € R. Here we have
followed the convention that ¢; =%, = 0 for j<0. We then obtain



440 PJ. Bickel and P Biihlmann
SUP|P7.q,.a,(X) = Predr.ar (X)|
keN

q(n) q(n)

[ToeMs-x) =] octhn-%
j=0 j=0

< |exp(ix - X1) — exp(ix - ux1)| + sup
keN

o0 o0
+sup| [ eethi-v— J[ ochi-x
keNT j=g(m+1 Jj=a(m+1
ktdy—1 ) k+dy—1
+sup| J[ oetiu-0— J[ oein-o
keN j=1 j=1
= I(x) + sup II;(x) + sup I1I(x) + sup IVi(x), (5.11)
keN keN keN

where g(n) — oo, g(n) = o(n) (n — o).
By a Taylor expansion we obtain

sup I(x) < O0(n)"' Op(n~1/?). (5.12)
xeJ(n;d)

Again by using a Taylor expansion, we obtain

sup sup ML) =<sup sup > oo (hipex) — pulhyg )|
keN xeJ(n;d) keN xeJ(n;d) J=q(n)+1

o0
< (Ele,| + E*[efsup sup > (Jhj- x|+ |hy - x|)
keN xeJ(n;d) J=q(n)+1

< const.d(n) 'g(n)~? in probability, (5.13)

where the last inequality follows from Lemma 5.2(ii), Lemma 5.1(i) and |¢;| = O(G )

(j — o0), which implies Y% . [h; x| = o(g(n)~).
Most work is needed for bounding /7;(x) (and similarly /V;(x)). We have

q(n) q(n)
) < 1@ (g %) — @ (g - X + > @ (B - X) — @e(hy g - X))
j=0 j=0

= ][lk(X) + II.2k(x).

By a Taylor expansion we obtain

s+q(n) k+q(n)+d,—1
sup sup II.1;(x) < const.0(n)"" [ sup Z [Y¥jn — Wjnl + sup Z [Vjn — V)l
keN xeJ(n;d) seNg j=s keN =k

= 0(n)~(Op(q(m) p(n)~") + Op(g(n)(log(n)/n)'?)), (5.14)
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where we have used Lemma 5.1(ii) for the last inequality.
For bounding /7.2;(x) we consider

Qe (B - X) — @e(hyg - x)

n

=(=p)" Y expliby - x(E, — /:tg»J_‘ exp(ih - xuh(n)K(u)du — po(h - x)

t=p+1

=(n—-p" Z exp(ih; i - X(¢;, — @)1 + E(h(n); j, X)) — @e(hjp-x),  (5.15)
t=p+1
where

o0
|E(h(n); j, x)| < |hj ;- x|h(n)J |u| K(u)du < const.h(n)|h; ;- x|.

—00

On the other hand,

(n—p)" > explihyx - X1 — fte)) — @e(hji - X)

t=p+1

n

=(n—p)" Y explihyi-xe)(1 + D(h(n), £; j, X)) = @e(hi %), (5.16)

t=p+1
where
|D(h(n), £; j, X)| < |y X|[&n — fte — &4,
and hence (see (5.7)—(5.8))

n
(n=p)" 3" IDCh(n), £/, %)] = 6 - XIOr(p(n)(log(n)/m)/) + 0p(p(m) ™). (5.17)
t=p+1
(Here the Op terms are uniformly bounded in j, & and x.)
Moreover, by the i.i.d. structure of {&,};c7 and the boundedness of exp(ix), x € R, we
obtain by some well-known exponential inequalities, for instance Bernstein’s inequality,

n

sup |[(n— p)~! Z exp(ixe;) — @e(x)| = Op(n~"/2*"), for any 0 < <1,

xl<n" t=p+1

where r is an arbitrary exponent in R™. This is a stronger version of formula (2.4) in Singh
(1981). But this implies

n

(n—p)! Z exp(ih; s - xg;) — @e(hj; - x)| = Op(n1/2777), for any 0 <7z <%.
t=p+1

sup sup  sup
keN jeNy xeJ(n;d)

(5.18)
Therefore by (5.15)—(5.18) we obtain
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sup sup 11.24(x) < 0(m) " (Op(h(m) + Op(p(n)(log(m)/m)'"?) + op(p(n) ™))

+ Op(g(myn™ /%47, >0, (5.19)
Hence by (5.14) and (5.19),

sup sup I14(x) = 0(n)" (Op(h(m) + Orl(g(m) + p(m)og(n)/m)'’) + Op(g(n) p(n) "))

+ Op(q(myn™ />, 3>0. (5.20)
Similarly, we obtain
sup sup [Vi(x) = O(sup sup II4(x))+ O(sup sup III(x)). (5.21)
keN xeJ(n;d) keN xeJ(n;d) keN xeJ(n;d)

Then we have by (5.11)~(5.13), (5.20)—(5.21),

sup sup \@kdl 0, (%) = Py, (X))
keN xeJ(n;d

< 0(n) " (0p(q(n)~*) + Op(h(n)) + Op((q(n) + p(n))(log(n)/n)"/*) + Op(q(n) p(n)~*))
+ Op(g(nyn="/%"1)
= 0(n)"(Op(g(n)~") + Op(h(n)) + Op((q(n) + p(n))(log(n)/n)'/?) + Op(g(n) p(n)~*)),
(5.22)

where the last bound follows since # >0 is arbitrary.

What remains is to integrate the error term in (5.22); see (5.10). Let
r(n) — oo, r(n) = o(n) (n — o). Denote by C; = CnN[-r(n), r(n)]¢ C,=C\C;. By
Markov’s inequality we obtain

iug“pk;dl,dz * Kan)[C2]| = O(r(n)™), iulémj;dl,dz * Ko C2l] = Op(r(n)™%).  (5.23)
€ €

Hence by (5.10), (5.22) and (5.23)

sup|(P%.g, 4, — Phedrd) * Kony[C]|
keN

< r(n)?0(n)" "1 (Op(q(n)~") + Op(h(n)) + Op((q(n) + p(n))(log(n)/n)"/?)

+ Op(g(n) p(n)™*)) + Op(r(n)™),

and therefore by Lemma 5.4

iugnl]ylt;dl,dz — Praally o oo = Op(r(m)?o(m)~ " &m) + Op(r(n) ™) + OB(n)"),  (5.24)
€

where &) = max{q(n)~*, h(n). (q(n)+ p(m)(log(n)/m)'/2, q(m)p(n)~*}. By choosing
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g(n) = p(m)*/@*D we  obtain  &n) = max{h(n), p(m)log(n)/m)'/2, p(n)~*/@*D}. " By
choosing the optimal orders for r(n) and d(n) the right-hand side in (5.24) is of the order

Op(E(nyT™777).
This completes the proof. O

5.3.Proofs of Theorem 3.2 and Theorem 3.4
We first give the proof of Theorem 3.2. To do this, we combine the results in Section 5.1 and
5.2. By Lemma 5.3 we know
Pv*(k; 9, %) < a*(k) < const.h(n) 'k Yk eN]— 1 (n — o00),
and hence,
Pv*(k; 2%, %) < const. k" O Vk = (h(n) )] =1  (n— ), LR (5.25)

On the other hand, we have by (5.3), Theorem 3.1 and Lemma 5.5 (using the second
statement) for &k < (h(n)~")'/¢,

od od. *
vk, £, 2%y < a(k) + const. [Py 4 — Praally oo

< const.k~V + OP(h(n)Wimw)
and since the Op(.) term is uniform in k (see Lemma 5.5), we obtain
Plv*(k; %, &%) < const.k™7 + const. kAT Y f < (h(m)™H)'/]
—1 (n—00), R (5.26)

By choosing ¢ vyielding the best rate for v*(k; 29, %), that is, { =
y*(s(1 + A+ d)+ d)/(s(1 + 24 + d) + d), we obtain by (5.25) and (5.26) the result of
Theorem 3.2.

We now sketch the arguments for proving Theorem 3.4 which are very similar to the
proof of Theorem 3.2. We first show the following: there exists a random variable ny(w)
such that

p(n)
sup Z |p;.a](1 + &) < oo almost surely, 0 <% <min{xk, exp(1/(2C)) — 1}. (5.27)

n=no(w) “i=o

We have, for any 0 <c <1

sup|0,(2) = @) < | max [ — @1+ 0"+ H (gl + R

lz|<1+& J=p(m+1

= O((log(n)/n)"/*)0(n'/*=¢) + o(1) = o(1) almost surely.

(Use the result of Theorem 2.1 of Hannan and Kavalieris (1986) and Baxter’s inequality;
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compare with (5.7) and (5.8)). Formula (5.27), together with (Al’), implies that, for n
sufficiently large, we can invert ®,(z) in |z| < 1 4 k; we then obtain instead of Lemma 5.1,

sup |9;.| < const.(1 + &)/ almost surely,
n=no(w)

s+a(n)

sup > [ — 9| = O(a(n)(1 + &)™) + O(a(n)(log(n)/n)"/?) almost surely.

se€No j—=s1
Lemma 5.2 remains the same with p(n) = O(log(n)). Lemma 5.3 becomes
Pla*(k) < const.h(n) 'p* VkeN]—1  (n—o0), (1 +&)/H<p<1.  (5.298)

(Compare with Theorem 3.3.)

Lemma 5.4 remains exactly the same. It is plausible that we obtain the same bound as in
Lemma 5.5, since the assumptions (A1)—(A5) are generally weaker than the assumptions of
Theorem 3.4, that is,

s.

A
i“‘N’HP’Ldl,dz ~ Pravaslly o oo = Op(h(ny@am),  d=d, + ds. (5.29)
€

However, we have to re-examine the interplay of the tuning parameters 4(»n) and p(n). Some
quantities now change; we choose g(n) = const.log(n) such that the (old) expression g(n)™"
becomes something of order n~'/2. By (A3’), p(n)~ Clog(n) and instead of the (old)
expression  p(n)™? we have (14+&)"P". Then &) in (5.24) equals
max{ h(n), n~"/>*, log(n)(1 + &)~ 7"}, note that for deriving this the Op(g(n)n~'/>*") term
in (5.20) dominates in the derivation of (5.22). By choosing x appropriately close to
min{x, exp(1/(2C)) — 1}, we know that by (A4’) max{h(n), log(n)(1 + &)~7"} = O(h(n)).
This then explains why (5.29) holds.
Now by (5.28), for p <t <1,

Plv*(k; 29, %) < const.(p/1)* ¥ k> —log(h(n) ) /log(1)] = 1 (n — o0),
and by (5.29), for p <7 <1,
Plv*(k; 24, ") < const.t" T 37 ¥ k < —log(h(n) ")/log(®)] — 1 (n — o0).

. _ S04 Atd)+d .
By choosmg T= p’“*“*d)*d we arrive at

~ _ ~f—sh
vk, ¢, o%) < const.pkéﬂﬂww = const.(p™)F,
52
where (1 + &) Trimam < p* < 1, that is,
Plv*(k; 2%, %) < const.(p*)  VkeN] =1  (n— o).
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