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We study a bootstrap method for stationary real-valued time series, which is based on the sieve of

autoregressive processes. Given a sample X 1, . . . , X n from a linear process fXtg t2Z, we approximate

the underlying process by an autoregressive model with order p � p(n), where p(n)!1,

p(n) � o(n) as the sample size n!1. Based on such a model, a bootstrap process fX�t g t2Z is

constructed from which one can draw samples of any size.

We show that, with high probability, such a sieve bootstrap process fX�t g t2Z satis®es a new type of

mixing condition. This implies that many results for stationary mixing sequences carry over to the

sieve bootstrap process. As an example we derive a functional central limit theorem under a

bracketing condition.
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1. Introduction

The bootstrap for AR(1) processes was proposed by Kreiss (1988; 1992). In BuÈhlmann

(1997) it was developed further and called the `sieve bootstrap'. This is because the set of

arbitrary but ®nite-order autoregressive processes can be viewed as an approximating family

of ®nite-dimensional parametric models for an underlying true autoregressive process of

order 1. Following BuÈhlmann (1997), ®rst de®ne an MA(1) (or linear) process fXtg t2Z

with expectation E[X t] � ìX as follows:

X t ÿ ìX �
X1
j�0

ø jå tÿ j, ø0 � 1, (1:1)

where få tg t2Z is an i.i.d. sequence with common distribution F, E[å t] � 0, Ejå tj,1 andP1
j�0jø jj,1. The set of all joint distributions on RZ induced by such fX tg t2Z is a semi-

parametric model indexed by fF :
�

xdF(x) � 0g3 ffø jg1j�0 2 l 1 : ø0 � 1g. An alternative

de®nition leading to a slightly different set would be to require (1.1) for more restricted

Bernoulli 5(3), 1999, 413±446

1350±7265 # 1999 ISI/BS



distributions F with Ejå tj2 ,1, E[å t] � 0 but now with fø jg1j�0 2 l 2. We are concerned

here with a subset of the MA(1) processes which we call AR(1), namely all processes

representable as in (1.1) but also satisfying

X1
j�0

ö j(X tÿ j ÿ ìX ) � å t, ö0 � 1, (1:2)

with
P1

j�0jö jj,1. As is remarked in BuÈhlmann (1995), an MA(1) process is AR(1) if

Ø(z) �
X1
j�0

ø j z
j

has no zeros for jzj < 1, z 2 C. Both the AR(1) and a fortiori MA(1) models are very rich.

In particular, all stationary Gaussian processes can be approximated weakly by AR(1)

models. The approximation we refer to is in the sense of weak convergence of ®nite-

dimensional distributions of any order. In fact the sets of stationary process distributions

obtainable as limits from (1.1) or (1.2) is quite large but far from exhaustive; see Bickel and

BuÈhlmann (1996; 1997). Various authors ± in particular, Tsay (1992) implicitly and Hjellvik

and Tjùstheim (1995) explicitly ± view `linear processes' as being AR(1) (or approximable

by AR(1)).

Given this point of view, and given a sequence fX tgn
t�1 from the process, it is reasonable

to try to detect departures from this hypothesis of `linearity' using various test statistics.

This is the point of view of Hjellvik and Tjùstheim (1995) and Tsay (1992), save that Tsay

considers parametric hypotheses such as Gaussian AR( p). When dealing with the AR(1)

hypothesis we face not only the choice of test statistics but also what critical value we

should refer these statistics to. It is natural to try to estimate these critical values using a

bootstrap appropriate to this hypothesis. Such a bootstrap for AR(1) processes was

suggested and its properties were explored by Kreiss (1988; 1992) and developed further in

BuÈhlmann (1997). Paparoditis and Streitberg (1992) use such a bootstrap for approximating

the distribution of vector autocorrelations, Franke and Kreiss (1992) consider in more detail

the bootstrap for real-valued ®nite-order ARMA processes. In BuÈhlmann (1997) it is

established that the sieve bootstrap we discuss below gives correct approximations to the

distributions of linear statistics such as
Pn

t�1 h(X t�1, . . . , X t�m), where h is smooth, or

smooth functions thereof.

The statistics of Hjellvik and Tjùstheim (1995), however, involve estimates of the

marginal densities of X t, and statistics proposed by other authors (see Subba Rao and Gabr

1980), quite naturally force us to look at complicated functionals of the empirical

distribution of the Xts, (Xt, X t�1)s, and so on.

In this paper we introduce and study a variant of the sieve bootstrap for which we can

show approximate validity of bootstrap critical values for such complicated nonlinear, non-

regular statistics. In particular, we prove a functional central limit theorem under a

bracketing condition for this sieve bootstrap. Such a result immediately implies that the

sieve bootstrap works for estimators Tn which can be written as Tn � T (Pn), where T is a

(compactly) differentiable functional, in the sense of functional analysis, and Pn is an
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empirical measure. In doing this we introduce some new notions of mixing which are of

independent interest.

2. The smoothed sieve bootstrap

We brie¯y recall Kreiss's bootstrap as given in BuÈhlmann (1997). Let fXtg t2Z be a real-

valued, stationary linear process as given in (1.1) which also satis®es the in®nite

autoregressive representation as in (1.2). Given data X1, . . . , Xn from such an AR(1)

model as in (1.2), we use an autoregressive approximation as a sieve for the process fXtg t2Z.

In a ®rst step we ®t an autoregressive process, with increasing order p(n) as the sample size

n increases. We then estimate the coef®cients ö̂1,n, . . . , ö̂ p,n corresponding to model (1.2),

usually (but not necessarily) by the Yule±Walker estimates, which allows us to calculate

centred residuals. Then we resample by the bootstrap as in Efron (1979) from these centred

residuals yielding å�t , t 2 Z. Finally, we construct a sieve bootstrap sample according to an

AR( p(n)) process with coef®cients ö̂1,n, . . . , ö̂ p,n, that is,Xp(n)

j�0

ö̂ j,n(X�tÿ j ÿ X ) � å�t : (2:1)

It is shown in BuÈhlmann (1997) that the sieve bootstrap process fX�t g t2Z can be again

inverted and represented as a linear process

X�t ÿ X �
X1
j�0

ø̂ j,nå
�
tÿ j, ø̂0,n � 1, (2:2)

where the coef®cients fø̂ j,ng1j�0 arise by inverting the estimated autoregressive transfer

function Ö̂n(z) �P p(n)
j�0 ö̂ j,nz j, z 2 C, jzj < 1, that is,

Ø̂n(z) � 1=Ö̂n(z) �
X1
j�0

ø̂ j,nz j, z 2 C, jzj < 1:

Moreover, the behaviour of the coef®cients fø̂ j,ng1j�0 is again controllable. Roughly

speaking, if
P1

j�0 jrjø jj,1 (r 2 N0) then there exists a random variable n0(ù) such that

supn>n0

P1
j�0 jrjø̂ j,nj,1 almost surely; see BuÈhlmann (1995). However, the bootstrap

process as represented in (2.2) is not known to be mixing with mixing coef®cients that can be

bounded in some uniform sense over all realizations ù of the underlying probability space.

This is due to the fact that the distribution of the innovations å�t is discrete and also changing

with sample size n. All the literature for verifying some type of mixing property of a linear

process assumes that the distribution of the innovations has a density or that the distribution

is dominated by Lebesgue measure in some neighbourhood of the expectation of the

innovation; see Gorodetskii (1977), Doukhan (1994). We leave it as an open question if the

process in (2.1) or equivalently in (2.2) possesses some classical kind of mixing property

which holds uniformly over all ùs.

On the other hand, some type of mixing property of the sieve bootstrap process is needed
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to describe and analyse the probabilistic behaviour of the bootstrap process as in (2.1) or in

(2.2). We basically want to say that if the underlying process of (1.1) is linear and mixing,

then the sieve bootstrap process is again linear and mixing. If so, many of the results for

the underlying process fX tg t2Z would carry over to the sieve bootstrap process fX�t g t2Z.

For example, we would like a result in the spirit of GineÂ and Zinn (1990), which says in the

i.i.d. set-up that the bootstrap for empirical processes works if and only if the corresponding

empirical process for the original observations converges properly.

We propose a modi®ed sieve bootstrap process which meets some of these goals. The

idea is to resample residuals from a density estimate or, equivalently, to resample from a

smooth empirical distribution of the residuals. The concept of constructing bootstrap

schemes by resampling from a smooth empirical distribution is not new and has been

studied in the i.i.d. set-up by Silverman and Young (1987), Hall et al. (1989), Falk and

Reiss (1989a; 1989b) and others. The reason we use it, ensuring some new notion of

mixing, is, however, entirely different than the second-order optimality invoked in the

literature.

Here is our bootstrap scheme. Denote by X1, . . . , Xn a sample from the model as in

(1.2). We always assume that the distribution of the innovations å t has a density f å(:) with

respect to Lebesgue measure.

(1) Fit an autoregressive model of order p � p(n)!1, p(n) � o(n) (n!1) by

estimating the parameters by the Yule±Walker method (cf. Brockwell and Davis 1987,

Chapter 8.1). We denote the corresponding estimates by ö̂1,n, . . . , ö̂ p,n and the residuals by

å̂ t,n �
Xp(n)

j�0

ö̂ j,n(X tÿ j ÿ X ), ö̂0,n � 1 t � p� 1, . . . , n:

(2) Compute a kernel density estimate for f å(:), based on the residuals,

f̂ å̂(x) � (nÿ p)ÿ1 hÿ1
Xn

t� p�1

K
xÿ å̂ t,n

h

� �
,

where h � h(n) is a bandwidth with h � h(n)! 0, h(n)ÿ1 � o(n) (n!1). Then resample

å�t i:i:d: � f̂ å̂(x� ì̂å)dx, t 2 Z,

where ì̂å �
�1
ÿ1 x f̂ å̂(x)dx.

(3) Generate the smoothed sieve bootstrap process fX�t g t2Z as in (2.1).

In the following we denote bootstrap quantities which correspond to this resampling

scheme by an asterisk �. The smoothed sieve bootstrap now inherits the approximating

order p � p(n) and the bandwidth h � h(n) which have to be chosen by the user.

Before giving all the technical details and derivations, we display a result which easily

follows from the new mixing property of the smoothed sieve bootstrap process and our

general results in empirical processes (see Sections 3 and 4). Consider a causal and

invertible ARMA( p0, q0) process,
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X t �
Xp0

j�1

î j X tÿ j �
Xq0

j�1

è jå tÿ j � å t, 0 < p0, q0 ,1, t 2 Z, (2:3)

with transfer functions Î(z) � 1ÿP p0

j�1î j z
j, È(z) � 1�Pq0

j�1è j z
j(jzj < 1). We typically

assume

Î(z) 6� 0, È(z) 6� 0 for jzj < 1� k (k. 0) and Î(:), È(:) have no common zeros: (2:4)

Let

Zn(x) � nÿ1=2
Xn

t�1

(1[X t<x] ÿ F(x)), x 2 R,

Z�n (x) � nÿ1=2
Xn

t�1

(1[X�t <x] ÿ F�(x)), x 2 R

where F(:) and F�(:) denote the cdf of X t and X�t , respectively. Denote by ) weak

convergence in the cadlag space D (R) with respect to the supremum norm.

Corollary 2.1. Assume that fX tg t2Z is an ARMA( p0, q0) process as de®ned in (2.3) with

få tg t2Z an i.i.d sequence, å t � f å(x)dx, supx2R f å(x) ,1, Ejå tj4 ,1 and satisfying (2.4).

For estimating f å(:), let K(x) � (2ð)ÿ1=2 exp(ÿx2=2) and h(n) � o(1), h(n)ÿ1 � O(n1=2ÿç)

(n!1) (ç. 0). Moreover, assume that the autoregressive sieve grows as p(n)=Ck9 log(n)

! 1 (n!1) for Ck9 � (2 log 1� k9))ÿ1, 0 , k9 < k. Then

Zn ) Z,

Z�n ) Z in probability,

where Z is the limiting Gaussian process given in Corollary 4.1.

The condition about p(n) is reasonable since the underlying ARMA process is geometrically

strong-mixing and hence the approximating order p(n) should grow very slowly. The proof of

Corollary 2.1 follows from much more general results; more precise arguments are given at

the end of Section 4.

3. Mixing property of smoothed sieve bootstrap process

We will establish in this section a type of mixing property for the linear process fXtg t2Z in

(1.1) or (1.2) and its smoothed sieve bootstrap counterpart fX�t g t2Z in (2.2) or (2.1),

respectively. Denote by M b
a � ó (fX j; a < j < bg) the ó-algebras with events that belong to

the `time interval' [a, b]. Moreover, we denote the strong-mixing coef®cients by

á(k) � sup
A2M0

ÿ1,B2M1
k

jP[A \ B]ÿ P[A]P[B]j:

For the bootstrap we analogously de®ne
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á�(k) � sup
A2�M0

ÿ1 ,B2�M1
k

jP�[A \ B]ÿ P�[A]P�[B]j,

where �M b
a � ó (fX�j ; a < j < bg).

We do not know whether the strong-mixing property for the smoothed sieve bootstrap

holds. We will introduce a weaker type of mixing condition which is still powerful enough

to establish quite general results and show that the smoothed sieve bootstrap satis®es this

weaker condition.

3.1. A new notion of mixing

The strong-mixing concept for a stationary process fXtg t2Z is based on the variational norm

between the joint probability and the product of the marginal probabilities. This de®nition

allows us to bound covariances

jcov(Z1, Z2)j < 8i Z1 iq1
i Z2 iq2

á1=q3 (k), 1 < q1, q2, q3 <1, qÿ1
1 � qÿ1

2 � qÿ1
3 � 1,

for any measurable variable Z1 2M0
ÿ1, Z2 2M1

k ; see Doukhan (1994, Theorem 3,

Chapter 1.2.2). However, we often only need to bound

jcov(g1(Xÿd1�1, . . . , X0), g2(Xk , . . . , X k�d2ÿ1))j,
with d1, d2 2 N, g1, g2 measurable and `nice' functions.

This suggests two generalizations. First, we only consider separation between ®nite-time

generated ó-algebras, that is, we consider M0
ÿd1�1 and M k�d2ÿ1

k , d1, d2 2 N; this is not a

new generalization (see Doukhan 1994, Chapters 1.1 and 1.3). Second, we restrict ourselves

to bound covariances only for certain subclasses of bounded functions. Our restrictions on

the function classes are in the same spirit as the suf®cient and necessary conditions for

uniformity classes in the theory of weak convergence (see Bhattacharya and Ranga Rao

1976). We restrict ourselves to such a subclass of functions so that we can estimate the

difference between the bootstrap and the underlying true covariances. In doing so we make

use of Berry's smoothing lemma (see Lemma 5.4) which works under such more restrictive

assumptions. The new idea here is that we do not aim to bound a variational norm which

measures how close the expectations of any bounded functions are under the two measures,

but a weaker norm which gives us such an estimate only for bounded functions which are

not too rough.

Let fXtg t2Z be a stationary, real-valued process. Let ù g(A) � supy,z2Ajg(y)ÿ g(z)j,
g : Rd ! R, A � Rd , B(x, ä) � fy; ixÿ yi < äg � Rd , x 2 Rd , ä 2 R�, i:i the Euclidean

norm in Rd , d 2 N. Below we will also consider an averaged translated modulus of

oscillation. For this we denote by gy : Rd ! R, gy(x) � g(x� y) (x, y 2 Rd) the translation

of the function g(:). We also let i gi1 � supxjg(x1, . . . , xd)j and i giq � (Ejg(X1,

. . . , X d)jq)1=q(1 < q ,1), where the dependence on the probability distribution of

X 1, . . . , X d is usually suppressed.

Our de®nition of mixing comes along with a class C d of measurable functions from Rd

to R which satis®es
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sup
g2C d

i gi1,1,

sup
g2C d , g 6�0

sup
y2Rd

�
ùgy

(B(x, ä))

i gi1
dQ(x) < const: äë, (3:1)

for all 0 , ä, 1, for some ë. 0, Q a probability measure in Rd , d 2 N:

We then say that (C d , ë, Q) satis®es (3.1). Often, the value ë and the probability measure Q

are not of particular interest and we associate with C d such a function class satisfying (3.1)

for some ë and Q.

Example 3.1 Indicator functions of intervals in Rd . The class of functions

C d � fg : Rd ! R; g � 1[(1,b1]3...3(ÿ1,bd ]], (b1, . . . , bd) 2 Rdg
satis®es (3.1) with ë � 1 and distribution Q having a bounded density with respect to

Lebesgue measure.

Example 3.2 Simple functions of convex sets in Rd . The class of functions

C d � g : Rd ! R; g �
Xm

j�1

cj1[C j]; 0 , K1 < jcjj < K2 ,1, Cj 2 fconvex sets in Rdg 8 j

( )
,

m 2 N ®xed, satis®es (3.1) with ë � 1 and distribution Q having a density f, such that

f (x) � ~f (ixi), i:i the Euclidean norm in Rd , and ~f is differentiable with
�1

0
j~f 9(y)jdy ,1

and lim y!1~f (y) � 0; see Bhattacharya and Ranga Rao (1976, Theorem 3.1).

Example 3.3 Lipschitz functions of order ë. Denote by i.i the Euclidean norm in Rd . The

class of functions

C d � fg : Rd ! R; 0 , K1 < i gi1 < K2 ,1, sup
x,y
fjg(x)ÿ g(y)j=ixÿ yiëg < C ,1g,

0 , ë < 1, satis®es (3.1) with the same ë and with any distribution Q.

We now present our new mixing notion and de®ne what we call the í-mixing coef®cient

for the stationary process fX tg t2Z as

í(k; C d1 , D d2 ) �

sup

���� cov(g1(Xÿd1�1, . . . , X 0), g2(X k , . . . , X k�d2ÿ1))

4i g1 i1 i g2 i1

����; g1 2 C d1 , g2 2 D d2

( )
,

where (C d1 , ë1, Q1), (D d2 , ë2, Q2) satisfy (3:1),

with possibly different ë1, ë2 . 0, Q1, Q2 and d1, d2 2 N. If g1 and/or g2 in the de®nition of

í(k; C d1 , D d2 ) is the zero function, we use the convention 0=0 � 0. Whenever we write
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í(:; C d1 , D d2 ) we implicitly mean that (C d1 , ë1, Q1), (D d2 , ë2, Q2) satisfy (3.1) for some

ë1, ë2 . 0, Q1, Q2. We say that the stationary process {Xt} t2Z is í-mixing with respect to

(C d1 , D d2 ) if í(k; C d1 , D d2 )! 0 for k !1.

It is not hard to construct examples of stationary processes fX tg t2Z and function classes

C d1 , D d2 , so that fX tg t2Z is í(:; C d1 , D d2 )-mixing but not strong-mixing, that is,

limk!1í(k; C d1 , D d2 ) � 0 and lim inf k!1á(k) . 0. On the other hand, for a stationary

real-valued process and measurable functions g1 and g2,

jcov(g1(Xÿd1�1, . . . , X 0), g2(X k , . . . , X k�d2ÿ1))j < 4i g1 i1 i g2 i1á(k),

(see Doukhan 1994, Lemma 3, Chapter 1.2.2), so that by the de®nition of í(:; C d1 , D d2 ),

í(k; C d1 , D d2 ) < á(k),

where C d1 , D d2 (d1, d2 2 N) are classes of measurable functions that satisfy the condition

(3.1) for some ë1 . 0, Q1 and ë2 . 0, Q2, respectively. A more re®ned covariance inequality

in terms of í-mixing coef®cients is given in Lemma 4.1.

For the smoothed sieve bootstrap process fX�t g t2Z as described in Section 2 we de®ne

í�(k; C d1 , D d2 ) � sup

���� cov�(g1(X�ÿd1�1, . . . , X�0 ), g2(X�k , . . . , X�k�d2ÿ1))

4i g1 i1 i g2 i1

����;
(

g1 2 C d1 , g2 2 D d2

�
with (C d1 , ë1, Q1), (D d2 , ë2, Q2) satisfying (3.1), where Qi is the marginal distribution of

(X1, . . . , X di
) (i � 1, 2) from the true underlying process fX tg t2Z. We again use the

convention 0=0 � 0 in the de®nition of í�(k; C d1 , D d2 ).

3.2. Assumptions and main results

We now present the framework we are working with and make some general assumptions

about the stationary, real-valued process fX tg t2Z from which we observe a sample

X 1, . . . , X n.

(A1) Model (1.2) holds with Ö(z) �P1j�0ö j z
j bounded away from zero for jzj < 1

(z 2 C) and the autoregressive coef®cients decay as jö jj � O( jÿâ) ( j!1), â. 1.

(A2) The innovations få tg t2Z are i.i.d., with Ejå tjs ,1, s > 1, and have a distribution

which admits a density f å(:) with respect to Lebesgue measure. Moreover,�1
ÿ1 j f å(x)ÿ f å(x� c)jdx < const: c, 8 c 2 R.

As an example, ARMA( p0, q0) models ( p0 ,1, q0 ,1) usually satisfy our assumption

(A1) with an exponential decay of the coef®cients fö jg1j�0.

Theorem 3.1. Assume that (A1) with â. 1 and (A2) with s > 1 hold. Then

á(k) < const:kÿã, for all ã,
sâÿ sÿ 2

s� 1
(k 2 N):
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Proof. By using existence of sth moments, this follows directly from Gorodetskii's (1977)

result. h

For the mixing property of the smoothed sieve bootstrap we make, in addition to (A1)

and (A2), the following general assumptions.

(A3) p(n)!1, p(n) � o((n=log(n))1=(2(âÿ1))) (n!1) for the same â as in (A1).

(A4) The kernel K(.) for estimating få(.) satis®es: K(.) is a density of a probability

measure with
�1
ÿ1 xK(x)dx � 0,

�1
ÿ1 x2 K(x)dx 6� 0,

�1
ÿ1 jK(x)ÿ K(x� c)jdx <

const:c 8 c 2 R,
�1
ÿ1 jxjs K(x)dx ,1 for the same s as in (A2). Moreover, the

bandwidth satis®es

h(n) � o(1), h(n)ÿ1 � o(n) (n!1)

h(n)ÿ1 maxfp(n)ÿW
2=(W�1), p(n)(log(n)=n)1=2g � O(1) (n!1),

for some W 2 N, W, âÿ 1, â as in (A1):

(A5) The triples (C d1 , ë1, Q1), (D d2 , ë2, Q2) (d1, d2 2 N) that come along with the

de®nition of the í-mixing coef®cients satisfy (3.1) for some ë1, ë2 . 0 and Qi, the

marginal distribution of (X1, . . . , X di
) (i � 1, 2) from the process fX tg t2Z de®ned

by (A1) and (A2).

Remark 3.1. Assumption (A3) is common in autoregressive approximation; see An et al.

(1982) and BuÈhlmann (1995). If the approximating order is chosen by the data through the

Akaike information criterion (AIC), then Shibata (1980) has shown that p̂AIC � const:n1=(2â)

(if jö jj � const: jÿâ as j!1), which satis®es (A3).

Remark 3.2. A slightly less general set of conditions for the parameters p(n), h(n) in (A3)

and (A4) is given by

p(n)=(const:nc p )! 1 (n!1), 0 , cp , 1=(2(âÿ 1)),

h(n)ÿ1 � O(maxfnc pW2=(W�1), n1=2ÿc p=(log(n))1=2g), h(n) � o(1),

or

p(n)=const: log(n))! 1(n!1),

h(n)ÿ1 � O((log(n))W
2=(W�1)), h(n) � o(1):

Remark 3.3. The assumption about the interplay between the bandwidth h(n) and the

approximating order p(n) in (A4) covers a wide range of situations. By taking

p(n) � const:n1=(2â) (this is the order of p̂AIC) and h(n) � const:nÿ1=5 (this is the usual

order for estimating f å(:) with respect to the mean square error), (A4) holds for any â. 4.

Sieve bootstrap in time series 421



The assumption about the interplay between h(n) and p(n) is in some sense counter-

intuitive. When choosing a small bandwidth h, corresponding to small bias in density

estimation, we are forced to take a large enough p, corresponding again to small bias in

autoregressive approximation. The condition may be an artefact of our proof. It is needed

for controlling the v�-mixing coef®cient for large separation lags: we obtain a bound which

only depends on the smoothness of the bootstrap innovations, and not on some closeness

between the bootstrap and the true underlying distribution, indicating that bias questions are

irrelevant for mixing bounds.

Assumption (A5) will restrict our focus to function classes which inherit the probability

law Q from the underlying original process. Our mixing statements for the smoothed sieve

bootstrap exclusively correspond to such classes.

Theorem 3.2. Assume that (A1)±(A5) hold, with â > 2 in (A1), s > 4 in (A2) and

ë � minfë1, ë2g. 0 in (A5). Then

P[í�(k; C d1 , D d2 ) < const:kÿã
� së

s(1�2ë�d)�d 8 k 2 N]! 1 (n!1),

where d � d1 � d2, ã� � (s[â]ÿ sÿ 2)=(s� 1) if â =2 N, ã� � sâÿ sÿ 3=s� 1 if â 2 N.

The proof is given in Section 5.

Theorem 3.2 describes the `loss' for the decaying speed of the bootstrap compared to the

original mixing coef®cients. By setting á(k) < const:kÿã (see Theorem 3.1), we can always

write

í�(k; C d1 , D d2 ) < const:kÿãL, L ,
(sâÿ sÿ 3)së

(sâÿ sÿ 2)(s(1� 2ë� d)� d)
:

If (A2) holds for all s 2 N, then L , ë=(1� 2ë� d). Note that often the case d1 � d2 � 1

(d � 2) and ë � 1 applies which then yields L , 1=5. We further note that the decay of

í�(:; C d1 , D d2
) is still polynomial.

There is also some interest in the case where the autoregressive coef®cients ö j in model

(1.2) decay exponentially. As examples we mention ARMA( p0, q0) models

( p0 ,1, q0 ,1). Then the mixing coef®cients decay also at an exponential rate. Under

more restrictive assumptions than before, the smoothed sieve bootstrap process fX�t g t2Z is

again í-mixing with exponentially decaying coef®cients. We strengthen the assumptions as

follows.

(A19) Model (1.2) holds with Ö(z) �P1j�0ö j z
j bounded away from zero for jzj < 1� k

and
P1

j�0jö jj(1� k) j ,1 for some k. 0.

(A39) p(n)=(C log n))! 1 (n!1), C 2 R�.

(A49) The same assumptions for the kernal K(.) as in (A4), but the bandwidth satis®es

h(n)ÿ1 � O(maxfnClog (1�Ä), n1=2ÿçg),
for some ç. 0, for some 0 ,Ä, minfk, exp(1=(2C))ÿ 1g,

with the same k as in (A19) and the same C as in (A39).
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Assumption (A19) is almost the same as in Kreiss (1988; 1992). Assumption (A39) re¯ects

the behaviour of the AIC under the condition (A19) since then p̂AIC � const:log(n); cf.

Shibata (1980). However, we allow a general constant C 2 R�. We now brie¯y discuss a

speci®c choice of the constant C in (A39) which then would simplify (A49). The error for

estimating Ö(z) in jzj < 1 is given by

sup
jzj<1

jÖ̂n(z)ÿÖ(z)j � O((log(n)=n)1=2)� O
X1

j� p(n)�1

jö jj
 !

almost surely:

A typical approach would be to choose p(n) such that
P1

j� p(n)�1jö jj � const:nÿ1=2.

Assuming that jö jj � const:(1� k)ÿ j ( j!1), we then would choose p(n) � pk(n) �
Cklog (n) with Ck � (2 log(1� k))ÿ1. Then, for the condition on the bandwidth h(n) in

(A49), Ä, k, nCklog(1�Ä) � nlog(1�Ä)=(2 log(1�k)) and hence the only remaining condition on the

bandwidth would be

h(n)ÿ1 � O(n1=2ÿç) for some ç. 0, h(n) � o(1):

Theorem 3.3. Assume that (A19) with k. 0 and (A2) with s > 1 hold. Then

á(k) < const:rk , for all (1� k)ÿs=(s�1) , r, 1 (k 2 N):

Proof. This follows directly from Gorodetskii's (1977) result. h

For the smoothed sieve bootstrap we can show:

Theorem 3.4. Assume that (A19) with k. 0, (A2) with s > 4, (A39) with C 2 R�, (A49) and

(A5) with ë � minfë1, ë2g. 0 hold. Then

P[í�(k; C d1 , D d2 ) < const:(r�)k , 8 k 2 N]! 1 (n!1),

for all deterministic (1� ~k)ÿ
s2ë

(s�1)(s(1�2ë�d)�d) , r�, 1, d � d1 � d2,

where 0 , ~k, minfk, exp(1=(2C))ÿ 1g and ~k is restricted to be appropriately close to

minfk, exp(1=(2C))ÿ 1g. In particular, by choosing C � Ck � (2 log(1� k))ÿ1 in (A39) we

have

(1� k)ÿ
s2ë

(s�1)(s(1�2ë�d)�d) , r�, 1, d � d1 � d2:

The proof is outlined in Section 5.

Our results are stated in probability. One way to extend them to hold almost surely is to

assume higher moments in (A2) and a faster decay of the autoregressive coef®cients in

(A1), and then to make use of the Borel±Cantelli lemma to show complete convergence.
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4. Smoothed sieve bootstrap and central limit theorems

We ®rst establish more re®ned covariance inequalities in terms of the í-mixing coef®cients.

To obtain them, we enlarge the function classes C d1 , D d2 by some truncated functions. For

0 , M ,1, let

tM (g)(x) � g(x), if jg(x)j < M ,

sign(g(x))M , if jg(x)j. M :

�
De®ne by

C d
ext,C � C d [ fg; g � tM (g), g 2 C d , C , M ,1g, C > 0,

the extension of the class C d , closed under all truncations tM (:), C , M ,1.

Example 4.1 Extensions of single functions. Consider C d � fgg (g 6� 0) which satis®es

(3.1) for some ë. 0 and some Q. Assume 21=q i giq . C . 0 for some 1 < q <1. The

extension C d
ext,C plays an important role; see Lemma 4.1(i). For such C, the triple

(C d
ext,C , ë, Q) satis®es (3.1) again.

Example 4.2 Extensions of indicator and simple functions. For (C d , ë, Q) as in Examples

3.1 or 3.2, the extension C d
ext,0 plays an important role; see Lemma 4.1(ii). Since truncated

indicator functions are either the function itself or the zero function, and similarly for simple

functions, the extension (C d
ext,0, ë, Q) satis®es (3.1) again.

Lemma 4.1. Let fXtg t2Z be a stationary real-valued process and let C d1 , D d2 (d1, d2 2 N)

be classes of measurable functions that satisfy the condition (3.1) for some ë1 . 0, Q1 and

ë2 . 0, Q2, respectively.

(i) If C d1 � fg1g and D d2 � fg2g and if i g1 iq1
. 0, i g2 iq2

. 0 for some

1 < q1, q2 <1, then for qÿ1
1 � qÿ1

2 � qÿ1
3 � 1,

jcov(g1(Xÿd1�1, . . . , X 0), g2(Xk , . . . , X k�d2ÿ1))j < 8i g1 iq1
i g2 iq2

í1=q3 (k; C d1

ext,C1
, D d2

ext,C2
),

where 0 , C1 , i g1 iq1
21=q1 and 0 , C2 , i g2 iq2

21=q2 .

(ii) If g1 2 C d1 , g2 2 D d2 , then for qÿ1
1 � qÿ1

2 � qÿ1
3 � 1 (1 < q1, q2, q3 <1),

sup
jcov(g1(Xÿd1�1, . . . , X0), g2(X k , . . . , X k�d2ÿ1))j

i g1 iq1
i g2 iq2

; g1 2 C d1

ext,0, D d2

ext,0, g1, g2 6� 0

( )

< 8í1=q3 (k; C d1

ext,0, D d2

ext,0):

Remark 4.1. Theorem 3.2 and 3.3 give bounds for í�(k; C d1 , D d2 ). If the extensions C d1

ext,C1
,

D d2

ext,C2
(C1, C2 . 0) or the extensions C d1

ext,0, D d2

ext,0 again satisfy assumption (A5) in Section

3.2, then the same bounds (up to a constant with respect to k and n) apply for

í�(k; C d1

ext,C1
, D d2

ext,C2
) (C1, C2 . 0) or í�(k; C d1

ext,0, D d2

ext,0), respectively.
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Proof. Assertions (i) and (ii) can be proved simultaneously. We note that a ®rst step

jcov(g1(Xÿd1�1, . . . , X 0), g2(X k , . . . , X k�d2ÿ1))j < 4i g1 i1 i g2 i1í(k; C d1 , D d2 )

follows immediately by the de®nition of the í-mixing coef®cient. We now consider the case

where 0 , qÿ1
1 � qÿ1

2 , 1; the situation qÿ1
1 � qÿ1

2 � 1 follows by HoÈlder's inequality.

Consider ®rst the case 1 , q1 ,1, q2 � 1. De®ne

glow,M
1 (x) � tM (g1)(x), g

upp,M
1 (x) � g(x)ÿ glow,M

1 (x):

Note that glow,M
1 is in C d1

ext,C1
(C1 , M), satisfying (3.1). By writing glow

1 for glow,M
1 (x) and

g
upp
1 for g

upp,M
1 (x), we thus have

jcov(g1(Xÿd1�1, . . . , X0), g2(Xk , . . . , X k�d2ÿ1))j � jcov(glow
1 � g

upp
1 , g2(X k , . . . , X k�d2ÿ1))j

< 4M i g2 i1í(k; C d1

ext,C1
, D d2 )� 2i g2 i1Ejgupp

1 j:
Since jgupp

1 j < jg1j1[j g1j. M], we have by HoÈlder's inequality Ejgupp
1 j < i g1 iq1

q1
Mÿq1�1. By

choosing M such that i g1 iq1

q1
Mÿq1 � í(k; C d1 , D d2 ), we arrive at

jcov(g1(Xÿd1�1, . . . , X0), g2(X k , . . . , X k�d2ÿ1))j < 6i g1 iq1
i g2 i1í1ÿ1=q1 (k; C d1

ext,C1
, D d2 ):

Note that we have chosen the truncation M � i g1 iq1
=í1=q1 (k; C d1

ext,C1
, D d2 ) > i g1 iq1

21=q1 ,

since í(k; C d1

ext,C1
, D d2 ) < 2ÿ1 for all k. We need to include the functions tM (g), g 2 C d1 ,

in the extended class C d1

ext,C1
so that C1 , M , explaining the restriction about C1 in assertion

(i).

Now consider the situation 1 , q1, q2 ,1. Analogously as above, we de®ne g
upp
2 and

glow
2 with a truncation point M9. Note that glow,M9

2 is in D d2

ext,C2
(C2 , M9), satisfying (3.1).

Then with the covariance inequality above and HoÈlder's inequality,

jcov(g1(Xÿd1�1, . . . , X0), g2(X k , . . . , X k�d2ÿ1))j

< 6M9i g1 iq1
í1ÿ1=q1 (k; C d1

ext,C1
, D d2

ext,C2
)� 2M9i g1 iq1

i g
upp
2 iq1=(q1ÿ1):

Again by HoÈlder's inequality we get i g
upp
2 iq1=(q1ÿ1) < i g2 iq2(q1ÿ1)=q1

q2
M9ÿq2(q1ÿ1)=q1�1. Now

choose M9 such that i g2 iq2(q1ÿ1)=q1

q2
M9ÿq2(q1ÿ1)=q1 � í1ÿ1=q1 (k; C d1

ext,C1
, D d2

ext,C2
), which yields

the desired covariance inequality. Note that M9 � i g2 iq2
í1=q2 (k; C d1

ext,C1
, D d2

ext,C2
) >

i g2 iq2
21=q2 . We need C2 , M9, which explains the restriction about C2 in assertion (i). h

Often one is interested in estimating covariances of products. Suppose that

(C d1

1 , ë1, Q1), . . . , (C d r

r , ër, Qr) all satisfy (3.1) for some ëi . 0, Qi, di 2 N

(i � 1, . . . , r). Then we de®ne


r
i�1C d i

i � fg1
. . . . . gr : RÓ r

i�1 di ! R; gi 2 C d i

i , i � 1, . . . , rg: (4:1)

Without loss of generality, we assume that the const.ant function g � 1 is an element of

every C d i

i so that subproducts like gi1
. . . . . gi m

, ij 2 f1, . . . , rg, ij 6� i j9 ( j 6� j9), j � 1,

. . . , m, m < r, are elements of 
r
i�1C di

i .

The triple (
r
i�1C d i

i , ë, Q) satis®es (3.1), where ë � minfëi; 1 < i < rg and Q is any
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distribution on RÓ r
i�1 di which has as marginal distributions Q1, . . . , Qr; for example,

Q � Q1 3 . . . 3 Qr. This fact enables us to establish the same moment inequalities for

centred sums as for á-mixing sequences. We abbreviate by 
r
i�1C d � 
r

i�1C d i

i with

C di

i � C d for i � 1, . . . , r.

Lemma 4.2. Let fXtg t2Z be a stationary real-valued process. Assume that g : Rd ! R 2 C d

satisfying (3.1) for some ë. 0, Q. Then the following holds true.

(i) (Yokoyama's inequality.) If
P1

k�0(k � 1)rÿ1íä=(2r�ä)(k; (
2rÿ1
i�1 C d)ext,0,

(
2rÿ1
i�1 C d)ext,0) , 1, ä. 0, then

E

����nÿ1=2
Xn

t�1

(g(X t�1, . . . , X t�d)ÿ E[g(X t�1, . . . , X t�d)])

����2r

< const:i gi2r

2r�ä, r 2 N,

where const. is universal for all g 2 C d .

(ii) (Doukhan and Portal's inequality.) Denote by Zt � g(X t�1, . . . , X t�d) ÿ
E[g(X1, . . . , X d)], t 2 Z. Assume jZtj < 1 8t, EjZtj2 < ô2�ä, ä. 0 and

P1
k�0

(k � 1)2rÿ2íä=(2r�ä)(k; (
2rÿ1
i�1 C d)ext,0, (
2rÿ1

i�1 C d)ext,0) ,1. Then

E

����nÿ1=2
Xn

t�1

(g(X t�1, . . . , X t�d)ÿ E[g(X t�1, . . . , X t�d)])

����2r

< const:((nô2) � . . . � (nô2)r), r 2 N,

where const. is universal for all g 2 C d .

Remark 4.2. For a single function g with i gi1 . 0, Lemma 4.2 also holds with

í(:; (
2rÿ1
i�1 C d)ext,C, (
2rÿ1

i�1 C d)ext,C) for some C . 0; see also Lemma 4.1(i).

Proof. By using Lemma 4.1(ii) the statements follow as in Yokoyama (1980) and Doukhan

and Portal (1987) or Andrews and Pollard (1994), respectively. h

4.1. Central limit theorems

In the context of time series one often estimates a functional which depends on the q-

dimensional marginal distribution of the underlying real-valued process fX tg t2Z. We study

here consistency of the smoothed sieve bootstrap for sums

Zn � (nÿ q� 1)ÿ1=2
Xnÿq�1

t�1

( f (X t, . . . , X t�qÿ1)ÿ E[ f (X t, . . . , X t�qÿ1)]) (q 2 N):

The smoothed sieve bootstrap version is

Z�n � (nÿ q� 1)ÿ1=2
Xnÿq�1

t�1

( f (X�t , . . . , X�t�qÿ1)ÿ E�[ f (X�t , . . . , X�t�qÿ1)]):
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Theorem 4.1. Assume that (A1)±(A4) hold with â. 1 in (A1), s > 4 in (A2), f satis®es (3.1)

for some ë. 0 and for Q, the marginal distribution of (X1, . . . , Xq) from the process

fX tg t2Z de®ned by (A1) and (A2); also, f has at most countably many discontinuities. In

addition, we assume that the parameters â, s, ë and the dimension q are such that

ã�.
s(1� 2ë� 2q)� 2q

së
,

where ã� is as in Theorem 3.2, depending on â. Then,

Zn!d N (0, ó 2), ó 2 �
X1
k�1

cov ( f (X 0, . . ., X qÿ1), F(X k , . . ., X k�qÿ1)),

Z�n!
d�

N (0, ó 2) in probability:

Remark 4.3. Theorem 4.1 is an extension of Theorem 3.3 in BuÈhlmann (1997) to possibly

non-differentiable functions f . Under a geometric decay of jö jj as j!1 in (A1), Theorem

4.1 holds for all q 2 N.

Proof. We remark here that f is Q-continuous, Q being the probability measure of

(X1, . . . , Xq), which admits a density with respect to Lebesgue measure, that is, f is

continuous except on a set with Q-probability zero. This is a requirement we will need.

For simplicity, we sketch here the case q � 1. The general case for q 2 N is then

straightforward, but in a notationally more awkward way. We follow the same strategy as in

the proof of Theorem 3.3 in BuÈhlmann (1997, pp. 144±146) by applying a truncation

technique to the moving-average representation of X�t ; see (2.2). We write X�t,M �PM
j�0ø̂ j,nå�tÿ j and de®ne Z�n,M (:) by means of the variables fX�t,Mgn

t�1. By exploiting the

M-dependence we obtain straightforwardly, as in BuÈhlmann (1997),

Z�n,M!
d�

ZM in probability: (4:2)

Here ZM is the limit based on the truncated X t,M s, X t,M �
PM

j�0ø jå tÿ j.

Then we show that the effect of replacing Z�n by Z�n,M and Z by ZM becomes negligible

for large M . We ®rst show that

P[Z M < c]! P[Z < c] (M !1), c 2 R: (4:3)

Formula (4.3) follows by showingXM

k�ÿM

cov( f (X 0,M ), f (X k,M ))!
X1

k�ÿ1
cov( f (X0), f (Xk)) (M !1):

But this holds true by using the strong-mixing property of fXtg t2Z, the boundedness and Q-

continuity of f and (X0,M , X k,M )!d (X 0, Xk) (M !1); cf. Bhattacharya and Ranga Rao

(1976, Theorem 1.3).

Finally, we show that for all ç. 0 there exist an M0(ç) and an n0(ç) such that
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var�(Z�n,M ÿ Z�n ) < ç on a set An, 8n > n0, 8M > M0 (4:4)

where P[An]! 1 (n!1).

We use a similar strategy to that for proving Theorem 3.2 (compare with formula (5.3)

and the covariance inequality for strong-mixing processes at the beginning of Section 3.1)

but now for the vectorized process fY�t g t2Z � fX�t , X�t,Mg t2Z, and bound

jcov�( f (X�0,M )ÿ f (X�0 ), f (X�k,M )ÿ f (X�k ))j < jcov( f (X 0,M )ÿ f (X0), f (X k,M )ÿ f (X k))j

� jcov�( f (X�0,M )ÿ f (X�0 ), f (X�k,M )ÿ f (X�k ))ÿ cov( f (X0,M )ÿ f (X 0), f (X k,M )ÿ f (X k))j

< 32i f (X 0,M )ÿ f (X0)ÿ E[ f (X0,M )]� E[ f (X0)]i2

2�äá
ä=(2�ä)(k)� Bn, ä. 0, (4:5)

where Bn is the bound from Berry's smoothing lemma (Lemma 5.2), which is bounded by

OP(h(n)fsë=[s(1�ë�2q)�2q]g); see Lemma 5.5. This inequality will be used for k not too large.

On the other hand, by Lemma 5.3,

jcov�( f (X�0,M )ÿ f (X�0 ), f (X�k,M )ÿ f (X�k ))j

< 16i f i2

1á
�(k) < const:h(n)ÿ1 kÿã

�
in probability: (4:6)

This inequality will be used for k large.

We then bound by (4.5) and (4.6), for 0 , k, 1, ä. 0,

var�(Z�n,MÿZ�n ) <
Xnÿ1

k�ÿn�1

jcov�( f (X�0,M )ÿ f (X�0 ), f (X�k,M )ÿ f (X�k ))j

<
XBÿ(1ÿk)
n

k�ÿB
ÿ(1ÿk)
n

(32i f (X 0,M )ÿ f (X 0)ÿ E[ f (X0,M )]� E[ f (X 0)]i2

2�äá
ä=(2�ä)(k)� Bn)

� const:
X

jkj. B
ÿ(1ÿk)
n

h(n)ÿ1 kÿã
�

< const:i f (X 0,M )ÿ f (X0)ÿ E[ f (X0,M )]� E[ f (X0)]i2

2�ä � o(1) on a set An,

with P[An]! 1 (n!1). We have used here the restrictions on the parameters ã�, s, ë, q

in the assumptions (choose k. 0 close to zero), which imply
P
jkj. B

ÿ(1ÿk)
n

h(n)ÿ1 kÿã
� � oP(1)

and also the summability of the mixing coef®cients áä=(2�ä)(:) (choose ä. 0 large enough).

Note also that Ej f (X 0,M )ÿ f (X 0)ÿ E[ f (X0,M )]� E[ f (X 0)]j2�ä < const:Ej f (X 0,M ) ÿ
f (X0)j2, since i f i1,1. But Ej f (X 0)ÿ f (X0,M )j2 ! 0 (M !1), hence we have shown

(4.4).

By (4.2)±(4.4) we have shown Z�n!
d�

Z in probability. h
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4.2. General empirical process

For (smooth) functionals, more general than in Section 4.1, depending on the q-dimensional

marginal distribution of the underlying real-valued process fXtg t2Z, one would like to have

consistency of the smoothed sieve bootstrap for empirical processes. We consider empirical

processes based on the vectorized samples fX t � (X t, . . . , X t�qÿ1)gnÿq�1
t�1 and

fX�t � (X�t , . . . , X�t�qÿ1)gnÿq�1
t�1 , respectively; see BuÈhlmann (1994). We then need the í-

mixing property with respect to classes of functions Rq ! R and follow closely the approach

in Andrews and Pollard (1994), who consider empirical processes for strong-mixing,

stationary processes.

Let F q be a class of measurable functions from Rq ! R. We now introduce some

notation and terminology. Denote by P a probability measure on (Rq, B (Rq)), B (Rq) the

Borel ó-algebra of Rd , and let Pf � � f (x)dP(x) for f 2 F q. Furthermore, we denote by

) weak convergence in the function space l1(F q) (in the Hoffmann±Jùrgensen sense; see

GineÂ and Zinn 1990) for the metric induced by i:iF q ; here i hiF q � sup f 2F q jh( f )j, where

h : F q ! R. We restrict ourselves to uniformly bounded classes F q which satisfy a

bracketing condition in the following sense. Let r( f ) � i f i2 � (Ej f (X1)j2)1=2 be a pseudo-

norm in F q and denote by N (:) � N (:; F q, r) the bracketing number, which is de®ned as

N (ä) � min
M
f9 f 1(ä), . . . , f M (ä) 2 F q and b1(ä), . . . , bM (ä) with r(bi(ä)) < ä 8 i such that:

8 f 2 F q 9i for which j f ÿ f i(ä)j < bi(ä)g:
Note that the bracketing functions bi(ä) need not belong to F q. A bracketing condition now

assumes a certain decay of N (ä) as a function of ä.

We study here the smoothed sieve bootstrapped empirical process. The empirical process

fZn( f )g f 2F q is de®ned by

Zn( f ) � (nÿ q� 1)1=2(Pn( f )ÿ Pf ), Pn( f ) � (nÿ q� 1)ÿ1
Xnÿq�1

t�1

äX t
( f ),

where äx denotes the point mass at x 2 Rq. Its smoothed sieve bootstrapped counterpart

fZ�n ( f )g f 2F q is de®ned by

Z�n ( f ) � (nÿ q� 1)1=2(P�n ( f )ÿ E�[P�n ( f )]), P�n ( f ) � (nÿ q� 1)ÿ1
Xnÿq�1

t�1

äX�t ( f ):

For the purpose of applying the results on bounding í�(k; :, :, )-mixing coef®cients, we

assume:

(A6) Let H q � F q [ ~F q [B q, where ~F q � f f 1 ÿ f 2; f 1, f 2 2 F qg and B q �
fb1(ä), . . . , bM (ä); 0 , ä, 1g is the class of bracketing functions. Assume that

the extension H ext,0 satis®es (3.1) for some ë. 0 and for Q, the marginal

distribution of (X 1, . . . , Xq) from the process fX tg t2Z de®ned by (A1) and (A2).

Moreover, assume that every f 2 F q has at most countably many discontinuities.
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Lemma 4.3 (Stochastic equicontinuity). Assume that (A1)±(A4) and (A6) hold with â. 1

in (A1) and s > 4 in (A2). In addition, assume that the parameters â in (A1), s in (A2), ë in

(A6) and the dimension q are such that

2r ÿ ã� SëC

(s(1� 2ë� 4rqÿ 2q)� 4rqÿ 2q)(2r � C)
, 1,

where r 2 N, C . 0 and ã� is as in Theorem 3.2, depending on â. Moreover, assume that�1

0

xÿC=(2�C) N (x; F q, r�)1=(2r)dx ,1

for the same r and C and with r�( f ) � (E�j f (X�1 )j2)1=2. Then for all ç. 0 there exists a

ä. 0 such that

lim sup
n!1

(E�j sup
r( fÿ g) , ä

jZ�n ( f )ÿ Z�n (g)j2r)1=(2r) , ç in probability:

Remark 4.4. Lemma 4.3 covers only `parametric' function classes having bracketing numbers

N (x; F q, r�) which increase at most polynomially in 1=x as x! 0. Note also that the result

does not hold uniformly in r.

Remark 4.5. The metric entropy condition in Lemma 4.3 is with respect to the bootstrap

pseudo-norm r�(:). We now give an important example which relates it directly to the metric

entropy N (:; F q, r).

Example 4.3 Indicator functions of intervals in Rq. Consider the class F q �
f1(ÿ1,x]; x 2 Rqg for q > 1. Notation is as in Section 4.3. Denote by F (1)�(x) �
P�[X�1 < x] and let U�t � F (1)�(X�t ) (t 2 Z) and U�t � (U�t , . . . , U�t�qÿ1). Then

U�t � Unif ([0, 1]). Denote for u 2 [0, 1]q,

~Z�n (u) � nÿ1=2
Xnÿq�1

t�1

(1[U�t <u] ÿ P�[U�1 < u]):

Note that P�-a.s.,

~Z�n (u) � Z�n (x) � nÿ1=2
Xnÿq�1

t�1

(1[X�t <x] ÿ P�[X�1 < x]), xi � (F (1)�)ÿ1(ui), i 2 f1, . . . , qg:

As also pointed out in the proof of Corollary 4.1 in Section 4.3, it is suf®cient to work with

the empirical process ~Z�n (:) and the function class ~F q � f1(ÿ1,u]; u 2 [0, 1]qg. For the

pseudo-norm, ~r�(u) � (E�j1[U�1 <u]j2)1=2 � (P�[U�1 < u])1=2 < min1<i<q(ui)
1=2 since U�t �

Unif ([0, 1]) for all t. This yields the metric entropy bound N (x; ~F q, ~r�) < const:xÿ2q

which is essentially the same as for N (x; ~F q, ~r) with ~r(u) � (Ej1[U1<u]j2)1=2.

Proof of Lemma 4.3. We use the í-mixing property of fX�t g t2Z with respect to the pair

(
2rÿ1
i�1 F q, 
2rÿ1

i�1 F q) (see Theorem 3.2) and follow the proof of Theorem 2.2 in Andrews
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and Pollard (1994). In particular, we make use of our Lemma 4.2(ii). First, we work with

r�( f ) � (E�j f (X�1 )j2)1=2 and then use the fact that

sup
f 2F q

jr�( f )2 ÿ r( f )2j � oP(1):

This inequality holds since X�1 !
d�

X1 in probability (cf. Lemma 5.5 below) and, by (A6), F q

is a uniformity class; see Theorem 2.4 of Bhattacharya and Ranga Rao (1976). h

Under the conditions of Lemma 4.3 but with the metric entropy condition with respect to

r, the empirical process Zn(:) converges weakly to some Gaussian process Z(:), indexed by

F q, with r-continuous sample paths and with E[Z( f )] � 0, f 2 F q and

cov(Z( f ), Z(g)) �
X1

k�ÿ1
cov( f (X 0), g(X k));

see Corollary 2.3 of Andrews and Pollard (1994). We assume below that weak convergence

of Zn(:) to Z(:) holds.

In the following we sometimes make statements about weak convergence, holding in

probability in a universal sense over all f 2 F q. Let R�n ( f ) be a random variable with

respect to the bootstrap measure P� and R( f ) a random variable of the underlying original

probability space. We say that

R�n ( f 1), . . . , R�n ( f h)!d
�

R( f1), . . . , R( f h) in probability universal over F q

if the following holds. For every continuity point x 2 Rh of the distribution of

(R( f 1), . . . , R( f h)), 8ç. 0 there exist an n0 � n0(ç) and a sequence fAngn2N of (universal)

sets such that

jP�[(R�n ( f 1), . . . , R�n ( f h)) < x]ÿ P[(R( f 1), . . . , R( f h)) < x]j < ç on the set An, 8n > n0,

P[An]! 1 (n!1),

where for each n 2 N, the set An is universal 8 f 1, . . . , f h 2 F q, h 2 N and x < y is

de®ned componentwise as xi < yi (i � 1, . . . , h).

Theorem 4.2. Assume the conditions of Lemma 4.3. Moreover, assume ®nite-dimensional

convergence

(Z�n ( f1), . . . , Z�n ( f h))!d
�

(Z( f 1), . . . , Z( f h)) in probability universal over F q:

Then

Z�n ) Z in probability:

Proof. The result follows directly from ®nite-dimensional convergence and Lemma 4.3. h

Finite-dimensional convergence of Z�n is usually not directly available because fX�t g t2Z
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satis®es by Theorem 3.2 only a í-mixing property. This does not allow us to use one of the

usual blocking techniques.

Theorem 4.3. Assume the conditions of Lemma 4.3. Then

Z�n ) Z in probability:

Proof. It remains to show ®nite-dimensional convergence

(Z�n ( f 1), . . . , Z�n ( f h))!d
�

(Z( f1), . . . , Z( f h)) in probability universal over F q:

But this follows from a multivariate version of Theorem 4.1 which can be established by the

CrameÂr±Wold device. The conditions of Theorem 4.1 are implied by the current

assumptions. h

We just remark that by replacing (A1), (A3) and (A4) by (A19), (A39) and (A49)
respectively, we obtain better bounds on the í-mixing coef®cients and hence need fewer

conditions on the bracketing numbers.

4.3. Empirical process on Rq

We now specialize our results from Section 4.2 to the classical empirical process on Rq,

q 2 N, based on the vectorized observations fX tgnÿq�1
t�1 and fX�t gnÿq�1

t�1 , respectively. That is,

F q � f1(ÿ1,x]; x 2 Rqg, where (ÿ1, x] � 3q
i�1(ÿ1, xi]. By Examples 3.1 and 4.2 we

know that (A6) holds for H q with ë � 1, if the q-dimensional marginal distribution of the

process fXtg t2Z has a bounded density. Note that the bracketing class B q can be taken again

as a class of indicator functions. Denote the cdf of X t and X�t by F (q)(:) and F (q)�(:),
respectively. De®ning `<' componentwise, the empirical process and its bootstrap counterpart

can then be written as

Zn(x) � (nÿ q� 1)ÿ1=2
Xnÿq�1

t�1

(1[Xt<x] ÿ F (q)(x)), x 2 Rq,

Z�n (x) � (nÿ q� 1)ÿ1=2
Xnÿq�1

t�1

(1[X�t <x] ÿ F (q)�(x)), x 2 Rq:

Corollary 4.1. Assume that (A1)±(A4) hold with â. 1 in (A1), s > 4 in (A2) and

supx2R f å(x) ,1. In addition, assume that the parameters s in (A2) and the dimension q

are such that

2r ÿ ã�
s( r

q
ÿ 1)

(s(3� 4rqÿ 2q)� 4rqÿ 2q)(r � r
q
ÿ 1)

, 1 for some r > q� 1, r 2 N,

with ã� as in Theorem 3:2, depending on â:
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Then

Z�n ) Z in probability,

where Z is the limiting Gaussian process of Zn with mean zero and

cov(Z(x), Z(y)) �
X1

k�ÿ1
cov(1[X0<x], 1[X k <y]):

Remark 4.6. Under a geometric decay for jö jj as j!1 in (A1), Corollary 4.1 holds for all

q 2 N. The choice r � q� 1 is suf®cient, since ã� can be chosen arbitrary large.

Remark 4.7. The region for the parameters q, s, â satisfying the conditions in Corollary 4.1

can be identi®ed. The condition on q, s, ã� is equivalent to v(r; q, s, ã�) , 0 for some

r > q� 1, r 2 N, where v(r; q, s, ã�) is a cubic polynomial in r, namely

v(r; q, s, ã�) � r3f16� 16q� 16s� 16qsg � r2 ÿ16ÿ 32qÿ 4sÿ 32qs� 12s

q

� �

� r 4� 20qÿ 14s� 20qsÿ 6s

q
ÿ 2ã�

q

( )
ÿ 4q� 6s� 2ã� ÿ 4qs:

The roots v1 < v2 < v3 of the equation v(r; q, s, ã�) � 0 can be computed in closed form.

Since ã� � ã�(s, â), these roots are of the form vi � vi(q, s, â), i � 1, 2, 3. The condition in

Corollary 4.1 on q, s, ã� , or equivalently on q, s, â is then implied by v1(q, s, â) . q� 1.

Proof of Corollary 4.1. The result is basically a consequence of Theorem 4.3. Consider ®rst
~Z�n (:) as de®ned in Example 4.3. Since for u, v 2 [0, 1]q,

cov�(1[U�0 <u], 1[U�
k
<v]) � cov�(1

[X�0 <f(F (1)�)ÿ1(ui)gq

i�1
]
, 1

[X�
k
<f(F (1)�)ÿ1(vi)gq

i�1
]
),

the process (U�t ) t2Z is í-mixing with respect to ~F q with coef®cients bounded by the mixing

coef®cients of (X�t ) t2Z with respect to F q (we use the same notation as in Example 4.3).

Note that the assumption supx2R f å(x) ,1 implies that the q-dimensional marginal

distribution of (Xt, . . . , X t�q) has a bounded density and hence ë � 1 in assumption (A6)

which is needed to control the í�-mixing behaviour of (X�t ) t2Z. Moreover, as noted in

Example 4.3, N (x, ~F q, ~r�) < const:xÿ2q. Thus, by using r . q(2� C)=2 (r 2 N), the

bracketing condition in Lemma 4.3 holds. (We then use ë � 1 (see above) and the optimal

C � 2r=qÿ 2ÿ ç (ç. 0 arbitrarily small) in Lemma 4.3.) Therefore

~Z�n ) ~Z in probability, (4:7)

where ~Z(:) is a Gaussian process with E[~Z(u)] � 0 and cov(~Z(u), ~Z(v)) �P1
k�ÿ1cov(1

[fF (1)(X i)gqÿ1

i�0
<u]

, 1
[fF (1)(X i)g k�qÿ1

i� k
<v]

)(u, v 2 [0, 1]q). Here we have used the fact

that

sup
x2R

jF (1)�(x)ÿ F (1)(x)j � oP(1), (4:8)

Sieve bootstrap in time series 433



by continuity of F (1)(:).
It remains to show the convergence Z�n (:)) Z(:). This follows by applying the

continuous mapping theorem to the continuous maps,

H� : D ([0, 1]q)! D (Rq), z 7! z � (F (1)�, . . . , F (1)�),

H : D ([0, 1]q)! D (Rq), z 7! z � (F (1), . . . , F (1)),

where D denotes the cadlag space.

By (4.8) we get i H�(z)ÿ H(z)iF q � oP(1) for any continuous z 2 C ([0, 1]q). Using

this and (4.7) we can easily show H�(~Z�n )) H(~Z) in probability. The proof is completed

by noting that H(~Z) has the same distribution as Z(:). h

Proof of Corollary 2.1. We invoke the much stronger result in Theorem 3.4 about the

geometric í� mixing property of the sieve bootstrapped process. Conditions (A19), (A2) with

s > 4, (A39), (A49) (see the discussion about the choice of p(n) and h(n) following

assumptions (A19), (A29) and (A49) in Section 3.2) and (A5) with ë � 1 hold. Now the proof

follows as for Corollary 4.1; we can replace ã� by an arbitrary large value. The result follows

for any parameter value of s > 4. h

5. Proofs

In what follows we denote by B (S) the Borel ó-algebra of a metric space S. We ®rst outline

the idea for proving Theorem 3.2. The same idea is used for proving Theorem 3.4. The

strategy is to split the problem into two cases with small and large separation lags k.

If k is large (or arbitrary), we use Gorodetskii's (1977) result by exploiting the linear

representation (2.2) and the fact that å�t i.i.d. � f̂ å(x� ì̂å)dx. We will show in Lemma 5.3

that á�(k) < const:h(n)ÿ1 kÿã
�

in probability, yielding for k > h(n)ÿ1=æ, æ 2 R�,

í�(k; C d1 , D d2 ) < á�(k) < const:kÿ(ã�ÿæ) in probability: (5:1)

On the other hand, we ®rst use the general fact that

í�(k; C d1 , D d2 ) < á(k)

� sup
jcov�(g1(X�ÿd1�1, . . . , X�0 ), g2(X�k , . . . , X�k�d2ÿ1))

4i g1 i1 i g2 i1

(

ÿ cov(g1(Xÿd1�1, . . . , X 0), g2(X k , . . . , X k�d2ÿ1))j
4i g1 i1 i g2 i1

�
,

where the supremum is over all g1 2 C d1 , g2 2 D d2 .

For bounding the difference of the covariances we now introduce a moment (pseudo-)

norm
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iQ1 ÿ Q2 iC d1 ,D d2 � sup

���� �Rd1�d2
g(x)(dQ1 ÿ dQ2)(x)

i gi1

����; g 2 C d1 
D d2

( )
, (5:2)

where Q1, Q2 are probability measures on (Rd1�d2 , B (Rd1�d2 )) (for the de®nition of C 
D
see (4.1)).

Using the fact that for g � g1
. g2, i gi1 � i g1 i1 i g2 i1, the difference of covariances

can now be bounded as

1

i g1 i1 i g2 i1
jcov�(g1(X�ÿd1�1, . . . , X�0 ), g2(X�k , . . . , X�k�d2ÿ1))

ÿ cov(g1(Xÿd1�1, . . . , X0), g2(X k , . . . , X k�d2ÿ1))j

� 1

i g1 i1 i g2 i1

�����
Rd1�d2

g1
. g2(x)(dP� ÿ dP)(x)

ÿ
�

Rd1

g1(x)dP�(x)

�
Rd2

g2(x)dP�(x)�
�

Rd1

g1(x)dP(x)

�
Rd2

g2(x)dP(x)

����
< iP� ÿ PiC d1 ,D d2 � 2iP� ÿ PiC d1 ,D d2 :

This means that we bound

í�(k; C d1 , D d2 ) < á(k)� 3iP� ÿ PiC d1 ,D d2 : (5:3)

In Lemma 5.5 we will give the bound iP� ÿ PiC d1 ,D d2 � OP(b(n)), where b(n) is a function

of the tuning parameters p(n) and h(n) and of the sample size n. In particular, under the

assumptions about the bandwidth h(n) in (A4) we obtain iP� ÿ PiC d1 ,D d2 � OP(h(n)c) for

some c 2 R�, yielding then for k < h(n)ÿ1=æ, iP� ÿ PiC d1 ,D d2 < const:kÿæc in probability

and hence for k < h(n)ÿ1=æ,

í�(k; C d1 , D d2 ) < const:kÿæc in probability: (5:4)

Putting (5.1) and (5.4) together, we minimize over æ.

We now give some preliminary results. The ®rst has to do with moving-average

representations of autoregressive approximations. We recall the de®nition for the coef®cients

fø̂ j,ng1j�0, which arise by inverting the estimated autoregressive transfer function, (compare

with (2.1) and (2.2)).

Lemma 5.1. Assume that model (1.2) holds with å t iid., E[å t] � 0, Ejå tj4 ,1. Suppose that

Ö(z) is bounded away from zero for jzj < 1 (z 2 C) (see (A1)),
P1

j�0 jrjö jj,1 and

p(n) � o((n=log(n))1=(2r�2)), r 2 N. Then:

(i) there exists a random variable n0(ù) such that

sup
n>n0(ù)

X1
j�0

jrjø̂ j,nj,1 almost surely;
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(ii) for a(n)!1, a(n) � o(n) (n!1),

sup
s2N0

Xs�a(n)

j�s�1

jø̂ j,n ÿ ø jj � O(a(n) p(n)ÿr)� O(a(n)(log(n)=n)1=2) almost surely:

Proof. Assertion (i) is Theorem 3.1 in BuÈhlmann (1995). Assertion (ii) follows from Theorem

3.2 in BuÈhlmann (1995). h

Lemma 5.2. Assume the conditions of Lemma 5.1, and in addition that Ejå tjs ,1, s > 4.

Suppose that the kernel K(:) for estimating f å(:) is a probability density and satis®es�1
ÿ1 xK(x)dx � 0,

�1
ÿ1 x2 K(x)dx 6� 0,

�1
ÿ1 jxjs K(x)dx ,1 for the same s, and the bandwidth

satis®es h(n)! 0, h(n)ÿ1 � o(n) (n!1). Then:

(i) E�[(å�t )w]ÿ E[(å t)
w] � OP(h(n)2)� OP( p(n)(log(n)=n)1=2)� oP( p(n)ÿr), w < s;

(ii) E�jå�t js � OP(1).

Proof. We have

E�[(å�t )w] �
�1
ÿ1

xw f̂ å(x� ì̂å)dx � (nÿ p)ÿ1
Xn

t� p�1

�1
ÿ1

(hu� å̂ t,n ÿ ì̂å)
w K(u)du

� (nÿ p)ÿ1
Xn

t� p�1

(å̂ t,n)w � OP(ì̂å � h(n)2): (5:5)

We write

å̂ t,n � å t � Qt,n � Rt,n ÿ (X ÿ ìX )
X1
j�0

ö j, (5:6)

where Qt,n �
P p

j�0(ö̂ j,n ÿ ö j,n)(X tÿ j ÿ X ), Rt,n �
P1

j�0(ö j,n ÿ ö j)(X tÿ j ÿ X ). Here ö p �
(ö1,n, . . . , ö p,n)9 are the solutions of the theoretical Yule±Walker equations Ãpö p � ÿã p;

see Brockwell and Davis (1987, Chapter 8.1). Now in a similar manner to the proof of

Lemma 5.3 in BuÈhlmann (1997, pp. 137±138),

jQt,nj < max
0< j< p(n)

jö̂ j,n ÿ ö j,nj
Xp(n)

j�0

jX tÿ j ÿ X j

� O((log(n)=n)1=2)
Xp

j�0

jX tÿ j ÿ X j, the O-term being a.s., (5:7)

(see Theorem 2.1 of Hannan and Kavalieris 1986), and

EjRt,njw < const:
X1

j� p�1

jö jj
 !w

� o( p(n)ÿwr), (5:8)

436 P.J. Bickel and P. BuÈhlmann



where we have used Baxter's inequality (see the proof of (3.1) in BuÈhlmann 1995). Since

ì̂å � (nÿ p)ÿ1
Pn

t� p�1å̂ t,n we complete the proof by using (5.5)±(5.8) and applying a

binomial expansion for (å̂ t,n)w.

Assertion (ii) follows immediately by using the representation as in (5.5). h

5.1. Mixing property for large separation lags

Lemma 5.3. Assume that (A1)±(A4) hold with â. 1 in (A1) and s > 4 in (A2). Then

P[á�(k) < const:h(n)ÿ1 kÿã
� 8k 2 N]! 1 (n!1),

where ã� is de®ned as in Theorem 3.2.

Proof. We use representation (2.2) and use the result under existence of sth moments in

Gorodetskii (1977). His condition (i) follows immediately by (A4), (ii) follows by Lemma 5.2

and (iii) by (A1) and (A3); see Lemma 2.2 and Theorem 3.1 in BuÈhlmann (1995). The

constant ã� shows up by using Lemma 5.1(i) (note that this lemma handles only r 2 N).

h

We remark here that Lemma 5.3 holds true if we weaken the assumptions on the

bandwidth h(n) in (A4) to the sole condition h(n) � o(1), h(n)ÿ1 � o(n) (n!1).

Bounding bootstrap covariances for non-smooth functions of shortly lagged variables cannot

be done effectively with Lemma 5.3. An analysis such as that in the following Section 5.2

completes the establishment of useful bounds for short lags.

5.2. Moment norm between bootstrap and true measure

Denote by Pk;d1,d2
[C] � P[(Xÿd1�1, . . . , X 0, X k , . . . , X k�d2ÿ1) 2 C], C 2 B (Rd), d �

d1 � d2, k 2 N. We de®ne P�k;d1,d2
[:] analogously for the bootstrap. By the de®nition of

the í-mixing coef®cients and the boundedness of g1 2 C d1 , g2 2 D d2 from above and below

we have, cf. (5.3),

í�(k; C d1 , D d2 ) < á(k)� 3iP�k;d1,d2
ÿ Pk;d1,d2

iC d1 ,D d2 , i:iC d1 ,C d2 as in (5:2):

Our next aim is to bound

sup
k2N

iP�k;d1,d2
ÿ Pk;d1,d2

iC d1 ,D d2 :

To do so we will compare this quantity with the variational norm of a `smoothed difference'

P�k;d1,d2
ÿ Pk;d1,d2

. The variational norm for a probability measure Q on (Rd , B (Rd)) is

de®ned as

iQiV ;d � 2 sup
C2B (Rd )

jQ[C]j:

In the following we denote by Q1 ? Q2 the convolution of some signed measures Q1 and Q2.
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Lemma 5.4 (Berry's smoothing lemma) . Let ä(n) � o(1) (n!1) and fKä(n)gn2N be a

sequence of probability measures on Rd with supn2N Kä(n)(fixi < ä(n)g) . 1
2
8n 2 N, i:i the

Euclidean norm in Rd . Assume that (A5) holds. Then 8n 2 N,

sup
k2N

iP�k;d1,d2
ÿ Pk;d1,d2

iC d1 ,D d2 < const:sup
k2N

i(P�k;d1,d2
ÿ Pk;d1,d2

) ? Kä(n) iV ;d � const:ä(n)ë,

where ë � minfë1, ë2g, d � d1 � d2.

Proof. We use formula (11.26) in Bhattacharya and Ranga Rao (1976). To bound the moment

norm we need a bound for some type of modulus of oscillation; but our assumption (A5) is

exactly tailored to this problem. The quantity to be bounded is

R � sup
k2N

sup
g2C d1
D d2

sup
y2Rd

�
Rd

ù gy
(B(x, ä))

i gi1
dPk;d1,d2

(x) (d � d1 � d2):

Denote by g � g1
. g2 2 C d1 
D d2, y � (y1, y2)9 2 Rd1 3 Rd2 and Qi the distributions of

(X1, . . . X di
) (i � 1, 2) as de®ned in (A5). Then, since i gi1 � i g1 i1 i g2 i1,�

Rd

ù gy
(B(x, ä))

i gi1
dPk;d1,d2

(x)

<
i g2 i1

i g1 i1 i g2 i1

�
Rd1

ù( g1)y1
(B(x1, ä))dQ1(x1)� i g1 i1

i g1 i1 i g2 i1

�
Rd2

ù( g2)y2
(B(x2, ä))dQ2(x2):

Hence by (A5) we bound R, as de®ned above, by const:äë, which is the second term on the

right-hand side in the assertion. h

We now make use of the smoothing idea: choose Kä(n) smooth such that its Fourier

transform vanishes for large arguments. Together with Berry's lemma (Lemma 5.4) we will

show:

Lemma 5.5. Assume that (A1)±(A5) hold with â. 1 in (A1), s > 4 in (A2) and ë. 0 in

(A5). Then for all d1, d2 2 N,

sup
k2N

iP�k;d1,d2
ÿ Pk;d1,d2

iC d1 ,D d2 � OP(î(n)
së

s(1�ë�d)�d), d � d1 � d2,

where î(n) � maxfh(n), p(n) (log(n)=n)1=2, p(n)ÿW
2=(W�1)g, W, âÿ 1, W 2 N. Moreover, the

assumptions about the bandwidth h(n) in (A4) yield

sup
k2N

iP�k;d1,d2
ÿ Pk;d1,d2

iC d1 ,D d2 � OP(h(n)
së

s(1�ë�d)�d), d � d1 � d2,

Proof. To simplify notation we always denote by W an integer less than âÿ 1. By Lemma 5.4

we want to bound

sup
k2N

i(P�k;d1,d2
ÿ Pk;d1,d2

) ? Kä(n) iV ;d � 2 sup
k2N

sup
C2B (Rd )

j(P�k;d1,d2
ÿ Pk;d1,d2

) ? Kä(n)[C]j:
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We make a similar choice of Kä(n) as in (13.8)±(13.11) in Bhattacharya and Ranga Rao

(1976), that is, Kä(n) has a density

Yn

i�1

gä(n),2s(xi), ga,2m(x) � const:
sin(ax)

ax

� �2

m a density on R:

Then supn2N Kä(n)[ixi < ä(n)] . 1
2

for n large enough (this is a condition in Lemma 5.4) and

for the Fourier transform of Kä(n) we have

�
Rd

exp(iy . x)Kä(n)(dx) � 0 if y =2 [ÿ2sä(n)ÿ1, 2sä(n)ÿ1]d , (5:9)

where y . x �Pd
i�1 yixi; see (10.9) in Bhattacharya and Ranga Rao (1976).

In the following we let J (n; d) � [ÿ2sä(n)ÿ1, 2sä(n)ÿ1]d . Let C 2 B (Rd). Then by

Fourier inversion

sup
k2N

j(P�k;d1,d2
ÿ Pk;d1,d2

) ? Kä(n)[C]j < const:

�
C

�
J(n;d)

sup
k2N

jj�k;d1,d2
(x)ÿ jk;d1,d2

(x)jdx dy,

(5:10)

where jk;d1,d2
(x) � E[exp(ix . X)], X � (Xÿd1�1, . . . , X 0, X k , . . . X k�d2ÿ1)9, and analogously

for j�k;d1,d2
.

To bound (5.10) much of the work boils down to estimating jj�k;d1,d2
(x)ÿ jk;d1,d2

(x)j. We

use the linear representations (1.1) and (2.2) and write

jk;d1,d2
(x) � exp(ix . ìX 1)

Y1
j�0

jå(h j,k
. x)

Yk�d2ÿ1

j�1

jå(f j,k
. ~x),

j�k;d1,d2
(x) � exp(ix . X 1)

Y1
j�0

jå�(ĥ j,k
. x)

Yk�d2ÿ1

j�1

jå� (f̂ j,k
. ~x),

where h j,k � (ø jÿd1�1, . . . , ø j, ø j�k , . . . , ø j�k�d2ÿ1)9, f j,k � (økÿ j, . . . , øk�d2ÿ1ÿ j)9, ĥ j,k

and f̂ j,k analogously with ø̂ j,n instead of ø j, x � (x1, . . . xd1
, xd1�1, . . . , xd)9,

~x � (xd1�1, . . . , xd)9, jå(x) � E[exp(ixå0)], jå�(x) � E�[exp(ixå�0 )], x 2 R. Here we have

followed the convention that ø j � ø̂ j,n � 0 for j , 0. We then obtain
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sup
k2N

jj�k;d1,d2
(x)ÿ jk;d1,d2

(x)j

< jexp(ix . X 1)ÿ exp(ix . ìX 1)j � sup
k2N

����Yq(n)

j�0

jå�(ĥ j,k
. x)ÿ

Yq(n)

j�0

jå(h j,k
. x)

����
� sup

k2N

���� Y1
j�q(n)�1

jå�(ĥ j,k
. x)ÿ

Y1
j�q(n)�1

jå(h j,k
. x)

����
� sup

k2N

���� Yk�d2ÿ1

j�1

jå�(f̂ j,k
. ~x)ÿ

Yk�d2ÿ1

j�1

jå(f j,k
. ~x)

����
� I(x)� sup

k2N

IIk(x)� sup
k2N

IIIk(x)� sup
k2N

IVk(x), (5:11)

where q(n)!1, q(n) � o(n) (n!1):
By a Taylor expansion we obtain

sup
x2J(n;d)

I(x) < ä(n)ÿ1OP(nÿ1=2): (5:12)

Again by using a Taylor expansion, we obtain

sup
k2N

sup
x2J (n;d)

IIIk(x) < sup
k2N

sup
x2J (n;d)

X1
j�q(n)�1

jjå�(ĥ j,k
. x)ÿ jå(h j,k

. x)j

< (Ejå tj � E�jå�t j)sup
k2N

sup
x2J (n;d)

X1
j�q(n)�1

(jĥ j,k
. xj � jh j,k

. xj)

< const:ä(n)ÿ1q(n)ÿW in probability, (5:13)

where the last inequality follows from Lemma 5.2(ii), Lemma 5.1(i) and jö jj � O( jÿâ)

( j!1), which implies
P1

j�q(n)�1jh j,k j � o(q(n)ÿW).

Most work is needed for bounding IIk(x) (and similarly IVk(x)). We have

IIk(x) <
Xq(n)

j�0

jjå�(ĥ j,k
. x)ÿ jå�(h j,k

. x)j �
Xq(n)

j�0

jjå�(h j,k
. x)ÿ jå(h j,k

. x)j

� II :1k(x)� II :2k(x):

By a Taylor expansion we obtain

sup
k2N

sup
x2J (n;d)

II :1k(x) < const:ä(n)ÿ1 sup
s2N0

Xs�q(n)

j�s

jø̂ j,n ÿ ø j,nj � sup
k2N

Xk�q(n)�d2ÿ1

j�k

jø̂ j,n ÿ ø j,nj
0@ 1A

� ä(n)ÿ1(OP(q(n) p(n)ÿW)� OP(q(n)(log(n)=n)1=2)), (5:14)
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where we have used Lemma 5.1(ii) for the last inequality.

For bounding II :2k(x) we consider

jå�(h j,k
. x)ÿ jå(h j,k

. x)

� (nÿ p)ÿ1
Xn

t� p�1

exp(ih j,k
. x(å̂ t,n ÿ ì̂å))

�1
ÿ1

exp(ih j,k
. xuh(n))K(u)duÿ jå(h j,k

. x)

� (nÿ p)ÿ1
Xn

t� p�1

exp(ih j,k
. x(å̂ t,n ÿ ì̂å))(1� E(h(n); j, x))ÿ jå(h j,k

. x), (5:15)

where

jE(h(n); j, x)j < jh j,k
. xjh(n)

�1
ÿ1
jujK(u)du < const:h(n)jh j,k

. xj:

On the other hand,

(nÿ p)ÿ1
Xn

t� p�1

exp(ih j,k
. x(å̂ t,n ÿ ì̂å))ÿ jå(h j,k

. x)

� (nÿ p)ÿ1
Xn

t� p�1

exp(ih j,k
. xå t)(1� D(h(n), t; j, x))ÿ jå(h j,k

. x), (5:16)

where

jD(h(n), t; j, x)j < jh j,k
. xjjå̂ t,n ÿ ì̂å ÿ å tj,

and hence (see (5.7)±(5.8))

(nÿ p)ÿ1
Xn

t� p�1

jD(h(n), t; j, x)j � jh j,k
. xj(OP( p(n)(log(n)=n)1=2)� oP( p(n)ÿW)): (5:17)

(Here the OP terms are uniformly bounded in j, k and x.)

Moreover, by the i.i.d. structure of få tg t2Z and the boundedness of exp(ix), x 2 R, we

obtain by some well-known exponential inequalities, for instance Bernstein's inequality,

sup
jxj<n r

j(nÿ p)ÿ1
Xn

t� p�1

exp(ixå t)ÿ jå(x)j � OP(nÿ1=2�ç), for any 0 , ç, 1
2
,

where r is an arbitrary exponent in R�. This is a stronger version of formula (2.4) in Singh

(1981). But this implies

sup
k2N

sup
j2N0

sup
x2J (n;d)

����(nÿ p)ÿ1
Xn

t� p�1

exp(ih j,k
. xå t)ÿ jå(h j,k

. x)

���� � OP(n1=2ÿç), for any 0 , ç, 1
2
:

(5:18)

Therefore by (5.15)±(5.18) we obtain
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sup
k2N

sup
x2J(n;d)

II :2k(x) < ä(n)ÿ1(OP(h(n))� OP( p(n)(log(n)=n)1=2)� oP( p(n)ÿW))

� OP(q(n)nÿ1=2�ç), ç. 0: (5:19)

Hence by (5.14) and (5.19),

sup
k2N

sup
x2J (n;d)

II k(x) � ä(n)ÿ1(OP(h(n))� OP((q(n)� p(n))(log(n)=n)1=2)� OP(q(n) p(n)ÿW))

� OP(q(n)nÿ1=2�ç), ç. 0: (5:20)

Similarly, we obtain

sup
k2N

sup
x2J(n;d)

IVk(x) � O(sup
k2N

sup
x2J (n;d)

II k(x))� O(sup
k2N

sup
x2J (n;d)

III k(x)): (5:21)

Then we have by (5.11)±(5.13), (5.20)±(5.21),

sup
k2N

sup
x2J (n;d)

jj�k;d1,d2
(x)ÿ jk;d1,d2

(x)j

< ä(n)ÿ1(OP(q(n)ÿW)� OP(h(n))� OP((q(n)� p(n))(log(n)=n)1=2)� OP(q(n) p(n)ÿW))

� OP(q(n)nÿ1=2�ç)

� ä(n)ÿ1(OP(q(n)ÿW)� OP(h(n))� OP((q(n)� p(n))(log(n)=n)1=2)� OP(q(n) p(n)ÿW)),

(5:22)

where the last bound follows since ç. 0 is arbitrary.

What remains is to integrate the error term in (5.22); see (5.10). Let

r(n)!1, r(n) � o(n) (n!1). Denote by C1 � C \ [ÿr(n), r(n)]d, C2 � CnC1. By

Markov's inequality we obtain

sup
k2N

jPk;d1,d2
? Kä(n)[C2]j � O(r(n)ÿs), sup

k2N

jP�k;d1,d2
? Kä(n)[C2]j � OP(r(n)ÿs): (5:23)

Hence by (5.10), (5.22) and (5.23)

sup
k2N

j(P�k;d1,d2
ÿ Pk;d1,d2

) ? Kä(n)[C]j

< r(n)dä(n)ÿdÿ1(OP(q(n)ÿW)� OP(h(n))� OP((q(n)� p(n))(log(n)=n)1=2)

� OP(q(n) p(n)ÿW))� OP(r(n)ÿs),

and therefore by Lemma 5.4

sup
k2N

iP�k;d1,d2
ÿ Pk;d1,d2

iC d1 ,D d2 � OP(r(n)dä(n)ÿdÿ1î(n))� OP(r(n)ÿs)� O(ä(n)ë), (5:24)

where î(n) � maxfq(n)ÿW, h(n), (q(n)� p(n))(log(n)=n)1=2, q(n) p(n)ÿWg. By choosing
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q(n) � p(n)W=(W�1) we obtain î(n) � maxfh(n), p(n)(log(n)=n)1=2, p(n)ÿW
2=(W�1)g. By

choosing the optimal orders for r(n) and ä(n) the right-hand side in (5.24) is of the order

OP(î(n)
së

s(1�ë�d)�d):

This completes the proof. h

5.3. Proofs of Theorem 3.2 and Theorem 3.4

We ®rst give the proof of Theorem 3.2. To do this, we combine the results in Section 5.1 and

5.2. By Lemma 5.3 we know

P[í�(k; C d1 , D d2 ) < á�(k) < const:h(n)ÿ1 kÿã
� 8 k 2 N]! 1 (n!1),

and hence,

P[í�(k; C d1 , D d2 ) < const:kÿ(ã�ÿæ) 8 k > (h(n)ÿ1)1=æ]! 1 (n!1), æ 2 R�: (5:25)

On the other hand, we have by (5.3), Theorem 3.1 and Lemma 5.5 (using the second

statement) for k , (h(n)ÿ1)1=æ,

í�(k; C d1 , D d2 ) < á(k)� const:iP�k;d1,d2
ÿ Pk;d1,d2

iC d1 ,D d2

< const:kÿã � OP(h(n)
së

s(1�ë�d)�d)

and since the OP(:) term is uniform in k (see Lemma 5.5), we obtain

P[í�(k; C d1 , D d2 ) < const:kÿã � const:kÿ
æsë

s(1�ë�d)�d 8 k , (h(n)ÿ1)1=æ]

! 1 (n!1), æ 2 R�: (5:26)

By choosing æ yielding the best rate for í�(k; C d1 , D d2 ), that is, æ �
ã�(s(1� ë� d)� d)=(s(1� 2ë� d)� d), we obtain by (5.25) and (5.26) the result of

Theorem 3.2.

We now sketch the arguments for proving Theorem 3.4 which are very similar to the

proof of Theorem 3.2. We ®rst show the following: there exists a random variable n0(ù)

such that

sup
n>n0(ù)

Xp(n)

j�0

jö̂ j,nj(1� ~k) j ,1 almost surely, 0 , ~k, minfk, exp(1=(2C))ÿ 1g: (5:27)

We have, for any 0 , c , 1
2
,

sup
jzj<1�~k

jÖ̂n(z)ÿÖ(z)j < max
1< j< p(n)

jö̂ j,n ÿ ö jj(1� ~k) p(n) �
X1

j� p(n)�1

jö jj(1� ~k) j

� O((log(n)=n)1=2)O(n1=2ÿc)� o(1) � o(1) almost surely:

(Use the result of Theorem 2.1 of Hannan and Kavalieris (1986) and Baxter's inequality;
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compare with (5.7) and (5.8)). Formula (5.27), together with (A19), implies that, for n

suf®ciently large, we can invert Ö̂n(z) in jzj < 1� ~k; we then obtain instead of Lemma 5.1,

sup
n>n0(ù)

jø̂ j,nj < const:(1� ~k)ÿ j almost surely,

sup
s2N0

Xs�a(n)

j�s�1

jø̂ j,n ÿ ø jj � O(a(n)(1� ~k)ÿ p(n))� O(a(n)(log(n)=n)1=2) almost surely:

Lemma 5.2 remains the same with p(n) � O(log(n)). Lemma 5.3 becomes

P[á�(k) < const:h(n)ÿ1~rk 8 k 2 N]! 1 (n!1), (1� ~k)ÿs=(s�1) , ~r, 1: (5:28)

(Compare with Theorem 3.3.)

Lemma 5.4 remains exactly the same. It is plausible that we obtain the same bound as in

Lemma 5.5, since the assumptions (A1)±(A5) are generally weaker than the assumptions of

Theorem 3.4, that is,

sup
k2N

iP�k;d1,d2
ÿ Pk;d1,d2

iC d1 ,D d2 � OP(h(n)
së

s(1�ë�d)�d), d � d1 � d2: (5:29)

However, we have to re-examine the interplay of the tuning parameters h(n) and p(n). Some

quantities now change; we choose q(n) � const:log(n) such that the (old) expression q(n)ÿW

becomes something of order nÿ1=2. By (A39), p(n) � C log(n) and instead of the (old)

expression p(n)ÿW we have (1� ~k)ÿ p(n). Then î(n) in (5.24) equals

maxfh(n), nÿ1=2�ç, log(n)(1� ~k)ÿ p(n)g; note that for deriving this the OP(q(n)nÿ1=2�ç) term

in (5.20) dominates in the derivation of (5.22). By choosing ~k appropriately close to

minfk, exp(1=(2C))ÿ 1g, we know that by (A49) maxfh(n), log(n)(1� ~k)ÿ p(n)g � O(h(n)).

This then explains why (5.29) holds.

Now by (5.28), for ~r, ô, 1,

P[í�(k; C d1 , D d2 ) < const:(~r=ô)k 8 k .ÿlog(h(n)ÿ1)=log(ô)]! 1 (n!1),

and by (5.29), for ~r, ô, 1,

P[í�(k; C d1 , D d2 ) < const:ôk së
s(1�ë�d)�d 8 k < ÿlog(h(n)ÿ1)=log(ô)]! 1 (n!1):

By choosing ô � ~r
s(1�ë�d)�d

s(1�2ë�d)�d we arrive at

í�(k; C d1 , D d2 ) < const:~rk së
s(1�2ë�d)�d � const:(r�)k ,

where (1� ~k)ÿ
s2ë

(s�1)(s(1�2ë�d)�d) , r�, 1, that is,

P[í�(k; C d1 , D d2 ) < const:(r�)k 8 k 2 N]! 1 (n!1):
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