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General sufficient conditions for the discernibility of two families of stationary ergodic processes are

derived. The conditions involve the weak topology for stationary processes. They are analogous in

several respects to existing conditions for the discernibility of families of independent and identically

distributed (i.i.d.) processes, but require a more refined type of topological separation in the general

case. As a first application of the conditions, it is shown how existing discernibility results for i.i.d.

processes may be extended to a countable union of uniformly ergodic families. In addition, it is shown

how one may use hypothesis testing to study polynomial decay rates for covariance-based mixing

conditions.
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1. Introduction

Hypothesis testing seeks to distinguish between two competing explanations for the

observed behaviour of some measured phenomena. Of interest here is a special case of the

hypothesis testing problem: how to determine the membership of a sequence of observations

in one of two known families of stationary stochastic processes. In general, one or both of

the families will contain processes exhibiting long-range dependence.

To be more specific, let H0 and H1 be disjoint families of stationary ergodic processes,

and consider the following game between players A and B. To begin, player B is provided

with complete information regarding the joint distributions of every process X 2 H0 [ H1.

Then player A selects a process X ¼ fX i : i > 1g from H0 [ H1 and reveals its elements

one by one, in order, to player B. At each time n > 1 player B is asked to determine the

membership of X in H0 or H1, based only on the observed values of X1, . . . , X n, and

knowledge of the joint distributions of the processes in H0 [ H1. Player B is successful if,

for every X 2 H0 [ H1, she makes only finitely many mistakes with probability one. When

a successful strategy for player B exists, we say that H0 and H1 are discernible. A more

precise definition of discernibility, and several variants, are given in Section 2.

In this paper general sufficient conditions for the discernibility of two families of

stationary ergodic processes are derived. The conditions, given in Theorem 1, involve the

weak topology on stationary processes. They are analogous in several respects to the

conditions of Dembo and Peres (1994) for the discernibility of families of independent and

identically distributed (i.i.d.) processes, but require a more refined type of topological
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separability in the general case. As an application of Theorem 1, it is shown that many

existing discernibility results for i.i.d. processes can be generalized to weakly uniformly

ergodic families. In addition, it is shown how hypothesis testing can be used to study

polynomial decay rates for covariance-based mixing conditions.

The next section contains technical preliminaries, several definitions of discernibility, and

an account of previous work. The definitions of discernibility are briefly compared in

Section 3. A number of preliminary results on uniformly ergodic families of processes are

given in Section 4. Section 5 is devoted to the principal conclusion of the paper, Theorem

1, which gives general sufficient conditions for the almost sure discernibility of two families

of ergodic processes. The final two sections of the paper are devoted to applications of

Theorem 1. The discernibility of process families determined by finite-dimensional

distributions is examined in Section 6. The study of polynomial mixing rates for a general

covariance-type mixing condition is considered in Section 7. The Appendix contains the

proofs of several results stated in the text.

2. Preliminaries and discernibility

2.1. Ergodic processes

In what follows, we restrict our attention to real-valued processes; the principal results of the

paper may be extended to processes taking values in a complete separable metric space. Let B
denote the Borel subsets of R, and Bk denote the Borel subsets of Rk . Let R1 be

the set of all infinite sequences x ¼ x1, x2, . . . with xi 2 R, and let B1 denote the usual

product sigma field on R1, generated by the finite-dimensional cylinder sets

fA1 3 . . . 3 Ak 3 R3 R 3 . . . : Al 2 B, k > 1g. Each process X ¼ X1, X2, . . . 2 R will

be identified with its induced distribution on (R1, B1); two processes with the same finite-

dimensional distributions will be considered identical. With this identification, define M to be

the family of all stochastic processes X ¼ X 1, X 2, . . . 2 R, and let Ms denote the subfamily

of (strictly) stationary processes. A process X 2 Ms is said to be ergodic if it satisfies a

weak, non-uniform mixing condition, namely, for every k > 1 and every A, B 2 Bk,

lim
n!1

1

n

Xn�1

i¼0

PfX k
1 2 A, X iþk

iþ1 2 Bg ! PfX k
1 2 AgPfX k

1 2 Bg,

where X k
1 ¼ (X 1, . . . , X k). This definition is equivalent to the standard one (see Breiman

1992) involving triviality of the invariant sigma-field. Let E be the family of all real-valued

stationary ergodic processes.

2.2. Discernibility

Let H0, H1 � E be disjoint families of ergodic processes. As above, each process is

identified with its induced distribution on (R1, B1). In particular, different processes may

be defined on different underlying probability spaces.

252 A.B. Nobel



Definition. A sequence of measurable functions jn : Rn ! [0, 1], n > 1, will be called a

testing scheme. A testing scheme is continuous if each of its constituent functions is

continuous. Families H0 and H1 are discernible with probability one if there exists a testing

scheme fjn: n > 1g such that

jn(X
n
1 ) !

0 with probability one, if X 2 H0,

1 with probability one, if X 2 H1:

�
(1)

Likewise, H0 and H1 are discernible in expectation if Ejn(X
n
1 ) converges to 0 when X 2 H0,

and converges to 1 when X 2 H1. Families H0 and H1 are continuously discernible (in either

of the above senses) if they are discernible by a continuous testing scheme.

Note that the definitions above place no requirements on the asymptotic behaviour of

jn(X
n
1 ) if X =2 H0 [ H1. We consider test functions with values in the unit interval, rather

than binary-valued decision functions, in order to distinguish between continuous and

measurable testing schemes. One may readily convert a testing scheme into a decision

scheme by thresholding its values, for example, replacing jn(X
n
1 ) by Ifjn(X

n
1 ) . 1=2g.

2.3. Previous work

To date, work on the discernibility of families of stochastic processes has primarily

addressed the special case in which each candidate process consists of independent samples

from a fixed distribution. In this case, the elements of H0 and H1 are fully described by

their associated families of one-dimensional distributions, D0 and D1, respectively, and we

will refer to the discernibility of D0 and D1, rather than H0 and H1.

Berger (1951) gave necessary and sufficient conditions for the existence of uniformly

consistent tests of general families D0 against D1. Hoeffding and Wolfowitz (1958) gave

sufficient, and in some cases necessary, conditions for the existence of tests for D0 against

D1 under stopping criteria stronger than those considered here. Extending the results in

Berger (1953), Le Cam and Schwartz (1960) gave necessary and sufficient conditions for

the discernibility of D0 and D1 in the more general context of consistent point estimation.

As noted by Dembo and Peres (1994), their conditions, which involve uniform structures on

all the n-fold products of measures in D0 [ D1, are not readily verifiable. Fisher and Van

Ness (1969) studied the uniform discernibility of a countable family of probability measures

in a sequential setting where one must make a ‘final’ decision after a finite number of

observations. In recent work, Devroye and Lugosi (2003) studied the problem of

distinguishing a family F of univariate densities from its complement. They showed that

some properties, such as unimodality, are discernible, while others, such as having compact

support, are not.

Cover (1973) showed that for any countable family of means S � R there exists

a (typically unknown) set S0 of Lebesgue measure zero such that D0 ¼
f� :

Ð
x2 d� , 1,

Ð
x d� 2 Sg and D1 ¼ fX :

Ð
x2 d� , 1,

Ð
x d� 2 ScnS0g are discernible.

Kulkarni and Zeitouni (1995) looked at the more general problem of discerning D0 from

D1 ¼ Dc
0, for suitable families D0, when one allows the testing procedure to fail on a set of
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distributions that is negligible under a given prior distribution. Some related results for

discrete-time, finite-state Markov chains are given in Zeitouni and Kulkarni (1994).

This paper is motivated in part by the work of Dembo and Peres (1994), who provided

topological criteria for the discernibility in the i.i.d. and finite-state Markov settings. Let

M(R) be the family of probability measures on (R, B), equipped with the topology of weak

convergence. Recall that a family D � M(R) is said to be an F� if it is a countable union

of closed sets. The following result is given in Theorem 2 of Dembo and Peres (1994). An

extension of the sufficiency part of the theorem to ergodic processes is given in Theorem 1.

Theorem A. Two families D0, D1 � M(R) are discernible if they are contained in disjoint

F� s. The converse is true if every distribution � 2 D0 [ D1 has a density f � with respect to

Lebesgue measure such that
Ð
f p
�dx , 1 for some p . 1 that may depend on �.

Concerning families of non-independent processes, Kraft (1955) studied consistent tests

for families H0 ¼ fPŁ : Ł 2 ¨g and H1 ¼ fQº : º 2 ¸g of general distributions on R1, a

setting that includes dependent, possibly non-stationary, processes. He established that H0

and H1 are uniformly discernible in expectation if and only if the n-dimensional projections

of their convex hulls are, in a suitable sense, asymptotically orthogonal. In addition, if there

exist probability measures Æ and � on ¨ and ,̧ respectively, such that the composite

distributions
Ð
PŁ dÆ(Ł) and

Ð
Qº d�(º) are mutually singular, then there is a testing scheme

consistent in expectation for Æ-almost every PŁ and �-almost every Qº. From this latter

result follows an interesting corollary, which also appears, with different proofs, in Barron

(1985) and Adams and Nobel (1998).

Lemma A. If H0 and H1 are countable and disjoint then they are discernible.

Ornstein and Weiss (1990) describe an estimation scheme that, given any Bernoulli

process Y ¼ Y1, Y2, . . . 2 R, produces a sequence of processes Z1, Z2, . . . such that Zk is

constructed only from knowledge Y1, . . . , Yk , and Zk converges in the d distance to Y.

They also showed that no estimation scheme is d consistent for the larger family of K-

automorphisms. Some extensions of this work can be found in Ornstein and Shields (1994).

In recent work, Lim (2002) considers several problems related to discernibility of dependent

processes, and detecting non-stationarity in a process of independent coin flips, where the

goal is to detect the repeated but infrequent use of a biased coin. He also establishes an

analogue of Theorem A for m-dependent processes and families with uniformly convergent

empirical measures, which is weaker than Theorem 1 below.

3. Forms of discernibility

Here the different forms of discernibility defined in the previous section are briefly

compared. It is clear that continuous discernibility of either type implies the corresponding

form of measurable discernibility. Likewise, discernibility with probability one implies

discernibility in expectation. As a partial converse, if each process X 2 H0 [ H1 is i.i.d.
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then measurable/continuous discernibility in expectation implies measurable/continuous

discernibility with probability one. To see this, let fjng be a testing scheme discerning H0

and H1 in expectation. By an application of Hoeffding’s inequality for sums of bounded

independent random variables, the testing scheme łn(X
n
1 ) ¼ m�1

Pm�1
j¼0 jk(X

kjþk
kjþ1 ) satisfies

(1) if k ¼ (n= 2 log n) and m ¼ bn=kc. Moreover, fłng is continuous if fjng is. A similar

argument applies if, for example, the processes in H0 [ H1 are Æ-mixing and share a

common mixing rate. On the other hand, the following example shows that continuous

discernibility is a stronger notion than discernibility with probability one (or in probability),

even for families of i.i.d. processes.

Example. Let H0 consist of all i.i.d. processes with values in [0, 1] having an absolutely

continuous marginal distribution, and let H1 consist of all i.i.d. processes whose marginal

distribution has at least one point mass. The measurable test functions łn(X
n
1 ) ¼

1�
Q

i6¼ j IfX i 6¼ X jg readily discern H0 from H1 almost surely. We claim that no

continuous testing scheme can distinguish between H0 and H1. To see this, let fjng be any

continuous testing scheme, and assume without loss of generality that Ejn(X
n
1 ) ! 1 for

every X 2 H1, for otherwise fjng fails to discern H0, H1. Under this assumption, we exhibit

a process X 2 H0 such that Ejn(X
n
1 ) 6! 0. In what follows �fag denotes a point mass at a,

U [a, b] denotes the uniform distribution on [a, b], and Bin(n, p) denotes a binomial

distribution with parameters n > 1 and p 2 [0, 1].

Let �0 ¼ �f1g, and let Y ¼ Y1, Y2, . . . be i.i.d. with Yi � �0, so that Y 2 H1. By

assumption there is an integer n0 for which Pfjn0 (Y
n0
1 ) > 3=4g > 3=4. As jn0 is

continuous, there exists 0 , E0 , 1=2 such that jjn0 (x
n0
1 )� jn0 (y

n0
1 )j , 1=4 whenever

jxi � yij , E0 and xi, yi 2 [0, 1] for i ¼ 1, . . . , n0. Let 0 , p0 , 1 be so large that

PfBin(n0, 1� p0) ¼ 0g > 3=4.
We now proceed recursively as follows. Suppose that k > 1, and that we have specified

integers n0 , n1 , . . . , nk�1, positive constants E0, . . . , Ek�1 satisfying E j , 2�( jþ1), and

probabilities 0 , p0, . . . , pk�1 , 1. Let �i ¼
Qi

r¼0(1� pr) for 0 < i < k � 1, and set

��1 ¼ 1. Define the distribution �k ¼
Pk�1

i¼1 pi�i�1 � U [2�i � Ei, 2�i]þ �k�1�f2� kg. Let

Y ¼ Y1, Y2, . . . be i.i.d. with Yi � �k , so that Y 2 H1. By assumption there exists

nk . nk�1 such that Pfjnk
(Y nk

1 ) > 3=4g > 3=4. Moreover, as jnk
is continuous there

exists 0 , Ek , 2�(kþ1) such that jjnk
(xnk

1 )� jnk
(ynk

1 )j , 1=4 whenever jxi � yij , Ek and

xi, yi 2 [0, 1] for i ¼ 1, . . . , nk. Choose 0 , pk , 1 so that PfBin(nk , �k) ¼ 0g > 3=4,
and proceed to stage k þ 1

The definition of fpkg ensures that
P

k>0 pk �k�1 ¼ 1. Define the absolutely continuous

distribution � ¼
P

k>0 pk �k�1 � U [2�k � Ek , 2�k] and let X ¼ X 1, X2, . . . be i.i.d. with

X i � �, so that X 2 H0. For each i, k > 1 define Yi,k ¼ X i if X i . 2�k and Yi,k ¼ 2�k

otherwise. Then Yk ¼ Y1,k , Y2,k , . . . is i.i.d. with distribution �k , and as

PfX i < 2�(kþ1)g ¼ �k ,

PfjX i � Yi,k j , Ek for i ¼ 1, . . . , nkg > PfBin(nk , �k) ¼ 0g > 3=4:

For each k > 1, Pfjnk
(X 1, . . . , X nk

) > 1=2g is at least
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Pfjnk
(Y1,k , . . . , Ynk ,k) > 3=4 and jYi,k � X ij , Ek for i ¼ 1, . . . , nkg

> Pfjnk
(Y1,k , . . . , Ynk ,k) > 3=4g � PfjYi,k � X ij > Ek some i ¼ 1, . . . , nkg,

which is lower-bounded by 1=2. Thus Ejn(X
n
1 ) does not converge to zero as n ! 1, and as

fjn : n > 1g was an arbitrary continuous testing scheme, the claim follows.

4. Preliminary results

4.1. Weak convergence

We will make use of some basic facts from the theory of weak convergence. For more

details and proofs, see Dudley (1989) or Billingsley (1999). Let C k ¼ Cb(R
k) be the family

of bounded continuous functions g : Rk ! R. Recall that a sequence of random vectors

U1, U2, . . . 2 Rk (possibly defined on different probability spaces) is said to converge

weakly to a random vector U 2 Rk, written Un ) U , if Eg(Un) ! Eg(U ) for each g 2 C k .

A sequence of processes X1, X2, . . . 2 Ms converges weakly to X 2 Ms if

(X n
1 , . . . , X

n
k) ) (X1, . . . , X k) for every k > 1. Weak convergence defines a metrizable

topology on M with basic open sets fX : jEh(X k
1 )� aj , �g, with k > 1, h 2 C k , a 2 R,

� . 0. Ms is a closed subset of M in the weak topology, but the family of ergodic

processes E is not.

Recall that a family of processes S is (uniformly) tight if for every � . 0 there is a

compact set C � R1 such that supX2S PfX 2 Ccg < E. A family S of stationary processes

is tight if and only if its one-dimensional distributions are tight, that is,

supX2S PfjX1j . cg ! 0 as c ! 1. Prohorov’s theorem states that every sequence

fXn : n > 1g of processes in a tight family S has a weakly convergent subsequence. In

particular, a family of processes that is closed and tight is compact, and every compact

family is tight.

Definition. Let X 2 Ms be any stationary stochastic process. For each n, k > 1 and each

function f : Rk ! R such that E f (X k
1 )

2 , 1, define Vn(X, f ) ¼ var(n�1
Pn�1

i¼0 f (X iþk
iþ1 )).

Lemma 1. If g is a bounded continuous function of k variables, then Vn(:, g) is continuous

in the weak topology on Ms, that is, Xs ) X implies Vn(Xs, g) ! Vn(X, g).

Proof. Let Y ¼ n�1
Pn�1

i¼0 g(X
iþk
iþ1 )� Eg(X k

1 ), and define Ys in the same way with elements of

Xs appearing in the average. Let Łs ¼ Eg(X1,s, . . . , X k,s)� Eg(X k
1 ). Then Vn(X, g) ¼ EY 2

and Vn(Xs, g) ¼ E(Ys þ Łs)2. If Xs ) X then the continuous mapping theorem and Slutsky’s

theorem together imply that (Ys þ Łs)2 ) Y 2, and the desired convergence follows as Ys and

Łs are bounded. h

The proofs of the following lemmas are elementary, and are omitted.
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Lemma 2. Let X 2 Ms be any stationary process, and let f , h be bounded measurable

functions of k and l variables, respectively. Then

jV 1=2
n (X, f )� V 1=2

n (X, h)j < Ej f (X k
1 )� h(X l

1)j þ (Ej f (X k
1 )� h(X l

1)j2)1=2:

Moreover, the numerical sequence an ¼ SD(
Pn�1

i¼0 f (X iþk
iþ1 )), n > 1, is subadditive, that is,

anþm < an þ am for every n, m > 1.

Lemma 3. A stationary process X is ergodic if and only if Vn(X, g) ! 0 for every

g 2
S

k>1C k .

4.2. Uniform ergodicity

Existing discernibility results for families of i.i.d. processes are established by appeals to

fundamental inequalities describing how rapidly averages of independent random variables

converge to their expectations. The ergodic theorem extends the law of large numbers to

ergodic processes, but it does not (and cannot) guarantee any rate of convergence. One

central conclusion of this paper is that, for discernibility, identifiable rates of convergence

are unnecessary. It is sufficient that, for each bounded continuous g, the variances Vn(X, g)

decay uniformly over the family of processes H0 [ H1.

Definition. A family S of stationary processes is uniformly ergodic if supX2S Vn(X, g) ! 0

as n ! 1 for every function g 2
S

k>1C k . Note that the uniformity is over processes X 2 S,
not the functions g 2

S
k>1C k . The rate of decay of the supremum can depend on g.

Example 1 Independent and identically distributed processes. If X is i.i.d., a routine

argument shows that Vn(X, g) is at most 2(nþ k)k=n2 times the maximum absolute value of

g. Thus every family of i.i.d. processes is uniformly ergodic.

Example 2 Uniform Cesàro mixing. A straightforward calculation shows that a family S of

stationary processes is uniformly ergodic if for every k > 1, and every A, B 2 Bk,

sup
X2S

���� 1n
Xn

j¼1

P(X k
1 2 A, X

jþk
jþ1 2 B)� P(X k

1 2 A) P(X k
1 2 B)

���� ! 0:

Uniform ergodicity is not equivalent to the notion of a uniformly ergodic transformation (see

Krengel 1985), in which the supremum above is taken over events A, B 2
S

K>1Bk .

Example 3 Uniform Æ-mixing. In many statistical applications, stronger mixing conditions

than those in Example 2 are more natural. Consider a two-sided stationary process

X ¼ fX i : �1 , i , 1g. Let X�
0 ¼ X0, X�1, X�2, . . . denote the ‘past’ of the process,

starting from time zero, and let Xþ
k ¼ X k , X kþ1, X kþ2, . . . denote the ‘future’ of the process

starting from some time k > 1. The Æ-mixing coefficients of X, introduced by Rosenblatt

(1956), are defined by
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Æ(k : X) ¼ sup
A,B2B1

jP(X�
0 2 A, Xþ

k 2 B)� P(X�
0 2 A) P(Xþ

1 2 B)j k > 1: (2)

The process X is said to be Æ-mixing if Æ(k : X) ! 0 as k tends to infinity. It follows from

Example 2 that a family S of stationary Æ-mixing processes is uniformly ergodic if there

exist non-negative constants a1, a2, . . . ! 0 such that Æ(k : X) < ak for each k > 1 and

each X 2 S. In particular, a uniformly Æ-mixing family is also uniformly ergodic. Analogous

conclusions hold for stronger mixing conditions (such as those defined in terms of �- and �-
mixing coefficients).

Example 4 Moving average processes. Let S ¼ fXº : º 2 ¸g be a family of stationary

processes such that each Xº has an infinite moving average representation of the form

X º
t ¼

P
j>0 a j,º Zt� j,º, �1 , t , 1, where fZi,º : �1 , i , 1g are i.i.d. random

variables with mean zero, and a j,º are real-valued constants. One may show that S is

uniformly ergodic if limk!1 supº2¸
P

j>k ja j,ºj ¼ 0 and supº2¸ supi>1EZ
2
i,º , 1.

Proposition 1. If S � E is a compact subset of Ms, then S is uniformly ergodic.

Proof. Fix g 2 C k and define continuous functions �n : S ! R by �n(X) ¼ V 1=2
n (X, g).

Lemma 3 ensures that �n(X) ! 0 for each X 2 S since S � E, and Lemma 2 implies that

�2nþ1 (:) < �2n (:) for n > 1. Thus f�2 n(:) : n > 1g are continuous functions converging

monotonically to zero on a compact set, and it follows that �2n converges uniformly to zero

on S. Define Æn ¼ supX2S SD(
Pn�1

i¼0 g(X
iþk
iþ1 )). By Lemma 2, the sequence fÆng is

subadditive, and therefore

0 < lim
n!1

sup
X2S

�n(X) ¼ lim
n!1

Æn

n
¼ inf

n>1

Æn

n
< inf

m>1
sup
X2S

�2m (X) ¼ 0:

h

A proof of the following proposition is given in Section A.1 in the Appendix.

Proposition 2. If S is uniformly ergodic then S is uniformly ergodic, and in particular S � E.
If S is tight and fails to be uniformly ergodic, then S 6� E.

5. Sufficient conditions for discernibility

The next theorem is the principal result of the paper. It provides a topological criterion for

the discernibility of two ergodic families H0 and H1. It may be viewed as an extension of

Theorem A, which gives a topological criterion for discernibility in the i.i.d. setting. The

conditions of Theorem 1 are evidently satisfied when H0 and H1 are countable, and we

again recover Lemma A. Several applications of Theorem 1 are considered in Sections 6

and 7 below. The proof is given in Section A.2 in the Appendix.
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Theorem 1. Two families, H0 and H1, of stationary ergodic processes are continuously

discernible if the following two conditions are satisfied.

(i) H0

S
H1 is contained in a countable union of uniformly tight subsets of Ms.

(ii) There exist families U1, U2, . . . , V1, V2, . . .� Ms such that:

(a) each Ui, V j is contained in E and closed in Ms;

(b) H0 � U ¼
S

i>1 Ui and H1 � V ¼
S

i>1 Vi;

(c) U \ V ¼ ˘.

Condition (i) is equivalent to the condition that H0 [ H1 is contained in a sigma-compact

subset of Ms. It is satisfied if, for example, there is an increasing function ª(:) > 0, with

ª(u) ! 1 as u ! 1, such that Eª(jX 1j) , 1 for each X 2 H0 [ H1. Condition (ii)

specifies a form of topological separation that is sufficient to ensure discernibility of two

hypotheses. It is important to note that the sets Ui and Vi are assumed to be simultaneously

contained in E and closed in Ms. The weaker assumption that Ui and Vi are the

intersection of E with a closed subset of Ms is not sufficient to guarantee discernibility

(see Section 5.1 below). With this distinction in mind, call a set U � Ms an E� if it is

equal to a countable union of sets Ui � E that are closed in Ms. Then condition (ii)

requires that H0 and H1 be contained in disjoint E� s.

5.1. A negative example

If two families H0 and H1 are indiscernible, then any sequential scheme that seeks to

distinguish between them must fail. We briefly describe an example of two families of

ergodic processes that are not discernible by any measurable testing scheme.

Let H�
0 be the family of stationary ergodic processes X with values in [0, 1] and

marginal density f 0 ¼ 1. Let H�
1 be the family of stationary ergodic processes X with

values in [0, 1] and having marginal densities of the form

f i,k(x) ¼
X2 k�1

j¼0

2 � I 2�k(2 jþ i) < x , 2�k(2 jþ iþ 1)
� �

, i ¼ 0, 1, k > 1:

Each f i,k is a Rademacher density, taking the value 2 on the odd (i ¼ 1) or even (i ¼ 0)

dyadic intervals of order k, and zero elsewhere. By a cutting and stacking argument like that

in Adams and Nobel (1998), one may show that the families H�
0 and H�

1 are not discernible

in expectation (or almost surely) by any measurable testing scheme (see also Nobel 1999).

The families H�
0 and H�

1 evidently satisfy condition (i) of Theorem 1. For a 2 (0, 1), define

S(a) to be the family of stationary ergodic processes X with values in [0, 1] such that

EX 1 ¼ a. Then H�
0 � U ¼ S(1=2), while H�

1 � V ¼
S

j>2S(1=2þ 2� j) [ S(1=2þ 2� j),

and clearly U \ V ¼ .̆ The family S(a) is the intersection of E with the closed set of

stationary processes having mean a, but this intersection is not a closed subset of Ms, so the

topological condition (ii) of Theorem 1 is violated.
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5.2. Infinitely many hypotheses

Here we consider the problem of distinguishing between infinitely many families H0, H1,

H2, . . . of ergodic processes. A collection fHi : i > 0g of families Hi � E is continuously

discernible (with probability one) if there exist continuous functions jn : Rn ! [0, 1),

n > 1, such that for each i > 0 and each X 2 Hi, jn(X
n
1 ) ! i with probability one.

Theorem 2. Families Hi, i > 0 of ergodic processes are continuously discernible if the

following two conditions hold:

(i)
S

i>0Hi is contained in a countable union of uniformly tight sets;

(ii) there exist families fUi, j : i, j > 1g of ergodic processes, each of which is closed in

Ms, such that Hi � Wi ¼
S

j>1 Ui, j, and Wi \ Wj ¼ ˘ if i 6¼ j.

Proof. For each k > 1 the composite hypotheses ~HH k
0 ¼ H0 [ � � � [ Hk and

~HH k
1 ¼ Hkþ1 [ Hkþ2 [ � � � satisfy the conditions of Theorem 1. Therefore, there exist

continuous maps fjn,k : n > 1, k > 0g such that for every X 2 [i>0Hi, and every k > 0,

lim
n!1

jn,k(X
n
1 ) ¼

0 with probability one, if X 2
Sk

i¼0 Hi,

1 with probability one, if X 2
S

i.k Hi:

�

Let g(u) ¼ ((2u� 1=4) ^ 0) _ 1. Given observations X1, . . . , X n from some process

X 2
S

i>1Hi, define jn(X
n
1 ) ¼ 1þ

Pn
j¼1 g(min1< l< jjn, l(X

n
1 )). It is easy to verify that jn

is continuous, and that jn(X
n
1 ) ! i with probability one if X 2 Hi.

6. Finite-dimensional families

As a first application of Theorem 1, we show how it may be applied to obtain extensions of

several existing discernibility results for i.i.d. processes. These extensions illustrate a more

general principle: when membership in H0 and H1 depends on the k-dimensional

distribution of X, we may replace independence by the more general assumption of weak

uniform ergodicity. Formally, a family of processes S is weakly uniformly ergodic if it is

contained in (or equal to) a countable union of uniformly ergodic families.

6.1. Testing means

Let S be a weakly uniformly ergodic family. Then S �
S

i>1S i, where S i is uniformly

ergodic. By Proposition 2 we can assume, without loss of generality, that each family S i is

also closed in Ms. Let fAi : i > 1g and fBj : j > 1g be closed subsets of R. For l > 1, let

S l ¼
S l

i¼1 S i, A9l ¼
S l

i¼1 Ai and B9l ¼
S l

i¼1 Bi. Define Ul ¼ fX 2 S9l : kXk1þ l�1 < l,

EX 2 A9lg, and define Vl similarly, but with the requirement that EX 2 B9l. Here

kXk p ¼ (EjX j p)1= p denotes the usual Lp-norm of X . Note that Ul and Vl are contained

in E and closed in Ms. Consider the hypotheses
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H0 ¼ X 2 S : EjX j p , 1 for some p . 1, EX 2
[
i>1

Ai

( )
�

[
l>1

Ul,

H1 ¼ X 2 S : EjX j p , 1 for some p . 1, EX 2
[
i>1

Bi

( )
�

[
l>1

Vl:

The following corollary of Theorem 1 extends the sufficiency part of Theorem 1 of Dembo

and Peres (1994) to uniformly ergodic families. An analogous result holds for discerning

multivariate means.

Corollary 1. If
S

i>1Ai and
S

j>1Bj are disjoint, then H0 and H1 are discernible.

6.2. Testing marginal distributions

Let M(R) be the set of probability measures on (R, B), equipped with the topology of

weak convergence, and let L(X ) 2 M(R) denote the distribution of a real-valued random

variable X . Let fCi : i > 1g and fDj : j > 1g be closed subsets of M(R), and let S be a

weakly uniformly ergodic family. Then S �
S

i>1S i, where S i is uniformly ergodic, and by

Proposition 2 we can assume, without loss of generality, that each family S i is also closed

in Ms. For l > 1, let S9l ¼
S l

i¼1 S i, C9l ¼
S l

i¼1 Ci and D9l ¼
S l

i¼1 Di. Define Ul ¼
fX 2 S9l : L(X ) 2 C9lg and Vl ¼ fX 2 S9l : L(X ) 2 D9lg. Note that Ul and Vl are contained

in E and closed in Ms. Let ª > 0 be an increasing function such that ª(u) ! 1 as

u ! 1. Consider the hypotheses

H0 ¼ X 2 S : Eª(jX j) , 1, L(X ) 2
[
i>1

Ci

( )
�

[
l>1

Ul,

H1 ¼ X 2 S : Eª(jX j) , 1, L(X ) 2
[
i>1

Dig �
[
l>1

Vl:

(

The following corollary of Theorem 1 extends the sufficiency part of Theorem A to

uniformly ergodic families, under the additional assumption that Eª(jX j) is finite. An

analogous result holds for discerning higher-order distributions.

Corollary 2. If
S

i>1Ci and
S

j>1Dj are disjoint, then H0 and H1 are discernible.

6.3. Testing unimodality

A probability density f on R is unimodal if there exists x0 2 R such that f is non-

decreasing on (�1, x0] and non-increasing on [x0, 1). Let F0 be the family of unimodal

densities f such that
Ð
f pdx , 1 for some p . 1, and let F1 be the family of non-

unimodal densities f such that
Ð
f pdx , 1 for some p . 1. Devroye and Lugosi (2003)
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show that F0 and F1 are discernible from i.i.d. samples. It then follows from the necessity

part of Theorem A that F0 and F1 are contained in disjoint F� s in M(R). Let S be a

weakly uniformly ergodic family. By virtue of the arguments in the previous example, for

every increasing function ª such that ª(u) ! 1 as u ! 1, the hypotheses

H0 ¼ fX 2 S : Eª(jX j) , 1, X � f 2 F0g, H1 ¼ fX 2 S : Eª(jX j) , 1, X � f 2 F1g

are discernible. One may extend the other positive results of Devroye and Lugosi (2003) in a

similar manner.

7. Estimating mixing rates

In this section it is shown how Theorem 1 can be used to study, and in some cases

estimate, polynomial mixing rates for dependent processes. We consider two-sided processes

X ¼ fX i : �1 , i , 1g. The other results above hold without change in this setting. Let

Ms denote the family of two-sided stationary processes and let E denote the subfamily of

ergodic processes.

All ergodic processes exhibit a weak form of asymptotic independence. In the statistical

literature, stronger forms of asymptotic independence (often referred to as mixing

conditions) have received a great deal of attention. Mixing conditions quantify how the

past and future of a process become independent as the gap between them grows, and

mixing rates quantify how fast the limiting independence takes place. Many asymptotic

results for i.i.d. processes, such as central limit theorems and convergence rates for density

and regression estimation, carry over to weakly dependent processes under suitable mixing

conditions and rate assumptions. However, it is usually difficult to verify empirically when

specific mixing conditions and rate assumptions hold. A good account of several popular

mixing conditions, and the relations between them, can be found in Bradley (1986).

Here we take a preliminary look, in the context of hypothesis testing, at the problem of

assessing polynomial decay rates for covariance-based mixing coefficients. It is shown in

Lemma 4 that one may distinguish between suitably separated polynomial rate regimes, and

Theorem 3 applies this result to the problem of rate assessment.

Let the sequence space R1 ¼ 1
i¼1R be endowed with the standard product topology, or

equivalently, the metric d(x, x9) ¼
P

i>12
�ijxi � x9ij, and let Cb(R

1) denote the family of

bounded, continuous functions f : R1 ! R. Recall that, for a two-sided process X,

X�
0 ¼ X0, X�1, X�2, . . . denotes the past of the process, starting from time zero, and

Xþ
k ¼ X k , X kþ1, X kþ2, . . . denotes the future starting from some time k > 1.

Definition. Let ¨ � Cb(R
1) be a countable family of continuous functions. For each

X 2 Ms and each k > 1, define the mixing coefficient Ł(k : X) ¼ sup g,h2¨jcov(g(X�
0 ),

h(Xþ
k ))j.

Thus Ł(k : X) measures the dependence between X�
0 and Xþ

k through the induced

covariance of test functions in ¨. Following the usual terminology, a process X will be

3
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called Ł-mixing if Ł(k : X) ! 0 as k ! 1. Of primary interest here are families ¨ rich

enough to ensure that every stationary Ł-mixing process is ergodic.

Most asymptotic results for mixing sequences require that the observed process has

mixing coefficients that tend to zero at some polynomial or exponential rate. Here we focus

attention on polynomial mixing rates and consider the following problem: how can an

hypothesis concerning the polynomial decay of Ł(k : X) be tested against a reasonable

alternative, based only on observations of X?

Definition. For each X 2 Ms define the lower polynomial envelope of Ł(k : X) by

R�(X) ¼ sup ª > 0 : sup
k>1

Ł(k : X) kª , 1
� �

,

and the upper polynomial envelope of Ł(k : X) by

R�(X) ¼ inf ª > 0 : sup
g,h2¨

inf
k>1

jcov(g(X�
0 ), h(X

þ
k ))jkª . 0

( )
:

One may readily verify that R�(X) < R�(X). A process X will be called ¨-regular if

R�(X) ¼ R�(X) . 0, in which case their common value will be denoted by R(X).

As defined above, R�(X) is the supremum of those ª for which Ł(k : X) ¼ O(k�ª), and

is therefore an upper bound on the polynomial decay rate of Ł(k : X). In general the

supremum over k of Ł(k : X) kR�(X) may be finite or infinite. By contrast, each rate

ª . R�(X) must be ‘witnessed’ by a pair of test functions whose correlations decay more

slowly than k�ª along some subseqence. If Ł(k : X) tends to zero faster than any

polynomial (e.g., at an exponential rate) then R�(X) ¼ 1, while if Ł(k : X) tends to zero

slower than any polynomial (e.g. at a logarithmic rate) then R�(X) ¼ 0. The proof of the

next lemma is given in Section A.3 in the Appendix.

Lemma 4. Suppose that R�(X) . 0 implies X is ergodic. If S is a countable union of

uniformly tight subsets of Ms, then for each c . 0, H0,c ¼ fX 2 S : 0 , R�(X),
R�(X) , cg and H1,c ¼ fX 2 S : R�(X) . cg are continuously discernible.

Theorem 3. Suppose that R�(X) . 0 implies X is ergodic. If S is a countable union of

uniformly tight subsets of Ms, then there exist functions łn : Rn ! [0, 1), n > 1, such that

R�(X) < lim inf
n

łn(X
n
1 ) < lim sup

n

łn(X
n
1 ) < R�(X) (3)

with probability one for every X 2 S such that R�(X) . 0. In particular, łn(X
n
1 ) ! R(X)

with probability one if X 2 S is ¨-regular.

Remark. If every ¨-mixing process is ergodic, then each appearance of the condition

R�(X) . 0 above may be replaced by the (weaker) condition that Ł(k : X) ¼ O(ak) for some

fixed sequence of numbers fakg tending to zero with increasing k. The initial tightness
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condition is satisfied if Eª(jX j) , 1 for every X 2 S, where ª(:) is a positive, unbounded

increasing function.

Proof. Let fjn,c : n > 1g be test functions for the hypotheses H0,c, H1,c of Lemma 4, and

let k ¼ k(n) be any sequence of integers tending to infinity with n. Calculation of łn(X
n
1 )

proceeds iteratively, in k steps. Beginning with c1 ¼ 1, at each stage a new value c jþ1 is

selected based on the value of jn,c j
, and łn(X

n
1 ) is set to the value of ck . Formally, let

c1 ¼ 1 and for j ¼ 1, . . . , k � 1 do the following.

Case 1. jn,c j
(X n

1 ) > 1=2. If c j ¼ maxfc1, . . . , c jg then let c jþ1 ¼ c j þ 1; otherwise set

c jþ1 ¼ c j þminfci � c j : ci . c jg=2.
Case 2. jn,c j

(X n
1 ) , 1=2. If c j ¼ 1 then let c jþ1 ¼ 1=2; otherwise set c jþ1 ¼

c j �minfc j � ci : c j . cig=2.

Define łn(X
n
1 ) ¼ ck . Suppose that R�(X) . 0. Then for each c . 0, eventually almost surely

ªn,c(X
n
1 ) , 1=2 if R�(X) , c, and ªn,c(X

n
1 ) . 1=2 if R�(X) . c. The recursive procedure

above ensures that, for every E . 0, ck is eventually almost surely less than R�(X)þ E. This
establishes the final inequality in (3), and the first follows in a similar fashion. h

If we wish to determine a lower bound on the polynomial decay rate of the mixing

coefficients of an observed process X, then the estimates łn of Theorem 3 are informative

only if X is ¨-regular, or if there is a known upper bound on the difference

R�(X)� R�(X). The assumption in the definition of Ł(k : X) that ¨ is countable is

needed to apply Theorem 1 in the proof of Lemma 4. This assumption can be relaxed,

though one must then exercise some caution in interpreting R�(X). Let us write ¨9 � ¨ for

a family of processes S if the supremum of jcov(g(X�
0 ), h(X

þ
k ))j over g, h 2 ¨9 is equal to

the supremum over g, h 2 ¨ for each k > 1 and X 2 S. If ¨9 � ¨, then ¨9 and ¨ define

the same mixing coefficients for X 2 S. We state the following lemma without proof.

Lemma 5. If S is a countable union of uniformly tight subsets of Ms, and ¨ is a subfamily

of Cb(R
1) such that sup f 2¨k f k is finite, then there exists a countable family ~̈̈ � ¨ such

that ~̈̈ � ¨ on S.

Concerning the subfamily ~̈̈ above, with the obvious notation, ~RR�(X) ¼ R�(X) for

X 2 S. On the other hand, ~RR�(X) > R�(X); the inequality may be strict, and may depend

on the choice of approximating family ~̈̈ . With this caveat, the coefficients Ł(k, X) defined
above are broad enough to encompass several common mixing conditions. For example, if

¨ is the family of all � 2 Cb(R
1 3 R1) with 0 < � < 1, then Ł(k : X) coincides with the

strong mixing coefficients Æ(k : X) defined in (2) above. Other choices of ¨ yield mixing

conditions recently introduced by Doukhain and Louhichi (1999).

As far as estimation of the lower polynomial envelope R�(X) is concerned, the

difficulties described above may be unavoidable. We conjecture that no estimation scheme

can provide consistent estimates of the lower polynomial Æ-mixing rate RÆ
�(X) for the

family of stationary process having finite mean and RÆ
�(X) . 0.
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Appendix

A.1. Proof of Proposition 2

Let S be uniformly ergodic. Fix g 2
S

k>1C k and E . 0. Let N ¼ N (g, E) be such that

supX2S ˆn(X, g) , E for every n > N. If X� 2 S then there exist processes X1, X2, . . . 2 S
such that Xr ) X�. As ˆn(:, g) is continuous, for every n > N,

Vn(X
�, g) ¼ lim

r!1
Vn(Xr, g) < sup

X2S
Vn(X, g) , E:

Since N depends only on g and E, and not on X�, it follows that S is uniformly ergodic.

Suppose that S � E is not uniformly ergodic. Then there exists a function g 2
S

k>1C k

and a constant � . 0 such that

� , lim sup
n

sup
X2S

Vn(X, g) ¼ inf
n>1

sup
X2S

Vn(X, g), (4)

where the equality follows from the subadditivity of the constants an defined in Lemma 2.

Recall that V2m(X, g) is decreasing in m. Inequality (4) implies that for each m > 1 there is a

process Xm 2 S such that V2m (Xm, g) . � and V2 l (Xm, g) . � for 1 < l < m� 1. If S is

tight, then there exists a subsequence fXmk
g of these processes that converges weakly to a

process X� 2 Ms. In particular, V2 l (X�, g) ¼ limk V2 l (Xmk
, g) . � for every l > 1. Thus

Vn(X
�, g) does not tend to zero as n ! 1, so X� fails to be ergodic.

A.2. Proof of Theorem 1

Lemma 6. If U , V � Ms are disjoint families of processes such that U is compact and V is

closed, then there exist integers k, r > 1, functions h1, . . . , hr 2 C k , constants

a1, . . . , ar 2 R, and positive E1, . . . , Er . 0 such that:

(i) for every X 2 U, jEh j(X
k
1 )� a jj , E j for some 1 < j < r;

(ii) for every X 2 V, jEh j(X
k
1 )� a jj . 2E j for every 1 < j < r.

Proof. Fix X 2 U . By assumption, X has a neighbourhood that is disjoint from V . In

particular, there exist l > 1, h 2 C l, a 2 R and E . 0, such that Eh(X 1, . . . , X l) ¼ a and the

basic open set fX9 : jEh(X 1, . . . , X l)� aj , 3Eg is disjoint from V . Define O(X) ¼
fX9 : jEh(X 91, . . . , X 9l)� aj , Eg. Then O ¼ fO(X) : X 2 Ug is an open cover of U .

As U is compact, O has a finite subcover O9 ¼ fO1, . . . , Org with Oj ¼ fX9 :
jEh j(X 91, . . . , X 9l j )� a jj , E jg. Letting k ¼ maxfl j : j ¼ 1, . . . , rg, we may redefine the

functions h j so that each is a function of k arguments. The lemma then follows from the

choice of basic open sets O(X). h

Proof of Theorem 1. As unions of closed sets are closed, we may assume without loss of

generality that Ui � Uiþ1 and Vi � Viþ1. By condition (i), there exist compact sets
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W1 � W2 � . . . such that H0, H1 �
S

l>1Wl. Thus H0 �
S

i>1U 9i and H1 �
S

i>1V 9i, where

U 9i ¼ Ui \ Wi � E and V 9i ¼ Vi \ Wi � E are compact and disjoint.

We may recursively construct a testing scheme to distinguish between H0 and H1 as

follows. Suppose that integers 0 ¼ n0 , n1 , . . . , n j�1 and continuous test functions

j1, . . . , jn j�1
have been selected. Consider the disjoint compact sets U 9j and V 9j. By

Lemma 6 there exist integers r j, k j > 1, functions h1, . . . , hr j 2 C k j
, constants

a1, . . . , ar j 2 R, and E1, . . . , Er j . 0, all depending on U 9j, V 9j, such that: (i) for every

X 2 U 9j, jEhl(X
k
1 )� alj , E l for some 1 < l < r; (ii) for every X 2 V 9j,

jEhl(X
k
1 )� alj . 2E l for every 1 < l < r. (Here and in what follows we suppress the

dependence of r, hl, al, k and E l on j.) Define � j ¼ minfE lg . 0 and let S j ¼ U 9j [ V 9j. By

Lemma 1, S j is uniformly ergodic, and therefore there is an integer n j . maxfn j�1, k jg
such that for l ¼ 1, . . . , r,

sup
X2S j

P

���� 1

mj

Xm j�1

i¼0

hl(X
iþk
iþ1 )� Ehl(X

k
1 )

���� . � j

( )
<

1

�2j
sup
X2S j

Vm j
(X, hl) <

1

r j2
(5)

where mj ¼ n j � k j þ 1. Let jn(x
n
1 ) ¼ jn j�1

(x
n j�1

1 ) for n j�1 < n , n j and define

jn j
(x

n j

1 ) ¼ 2 min
1< l<r

jm�1
j

Pm j�1

i¼0 hl(x
iþk
iþ1 )� alj

2E l
^ 1� 1

2

" #
_ 0

( )
:

Repeat this process for jþ 1, jþ 2, . . . . By construction, each function jn(:) takes values in
[0, 1] and depends continuously on its n arguments. For a given sequence x1, x2, . . . , the

value of jn(x
n
1 ) changes only at times n1, n2, . . . , and is constant for n j < n , n jþ1. The

function jn j
assesses whether the observed process X belongs to U 9j or V 9j.

Suppose now that we observe a process X belonging to H0. Then X 2 U 9s for some

s > 1. By definition of jn j
, for every j > s and every rational � . 0, Pfjn j

(X
n j

1 ) . �g is

bounded above by

P

����m�1
j

Xm j�1

i¼0

hl(X
iþk
iþ1 )� al

���� . (1þ �) E l for each l ¼ 1, . . . , r

( )

< P

����m�1
j

Xm j�1

i¼0

hl(X
iþk
iþ1 )� Ehl(X)

���� . � E l for some l ¼ 1, . . . , r

( )

<
Xr

l¼1

P

����m�1
j

Xm j�1

i¼0

hl(X
iþk
iþ1 )� Ehl(X)

���� . �� j

( )
< r � 1

�2 j2 r
¼ 1

�2 j2
: (6)

The first inequality in (6) follows from (i), and the third is a consequence of (5). It follows

from the Borel–Cantelli lemma that �n j
(X

n j

1 ) ! 0 with probability one, and consequently

�n(X
n
1 ) ! 0 with probability one as well.
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Suppose now that we observe a process X belonging to H1. Then X 2 V 9s for some

s > 1, and for every j > s and every rational � . 0,

Pfjn j
(X

n j

1 ) , (1� �)g < P min
1< l<r

����m�1
j

Xn�k

i¼0

hl(X
iþk
iþ1 )� al

���� , 2E l(1� �=2)

( )
: (7)

As jEhl(X)� alj . 2� l, the right-hand side in (7) is at most

P max
1< l<r

����m�1
j

Xn j�k

i¼0

hl(X
iþk
iþ1 )� Ehl(X)

���� . � � l

( )

<
Xr

l¼1

P

����m�1
j

Xn j�k

i¼0

hl(X
iþk
iþ1 )� Ehl(X)

���� . � E l

( )
< r

1

�2 j2 r
¼ 1

�2 j2
:

It follows from the Borel–Cantelli lemma that �n j
(X

n j

1 ) ! 1 with probability one, and

consequently �n(X
n
1 ) ! 1 with probability one as n ! 1. h

A.3. Proof of Lemma 4

For a . 0 and l > 1, define U (a, l) ¼ X 2 Ms : supk>1Ł(k : X) ka < lf g, or equivalently,

U (a, l) ¼
\
k>1

\
g,h2¨

fX 2 Ms : jcov(g(X�
0 ), h(X

þ
k ))jka < lg:

As each set in the last intersection is closed in Ms, the same is true of U (a, l). Moreover,

U (a, l) � E as X 2 U (a, l) implies R�(X) . 0. For b > 0, define

V (b) ¼ fX 2 Ms : R�(X) . bg ¼
[
�.0

[
l>1

U (bþ �, l):

Restricting the first union to rational �, we see that V (b) is an E� . For g, h 2 ¨ and

a, E . 0, define

C(g, h, a, E) ¼
\
k>1

fX 2 Ms : jcov(g(X�
0 ), h(X

þ
k ))jka > Eg,

which is closed in Ms. Finally, let

D(c) ¼ fX 2 Ms : 0 , R�(X), R�(X) , cg ¼
[
�.0

[
E.0

[
g,h2¨

C(g, h, c� �, E) \ B(0):
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As B(0) is an E� , the same is true of D(c). Moreover, H0,c � D(c), H1,c � B(c) and

D(c) \ B(c) ¼ 0 since R�(X) < R�(X). The discernibility of H0,c and H1,c follows from

Theorem 1.
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