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We examine the question of which statistic or statistics should be used in order to recover information

important for inference. We take a global geometric viewpoint, developing the local geometry of

Amari. By examining the behaviour of simple geometric models, we show how not only the local

curvature properties of parametric families but also the global geometric structure can be of crucial

importance in finite-sample analysis. The tool we use to explore this global geometry is the

Karhunen–Loève decomposition. Using global geometry, we show that the maximum likelihood

estimate is the most important one-dimensional summary of information, but that traditional methods

of information recovery beyond the maximum likelihood estimate can perform poorly. We also use the

global geometry to construct better information summaries to be used with the maximum likelihood

estimate.
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1. Introduction

In this paper we examine the question of which statistic or statistics should be used in order

to recover information important for inference. A geometric approach is taken throughout,

and a new technique for selecting highly informative statistics is proposed. In contrast to

Amari’s (1990) work, this selection is not done using only local information; rather a global

approach is taken, and the consequences of this are explored. The tool used to understand

the global structure is a functional version of principal component analysis, with the

spectrum giving important information about the existence, or otherwise, of good low-

dimensional summary statistics.

All examples used in this paper have the structure of curved exponential families; for

regularity conditions, see Kass and Vos (1997, p. 27). The examples are chosen to illustrate

the geometric aspects of information recovery rather than to be statistically realistic. Our

aim in this short paper is only to introduce broad ideas; further issues for consideration are

discussed in the final section.

Example 1 Helix model. This example is considered in Amari (1990), where it is called the

Bernoulli 10(4), 2004, 639–649

1350–7265 # 2004 ISI/BS



‘spiral model’. The helix model comprises trivariate normal densities denoted by

MN3( �, I333), for which � is restricted to the helix (r cos Ł, r sinŁ, Łd). We parametrized

by Ł 2 ¨ ¼ R, with r, d being fixed and known and the data being denoted by

X ¼ (X 1, X2, X 3).

Example 2 tanh -link model. The hyperbolic link is useful for modelling data that approaches

an asymptote; see, for example, Vos (1991). The model is given by the nonlinear regression

Yi ¼ tanh ( �X i)þ Ei,

where the error term has an independent Gaussian distribution with a fixed, assumed known,

variance.

2. Spectral decomposition of the likelihood

In this paper the phrase information in the statistic S is used as an abbreviation for the

phrase ‘information in the statistic S for making inferences about the parameter Ł’. That is,
the concept of information depends both on the data and on the structure of the model. All

examples in this paper are curved exponential families where the maximum likelihood

estimate (MLE), Ł̂Ł, alone is not sufficient; we therefore look for a statistic of the form

(Ł̂Ł, A) which recovers more information. A general principle which this paper follows is

that if the statistic (Ł̂Ł, A) is highly informative about Ł, then knowing the values of this

statistic determines all the important parts of the log-likelihood function ‘(Ł; x). One of the

issues that the paper therefore considers is what ‘important’ means in this context. Since

log-likelihoods are only defined up to an additive term, independent of Ł but possibly

dependent on the data, one form of variation of ‘(Ł; x) which is unimportant is addition of

such terms. Furthermore, since we are interested in inference, variation of parts of the log-

likelihood which are negligible in comparison to its maximum value will also be considered

unimportant. To formalize these ideas we first normalize the log-likelihood, either by

dropping additive constants, or by considering ‘(Ł; x)� ‘(�; x), where � 2 ¨ and p(x, �)
is the data-generation process. Secondly, define the truncated log-likelihood by

‘D(Ł; x) ¼
‘(Ł; x)� ‘(�; x), if Ł 2 D,

L, otherwise,

�
(1)

where L is a negative number and D is the region where ‘D(Ł; x) is ‘large’.

In order to more formally capture the variation of ‘D(Ł; x), and hence information loss,

consider ‘D(Ł; x) as a function-valued random variable. It is then natural to consider its

variance–covariance structure,

G
�
D(Ł1, Ł2) ¼ cov�[‘D(Ł1; x), ‘D(Ł2; x)]: (2)

For example, for a full exponential family, with Ł the natural parameter, a simple calculation

gives
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G
�
D(Ł1, Ł2) ¼

(�� Ł1)9IŁ(�)(�� Ł2), Ł1, Ł2 2 D,

0 otherwise:

�

where

IŁ(�) :¼ cov�
@

@Ł
‘(�; x)

� �
:

Example 1 (continued). In this example the covariance is

G
�
D(Ł1, Ł2j� ¼ 0) ¼ �r2 cos (Ł1)� r2 cos (Ł2)þ r2 cos (Ł1 � Ł2)þ r2 þ d2Ł1Ł2:

Since this paper is concerned with understanding the sources of variation in the log-

likelihood, a functional version of principal component analysis is constructed using the

Karhunen–Loève (KL) decomposition; see Papoulis (1984). This allows a ‘diagonalization’

of variance–covariance functions such as (2), and finds sources of large variability.

Consider, therefore, the eigenvalue equation

ð
D

G
�
D(Ł1, Ł2)ł

�(Ł2) d�(Ł2) ¼ º�ł�(Ł1) (3)

over the region D, which here is assumed compact. To ensure invariance to reparametrization

the integration is done with respect to a measure such as d�(Ł) ¼ jI(Ł)j�1=2dŁ, where I(Ł) is
the expected Fisher information, although other choices are possible. When there is no

chance of ambiguity we suppress the dependence of ł�(Ł) and º� on �.
By spectral theory (Rudin 1973, pp. 305–311), if D is compact and G continuous there

exists a countable set of eigenfunctions fłig with eigenvalues fºig ordered such that

º1 > º2 > . . . > 0: These eigenfunctions can be chosen to form an orthonormal basis for

the set of smooth functions from D � ¨ to R with respect to the inner product defined by

h f , gi ¼
ð
D

f (Ł)g(Ł) d�(Ł):

Writing the log-likelihood with respect to this basis gives (Noting that in our examples the

number of non-zero eigenvalues, n, is finite due to the finite-dimensional sufficient statistics)

a representation

‘D(Ł; x) ¼
Xn

i¼1

si(x)ł
�
i (Ł)þ C�(Ł), (4)

with the first terms in the sum contributing most to the data variability of ‘D(Ł; x) and the

last term being independent of the data. Using this analysis, low-dimensional affine spaces,

spanned by the first few eigenfunctions, can be found that provide a good approximation to

the log-likelihood.
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3. Examples

Example 1 (continued). We apply the above theory to the helix model when r ¼ 0:1 and

d ¼ 0:1, having defined the region D to be [�30, 30]. This choice of r and d gives a high

statistical curvature and high torsion; the curved model is in fact uniformly close to a one-

dimensional model. Figure 1(a) shows several realizations of the log-likelihood function for

data generated when � ¼ 0. For G
�
D(Ł1, Ł2j� ¼ 0) there are exactly three non-zero

eigenvalues, corresponding to the three-dimensional sufficient statistic for this model. The

eigenvalues have been calculated numerically and in this example are in the ratio 612:1:1.

Thus the important issue is that there is one dominant eigenfunction which is responsible for

almost all of the variation. This eigenfunction is also calculated numerically and shown in

(a) (b)
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Figure 1. The helix model for r ¼ 0:1, d ¼ 0:1. (a) Some realizations of the log-likelihood. (b) The

dominant eigenfunction.
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Figure 1(b). This approximately linear function corresponds to variations in the log-likelihood

of the form

s1(x)Łþ C(Ł),

where C(Ł) is data-independent. Figure 1(a) shows visually that for this model the log-

likelihood is approximately quadratic, at least in the sense that a quadratic function is

uniformally close. Furthermore, by observing the vertical scale it is clear that all

perturbations from a quadratic function are inferentially unimportant.

The dominant variation in this case has the effect of translating the log-likelihood while

leaving the shape of the log-likelihood essentially unaltered. That is in statistical terms

simply a translation of the MLE. Thus for this model there seems to be an approximately

sufficient one-dimensional statistic which is one-to-one with the MLE.

This result is remarkable because it shows how the global geometry can completely

dominate the local geometry. In terms of Efron’s (1975) statistical curvature this model has

a curvature of 5, which would normally be considered large enough to have an important

effect on inference. In particular, it is normally interpreted as meaning that the MLE alone

is not a good approximately sufficient statistic. However, by considering its global geometry

it is clear that the model lies uniformly very close to a one-dimensional full exponential

family given by (�1, �2, �3) ¼ (0, 0, Ł). The curved model is wrapped around a very

narrow cylinder which encloses this model. Despite the high local curvature, the KL

decomposition automatically picks up this global geometric structure and gives the correct

information summary.

In the literature three possible principles for recovering information beyond the MLE are

frequently considered:

(i) Expected information loss: choose a statistic A that makes the expected information

loss of T ¼ (Ł̂Ł, A) small, where the expected information loss in a statistic T is

defined to be ˜I T ¼ I X � I T , in which IW is the expected Fisher information for the

statistic W , that is,

IW (Ł) ¼ �EŁ
@2

@Ł2
lW (Ł; W )

� �
, (5)

and lW (Ł; W ) ¼ log pW (W , Ł).
(ii) Observed information: record the observed information and use T ¼ (Ł̂Ł, Iobs).
(iii) Ancillarity principle: record a statistic A whose distribution is functionally

independent of Ł so that T ¼ (Ł̂Ł, A).

Example 1 (continued). We now consider the three information recovery principles in turn. In

this example there is no two-dimensional statistic which has zero expected information loss.

Amari’s (1990, p. 229) local curvature statistic is used which minimizes the expected

information loss. In this example, if Ł̂Ł ¼ 0, it is the projection of the sufficient statistic in the

direction (cos Ł̂Ł, sin Ł̂Ł, 0), hence the principle of minimizing expected information loss

selects A1 ¼ x1. The observed information for this model is rx1 cos Ł̂Łþ rx2 sin Ł̂Łþ d; when
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Ł̂Ł ¼ 0 this reduces to Iobs ¼ rx1 þ d. Thus the principle of recording the observed

information means we should again record A1 ¼ X1. Finally, the ancillarity principle tells

us to use a statistic whose distribution is independent of Ł, for example, A2 ¼ X 3 � Ł̂Łd.

For particular values of r and d, the poor performance of the statistics A1 and A2 for

finite sample sizes can be shown by plotting a series of plausibly observed log-likelihood

functions, each with the same fixed value of Ai. Poor performance then shows up as large

variability in these plots.

Consider first the case where r ¼ 1, d ¼ 1. Figure 2(a) shows plots of the normalized

log-likelihood function, where the statistic (Ł̂Ł, A1) is held constant, while plausible values

for the remaining data are chosen. The observed information in this example has done a

good job of describing the log-likelihood in a small neighbourhood of the MLE; however, it

has failed to detect the important global properties of the log-likelihood, such as the

existence of secondary modes. Figure 2(b) records four plausibly observed likelihoods, all

having (Ł̂Ł, A2) ¼ (0, �1). This time the statistic A2 cannot distinguish between the case of a
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Figure 2. Observed log-likelihoods for helix model for r ¼ 1, d ¼ 1, showing cases where (a) the

statistic A1 is held constant at 1, (b) A2 is held constant at �1.

644 P. Marriott and P. Vos



well-defined maximum which has a high value for Iobs and the case where the log-

likelihood is almost flat across a region of the parameter space.

We now consider the KL decomposition of the information in this example. We use the

relative sizes of the three non-zero eigenvalues either to find an informative two-

dimensional summary statistic, or to demonstrate its non-existence.

Case 1: r ¼ 0:5 d ¼ 3. An observed log-likelihood function is plotted in Figure 3(a).

This is used to choose the region D, selected to be all Ł values whose log-likelihood is

within 10 of the maximum. In this case the eigenvalues are in the ratio 180:1:0.03, so there

is a dominant eigenfunction shown in Figure 3(b). This function is approximately linear and
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Figure 3. The observed log-likelihoods and the region D, the dominant and secondary eigenfunction

for the helix model: (a–d) r ¼ 0:5, d ¼ 3:0; (e–h) r ¼ 1, d ¼ 1; (i–l) r ¼ 5, d ¼ 0:3.
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adding multiples of it to the approximately quadratic log-likelihood simply moves the mode.

Thus, over 99% of the variation is, as expected, explained by Ł̂Ł. Of the remaining 1% of the

variation over 97% is explained by the second eigenfunction (Figure 3(c)), and is

approximately of the form s2(x)(Ł� Ł̂Ł)2 þ C(Ł). It is immediate that the Hessian term, A1,

is more informative than A2 with Ł̂Ł. The third eigenfunction (Figure 3(d)) changes the

symmetry of the log-likelihood and in this case can be neglected.

Case 2: r ¼ 1 d ¼ 1. In Figure 3(e) the observed log-likelihood is again used to select

D. In this case the three eigenvalues are in the ratio 113:35:8, with the eigenfunctions

shown in Figure 3(f–h). The MLE by itself has lost a large amount of information, but

neither of the remaining eigenfunctions is completely dominant. Thus the KL decomposition

indicates that there will not be a good one-dimensional summary statistic, and only a poor

two-dimensional one. This confirms the analysis above, which shows that for r ¼ 1, d ¼ 1

both A1 and A2 perform badly.

Case 3: r ¼ 5, d ¼ 0:3. For this model the region D selected is a disjoint union of

intervals (see Figure 3(i)). However, this is not a problem for the KL analysis. The

eigenvalues are in the ratio 600:240:75, with the eigenfunctions shown in Figure 3( j–l).

The dominant eigenfunction ( j) has the effect of translating the local maxima within each

local mode. The secondary source of variation (k), however, moves the heights of the modes

relative to each other, hence can change the global maximum. The smallest source of

variation (l) changes the Hessian term for each mode. Thus the KL decomposition has

again used the global geometry to decompose the local and global information.

Example 2 (continued). Suppose that (x1, x2, x3) ¼ (0:4, 1:0, 5:0) and we have observed

(y1, y2, y3) ¼ (0:133, 0:510, 0:991). Figure 4 shows the result of simulating 50 samples

which have the same �̂�. It is clear that the Hessian is almost constant for each simulation and

that all the variation is in the global geometry away from a small open set around �̂�.
Calculating the corresponding eigenfunctions after fixing the MLE gives a single dominant

eigenfunction whose first and second derivatives are zero at the MLE. Hence adding linear

multiples of this eigenfunction affects neither the MLE nor the Hessian. This explains the

behaviour seen in Figure 4.

The following simulation study shows that simple inference procedures can be based on

the statistics suggested by the global geometry and that these inference procedures offer a

close approximation to inference based on the full likelihood function. In contrast, simply

using the observed information in place of the expected information can lead to a poor

approximation of likelihood-based inference. Throughout the study, we test H0 : Ł ¼ Ł0 :¼ 0

versus HA : Ł . Ł0.

Example 3 Modified circle. In this model the relationship between the mean and the

parametrization Ł in the trivariate normal family MN3(�, I333) is given by

� ¼ (r sin (Ł=w), r cos (Ł=w), d sin (Ł))9,

where r, d and w are fixed hyperparameters.
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The study compares the signed generalized likelihood ratio test (GLRT) to test statistics

of the form

(Ł̂Ł� Ł0)W ,

where W is either a constant, equal to
ffiffiffiffiffiffiffiffi
Iobs

p
, the square root of the observed Fisher

information, or equal to the square root of the auxiliary statistic Iglobal suggested by the

global geometry. In this example, with r ¼ 3, d ¼ 0:1, w ¼ 24, the global geometry suggests

Iglobal ¼ (r cos (Ł̂Ł=w)x1 þ r sin (Ł̂Ł=w)x2)=w
2,

since the significant variation lies in the (x1, x2) plane rather than the x3 direction used by the

Hessian.

The critical values for the test statistic defined with W ¼
ffiffiffiffiffiffiffiffiffiffiffi
Iglobal

p
can be obtained from

the standard normal distribution. Using 1000 samples, the Æ ¼ 0:05 level (i.e., the critical

value is z0:95) global test rejects the null when the null is true 5.8% of the time for the

modified circle model. Using z0:95 as critical value for (Ł̂Ł� Ł0)
ffiffiffiffiffiffiffiffi
Iobs

p
leads to rejection of

the null when the null is true 22.8% of the time. This shows that Iobs is a poor

approximation to the variance of Ł̂Ł, but it does not show that Iobs is an inferior summarizer
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Figure 4. Fifty realizations of the log-likelihood with a constant maximum likelihood estimate for the

tanh-link model.
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of information. To put these tests on equal ground, the critical value is chosen empirically

using 1000 samples under the null hypothesis. This means the power curves for each test

have ordinate equal to Æ at Ł0. Figure 5 shows these power curves. The power curve of

(Ł̂Ł� Ł)
ffiffiffiffiffiffiffiffiffiffiffi
Iglobal

p
is much closer to the power curve of the signed GLRT test than is the test

based on (Ł̂Ł� Ł0)
ffiffiffiffiffiffiffiffi
Iobs

p
. Hence the information recovered by the global geometric

considerations is what is required by inference and compares well to the ‘gold standard’

GLRT.

4. Discussion

In this paper we have used the variation of the shape of the log-likelihood function as a way

of determining the information content of a statistic. We have not addressed the question of

how to extract the information in such a statistic for inference. In the examples we have

explicitly avoided conditioning since we have not discussed the ancillary properties of the

proposed statistics. We point out, though, that there are important links with the global

shape of the log-likelihood function and conditional inference. In particular, the so-called
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Figure 5. Power curves of the signed generalized likelihood ration test, the test based on Iobs, and the

test based on Iglobal for the modified circle model.
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directed likelihood ancillary (Barndorff-Nielsen and Cox 1994, pp. 227–229; Sweeting

1995; Skovgaard 2001) uses more information about the likelihood than is contained in a

local region of its maximum. In general the ‘shape’ of the log-likelihood function forms a

second-order ancillary statistic which can have better properties than the purely locally

based ancillaries such as the one proposed by Efron and Hinkley (1978).

The examples in this paper are such that calculation of the required covariance structures

is straightforward. In general cases, since these structures are all moments under the data-

generation process p(x, �), one approach which has worked well in informal studies is to

estimate these structures, directly or through bootstrapping. Again this is an area which

requires further study.
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