
Resampling and exchangeable arrays

P E T E R M C C U L L AG H

Department of Statistics, University of Chicago, 5734 University Avenue, Chicago IL 60637,

USA. E-mail: pmcc@galton.uchicago.edu

The nonparametric, or resampling, bootstrap for a single unstructured sample corresponds to the

algebraic operation of monoid composition, with a uniform distribution on the monoid. With this

interpretation, the notion of resampling can be extended to designs having a certain group-invariance

property. Two types of exchangeable array structures are considered in some detail, namely the one-

way layout, and the two-way row±column exchangeable design. Although in both cases there is a

unique group under which the sampling distribution of the observations is exchangeable, the choice of

monoid is not unique. Different choices of monoid can lead to drastically different, and in some cases

quite misleading, inferences.
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1. Introduction

Suppose that inference is required for a scalar parameter è in the form of con®dence

intervals. A consistent, asymptotically normal, estimator T is given, but no consistent

estimate of variance is available. Under what conditions can resampling techniques be used to

approximate the distribution of T , and thereby generate a ®rst-order correct con®dence

interval?

Two circumstances in which problems of this nature can arise are as follows:

(i) The distribution of the data has a simple structure, possibly with independent

components, but the functional form of T is complicated.

(ii) The functional form of T is simple, possibly even linear, but the dependence

structure in the data is suf®ciently complicated that it is not feasible to derive a

consistent variance estimate.

Most resampling investigations have focused on problems of the ®rst type. The present paper

aims at rather specialized problems of the second type in which the dependence among

observations is speci®ed by group invariance. That is to say, we consider structures in which

Y has the same distribution as gY for each g in the given group G . We do this by ®rst

interpreting the standard resampling bootstrap as monoid composition in which the bootstrap

distribution is uniform on the monoid. In this context, a monoid is any semigroup that

includes G . The purpose, as always, is to generate pseudo-observations in such a way that the

bootstrap distribution of a statistic is a faithful estimate of the sampling distribution of the

same statistic (Efron and Tibshirani 1993, Chapter 2).
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Two speci®c cases are considered in detail. For the one-way layout, we consider two

linear statistics and six monoids, all containing the relevant wreath product group. All six

bootstrap variances are calculated analytically for both statistics. Unfortunately, it appears

that the choice of monoid is critical, and what appears to be the most natural choice does

not necessarily give the best variance estimate.

For the two-way row±column exchangeable array, one statistic and two monoids are

considered. Although there exists a satisfactory consistent variance estimate, neither

bootstrap scheme produces a consistent estimate. In fact, it is shown that no resampling

scheme, of the type considered in this paper, can yield a consistent estimate of var(Y ) in

row±column exchangeable arrays.

Finally, we conclude with some remarks concerning exchangeability in regression models.

2. Resampling

2.1. Monoid composition

Let Ù be the set of n observed subjects or sampling units. The observation vector y is a real-

valued function on Ù, a point in the vector space RÙ. The value of y on unit ù is usually

denoted by y(ù) � yù, and the list of these values is a vector in RÙ.

Let G be the symmetric group acting on Ù: each element in G is an invertible function

from Ù to itself. The composition of y with j 2 G is a new function y � j from Ù to R,

whose value on unit ù is given by

(y � j)(ù) � yj(ù):

Evidently, y � j is a permutation of y. Further, if j is chosen uniformly at random from the

group, y � j is a random permutation. For given y, the distribution of the statistic T (y � j) is

called the permutation distribution of T . Evidently the permutation distribution is discrete,

with at most n! points of support.

Let M be the set of all nn transformations of Ù to itself. This set includes the group,

but it also includes the non-invertible transformations in which several points in Ù are

mapped to the same image. The composition y � j is a new function from Ù to R. For

statistical purposes, y � j is a sample of the y values taken with replacement. In particular,

if j is chosen uniformly at random from M, y � j, considered as a function from M into

RÙ, is a random variable whose distribution is called the bootstrap distribution of y.

In algebraic terminology, M is a monoid (semigroup with identity) acting on Ù. There

are in fact many monoids acting on Ù: the symmetric group itself is an example of a

monoid. The particular monoid described above, the one that occurs in bootstrap

resampling, is called the full monoid on Ù.

2.2. Bootstrap exchangeability

A list of n independent and identically distributed (i.i.d.) random variables indexed by Ù is a
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vector in RÙ whose sampling distribution is exchangeable, or invariant under permutation. In

other words, for each g in the symmetric group, Y and Y � g have the same sampling

distribution. Under certain conditions, this property of the sampling distribution is transferred

to permutation and bootstrap distributions. For ®xed y, the bootstrap random variable is a

function

Y�(j) � y � j
from the monoid M into RÙ. The composition of Y� with a group element g is given by

Y� � g � (y � j) � g � y � (j � g) � y � j9:

If, for each j 2M, all elements in the set

fj � g : g 2 G g,
have equal probability, then the bootstrap distribution is exchangeable. In general, the

distribution need not be uniform on M, but it must be uniform on each of the group orbits in

M.

To see what the group orbits of M are, consider an example in which Ù is a set of four

integers. Consider the functions

j1 � f1 7! 4, 2 7! 4, 3 7! 3, 4 7! 2g,
j2 � f1 7! 1, 2 7! 2, 3 7! 3, 4 7! 3g:

The inverse functions are

jÿ1
1 � f1 7! Æ, 2 7! f4g, 3 7! f3g, 4 7! f1, 2gg,

jÿ1
2 � f1 7! f1g, 2 7! f2g, 3 7! f3, 4g, 4 7! Æg,

so jÿ1
1 (Ù) is the partition 12j3j4, and jÿ1

2 (Ù) is the partition 1j2j34. These set partitions

have the same block sizes corresponding to the number partition 4 � 2� 1� 1, so they

belong to the same group orbit.

The group itself constitutes one such orbit, so the permutation distribution is

exchangeable. The number of orbits, or points in M=G , is equal to the number of

partitions of the number n. The group itself corresponds to the orbit (1n) in which each

element of Ù has a distinct image. The orbit (2, 1nÿ2) is that subset of M in which two

points have the same image and all other points have distinct images. The bootstrap

distribution is exchangeable if and only if the distribution on M is uniform on each of

these p(n) orbits. The uniform distribution on M satis®es the conditions for exchange-

ability, so the bootstrap distribution is exchangeable.

2.3. Symmetric functions and bootstrap cumulants

The bootstrap distribution is the uniform distribution on the monoid. Another way of saying

the same thing is to express the bootstrap resampling scheme componentwise as
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y� i � ji
t y t,

with implicit summation over repeated indices. Independently for each i, ji is a random

variable whose distribution is uniform multinomial on Ù. The joint cumulants of degree r are

cum r(ji1
t1

, . . . , ji r

t r
) � äi1:::i rÃt1,:::, t r

,

where ä is the indicator function for equality of the indices, and the Ãs are the cumulants of

the uniform multinomial. The multinomial moments are Ãt1,:::, t r
� ä t1::: t r

=n, from which we

obtain

Ãr � är=n

Ãr,s � ärs=nÿ äräs=n2

Ãr,s, t � ärst=nÿ äräst[3]=n2 ÿ 2äräsä t=n3

and so on, using the formulae for cumulants in terms of moments.

Let kr be the sample k-statistic of degree r, so k1 is the sample mean and k2 the sample

variance. In general, kr is the unique symmetric polynomial of degree r whose i.i.d.

sampling expectation is kr, the rth cumulant of the sampling distribution. Denote by k�r the

random variable kr(y�). A straightforward calculation shows that the bootstrap distribution

satis®es the following identities:

E(k�1 jy) � k1,

n var(k�1 jy) � E(k�2 jy) � (nÿ 1)k2=n,

n2 cum3(k�1 jy) � n cov(k�1 , k�2 jy) � E(k�3 jy) � (nÿ 1)(nÿ 2)k3=n2,

n3 cum4(k�1 jy) � n2 cum3(k�1 , k�1 , k�2 jy) � n cov(k�1 , k�3 jy)

� n var(k�2 jy) � E(k�4 jy) � (nÿ 1)((n2 ÿ 6n� 6)k4 ÿ 6nk22)=n3:

In the ®nal expression, k22 is the unique symmetric function (polykay) whose i.i.d.

expectation is k2
2 (McCullagh 1987, Chapter 4). More generally, for any linear statistic

T� � li y� i, we have

E(T�jy) �
X

li E(k�1 jy),

n var(T�jy) �
X

l2
i E(k�2 jy),

n2 cum3(T�jy) �
X

l3
i E(k�3 jy),

n3 cum4(T�jy) �
X

l4
i E(k�4 jy),

and so on for all higher-order cumulants. As we shall see in Section 5, these are special cases

of identities satis®ed by some, but not all, bootstrap resampling schemes.
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2.4. Bootstrap

In the sections that follow, we consider random arrays whose sampling distribution is

invariant under a speci®ed group, G . In this paper, a bootstrap distribution is de®ned as

follows. First, we choose a monoid M such that G �M. Second, we choose a probability

distribution on the monoid, uniform on group orbits and independent of y. Given y, the

bootstrap distribution is the distribution of y � j, where j has the speci®ed distribution on

M. In most cases, the distribution is uniform on the monoid, but this is not critical.

3. The one-way exchangeable array

3.1. Resampling schemes

Consider an array of b blocks, each of size n, having the property that the permuted array of

random variables has the same joint sampling distribution as the original array. In this

context, permutation refers to the wreath product group in which blocks are permuted by an

element j from Sb, the symmetric group acting on the blocks. Observations in each block are

permuted independently by composition with ø 2 Sn. In other words, each permutation ð has

components (j, ø1, . . . , øb) where j permutes blocks, and øi permutes observations within

a block. The action on the array is given either by

ð : (i, j) 7! (j(i), øi( j)) (1)

or by

ð : (i, j) 7! (j(i), øj(i)( j)), (2)

depending on the order of operations. In other words, under (1), the (i, j)th element of y � ð
is yj(i),øi( j): under (2) we get yj(i),øj(i)( j), which is different. The sampling distribution of Y is

exchangeable if, for each ð in the group, the distribution of Y � ð is the same as the

distribution of Y . So far as the de®nition of exchangeability is concerned, the actions (1) and

(2) are effectively equivalent because to each ð in the group, there corresponds a ð9, given by

ð9 � (j, øj(1), . . . , øj(b)),

such that y � ð9 using (1) is equal to y � ð using (2). Nevertheless, for semigroup operations,

it is essential to distinguish between the two modes of action.

There are various ways in which resampling might operate in this context, but all such

schemes are based on an extension of the group to a monoid. Six extensions are described

and studied:

Boot-I. First permute the observations independently within the blocks. Then pick a

random sample of the blocks with replacement.

Boot-II. First pick a random sample of the blocks with replacement. Then permute the

observations independently within the blocks.

Boot-III. First permute the blocks. Then pick a random sample with replacement from

each of the blocks.
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Boot-IV. First select a random sample with replacement from each block. Then pick a

random sample of the blocks.

Boot-V. First pick a random sample of the blocks with replacement. Then pick a

random sample with replacement from each of the blocks.

Boot-VI. Disregard the block structure, select a random sample of size nb with

replacement, and arrange in blocks of size n.

Each of these resampling schemes consists of two parts. The ®rst part is a set of

transformations from the set of labels f(i, j)g to itself. The second part is a distribution on

this set of transformations. Each set of transformations is a monoid containing the wreath

product group as a subset. Each bootstrap distribution is uniform on the associated monoid,

and hence invariant under the group.

For monoids II, III and V, the transformation is given by (1); for I and IV, the

transformation is given by (2). In the case of transformation (1), duplicate blocks are

permuted or sampled independently. Under (2), however, identical samples are obtained

from duplicate blocks. The order of operations is immaterial in the wreath product of

groups, but order does matter for semigroups.

Composite resampling schemes can also be constructed in which a randomization device

is used to select a resampling scheme from the list above. A die is cast, generating a

sequence of independent values. Depending on the outcome of the die, one of the sampling

schemes listed above is chosen to generate a transformation j. This is equivalent to using

the full monoid MVI, with a non-uniform distribution on the monoid. The distribution is,

however, uniform on each group orbit.

The relations among the monoids are as follows:

G �M I �M II �MV � MVI, G �M III �M IV �MV � MVI:

The number of elements in each monoid is as follows:

jG j � b!(n!)b; jM Ij �
X

1< j<b

Sbj j!(n!) j; jM IIj � bb(n!)b;

jM IIIj � b!nnb; jM IVj �
X

1< j<b

Sbj j!nnj; jMVj � bb nnb; jMVIj � (nb)nb;

where Snm is Stirling's number of the second kind.

3.2. Bootstrap distributions

We consider here two scalar statistics, one invariant under the group, the other non-invariant.

The sample mean is an invariant statistic that is linear in the observations. For a non-invariant

statistic, we suppose that m1 � m2 � n, and that in each block the ®rst m1 observations have

treatment level 1, and the remainder have treatment level 2. Then, if �Y1 is the average of the

observations on treatment 1, and �Y2 the average on treatment 2, the treatment difference,
�Y ÿ �Y2, is a within-blocks contrast that is linear in the data. We distinguish between the
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sampling distributions of these statistics, which depend on unknown parameters, and the

bootstrap distributions, which are computable but depend on the particular choice of monoid.

To keep the calculations as simple as possible, we focus only on the ®rst two moments.

On the assumption that the sampling distribution is exchangeable and that observations in

different blocks are independent, the mean and variance of the sample mean are

E( �Y ) � ì, var( �Y ) � (nó 2
r � ó 2

å)=(nb):

Similar calculations show that the mean and variance of �Y1 ÿ �Y2 are

E( �Y1 ÿ �Y2) � 0, var( �Y1 ÿ �Y2) � ó 2
å(1=m1 � 1=m2)=b:

The variance components here are de®ned by

var(Yij) � ó 2
r � ó 2

å , cov(Yij, Yij9) � ó 2
r ,

for j 6� j9.
Both variances can be estimated in very natural ways using the two invariant quadratic

forms

S2
r �

X
y2

i:=nÿ y2
::=(nb),

S2
e �

X
ij

y2
ij ÿ

X
i

y2
i:=n,

whose expectations are

E(S2
r ) � (bÿ 1)(nó 2

r � ó 2
E ),

E(S2
e) � b(nÿ 1)ó 2

E :

It is conventional to estimate var( �Y ) by S2
r =(nb(bÿ 1)), and var( �Y1 ÿ �Y2) by S2

e(1=m1 �
1=m2)=(b2(nÿ 1)). Within the class of unbiased symmetric quadratic forms, these estimates

are unique.

In all cases, the bootstrap mean of �Y� is equal to the sample mean, and the bootstrap

mean of �Y�1 ÿ �Y�2 is zero. The bootstrap variances are quadratic functions of the data given

in Table 1, where s2 � S2
e=b(nÿ 1) is the within-blocks mean square.

For the invariant statistic, monoids I and II provide the best variance estimate, differing

from the unbiased estimate by a factor of (bÿ 1)=b. Monoids III and VI give misleadingly

small variances, even asymptotically. In a certain limiting sense, if ó 2
r 6� 0, it can be argued

that monoids IV and V give consistent variance estimates, but these are too large in ®nite

samples, and certainly inferior to I and II.

For the non-invariant statistic, the permutation variance and the monoid-II variance are

arguably the only correct values. Monoids I, IV and VI produce variances that are

misleadingly large.

Fisher's (1935, Section 21) analysis of Darwin's data, based on a randomization

argument, is equivalent to resampling from the wreath product group.

Although monoid II gives a bootstrap variance that is a reasonably good approximation to
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the sampling variance in both cases, it does not appear that there is a uniformly best

scheme that is best for all statistics. Further, what appear at ®rst sight to be natural

extensions of the group to a monoid (IV and V), can yield quite different bootstrap

distributions. In more complicated designs where it is not feasible to compute a table of

bootstrap variances and to compare these with the sampling variance of the statistic, it

would not be easy to tell which resampling scheme, if any, is appropriate as a reference

distribution.

4. Row±column exchangeable arrays

4.1. Introduction

A random m 3 n array Y with elements Yij is said to be row±column exchangeable if, for

any permutations ð 2 Sm and ð9 2 Sn, the distribution of the permuted array

Y � ð � fYð(i)ð9( j)g
is the same as the distribution of Y . We assume that the moments of Y exist, at least up to

second order, and that inference is required for the mean value ì � E(Yij). Exchangeability

implies that all components have the same marginal distribution, and hence the same mean.

In addition, all second moments are determined by the four parameters

ó 2 � var(Yij)

ó 2
r � cov(Yij, Yi, j9), j 6� j9

ó 2
c � cov(Yij, Yi9, j), i 6� i9

r � cov(Yij, Yi9, j9), i 6� i9, j 6� j9:

Exchangeability does not imply r � 0, but the applications that we have in mind concern

dissociated arrays in which components that are neither in the same row nor in the same

Table 1. Bootstrap variances of two statistics

Monoid B2( �Y�) 3 n2b2 B2( �Y�1 ÿ �Y�2 ) 3 bm1 m2=n

G 0 s2

I nS2
r (2ÿ bÿ1)s2

II nS2
r s2

III S2
e s2(nÿ 1)=n

IV (2ÿ bÿ1)S2
e � nS2

r (2ÿ bÿ1)s2(nÿ 1)=n

V S2
e � nS2

r s2(nÿ 1)=n

VI S2
e � S2

r (S2
e � S2

r )=(nb)

unbiased nbS2
r =(bÿ 1) s2
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column are independent. Henceforth, therefore, we assume that r � 0. In addition, we assume

positive de®niteness for all m, n, which implies that ó 2
r > 0, ó 2

c > 0, and

ó 2
E � ó 2 ÿ ó 2

r ÿ ó 2
c > 0:

4.2. Variances and symmetric quadratic forms

The only summary statistics of interest are those that are invariant under the group Sm 3 Sn

acting on the rows and columns, the so-called symmetric functions. The obvious estimate of

ì, the average of the components, ì̂ � �Y ::, is a symmetric function of degree 1. Modulo

scalar multiples, this is the unique symmetric function of degree 1. Under mild conditions, if

m, n are both large, ì̂ is approximately normally distributed. The sampling variance is

var(ì̂) � (nó 2
r � mó 2

c � ó 2
E )=(mn): (3)

An estimate of this combination is required in order to set approximate con®dence limits for

ì.

The space of symmetric quadratic forms has dimension 4. It is spanned by the familiar

sums of squares whose expectations under the model are as follows.

It follows that there is a unique symmetric quadratic form whose expectation is the desired

combination (3). This quadratic form is a linear combination of mean squares given by

(MSr � MSc ÿ MSe)=(mn), (4)

Unfortunately, this variance estimate is not guaranteed to be non-negative. The conventional

estimate of variance,

s2 � ((MSr ÿ MSe)� � (MSc ÿ MSe)� � MSe)=(mn),

is positive, but not quadratic. Nevertheless, if m, n are both large, the probability that s2

differs from (4) is exponentially small. The interval ì̂� ká=2s, contains ì with probability

á� o(1). This is a ®rst-order approximate con®dence interval for ì.

Statistic Expectation

S2
m � Y 2

::=(mn) mnì2 � ó 2
E � nó 2

r � mó 2
c

S2
r ÿ

X
Y 2

i:=nÿ S2
m (mÿ 1)ó 2

E � n(mÿ 1)ó 2
r

S2
c �

X
Y 2

, j=mÿ S2
m (nÿ 1)ó 2

E � m(nÿ 1)ó 2
c

S2
e �

X
Y 2

ij ÿ S2
c ÿ S2

r ÿ S2
m (mÿ 1)(nÿ 1)ó 2

E
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4.3. Resampling schemes

Let Ùr be the set of m row labels, Ùc the set of n column labels, and Ùr 3 Ùc the set of ordered

pairs. The full monoids acting on these sets are denoted by M r, Mc and M rc, respectively.

Two speci®c resampling schemes are considered, as follows:

Boot-I. Select a random sample of size mn with replacement from the observed table. In

other words, choose j uniformly at random from M rc.

Boot-II. Select a random sample of the rows, jr 2M r, and a random sample jc 2Mc,

of the columns. The bootstrap table is the set of cells (jr, jc) applied to

Ùr 3 Ùc. In other words, choose j uniformly at random from the product

monoid M r 3 Mc and set Y� � y � j.

For given y, the bootstrap distribution of Y�, or of any derived statistic such as �Y�,
obviously depends on the distribution of j in Mrc. In the ®rst scheme above, the

distribution is uniform on the (mn)mn points in M rc: in the second scheme, the distribution

is uniform on the mmnn points in the subset Mr 3 Mc. In both schemes, the monoid

includes the product group, so both bootstrap distributions are row±column exchangeable.

In fact, M rc includes the full symmetric group, so the ®rst bootstrap distribution is

completely exchangeable. This property seems undesirable for structured arrays.

The bootstrap mean of �Y� is equal to the sample mean in both cases. The bootstrap

variances and their expectations are given below.

It can be seen that the Boot-I variance is misleadingly small unless ó 2
r � ó 2

c � 0. The

Boot-II variance behaves asymptotically as (nó 2
r � mó 2

c � 3ó 2
E )(1� op(1)). In a certain

asymptotic sense, the estimate is consistent except at the point ó 2
r � ó 2

c � 0, when the

variance is too large by a factor of 3. So, although the Boot-II variance comes close for

most parameter values, neither variance estimate is consistent for var(ì̂). If the variance

components are small, say ó 2
r � O(nÿ1), ó 2

c � O(mÿ1), and ó 2
E � O(1), neither bootstrap

estimator is consistent, but the unbiased estimator and s2 are quite satisfactory.

4.4. Positive quadratic functions

All of the resampling schemes considered here are generated by monoid composition,

Y� � y � j, in which the distribution of j in M does not depend on y. Given j, the

Variance estimate 3 mn Sampling expectation

Unbiased
S2

r

mÿ 1
� S2

c

nÿ 1
ÿ S2

e

(mÿ 1)(nÿ 1)
nó 2

r � mó 2
c � ó 2

å

Boot-I S2
r =mn� S2

c=mn� S2
e=mn ó 2

r

mÿ 1

m
� ó 2

c

nÿ 1

n
� ó 2

å

mnÿ 1

mn

Boot-II S2
r =m� S2

c=n� S2
e=mn ó 2

r

n(mÿ 1)

m
� ó 2

c

m(n)

n
� ó 2

å

3mnÿ 2mÿ 2n� 1

mn
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transformation from y to Y� is linear. Since, by assumption, the distribution of j in M is

independent of y, each bootstrap moment or cumulant of order r is a homogeneous

polynomial in y of degree r. In particular, the bootstrap mean of any linear statistic is a linear

function of y, and the bootstrap variance of any linear statistic is a positive quadratic function

of y. This property holds for all six resampling schemes described in Section 3 as well as

Boot-I and Boot-II in Section 4.3.

In the case of the row±column exchangeable array, however, it was observed that there is

a unique unbiased symmetric quadratic statistic (4) that estimates the variance of ì̂.

However, this estimator is not positive de®nite, so there is no bootstrap distribution for

which this is the variance of �Y�. In addition, since there are only four invariant quadratic

statistics, it is not dif®cult to show that, within the class of symmetric quadratic forms,

every consistent estimator permits negative values. In other words, there does not exist a

symmetric positive de®nite quadratic estimator that is consistent for nó 2
r � mó 2

c � ó 2
E . In

fact, we can dispense with the symmetry condition. If there exists an asymmetric positive

de®nite quadratic estimator, this can be symmetrized by averaging over permutations to

yield a symmetric statistic that remains positive de®nite, quadratic, and also consistent. This

is a contradiction, so we conclude that no consistent estimator exists within the class of

positive quadratic functions. But every bootstrap variance of �Y� is a positive quadratic

function of y. So we conclude that no resampling scheme can yield a consistent estimate of

the variance of ì̂. It is not simply the case that the two resampling schemes exhibited above

give inconsistent variance estimates; all resampling schemes having the property that the

distribution of j is independent of y have the same property.

4.5. Hybrid resampling schemes

Another bootstrap scheme that has been proposed in the present context is as follows. First

decompose the array y into `row effects', `column effects' and residuals as follows:

yij � y:: � ri � cj � eij,

where the row and column sums of eij are all zero. Then generate bootstrap observations by

sampling from the rows, sampling from the columns, and sampling independently from the

residuals. That is to say r� � r � jr, c� � c � jc, and e� � e � je, with jr 2M r, jc 2Mc

and je 2M rc. The components in the reconstituted array are

y�ij � �y:: � r�i � c�j � e�ij :
Note that r�, c� and e� do not satisfy the zero-sum constraint, so there is variation in the

mean of the bootstrap samples.

This hybrid scheme is not a bootstrap resampling scheme in the sense that the term is

used in this paper because y� is not obtained from y by monoid composition. Nevertheless,

given jr, jc and je, the transformation from y to y� is linear. Further, the distributions are

uniform on M r, Mc and M rc. Consequently, the variance of �Y� is a positive symmetric

quadratic form in y. By the argument given in the preceding section, the bootstrap variance

of �Y cannot be a consistent estimate of the sampling variance. In fact, the bootstrap
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variance given by this hybrid scheme is identical to the Boot-II variance using the product

monoid.

4.6. Assumptions

Most of the resampling schemes considered in this paper have the property that the

distribution of j is uniform on some monoid. Uniformity, however, is not critically

important: generally speaking the distributions are not uniform on the full monoid. What is

important, however, is that the distribution of j on M should be independent of y. It is this

property that guarantees that the bootstrap moments and cumulants of order r are

homogeneous polynomials in y of degree r. If this assumption is violated, the bootstrap

variance need not be a quadratic form in y. So it is not impossible that a modi®ed resampling

scheme might be devised such that the bootstrap variance is consistent.

To give an example of a resampling scheme in which the critical assumption is violated,

suppose we ®rst calculate S2
r , S2

c and S2
e, the row, column and error sums of squares. Given

these values, let Zi be a sequence of independent Bernoulli variables with parameter

S2
e=(S2

e � S2
r � S2

c). If Zi � 0 the ith bootstrap sample is drawn uniformly from the product

monoid, otherwise uniformly from the full monoid. The bootstrap distribution is a mixture

of Boot-I and Boot-II. The variance in this case is a ratio of homogeneous polynomials of

degree 4 and 2. It seems most unlikely that a randomized bootstrap scheme of this sort

could yield a consistent variance estimate, but I have been unable to prove this.

5. Pivotal statistics

The two examples discussed above are intended to illustrate a common type of problem in

which the target statistic has a natural estimator, ì̂, that is asymptotically normally

distributed, but no consistent variance estimate is readily available. The purpose of

resampling is then to obtain a variance estimate in order to set approximate con®dence

intervals for ì. If this can be done successfully, the often dif®cult analytic exercise of

computing a consistent variance estimate is avoided.

When a consistent estimate of the variance, s2, is available, the nature of the problem is

drastically altered. First, the need for bootstrapping is greatly diminished because a ®rst-

order approximate con®dence interval can be obtained directly from the normal

approximation. Second, if resampling is to be used, it is more natural to use the bootstrap

distribution of the approximately pivotal statistic ( �Y� ÿ �y)=s�. The purpose of the bootstrap

is then to improve on the ®rst-order normal approximation.

Each family of sampling distributions considered in this paper is characterized by two

properties, group invariance and independence of certain components. In the one-way

layout, for example, observations in distinct blocks are independent. Monoid composition

automatically preserves group invariance, but it need not preserve the independence

structure. In the single-sample problem, the permutation distribution is exchangeable but it

does not have independent components. In the one-way layout, both group invariance and
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independence of blocks are preserved by resampling plans II, V and VI only. For the two-

way exchangeable array, both resampling plans have the property that if I , I9 are disjoint

sets of rows, and J, J 9 disjoint columns, then Y�IJ and Y�I9J 9 are independent. The hybrid

scheme in Section 4.5 has the same property. In each of these resampling schemes, the

bootstrap distribution belongs to the family of sampling distributions under consideration.

Any identity that is satis®ed by the family of sampling distributions is automatically

satis®ed by the bootstrap distribution.

For the one-way layout, the family of sampling distributions has the property that

nb var( �Y ) � E(MSb). It follows immediately as a special case for bootstraps II, V and VI,

that nb var( �Y�jy) � E(MS�b jy). By the same argument, in the row±column exchangeable

array,

mn var( �Y�jy) � E(MS�r � MS�c ÿ MS�e jy)

for both monoid resampling schemes and the hybrid. As a consequence, for each of these

resampling schemes, the studentized statistic ( �Y� ÿ �y)=s� is standard normal to ®rst order.

Here s2 is the consistent variance estimate or any asymptotically equivalent statistic. For the

pivotal statistic, the bootstrap distributions are in ®rst-order agreement with the sampling

distribution of ( �Y ÿ ì)=s. It is unclear if any bootstrap distribution is correct to the next

order.

6. Linear regression

6.1. Simple linear regression

Let Ù be the set of units, and let the response vector Y be a random variable in V �RÙ.

Given a covariate vector z 2RÙ, the expected value of Y satis®es the linear model

ì � E(Y jz) � á� ãz:

We draw a distinction between the theoretical residuals E � Y ÿ ì, which are assumed to be

i.i.d., and the ®tted residuals å̂ � Y ÿ PY , which are not exchangeable. Resampling operates

on the theoretical residuals.

For any ã, we de®ne åã � Y ÿ ãz: if ã is the true value, this vector is exchangeable.

Consider the statistic T � håã, ziV =1, the adjusted sum of products
P

(zi ÿ z)åãi, which is

also equal to (ã̂ÿ ã)kzk2, where kzk2 �P(zi ÿ z)2. For resampling purposes, we de®ne

å�ã � åã � j, with j chosen uniformly from the group or from the monoid. The resampling

distribution of T is the distribution of T� � hå�ã , xiV =1, which has mean zero and

permutation variance

var(T�) � kåãk2kzk2=(nÿ 1) � kzk2((nÿ 2)s2 � (ã̂ÿ ã)2kzk2)=(nÿ 1),

where s2 is the residual mean square after regression on z. If monoid resampling is used, the

variance is reduced by the factor (nÿ 1)=n.

The preceding argument based on exchangeability differs from standard practice as

described by Efron and Tibshirani (1993) or Davison and Hinkley (1997). Although
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T � håã, zi, these authors consider the reference distribution hå�̂ã , zi, treating the ®tted

residuals as exchangeable. As a partial ®x for practical work, Davison and Hinkley

recommend resampling from the modi®ed ®tted residuals, but these are not exchangeable

either.

It is often a reasonable approximation to suppose that the studentized statistic has a ®xed

distribution independent of ã and z, but dependent on n. In this case, a con®dence interval

for ã can be obtained as the set

ã :
(ã̂ÿ ã)kzk �����������

nÿ 1
p��������������������������������������������������

(nÿ 2)s2 � (ã̂ÿ ã)2kzk2
p < Cá

( )
:

The usual t ratio is t � (ã̂ÿ ã)kzk=s, so the preceding interval coincides with the usual

normal-theory interval if

Cá �
�����������
nÿ 1
p

tnÿ2,á

� �����������������������������
nÿ 2� t2

nÿ2,á

q
:

The exact version of the preceding argument requires Cá to be chosen from the empirical

distribution of the standardized values

hå�ã , zip(nÿ 1)

kåãk kzk ,

with j chosen uniformly from the group. This exercise must be repeated for a range of ã
values in order to construct the required interval. In other words, exact con®dence sets are

based on the permutation t distribution.

6.2. Multiple regression

In the standard multiple linear regression model, Y � Xâ� å, the components of the

observation vector Y are not exchangeable, but the (theoretical) residual vector å in RÙ is

taken to be i.i.d. and thus exchangeable. Exchangeability here refers to the group of

permutations acting on the set of units Ù. Let X be that p-dimensional subspace of RÙ

spanned by the columns of X . What is required is a notion of exchangeability modulo

translations in X . One possible de®nition is as follows. We say that the random variable Y is

exchangeable modulo X if there exists a non-random point x 2 X such that the random

variable Y ÿ x is exchangeable in V �RÙ. In the standard linear regression model, the

observation vector is exchangeable modulo X because, with x � Xâ, Y ÿ x � E has i.i.d.

components. As we will see, this de®nition is not especially useful for resampling purposes

because the point x is typically unknown.

Consider now an extension of the linear regression model

E(Y ) � Xâ� zã

in which z is a given vector in RÙ, but not in X . A con®dence interval is required for ã
under the assumption that Y ÿ zã is exchangeable modulo X . For purposes of testing and

estimation, we choose the conventional statistic, the quotient-space inner product,
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T � hY , ziV =X � hzã� E, ziV =X � ã̂hz, ziV =X ,

in which all vectors are regarded as elements in the quotient space RÙ modulo X . In the

more familiar matrix notation

T � Y TW (I ÿ P)z,

where P � X (X TWX )ÿ1 X TW is the orthogonal projection on to X . In the present context of

exchangeable errors, the inner product matrix must be invariant. We assume that the off-

diagonal elements are zero, so W � I .

For resampling purposes, it is inappropriate to use Y ÿ zã directly because its

components are far from exchangeable. Nor can we use the the quotient space version

Y ÿ zã�X because this is not a point in RÙ. The only remaining option is to use the

projection å̂ã � (I ÿ P)(yÿ zã) onto X ?. However, the residual vector thus de®ned does

not satisfy the de®nition of exchangeability modulo X . Nevertheless, we take Êã as given,

and proceed as if these residuals are exchangeable. That is to say, we construct resampled

residuals å�ã � å̂ã � j, where j is chosen uniformly at random either from the symmetric

group or the monoid on Ù. Then, for each ã, we compare the observed observed value of

Tã

tobs(ã) � å̂T
ã(I ÿ P)z � (ã̂ÿ ã)zT(I ÿ P)z

with the bootstrap distribution of values

T�ã (j) � (å̂ã � j)T(I ÿ P)z

for j in G or in M. The set of values of ã for which tobs(ã) does not fall in the tails of the

relevant distribution constitutes a con®dence set for ã, although the coverage probability may

not coincide with the nominal level.

On the assumption that the constant functions are in X , that is, that the model X

includes the intercept, and that the resampling distribution is uniform on the group, the

bootstrap mean of T� is zero and the variance is

var(T�ã jå̂ã) � kå̂ãk2kzk2=(nÿ 1)

� ((nÿ pÿ 1)s2 � (ã̂ÿ ã)2kzk2)kzk2=(nÿ 1),

where kzk2 � zT(I ÿ P)z, and s2 is the residual mean square after regression on both X and

z. In the more familiar normal-theory framework, T is normally distributed with mean zero

and variance ó 2kzk2 under the hypothesis. By comparison, the resampling variance is too

small by the factor (nÿ p)=(nÿ 1).

If we make the approximation that the resampling distribution is normal, the bootstrap

interval for ã becomes

ã :
(nÿ 1)(ã̂ÿ ã)2kzk2

(nÿ pÿ 1)s2 � (ã̂ÿ ã)2kzk2
< ÷2

1,á

( )
:

In terms of the more familiar F ratio, F � (ã̂ÿ ã)2kzk2=s2, on (1, nÿ pÿ 1) degrees of

freedom, the bootstrap interval is
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ã :
(nÿ 1)F

nÿ pÿ 1� F
< ÷2

1,á

� �
:

If sampling is done uniformly on the monoid, i.e. with replacement, the set is

ã :
nF

nÿ pÿ 1� F
< ÷2

1,á

� �
:

Both intervals are too narrow, and could be improved by multiplicative adjustment of the

bootstrap variance or by adjustment of the residuals as recommended by Davison and Hinkley

(1997). But even with this correction, the coverage probability does not achieve the nominal

level.

6.3. Rotational exchangeability

The preceding derivation is unsatisfactory because it was assumed that (I ÿ P)(Y ÿ ãz) is

exchangeable in RÙ. This assumption is clearly false because the residuals are known to lie

in the subspace X ?. Unless X is an invariant subspace, that is, either X � 0, 1, or 1?, the

residuals cannot be exchangeable. The dif®culty arises from the fact that the resampled

residuals have a component in X , which does not contribute to the statistic T�.
One possible remedy is to replace å� � å̂ � j by

å9 � Qå�kå̂k=kQå�k,
where Q � I ÿ P. In other words, the resampled residuals are projected onto X ? and

rescaled to have the same norm as å̂. Although similar in spirit, this remedy differs from

Davison and Hinkley's (1997, p. 259) recommendation of using modi®ed residuals for the

same purpose. A serious drawback with e9 is that if there exists a j such that å� 2 X , Qå�
is zero and å9 is unde®ned. The existence of such a j is assured if monoid resampling is

used. If resampling is restricted to the group, however, there does not ordinarily exist a

j 2 G such that Qå� � 0. One exception, however, occurs if X is a factorial model for a 2k

factorial design in which p > nÿ k.

An alternative, but closely related, option is to consider the subgroup of GL(V , V ) that

leaves the subspace X invariant. It is enough in fact to consider the group GX of

orthogonal transformations on V that leaves X invariant. We say that Y is spherically

symmetric modulo X if, for each j 2 GX , the distribution of jY is the same as the

distribution of Y . Invariance under GX is a weaker assumption than spherical symmetry for

the distribution of å in V . For example, in a blocked design, spherical symmetry modulo

block effects is usually more sensible than full spherical symmetry. Apart from the normal-

theory model, full spherical symmetry is rarely an appealing assumption.

We proceed on the basis of GX -exchangeability modulo X . Since X is invariant, we

operate directly on the vector å̂ã � Y ÿ ã0z by an element j in GX . By assumption, the

rotated vector å� � jå̂ã has the same distribution as å̂ã. The calculations proceed as above

except that j is chosen uniformly with respect to Harr measure on GX . This amounts to

saying that å� is uniformly distributed on the surface of the sphere of radius

(å̂T
ã(I ÿ P)å̂ã)1=2 in V =X . In this case, the bootstrap distributional calculations coincide
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with conditional normal-theory calculations for the conditional distribution of T given the

suf®cient statistics X TY and s2
0. So the one-sided bootstrap con®dence interval for ã is

(ÿ1, ã̂� tnÿ pÿ1,ás=kzk),
where kzk is the quotient space norm (zT Qz)1=2.

The preceding argument is closely related to Box (1976, Section 3.10) and Dawid (1977)

who note that rotational symmetry is suf®cient to derive the traditional t and F statistics for

linear models.

Note that, since GX is in®nite, the distinction between sampling with and without

replacement does not arise.

7. Conclusions

The main purpose of this paper is to test the limits of resampling as an inferential technique.

Under what conditions is the bootstrap distribution of a statistic a faithful estimate of the

sampling distribution? The question has been investigated by studying the distributions of

linear statistics computed on exchangeable arrays. It is found that, for non-pivotal statistics,

the bootstrap distribution is ordinarily not a consistent estimate of the sampling distribution.

For the two-way exchangeable array, no resampling scheme exists such that the bootstrap

variance of �Y� consistently estimates the sampling variance of this statistic. Outside of the

i.i.d. case, it appears that resampling is not a reliable method for obtaining a consistent

variance estimate.
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