Bernoulli 6(4), 2000, 729-760

An Edgeworth expansion for finite-
population U-statistics

MINDAUGAS BLOZNELIS' and FRIEDRICH GOTZE?

1Department of Mathematics, Vilnius University, Naugarduko 24, Vilnius 2006, Lithuania.
E-mail: mindaugas.bloznelis@maf.vu.lt

2Fakultdt fiir Mathematik, Universitit Bielefeld, Postfach 100131, 33501 Bielefeld, Germany.
E-mail: goetze@mathematik.uni-bielefeld.de

Suppose that U is a U-statistic of degree 2 based on N random observations drawn without
replacement from a finite population. For the distribution of a standardized version of U we construct
an Edgeworth expansion with remainder O(N~!) provided that the linear part of the statistic satisfies a
Cramér type condition.
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1. Introduction and results

Let .Z={ai, ..., a,} denote a population of size n and let .77 : Z X .Z — R denote
symmetric function of its two arguments. By X, ..., Xy, N <n, we denote random
variables with values in .7 such that X = {X;, ..., Xy} represents a random sample from

7 of size N drawn without replacement, i.e. P{X = B} = (})~! for any subset B C .7 of
size N. We shall investigate the second-order asymptotics of the distribution of the statistic

U= Y X, X).
IsisjsN
We assume that the statistic is centred. Write
U=L+ 0, (1.1)
where
N
L=Y gX) and Q= > X X))
i=1 I<i<j<N

are respectively the linear and the quadratic part of the statistic. Here

QW= =D, 1) =SB, Xl =)

and
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2 (x1, ) = F(x1, x2) — t(x1) — t(x2).
Since
E(g2(X1, Xo)| X1 =x) =0, for all x € .2, (1.2)

the random variables g1(X;) and g2(X;, Xz), ] <Si< N, 1< j<k =< N (and thus L and Q)
are uncorrelated. If the linear part L dominates the statistic, for large N, the distribution of U
can be approximated by a Gaussian distribution using the central limit theorem (CLT).

The asymptotic normality of linear statistics based on samples drawn without replacement
from finite populations has been studied by a number of authors. Erdds and Rényi (1959)
proved the CLT under very mild conditions. The rate of convergence in the CLT was first
studied by Bikelis (1969). Berry—Esseen bounds of order O(N~!/2) were obtained by
Hoglund (1978). Robinson (1978) proved the validity of an Edgeworth expansion with a
remainder of order O(N—3/?); see also Bickel and van Zwet (1978).

Nandi and Sen (1963) studied the asymptotic behaviour of finite-population U-statistics
and showed that under proper regularity conditions the sequence of distributions of
normalized U-statistics converges to the standard normal distribution. The rate of this
convergence was investigated by Zhao and Chen (1987; 1990), Kokic and Weber (1990;
1991) and, as a particular case of the rate of convergence of general multivariate sampling
statistics, by Bolthausen and Gotze (1993). In the case of independent and identically
distributed (i.i.d.) observations the second-order asymptotic theory has been developed for
U-statistics: see Bickel (1974), Gotze (1979), Callaert er al. (1980), Bickel et al. (1986)
and, for more general asymptotically normal symmetric statistics, Bentkus et al. (1997). In
contrast to the independent case, there are only a few results concerned with higher-order
asymptotics of nonlinear finite population statistics. Babu and Singh (1985) proved the
validity of an Edgeworth expansion with a remainder o(N~'/?) for finite-population
multivariate sample mean and applied this result to establish expansions for statistics that
can be represented as smooth functions of multivariate sample means, e.g. Student’s ¢.
Kokic and Weber (1990) established a one-term Edgeworth expansion with the remainder
o(N~'/2) for finite-population U-statistics of degree 2.

By way of comparison to the results described above, we shall provide an explicit
remainder term of order O(N~') for finite population U-statistics which is optimal
assuming a Cramér condition on the linear term only. The proof is based on a finite-
population variant of Hoeffding’s decomposition as well as the Erdos—Rényi representation
and some ideas due to Bentkus et al. (1997) such as data-dependent smoothing.

Assume that

0= NEgi(X)>0.

The distribution function of the standardized statistic, F(x) =P{U <xo}, will be
approximated by the one-term Edgeworth expansion,

i 7(‘1_17)‘171/20‘*3‘11/2"(1)/,; i
\/a 603N1/2 \/(—1 !

Here ®(x) is the standard normal distribution function,

G(x) = c1>< (1.3)
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p=N/n, g=1-p
and
a=NPEg(X),  «k=NPEgX, X)gi(X1)gi(X). (1.4)
We shall derive bounds for the remainder

A = sup|F(x) — G(x)|.

xeR
To prove the validity of an Edgeworth expansion, i.e. to establish bounds for A, in
addition to moment conditions one needs to impose a smoothness condition, cf. Bickel and
Robinson (1982). For instance, in the classical case of standardized sums S =
(Y1 + ...+ Yy)/V/N of iid. random variables Y, ..., Yy such that EY; =0, EY? =1
and EY? < oo, asymptotic expansions for the distribution Fs of S with remainder O(N~")

are obtained assuming Cramér’s condition,
sup |[Eexp{itY;} <1. ©

[t >a
Bentkus et al. (1997) introduced a local version of Cramér’s condition (C), namely,

pr(a, b):=1— sup |[Eexp{itY;}|>0. ch
a<|t|<b
Condition (C") (with a = 1/E|Y;|> and b = N'/?) is somewhat weaker than (C) but still
sufficient to prove the validity of Edgeworth expansions for Fg up to order O(N~'). This
modification is useful in more general situations, where Y; depends on N in an implicit way;
see Bentkus et al. (1997).
For a sufficiently small absolute constant b;, say b; = 0.0001, we shall assume that the
distribution of the random variable Z=+/Ng|(X)/o satisfies condition (C’) with
a' = b /E|Z)? and b' = N'/2, ie.

p=pza,b)>0. (1.5)
Write, for r=1, 2, ...,
Br=EIN'"?gi (X" and y, =E[N*?g (X1, Xy)|" (1.6)

Then the following estimate holds for the remainder A.

Theorem 1.1. There exists an absolute constant A >0 such that

APs+ya
F(x) — G(x)| <= .
?éﬁ' (@) - G| =4 pErer

For linear statistics we obtain the following result.

Theorem 1.2. There exists an absolute constant B> 0 such that
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_ —1/2 B
PlL=qy} @) WP Tag, (x| _B b
Va 603N!/? V4 N p*qo*

The estimates in Theorems 1.1 and 1.2 hold for any fixed sample size N, population size n
and functions .77. If B4/0* and y4/c* are bounded and ¢ and p are bounded away from 0
and N — oo and n — oo, then these results establish Edgeworth expansions with the
remainder O(N~1).

The case where n — oo and N is fixed corresponds to the i.i.d. situation. By the law of
large numbers we obtain a corollary for independent observations. Let & denote a
measurable space and let .27, . %%, ... be i.i.d. random variables with values in &. Write

U= > (%, 2).
IsisjsN

Here .77 : & X & — R denotes a measurable function symmetric in its two arguments such
that E7Z%(2"1, 27) <oo. We assume that EU = 0 and decompose

N
U= aX)+ > &X.X).
i=1 IsisjsN

Here g, and g, are defined in the same way as g; and g, but using #(x)=
E(Z (2", £75)| %1 = x) instead of #(x). Let &, @, Bk, Vi, k=2,3,4, and K denote the
moments of g1(.%") and g,(.%", .%",) corresponding to o, a, B, ¥ and k. We shall assume
that

p=pzaby>0, Z=VNg(21)/s,
where @ = by /E|Z|® and b = v/N. Then we have:

Corollary 1.3. There exists an absolute constant A >0 such that

- a+3% ., APs+ 74
\P{Uﬁax}—@(x)—de) (x)|<ﬁ 254

Hence Theorem 1.1, which yields this result as a special case, may be regarded as a partial
extension of the result of Bentkus et al. (1997) to a simple random sampling model. They
proved the validity of an Edgeworth expansion with remainder O(N ") for general symmetric
asymptotically normal statistics based on i.i.d. observations. In the case of U-statistics of
degree 2 their result yields the estimate as in Corollary 1.3 but with a lower moment j3 /5>
instead of y4/6* in the remainder.

An example given in Theorem 1.4 of Bentkus et al. (1997) shows that a Cramér type
condition on the linear part and the existence of moments of arbitrarily high order of the
linear and quadratic parts of the statistic (based on i.i.d. observations) are not sufficient to
obtain higher-order approximations (those with remainders o(N~!)) to the distribution
function of U. Hence, in this sense Corollary 1.3 and thus Theorem 1.1 are the best
possible. To prove the validity of an Edgeworth expansion with remainder o(N~!), one
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needs in addition to impose a smoothness condition on the distribution of the quadratic
part; see, for example, Bickel et al. (1986).

Let us compare our results with those of Robinson (1978) and Kokic and Weber (1990).
Robinson (1978) proved the validity of a two-term Edgeworth expansion with remainder
O(N—3/?) for linear statistics like L in (1.1) assuming the following Cramér type condition.
This condition, first used in Albers et al. (1976), requires for a random variable Z that there
exists an € >0 such that

t(6,a,b)=1— sup P{tZe Z*+s5}>0. (c)

seR,a<|t|<b
Here ¥ = {2mr, r =0, £1, +2, ...} and .%* denotes the e-neighbourhood of a set .2 C R.
Notice that &; < &, implies Tz(¢;, a, b) = 1(&3, a, b). Robinson assumed that given C' >0

there exist &, d >0 and C >0 such that 7 (¢, a, b) >0, (1.7)
for
Z=VNgi(Xn/o, a'= max |z;|/C", b7! = pE|Z]/(CN).
Here {zi,...,z,} denotes the set of values of the random variable Z. Note that

max;|z;| = max;|z;[EZ? = E|Z|*, because of EZ% = 1. For a sequence of finite-population
linear statistics, say (L,), Robinson’s (1978) theorem establishes an Edgeworth expansion
with remainder O(N—3/?) provided that 35 /0 is bounded, p and ¢ are bounded away from 0
and (1.7) holds with €,  and C not depending on n as » — co. Robinson’s (1978) result was
used by Kokic and Weber (1990) to show A = o(N~'/2). The bounds for the remainders in
these papers involve constants which implicitly depend on p.

In Section 2 we compare conditions (¢) and (1.5). Proofs of Theorems 1.1 and 1.2 and of
Corollary 1.3 are given in Sections 3 and 4. Auxiliary results are gathered together in
Section 5.

2. Smoothness conditions

Modifications of Cramér’s condition (C) that ensure the validity of Edgeworth expansions for
sums of random variables assuming a finite number of values only were considered by Albers
et al. (1976), van Zwet (1982), Does (1983) and Schneller (1989); see also Bickel and
Robinson (1982). In this section we show that a Cramér type condition used in Albers et al.
(1976) and Robinson (1978) is equivalent to that introduced in Bentkus et al. (1997) —
namely, that the conditions (1.5) and (c¢) are equivalent. More specifically, given a random
variable Z and numbers 0 <a < b, (1.5) implies 7z(p, a, b) > p/4. Furthermore, if (c) holds
for some &> 0, then pz(a, b)> &1 (¢, a, b)/n*; see Lemma 2.1 below.

In order to check condition (¢) one needs to maximize a bivariate function over the set
(s, t) € [-m, m] X {a < |#| < b}. Such a (maximization) problem can be difficult to solve
numerically. A symmetrization argument suggests a version of condition (¢) which is easier
to check. Let Z' denote an independent copy of Z and let Z* = Z— Z' denote a
symmetrization of Z. The condition
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there exists € >0 such that (¢, a, b) = 1 — s‘ulp bP{tZ* € %£%1>0 (c*)
as|t=s

requires the estimation of the maximum of an univariate function only. Condition (¢*) was
proposed by V. Bentkus. Notice that & <e&, implies f;(sz, a, b) = r*}(el, a, b). The
following lemma shows that conditions (¢*) and (¢) are equivalent. Write

O0z(a, b)=1—sup{Ecos(tZ+s): s € R, a < |t| < b}. (2.1)

Lemma 2.1 Let Z be a random variable. For 0 <a<<b and 0 <e <m, write
p = pza, b), T. =Tz a,b) T =715, a,b), u=m'er’, v=mnler,.
The following inequalities hold:

2 2% 2

E°T, E°T
_ < < £ < < * *
= \p\47;p’ - sps=4r T, =

The proof of Lemma 2.1 is elementary; see Bloznelis and Gotze (1997).

3. Proofs

Throughout this section and the next we shall assume without loss of generality that 5, = 1.
Since the proof of our main result, Theorem 1.1 is rather complex and involved we shall first
outline the various steps.

In the first step, choosing m ~ In N, we replace the statistic U by

U=L+U, U=gXw)+...+a@+ >  2.X) G
m+1<i<j<N
where
L'=1X) + ...+ (X)),

with
N
0 =i+ b,  L®= > g X)),
J=m+1
is a conditionally linear statistic given X, 1, ..., Xy. Write

Fx(x) =P{U < x|Xpp1, ..., Xy}, S1() = E(exp{itUi } X i1, - - -, XN).

In the second step we construct upper/lower bounds for conditional probabilities

Fy(x+) < 1+VPJ exp{—ixt} — K( ) fi(Hde,

Fy(x—) = l—VPJ exp{—ixt} — K( >f1(t)dt
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where F(x+) = lim,,F(z), F(x—) = lim;;,F(z) and VP denotes Cauchy’s principal value
(Prawitz’s (1972) smoothing lemma). The bounded weight function K(¢/H), vanishing for
|{|> H, and the cut-off H = O(N) are specified below. Taking expectations of the left- and
right-hand sides respectively, we obtain upper and lower bounds for the distribution function
Fi(x) = P{U; < x}; see (3.7) and (3.8) below.

In the third step we construct a bound for the integral of f1(#)K(¢/H) over the region
c¢N'2 < |t < H. In the classical linear statistic case the bounds for the characteristic
function for large values of ¢, like ¢N'/? < |t| < CN, are implied by Cramér’s condition
(C). We write

|£1(0)] < |E(exp{it(/(X1) + ... + X DHX ms15 -5 XN

and show that the Cramér condition |[Eexp{itgi(X1)}|<1—p (we do not require
|[Eexp{itl(X1)}| <1—p), in combination with a suitable choice of the cut-off
H=HX 41, ..., Xy) implies a bound like |f1]| < (1 — cp)”, for some 0<c<1. The
techniques are somewhat complicated by the fact that X, ..., X, are exchangeable only and
we get the independence via the Erdds-Rényi decomposition for (conditional and
unconditional) characteristic functions.

In the next step we interchange the conditional characteristic function with the
unconditional one by changing the order of integration with respect to Lebesgue measure
and with respect to the distribution of X .1, ..., Xy, for || < CN'/2. Finally, by means of
expansions we estimate the difference between the Fourier—Stieltjes transforms of F and G.

Our proofs may be considered as an extension to the case of finite-population statistics of
techniques used by Bentkus ef al. (1997) in the i.i.d. case. We remark that the approach
developed in the present paper also applies to more general nonlinear symmetric statistics
based on samples drawn without replacement from finite populations. These results will
appear elsewhere.

3.1. Notation

By C, Cy, Cy, ... and ¢, ¢y, c1, ... we denote generic absolute constants. We shall write
A < B if A< CB. The expression exp{ix} will be abbreviated to e{x}. Write

2m— 1\’ by N/
o) = |- s T = e 4. H <by}, H, = . 3.2
() <nﬂ:+t> {a 1lg1(a) 2} 1 B (3.2)
Here b; is the same constant as in (1.5) and b, denotes a sufficiently small absolute constant.
Let v={vy,...,v,} be a sequence of independent Bernoulli random variables with

probabilities P{v; = 1} = p and P{v; =0} =g¢, for i=1,2, ..., n. Write

B(H) =Ee{(vi — p)t},  v=\/mpg, O =0(bi/Bs, N'?),

where O(-, ) is defined by (2.1). Let A= (41, As, ..., A,) denote a random permutation
which is uniformly distributed on the permutations of the ordered set (ai, ..., a,) of
elements of ., independent of v. By E* we denote the conditional expectation given 4, i.e.
E*()=E(|d). Fo k=1,2,..., write Q;={1,...,k} and D; =Qy\Q;. Given
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D =iy, iy, ..., ix} CQ,, E"i and EP denote the conditional expectation given
Ay, A

i

3.2 Proof of Theorem 1.1

We may and shall assume that, for sufficiently small ¢y >0,

Ba InN V2 InN
—< —< << — <. 33
gN €0, SN €0, 82q2N €0, Sqn €0 (3.3)
Indeed, if (3.3) fails, then the bound of Theorem 1.1 follows from the inequalities F(x) < 1,
|G(x)| < 1+ g 12BY? /N2 4 ¢V/2y,/NV/2 and p < 6; see Lemma 2.1.
Step 1. Fix an integer m ~ Cod~ ' In N, with sufficiently large Cy, and write

An= DY X X)) (34)
Isk<Ism

Note that U = A, + U;, where U; is given by (3.1). Let F| denote the probability
distribution function of U; and Ay = sup,|F;(x) — G(x)|. We have

A <A +P{|A,| = N1 + 672N "'max|G'(x)|.

By Chebyshev’s inequality and the inequality E|A,,|> < m°E|g2(X1, X2)P,
P{A,| = N'073%) < 0°2NE|A,]P < 0 2ys N2 In® N,
Finally, using the bound |G’'(x)| < f4/g + y> we obtain
A< A+ NTOPRBa/qg+ 2+ ys). (3.5)

Therefore, in order to prove the theorem it suffices to bound A;.

Let k be an integer approximately equal to (N + m)/2. Put Yo={m+1,..., N},
:j() = Qn\70’ /71 :?0 U{m—|— 1, ey k} and ;072 Z}()U {k+ l, ceey N} Given /I,
define (random) subpopulations .%; = {Ay, k € Z;}, i=0, 1,2, and let A;k be random
variables uniformly distributed in .Z;, i =0, 1, 2, indpendent of v. Write

N k
vi@= Y g d), m@= > gl 4, (3.6)
J=k+1 J=m+l1

H=N36/(32¢"'N@©, +0,) + 1), 0, =E*v(4))], i=1,2.

Notice that @, is a function of the random variables A, ..., Ay, and that ®, is a function
of AnH—la ey Ak-
Step 2. Split the sample as follows. Put X; = A4;, for m <j < N. The rest of the sample,

Xi, ..., Xm, is obtained by simple random sampling without replacement from the
(random) subpopulation . 7.
An application of Prawitz’s (1972) smoothing lemma conditionally, given X .1, ..., Xy,

or equivalently, given A4,,, ..., Ay, gives
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1
Fi(x+) < §+ EVPJ e{—xt} = K( )fl(t) de, (3.7)

Fi(x—) = % - EVPJ e{—xt} — K( )fl(t)dt (3.8)
where 2K(s) = K;(s) + iK»(s)/(ms); see, for example, Bentkus et al. (1997). Here
Ki(s)=I|s| <1} —|s|) and Ky(s) =I{|s| < 1}(1 — |s])ms cot(ms).

Combining (3.7) and the inversion formula,

A, dt

G(x) == + — 11m VPJ e{—u}G(t)—, 3.9
2 2 ll<M t

we obtain (see, for example, Bentkus et al. 1997)

Fi(x+) — G(x) <EIl, + EI, + EI3, (3.10)

I = EH_ Re{—xt}Kl (é)fl(t)dz,

I = %VP e[~} Ky (%) (f1(t) — G(t))%,

1 t ~ dt

I3 =—VP —xt K| — | —1)G(H)—
() )t
where VP means also that one should take lim,,_., if necessary.

Combining (3.8) and (3.9), we obtain a bound for G(x) — Fi(—x) similar to (3.10). We
shall bound Fj(x+) — G(x) only. To this end, we prove that

1/2

[EL|+ B + L) < N7 (Ba/q + 071 (07 +¢7 )+ 07272y  +ya) +va). (B.1D)

The analogous bound for G(x) — Fj(x—) can be derived in the same way. Using these
bounds, (3.5) and the inequality 6 = p (see Lemma 2.1), we obtain the estimate of the
theorem. in the remaining part of the prooof we verify (3.11).

Step 3: Estimate for |El;|. We shall replace the random bound H in the integral /; by a
non-random one and K;(¢/H) by 1. We have |El|| < |ElL4| + Els, where

I4=H_1J~e{—tx}1(1 <%>f1(t)dt, Z={teR: |t =< H},

t
Is = H*IJ K, <H> |f1(8)] dt < H”J |f1(2)] dz.
Hi<|1| H\<||<H

Next we construct bounds for E/s and |Ely|; see (3.12) and (3.19) below. It follows from
these bounds that |E/;| does not exceed the right-hand side of (3.11).
Let us show
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Els < N %B;. (3.12)

For this purpose we represent f1(f) in Erdds and Rényi (1959) form conditionally, given
Apits .., Ay. Let v* ={v], ..., v}} be a sequence of independent Bernoulli random
variables independent of .7 and with probabilities

e R R R e = AR B

Write Sx = Y ke 7,(vi — p*) and Lx = Y e 7, l(Ax)v;. We have
1 7T
fi(t) = P 1Sy :O}EJ W ds, W =E*e{t(Lx + U') + sSx}. (3.13)
-7
We shall construct an upper bound for || We have
(W= 1] 1B+(=(40) + 0(4p))|,  Bx(x) = Ee{(v] — p*)x}.
ke 7o
Here we denote
z(a) = tg1(@) +s and  v(a) = vi(a) + va(a),

with v;(a) given by (3.6). Then we apply the identity |Bx(x)|> =1 —2p*¢™(1 — cosx) to
x = z(a) + tv(a) and expand the cosine function in powers of fv(a) to obtain

Ba(z(a) + t0(@) < ui(a) + ux(a), (3.14)
(@) =1-2p*q* (1 - cosz(@)),  us(a) = 2p* | 10(a).

Furthermore, we may assume that p™ < 8! (this is a consequence of the last inequality of
(3.3) provided that ¢ is small enough). This inequality implies u;(a) = 1/2 and, therefore,

ui(a) + uz(a) < ui(a)(1 + 2uz(a)). (3.15)
Combining (3.14) and (3.15), we obtain
WP =wiws,  Wi= [ w0, W= T 0 +2u(4p). (3.16)
k€T k€70
To estimate W,, we apply the arithmetic-geometric mean inequality,
|70l
1
Wa< |57 D (+2m(d) | = E 1+ 2u(45))" ", (3.17)
|<)ZO| ke 7o

and use (5.2) to bound E*|v(43)| < ¢~'(©, + ©,). Thus, for |¢f| < H, we obtain
0 0
E*(1+2u(4p)) < 1 +4p7q"q ' HO) +©y) < 1+ p*q o < eXp{p*q* g}
This inequality, in combination with (3.17), implies W;/ ’< exp{mq*5/16}. Now in view of
(3.16) and (3.13) we obtain, for |7] < H,

Al < w2, W3 = m'? exp{mq*6/16}.
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Here we have estimated P~'{Sx = 0} < m'/?; see (5.16). We have

1 w
Els $FEJ |f1(t)\dt<73 Ew}/?dt. (3.18)
1

H <|t|<sH 1 JH1s|t|sN
To bound EW}/ 2 we apply Hoélder’s inequality and Theorem 4 of Hoeffding (1963),
EW*)? < EW) < (Bur(4) )5

see Section 5 below. Note that Euj(4;) < 1 —2p*q*9, for H; < [t| < N, by the choice of

0. Therefore,
EWY? < (1= 2p*g*0)" V"2 < exp{—p*¢*d(n — N + m)} = exp{—mg*0}.

Combining this bound with (3.18) and using the inequality ¢* = 1 — p* = 7/8, we obtain
(3.12), provided that the constant Cy (in the definition of m) is sufficiently large.
We must now bound E/;. We shall show

EL| < %0,  Zo=N"'0204q )+ N"'0"¢g "0 +q 'y¥. (3.19)

It follows from the inequality |K;(u) — 1| < |u| that

Iy =1I¢ + R, Is = H’IJAe{ftx}fl(t)dt, (3.20)

E|R| < EH*IJ |t|H ' dt = HIEH * < 7,

where in the last step we have applied (5.1). Recall that U = U; + A,,. Now, using the
inequality |e{fA,} — 1| < |tA,], we obtain

le=1,+R  I;= Hfljke{ftx}fz(t)dt, fa(t) = EPre{tU}, (3.21)

ER| < EH”J EP"|tA,,|dt < HIEH ' |A,| < 7,
where in the last step we have used the inequality |A,, H~'| < A% 4+ H? and moment
inequalities (5.1) and (5.3). Next we replace /7 by

=i elmwpma 2= (G <= ), (3.22)

Z,
where C; is a sufficiently large constant. We have [; = Iy + R with |R| <2Ciq 'H!.
Hoélder’s inequality, in combination with (5.1), gives E|R| < .%.
It remains to estimate Elg. Write Iz = 32¢ 167" (J; 4+ J5) + 0~'J3, where

=0

Ji= J e{—-t}f2(O;dt, i=1,2, Jy = N*IJ e{—x}f2(t)dt.

<0
In order to complete the prooof of (3.19), we shall show

EJ; < N Y1 + ), i=1,2,3. (3.23)
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Let us prove (3.23) for i = 1, 2. By symmetry, it suffices to consider the case where i = 1.

Recall that the random variable ®; is a function of X4y, ..., Xy. In view of the inequality
k ~ (N + m)/2> m, we can write
EO, /2(1) = EO, f3(1), f3() =B(e{tU}HXks1, ..., Xn). (3.24)

Given t € Z,, choose an integer m; = Co Nt 1In|t|. Here C, is a sufficiently large constant
to be specified later. Given C,, we may choose C; in (3.22) large enough so that
my; <10"'gN < k, for t € Z,. Write T3 =Qu N(R,\Qy). We shall represent our sample
X1, ..., Xy as follows. For m; +1 < j < N, put X; = A;. The remaining part of the sample
(the observations X, ..., X, ) represents a simple random sample drawn without
replacement form the set .43 = {4y, k € 75}. Let A;k be a random variable uniformly
distributed in . Z3. Put

N

vi(@= > gla 4;) and O3 =E*[v3(43)|. (3.25)
k=m;+1
Notice that the random variable @5 is a function of 4,41, ..., AN.

Write U = U} + A,,,, where U} = L, + Uj, with

N
Li=0LX)+ ...+ L(Xm), L(x) = g1(x) + I5(x), Iyx) = Z 2(x, X)),

Jj=mi+1

and with U defined by (3.1), but with m replaced by m;. Furthermore, A, is given by (3.4).
Using the inequality |e{tA,, } — 1| < |tA,,], we obtain

EO, f3(f) = EO, f4(t) + Ry, fa(t) = E{tUT} Xkt - -» Xn), (3.26)
where |R;| < E|tA,,|©,. Furthermore, combining (3.24) and (3.26), we obtain

EJi =EJs+ R, Jy = J e{—tx}f4(t)®1 ds, (3.27)

IR| < Jh E|tA,,|©;dr < N7 ly,.

<0
In the last step we invoke (5.1), (5.3) and apply Holder’s inequality to obtain
E|An[©1 < (EA%VIL)I/Z(E@%)W < mlN*sz <t! ln\t\N%/ZVZ

and bound the integral of the function |#|~'In|¢| over the region Z, by In?> N.
To estimate EJ4 observe that, by the inequality m; <k,

E®,f4 =EO,fs, fs =EE{tU}| Xm+1s -, Xn).

Therefore, EJ4 = EJs, where Js is defined in the same way as J4 (see (3.27)) but with f4
replaced by f5. Furthermore,

EJs =EJg + R, Je = J e{—tx}fs()O1p dt, (3.28)
Zo
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lo=I{N®; <cl}, |R< J EO,[{NOs > ¢\ ||} df < NEO,Os.
Zo
Here ¢; denotes a small positive constant to be determined below. Combining (5.3) and
Holder’s inequality, we obtain |R| < N~ly,.
In order to bound EJg we represent f5 in the Erdds and Rényi (1959) form; see (3.29).
Let v* ={v},...,v;} be a sequence of independent Bernoulli random variables in-

dependent of .7 and with probabilities

* * * * * ml
P{v; =1} = p, P{v; =0} =¢q~, p

= (N—m)’
Write S, = > ke 7,(Vi — p*) L =Y ke 73 L(Ap)v} and 72 = myq*. We have

q*zlfp*-

0T,

f5(0) = A*J. W, ds, W, = E*e{t(L* + U+ TSS*}, (3.29)
—7T, *
with A" = 27, P{S, = 0} satisfying A, < 1, by (5.16).

Combining (3.28) and (3.29), we obtain

0T
EJg <<J dtJ EO,Ig|W,]|ds. (3.30)
Zo —nT,
In the next step we construct an upper bound for E@;/g|W,|. Note that the inequality
m; <107!'gN implies p* < 10~'. The same argument as above (see (3.16)) gives

\W. 2 < Wiws, wi= T . wy = ] (0 +2u5(40), (3.31)
ke 73 ke 73

where u} and uj are given by (3.14), but with p*, ¢*, z(a) and v(a) replaced by p*, ¢*,
z,(a) == tg1(a) + s/t and v3(a) (defined in (3.25)) respectively.
To bound W7 we proceed as in (3.17) and obtain
W3 < (1+2E u3(43)""" = (1 + 4p"q*|1|©3)" V" < exp{4m147|1|©s}.

Furthermore, by our choice of my, I@(Wg)l/2 < exp{2¢*Cc; In|¢|}. Therefore, in view of
(3.31),

E®, Io|W.| < exp{2¢*Caci In|t|}E@,(W})'/2. (3.32)
Now we apply Hoélder’s inequality and invoke (5.1) to obtain
EO,(W)'/? < (EOYH PEWD* < N~y 2 E W2, (3.33)
To bound EW7} we apply Theorem 4 of Hoeffding (1963) and obtain
EW* < (Bui(4)7° = (1 = 2p*¢* M) V™ < exp{—2mq* M}, (3.34)

where M = E(1 — cosz,(A4;)). Combining the inequalities
M = E(1 — cos z, (A ) 5 (A4,), Iy(a)=1{a € X},
1 — cosz.(a) = 27'O(by)z%(a), ac X,
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(see (5.15)) we get M = 27'O(by)Ez2(41)I #(A1). Now, by Lemma 5.3,
M = by (N~ + 5*12), by = 27'@(by)(1 — 2b1 by ),
is a positive constant (because of our choice of 0 <2b; < b, in (1.5) and (3.2)). Substituting
this inequality in (3.34) and using ¢* = 1 — p* = 9/10, we obtain
EW?r < exp{—2bsmig*(*N~ ' + s*1,%)} < exp{—2b3(FC> In|1] + sHY. (3.35)
Finally, collecting the inequalities (3.32), (3.33) and (3.35) in (3.30), we obtain
EJs < N*lyg/ZJA dtJm* exp{C2(2¢1 — 5b3) In|t| — b3s?} ds. (3.36)

—TT,

=0
Choosing ¢; = b3/4 and C, =4/b;, we obtain bounded integrals in (3.36), and thus
EJo < N~'y)* < N=!(1 + y,). This inequality, together with (3.27) and (3.28), completes
the proof of (3.23) in the case where i = 1.
The proof of (3.23) in the case where i = 3 is similar but simpler: just write N~' instead
of ®; in the proof above.
Collecting the bounds (3.20), (3.21), (3.22) and (3.23), we obtain (3.19).
Step 4. Estimate for ‘E(Iz + [3)| Write I, + I3 = i(2ﬂ)_1(l9 + Lo — 111 + 112), where
J1() — G(1)

I():J e{—tx}——=ds, 110:J
lt|=<H, t

et (1) o2,

H\<|t|<H

T = Jflee{—tx}G(z)%, T = stﬁle{_tx} (K2 (é) - 1>f1(t)¥'

Using (3.3), it is easy to show that |Ely| < ¢ 'B4/N +y2/N. Using the inequality
|K(s) — 1| < cs?, and invoking (5.1), we obtain

|Ely| < EH?H? < 0 °N7'(1 4+ ¢ %9)).

To bound |Ely| write

d¢
|[Elo| < El, 113:J |f1(f)|m-

H\<|{|I<H

The bound El;3 < N~!f3; is obtained in a similar way as (3.12) above. Collecting these
inequalities, we obtain

[E(I + I3)| < |[EL| + N7'g7'Bs + N7'072(1 + ¢ *y2). (3.37)
In order to complete the proof of (3.11) we shall show that
[ETo] < 0 2N""(1+y2) + N"'(q7"Ba + ya). (3.38)
We have

Ely = J e{—n}(Be{tU,} — G(r))g.
t]<H, t
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Recall that U; = U — A,,. Write e{tU,} = e{tU}e{—tA,,} and expand e{—tA,,} in powers
of —itA,, to obtain Elg = I14 —il;5 + R, where

F(1) — G(t) ar. Ios :J”l
—H,

L :J e{— ) D=6 e{— i} EA e U} d1,

and where |R| < H%EA%H < 072N"ly,, by (5.3). By symmetry, El;5 = (")El6, where 6 is
defined in the same way as [;5, but with A, replaced by gy(Xy_1, Xy). the bound
El,g < N73/2(1+7y,) is obtained in a similar way to (3.23): just take f3 =
E(e{tU}|Xny-1, Xy) instead of f3 and gr(Xy_1, Xy) instead of ®; in the proof of (3.23)
(for i = 1). We obtain

‘Elg — ]14| < (5_2N_1(1 + v2).

In the next section on expansions (see (4.1) below) we shall show |I14] < N~'(B4/q + y4),
thus completing the proof of (3.38).

3.3. Proof of Theorem 1.2
The bound of the theorem follows from (3.11). Just note that for a linear statistic we have

2(x, ) =0, for any x, y € .Z. In particular, we do not need to assume that the last two
inequalities of (3.3) hold.

3.4. Proof of Corollary 1.3

The corollary follows from Theorem 1.1, by the law of large numbers (LLN) for U-statistics;
see, for example, Serfling (1980). Given N, the function .77 and a sequence of i.i.d.

observations .%'|, .25, ..., introduce the sequence of finite populations .7, =
{£"1,...,.2",} and the corresponding sequence of U-statistics, (U,). Given x € R, apply

the bound of Theorem 1.1 to the sequence of probabilities P,{x} = P{U, < x}. By the LLN,
we obtain lim,P,{x} = P{U < x}. Furthermore, the moments of the linear and quadratic
parts of U, in the expansion and in the remainder (in the estimate of Theorem 1.1) converge
to the corresponding moments of the statistics U, thus proving Corollary 1.3.

4. Expansions

As in the previous section, we assume that 5, = 1 and that inequalities (3.3) hold. With H,
given in (3.2), in this section we shall prove the inequality

JM{ |t~ E(f) — G()| dt < .2, R = ~ (ﬁ; +v4 ) 4.1)

We introduce some notation. Let 6, 6,, ... denote independent random variables
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uniformly distributed in [0, 1] and independent of all other random variables considered.
For a vector-valued smooth function H we use the Taylor expansion

xn+1

H(x) = HO) + H'(O)x + ... + H"(0)> + Eg HD(@01)(1 — 0,)" .
n! n!
Here Ep, denotes the conditional expectation given all the random variables but 6;. In
particular, we have the mean value formula, H(x) — H(0) = Ey, H'(01x)x.
Given a sum S =s; + ...+ 5%, denote S =8 —s; and, similarly, S =§ —5; —s,.
Using the fact that the distribution of U coincides with the conditional distribution of

U() = Z h(Ai, Aj)Vﬂ/j

1<i< j<n

Z gi(4)w; — p) + Z g2(4;, 4)(vi — p)(v; — p),
=1

Isi<j<sn

conditioned on the event B := {Sy = N}, where Sy = Y ,v;, we obtain
7T

~ 1
PO = e By .

see Erdds and Rényi (1959). Write

Ee{tUj + s(So — N)} ds;

r= Z T;, T; = zi(vi — p), zi =ty +sT !, x;i = g1(4)), T = (npg)'/?,
1

0= Z 0., 0i; = tyij(vi— p)v; — p), Vij = &(4i, 4)).

I<i<j<n

We have T + Q = tUy + st '(Sy — N) and, therefore,
F(f) = ,1J

Hoglund (1978) showed that 2~ 1/2x < A~! < (2m)!/?; see (5.16). We shall approximate the
integrand Ee{T + Q} by the sum A; + hy, where

T
Ee{T + O} ds, 27! = 2nrP{B}.

—7T

hy =Ee{t},  h = 13(;)Ee{T“’2)}V, V=00,TTs.

To prove (4.1) it clearly suffices to prove the inequalities

A dr ,
J /IJ (b + hoyds — G| & < 2, 4.2)
l=<m | Jisj<nr 1]
d¢ )
[ J zj [Ee{T + O} — (hy + hy)| ds— < 7. 4.3)
l[f|<H, J|s|snt |t|

Note that in the i.i.d. case the inequality corresponding to (4.2) is proved in Lemma 6.1 of
Bentkus et al. (1997). We prove (4.2) by combining the proof of this lemma with the proof of
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the Berry—Esseen bound for the finite-population sample mean given in Hoglund (1978). For
details we refer to Lemma 4.3 of Bloznelis and Gétze (1997).

To prove (4.3), we expand e{T + Q} in powers of T; and Q;;. In order to ensure the
integrability (with respect to the measure dsd¢/|¢|) of the remainders of these expansions
we split Ee{T + Q} into a product of two functions (different for different values of s and
t) so that the first one is the characteristic function of a sum of conditionally independent
random variables and vanishes sufficiently fast as s and ¢ tend to infinity. This type of
approach has been used earlier by Helmers and van Zwet (1982), van Zwet (1984), Gotze
and van Zwet (1991) and Bentkus ef al. (1997) in the i.i.d. situation.

Introduce the set Z = {(s, 7): |s| < mz, |#| < H;}. For technical reasons it is convenient
to split the integral / in two parts I = I, according to the regions Z = 2, U 2,

Z sz{|l‘| $C3q_l} and Zzzzﬂ{C3q_l<|t|$ Hl} (44)

Here C; denotes a sufficiently large absolute constant. We choose C; = 6000~!(1). In
Lemma 4.1 we prove the bound [, < .72. The proof of the bound /, < .72 is similar but
simpler. We skip it and refer to Lemma 4.2 Bloznelis and Gotze (1997) for details. It remains
to prove Lemma 4.1.

Note that, for any i, j, i1, ..., i € Q, such that {i, j} N {i|, ..., ix} = we have

Bty "< ek, nElyiyl"s BN gl” < ek, nE|x|” r=0. 4.5

We need to introduce some more notation. Given D ={i, j, ..., k} C Q,, let Eipy =
,,,,, xy and Erp) =Ep;; ki denote the conditional expectation given all the random
Varlables but {v;, j€ D} and the conditional expectation given {v;, 4;, j€ D},
respectively. Given 1 < m < n, introduce the random variables

n

Ei=tvi— p)n(4),  Tw@= Y ga, 4)(v; - p). (4.6)

Jj=m+1

Here i € Q,, and a € 2\{441, ..., An}. Given B C Q,,, denote

E{B}E{Z Ti} s E{B}G{Z(Ti+§i)}‘.

i€B i€cB

Y= Zp=

Furthermore, given A4;, i € B, let Az denote the random variable uniformly distributed in the
set {4;, i € B} and let E% denote the conditional expectation given all the random variables
but 4. Introduce the random variables

Wy =gp(0) [[ it @0, x5 =aNERG(AY),  Is=I{xz>0}, (&7
keB
where a = 2m(4©~!(1) + 1) and 6 = ©(1)/40 are constants,
B
ga(t) = exp{pqi |N‘ 2} urg)(x) = 1 — —@(d)x21{|x| <d+m}, d>0. (4.8)

In Lemma 5.4 below, for |t] < H, and |s| < mr, we prove the inequalities
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Zp <L Ip+ W, Yp < Wp, El-bWl < FL r=1,2, (4.9)
where i, ..., iy € Q,\B. Here we denote
Fp = exp{—80pq|BIN~'(* + 5*/q)}.
We often take |B| = m/4, with m given by (4.13). In this case we have
Fp<(*+s*/q)7". (4.10)

Lemma 4.1. Assume that 3, = 1 and that (3.3) holds. Then

I = AJ [Bed T + Q}t_ U+ 1)l 4oar < . 4.11)

where Z, is given by (4.4).
Proof. Given a positive number L and a complex-valued function f(s, ¢), we write f < L if
J £ (s, B]|f| " dsdr < L.

Zn
Furthermore, for two complex-valued functions f, g we write f ~ g if f — g < .7%. In view
of the inequality A < 2'/2w~!, (4.11) can be abbreviated as follows:

EG{T+ Q} ~ h] + hz. (412)
Given (s, t) € Z, wirte u = t> +s?/q and let

m = m(s, £)> Csq 'nu~'Inu, Cy = 300071(1), (4.13)

denote the smallest integer which is greater than C4g~'nu~'Inu. A simple calculation shows

that Cy < m(s, 1) < C4C§1n, for (s, t) € Z,. Since C4 = C3/2 we have 10 < m(s, f) <
n/2.
Write @ := mpgN~' = C4u~"Inu. We shall often use the following fact,

(A < PV ea, B, y), fory>a+p+L  a,p=0.

In what follows B always denote the set {4, ..., m}. R, R;, R, ... will denote random
variables (remainders) which may be different in different places. This will not cause any
misunderstanding if we assume that R, R, R, ... always take the latest prescribed values.

Let us prove (4.12). Split Q= Q4+ Op+& and T = T4 + Tp, where

O4= Z 0, Op = Z 0., E= Z i

1<i< j<m m<i<jsN I<i=m
TA = E T[; TD = E Ti:
lsism m<isN

and where the &; are given by (4.6). Furthermore, write W = Tp + Op. We have T + Q
=T+ 04+&E+ W and e{T + O} = ve{Q,}, with v=e{W + T, + &}. Expanding in
powers of iQ,4 and using symmetry, we obtain
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Ee{T + Q} = f{ + /5 +R, F¥ = Ev, fr= i(’;)Ele,z, (4.14)
with |R| < EQ?. By symmetry, we have
EQ = <Zl)p2q2t2Eyiz <WeNyy < 2.
Now (4.14) implies e{7 + O} ~ f7 + f5.
The rest of the proof consists of two steps. In the first step we show that

¥~ by, hy = i3<gl>Ee{T“’2)}V. (4.15)

In the second step we prove
f1~ hi+ ha, where hy = hy — h;. (4.16)
Step 1. We start by showing

3~ r3 fi= i(gl)EUlQl,z, vi =e{W + Ty + &M} 4.17)

Write v = vie{&; + & }. expanding the exponent in powers of (£ + &), we obtain
=+ ri+r. fi= 12(’;’>EUIQ1,21A, j=4,5,6,

Iy=861+6&, Is = (& + E)va, ls = 281650, vy = i%e{01(& + E)}(1 — ).

In order to prove (4.17) we shall show f :k ~ 0, fori=45,6.
To show f : ~ 0, we bound |v;v;] <1 and obtain

[fel < m’E|Q12&1&] = m* PP ¢ |tPE[y125m(A1)Em(42))-
Combining the inequalities |&,,(41)En(42)| < & (4)) + &2,(4) and
E|y12]6,(4) = pq(n — mE|y1a|y;, < gN "y, i=1,2,

and the bound |7| < N'/2, we obtain |fs| < u22ys N~ < .%.
Let us show f ;‘ ~ 0. By symmetry, it suffices to show m*Ev,v, Ql,zﬁ ~ 0. Expanding the
exponent in v, in powers of 105, and then the exponent in vy in powers of i7, we obtain

[Ev10201287] < Ry + Ry, R = E|Q1,6|&, Ry = E|Q12TH|E.
Invoking (4.45) and the inequality || < N'/?, we obtain
MRy < AN TPy <2, PR < PPN (14 ya) < 2,

thus completing the proof of f ;k ~ 0.

Let us show f:f ~ 0. By symmetry, it suffices to show m*R ~ 0 with R = Ev;0,&;.
Expanding v, in powers of i7,, we can replace v; by iT,v;, with v; =e{W +
T(j) +&12 40, T,}. Now, using the simple bound |E{5 03| < Zp, we obtain
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|R| < ER Ry, Ry = 01275, R, =Enpl&i|Zs. (4.18)
First we bound R,. By Hoélder’s inequality,
Ry < RyRy,  R:=Epyn&,  R:=EpnZzs (4.19)
Furthermore, by (4.9), Ri = 2R§ + 2R2, where
R2 = Ep 0% < 0 'Ep ks < Epogks, R2 = E; 19 W3 < F3. (4.20)
Combining (4.20) with the relations (which follow from symmetry and (4.5))
Engél = pa(n — m)vi — py’PE'?)] = q0n — p?NE') 421
Eks = aNEj2Gm(4s) = aN(n — m)pgE?y; , < gN~'ya, (4.22)
we obtain
RyRs < qlvi — plltlys*7* and  RsRe < N'2q'"2|vy — p||t|73/* Fs. (4.23)

Here we denote y, = E!?)? V1., using the first inequality of (4.23), we obtain
n’ER Ry Rs < m* p*q* 2y *E| yia |7y |2a),
and invoking the second inequality of (4.47), we obtain
m*ER Ry Rs < 1> N~'y3* < %, (4.24)
Using the second inequality of (4.23), we obtain
m*ER RsRe < m” p*q*> N> Fg*E| 127 %|za),
and invoking the first inequality of (4.47) and (4.10), we obtain
m*ER R3Ry < 1> N~ Fpi*(|tlq"? + |s])y2 < .2%. (4.25)

Since, by (4.18) and (4.19), |R| < ER1R3Rs + ER| R3Rs, it follows from (4.24) and (4.25)
that m*R ~ 0.
In the next step we show that

fi~rfr A=t ( ) >Eu4 V.,  vg=e{w+ 4P+ £} (4.26)

Substitute v; = v4e{T) + T»} in f ;k . Furthermore, using the expansion

e{Ti+ T} =+ Tr+ Toe{60: T} (1 — 0)))e{ Ty}

=e{T1} + (1 + T + T3e{0:T1 }(1 — 02)) + T3e{0: T> }(1 — 01)(1 + T1e{6: T\ }),

(4.27)
we obtain Ev; Q15 = EvsV + Ry + Ry, with |R;| < EZp|VTy|, i = 1, 2. Therefore, in order to
prove (4.26) it remains to show m?R; ~ 0, for i = 1, 2. By symmetry, it suffices to show
m2R1 ~ 0.

It follows from (4.9) and (4.22) that
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|Ri| < E|VTi|kp + E[VT1|Wp < (N~ gy + Fp)E|VT1]. (4.28)
Combining (4.46) and the inequalities |¢f| < N'/? and |s| < (Ng)'/?, we obtain
EVT| < pPlil(e] + [slgIN T2 Ba+ ya) /2.
Therefore,
m* N gy BV | <t (1> + s2)N 7 (By + y4) < 2.

Finally, (4.46) in combination with (4.10) yields m?> FgE|VT|| < .7, and this inequality, in
view of (4.28), completes the proof of (4.26).
Now we show

fi~re fi= i3<’;>EUS v,  vs=e{W+ Ty, (4.29)

Expanding v, in powers of i€(?, we obtain
EvsV = EvsV +iEvsVE!? + R, with |R| < E(E1D)|V]. (4.30)
Write |R| < E|V|E[1 ()%, By symmetry and (4.5),
Ena(§"?) = pPq’(m —2)(n — m)PE? )3, < ugt® N™'ys,
Now invoking (4.31) — see below — and the bound |f| < N'/?, we obtain
m?|R| < @2 t3(t* + sH)N " yy(ys + 1) < 2.
This inequality, together with (4.30), implies f° ;‘ ~ f ;‘ +f ;‘ , where

af m af m
fs= 14( ) >EU5 yElD = 14( > )(m —2)EvsVé&s,

in symmetry. In order to prove (4.29) it remains to show f§ ~ 0, to which we now turn.
Expanding vs in powers of iT5; we obtain |EvsVE&;| < EYp|VE;T5|. Now, using (4.9), we
obtain

|f5] < m’E|vsVET3| < m* FgE|VETs3| < m® FgE|V|E'2|& T
Finally, invoking (4.10) and the bounds (which follow from symmetry and (4.5))
EV| < (BQ7 ) PETITY' < ¢ lil(7 + 57 /9N~ y)%, (4.31)
ERI&Ts] = (BE)AE T < palil(i] + [shV 2y,

we obtain f;k S
Let us show that f : ~ h3. Expanding vs in powers of iQp, we obtain

EvsV = EvgV +iEvsV Op + R, vs = e{T"1?}, (4.32)
with |R| < EY3|V|Q3. Note that, by symmetry,

n—m
EY3|V|0} = ( 5 )tzpzquYglVlyil,n- (4.33)
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Invoking (4.9) and then using (4.5), we obtain
EY3|V|y, 1, < F5E[V]y, 1, < FsNp2E|V]. (4.34)

Combining (4.33) and (4.34) and then invoking (4.31) and (4.10), we obtain m*R < .72. Now
it follows from (4.32) that £} ~ hsy + £, where

fio =1 ( i )Eu6 rop =it (’;’)w — mEV6V 1.,

by symmetry.

We complete the proof of (4.15) by showing that f >1k0 ~ 0. Expanding v¢ in powers of
iT,—1 and iTy, we obtain |[EvsVQ,_1.| < E|V*V|Yp, where we denote V* =
Ty1T,On_1n,. Furthermore, using (4.9) and then invoking the simple inequality
E!2|V*| < E|V*|, we obtain

E|V*V|Ys < FRE|V*V| < FE|V¥|E|V| = Fp(E|V|)*.

Therefore, |f},| < m?*(n — m)Fp(E|V|)?. Finally, an application of (4.31) and (4.10) yields
f To < .72, thus completing the proof of (4.15).
Step 2. In order to prove (4.16) it suffices to show that

f>1|< ~ f>1k1 +f1k29 fikl = EU79 f>1k2 = iEU7§) U7 = e{T + QD}:! (435)
* * * _ (B —m\.3 (1,2)
fa~h+fi5 Sz = ) 1 Ee{T }V, (4.36)

o~ i fia=mn— M)7PEe{t"}7. (4.37)
We begin by expanding v in powers of i§, to obtain
SE=Ffat fls with £ = PEoEe 0,61 - 0y).
In order to prove (4.35), we shall show f Ts ~ 0. Split
Q,,=8SUSUS3US,,
with §;NS; =D, i #j, and |S;| =~ m/4, 1 <j<4. Split §=0; + ...+ 04, Where 0; =
Ziesjéi. We have

f;ks = Z Vjks Tjk = izEU7(§j6kC{01§}(l — 01)

1</, k<4

We shall show r;; ~ 0, for every 1 < j, k < 4. By symmetry, it suffices to prove r;; ~ 0 and
rip~ 0.
Let us show r; ~ 0. expanding in powers of i0;0,, we obtain

e{0:&} = vg + 10,0380, vg = e{01(0; + 03 + 04)}, U = 0,Eq,e{0,0,0,}.
Substitution of this formula gives

g = R1 + Rz, R1 = izEU7036%(1 — 01), R2 = i3EU7Ugl}(§%62(l — 01)
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Similarly, expanding vg in powers of 1603, we obtain R, = R3 + R4, where
Ry = i3EU7U9($%(321}(1 — 91), Vg = 6{91(61 + 64)}, |R4| = E6%|62(33|

Therefore, [ry1| < |Ri|+ |Re| + |Rs|. Furthermore, invoking the inequalities |E, v705| <
Ys, and |Eqg,y07090| < Yg,, we obtain

lral < ri 4 r+ 7, r =Eo&1Ys,, ry = E&7|01| Ys,, ry = E0}[0203]. (4.38)

Now we show r; ~ 0, for i = 1, 2, 3. Denote for brevity m; = |S;|, 1 < |i| < 4.
Let us show 7, ~ 0. By symmetry,

E(s,107 = mipgt’o (A1),  Eys)05 = mypgt*t(4;,), (4.39)

with iy € S,. Combining (4.39) and the inequality E(s,)|02| < (E(s,;05)"/? and using
symmetry again, we obtain

ry = EYs,(Eqs,)01)E(s5,)[02] < mlm;/z(pq)yz't|3E§3n(Al)|§m(Aio)|YSz

< m(pg)*[tPEICm(AD Vs, (4.40)

In the last step we applied (4.44) and again used symmetry. Furthermore, invoking (5.4) and
using symmetry and (4.9), we obtain

E[Cn(41)] Ys, < N2 pg(n — m)E|y1 [ Ys, < N Fg,ys.

this inequality, in combination with (4.40) and (4.10), implies 7, ~ 0.
To show 7, ~ 0 we use symmetry, and apply (4.9) and (4.10):

ro=mt*p*q*(n — m)EyinYS2 < tngzN_lyz < .7%. (4.41)

To show 73 ~ 0, we first use (4.44) to obtain r;3 < Eé%é% + Eéfd% and then apply (4.48).
Finally, collecting the bounds r; < .72, i =1, 2, 3 in (4.38) we get r;; ~ 0.
Let us show 7, ~ 0. Expanding in powers of 16,05 and i6,04, we obtain

e{0:&} = vio + V11110, 03, U0 = e{01(01 + 02 + 04)}, v = Eg,e{6,6,03},
V1o = U2 + 01201310104, v = e{6,(6; + 62)}, U3 = Eg,e{010504}.
Combining these expansions, we obtain
e{01E} = v1g + V11V12101 05 + V110120131207 0304.

The last identity, in combination with the bounds |E{S3}U7U10| <Ys, and
|E{s, 07011012] < Yg,, implies

r12 < E|0102|Ys, + E|010203|Ys, + E|01020304]

< Ed;Ys, + E0; Ys, + E01|02|Ys, + EO3]02| Vs, + EO705 + ES305. (4.42)

In the last step we used the simple inequality ab < a® + b* several times. Note that the
quantities in (4.42) can be bounded in the same way as r{, 7, and r; above in the proof of
ri1 ~ 0. Hence, 75 ~ 0 and this completes the proof of (4.35).
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Let us prove (4.36). Expanding v; in powers of iQp, we obtain

fli=m+flg+R  flg=iEe{T}Op,
with |R| < EY BQ%. Furthermore, by symmetry,
n—m). n—m
fi6= ( ) >1E6{T}Q1,z and EYpQ), = ( 5 >p2q2t2EYByi—l,n’
Combining (4.9) and (4.10), we obtain R < .72 and, therefore, f Tl ~h+f Ts.
Let us show f¢ ~ /15 Write e{T} = e{T":?}e{T| + T,} and use (4.27) to obtain

Ee{T}Q1, = i’Ee{T" P}V + R, + R, with |R;| < E|V T;| Y. (4.43)
By (4.9), |Ri| < FE|VT,|. Furthermore, invoking (4.46) and (4.10) we obtain n’R; < .7,
i =1, 2. These bounds, together with (4.43), imply f T6 ~ f T3, thus completing the proof of
(4.36).

Let us prove (4.37). By symmetry, f Tz = miEv;&,. Expanding v; in powers of iT}, we
obtain

fo=rG+R,  fi;=mPEe{TY + 0p}&i T, |Ro| < mEY|&|T7.
Furthermore, expanding the exponent in powers of iQp, we obtain
[ =15+ R, fls = m’Ee{TV}& T, |Ry| < mEYp|E1 T1 Opl.

Note, that by symmetry, f Ts = m(n — m)i?Ee{TW}Q,,T;. Finally, expanding the exponent
in powers of i7,, we obtain

fre=/1r5+Rs, with |Rs| < n(n — m)EY|VT,|.

Therefore in order to prove (4.37) it remains to show R; <.%, for i =1, 2, 3.

To show R; < .7 use the inequality |§1|T% < 5% + T‘l‘. We obtain |Ry| < Ry + Ry, with
Riy = mEYTt and R;; = mEYE. By (4.9) and (4.10), Ry, <.%. Furthermore, the
bound R;, < .7 is obtained in the same way as (4.41).

To show R, < .7 use the inequality |&;T10p| < 5? + T%Q%. We get |Ry| < Ry + Rop,
with Ry = mEYBSf < .7 (cf. (4.41)) and with

n—m

Roy = mEYT1 Q) = m( 5

)EYBTfQ2 < mn® F3ET} Q>

n—1,n n-1,n>

by symmetry and (4.9). Now, combining (4.10) and the inequality
ET10, 1, = P’ PEAE Y, |, < P’ (2 + 5 /9Ny,

(here we use (4.5)) we obtain Ry, < . 7.

To show R; < .72 we apply (4.9) to obtain R; < nmFgE|VT,|. Then combining (4.46)
and (4.10) we obtain R; < .72. We arrive at (4.37), thus completing the proof of the
lemma. O

In the next lemma we gather together some auxiliary inequalities used in Lemma 4.1. We
shall frequently use the inequalities
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ab < a® + b*, ab<d +b. (4.44)
Lemma 4.2 We have
E|Q&lE < @ N Pys, EIQTE < PPN (U4 ya), (445)
ElQTaTH| < P11 +1sPq )N (Ba + va)' /2, (4.46)
Elyionlfy < N7y, Elyi2zlpy” < N7y, 72 =EYyl,. (447
E0% 0%, < pPq*tmE N3y, forany K, M C Q,,, KN M = O, (4.48)
with |K|, |M|>0. Here 0 =), c&i.

Proof. Let us prove (4.45). We have

E|0126:0]] < PGP *E|3128m(42)| 32 (A1) < 2P 1*E[ 31,8 (A1),

where in the last step we apply (4.44) and use symmetry. Furthermore, writing
E|y128,(4))] = E[»12|E'?|E2 (41)| and invoking (5.4), we obtain the first inequality in
(4.45). To prove the second inequality we apply (4.21),

E|Q12T|& = E|Q12Ta|En sl < P NItPEY] ,|yi222,

and use the inequality Ey} ,|y122,| < N7%/2(1 4 y4). To prove this inequality combine (4.5),
Hélder’s inequality and the bounds

[y1222] < VN|y12%| + |12l Vx| < Nyj, + N1

Let us prove (4.46). We have E|Q1,T»|T? < p*¢*|t|E|y1222|22. Now (4.46) follows from
the bound

Elyiozl2 < (1 + 2lslg™2 + |15 /g + |sPq >IN By + y0)'
which is a consequence of the following inequalities:
Aol < (A3 + 52/ nl, Elyan| < By AED? < N2y,
Elyiomlxi < (Exf,eD)2(Exixg)? < N7UEY]EXD < N7 (Ba+ ya)' 2,
Elyialx} < (Ex oD 2EDY? < NTVAEY] B2 < NGB+ )2

Let us prove (4.47). By (4.44), |y1,2x2|j7;/2 S N’l/zyiz + N'2x29,. Now invoking (4.5),
we obtain the first inequality of (4.47). To prove the second one, write

12 12 _1/2
E|J/1,221|Vz/ = Nl/zE\y1,2x2|Vz/ +E|J’1,2\Vz/

(where we have used the bounds |7| < N'/2

second summand.
Let us prove (4.48). By symmetry,

and |s| < 7) and apply Holder’s inequality to the
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E6% 0%, = |K||M|p*q* *EE. (A1), (42). (4.49)
A simple calculation yields
EC (415 (42) < pg(n — m)N~Cy4 + p*q*(n — m)(n — m — DN "8y < N~y

Substituting this bound in (4.49) and using the inequalities |K|, |M|<m and > < N, we
obtain (4.48). O

5. Auxiliary results

Lemma 5.1. For the random variables v; and ©;, i =1, 2,3, defined in (3.6) and (3.25)
above, the following inequalities hold:

E@? < N2y, i=1,2,3, (5.1
E¥|vi4)| < ¢7'©,, i=1,2. (5.2)

For Ny =371« j<n&(Ai, Aj) with 3 < m < n, we have

m(m — 1) 2(m—2) (m—2)(m—3)
EA2 =———(1 - = - : 53
m 2N3 ( CA))/Za CA n_2 (}’l — 2)(}’! — 3) ( )
For the random variable C,,(A}) defined in (4.6), the inequality
n
Bt En(A0P < pa(npg)'* Y |@a(dp, 4DF,  K<m=n, (54

Jj=m+1

holds, recall the definition of E(,1,. n just before (4.6).

,,,,,

Proof. We shall prove (5.1) for case i = 1 only. For i = 2, 3 the proof is similar. By Holder’s
inequality,

OF <E*i4))= > E¥g4], d)ga4f, 4)).
k+1<i,j<N

By symmetry,

EE* g2(47, 4)g2(A}, 4)) = Ega(41, 4)gx(41, 4)),
and therefore,

EO] < (N — DEg5(A1, 42) + (N = H)(N — k — DEga(d1, A2)gx(A1, 43).
Now, invoking the identity
Ega(d1, A2)ga(A1, 43) = —(n —2)"'Egy(4y, 42), (5.5)

(use (1.2)) we complete the proof of E@F < N~2y,.

To prove (5.2) we combine the obvious inequality /| 70| < ¢! and the inequalities

7.
i
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E o) = |70 S ool =170 Y ool =020 io1a

1 9
k€70 ke 7; 70l

Let us prove (5.3). By symmetry, EAfn =2"Y(m — 1)mEg,(4,, Ay)A,,. Furthermore,
Egy(41, A2)Ay = Egi(41, 42) + 2(m — 2)Egy(4, 42)g2(41, 43)
+ 27 (m — 2)(m — 3)Ega(A1, 42)g2(43, As).
Now, invoking (5.5) and the identity
Ega(A1, 42)g2(A3, As) = 2(n = 2)"!(n = 3)'Eg3 (41, A),

(use (1.2)) we obtain (5.3).
In order to prove (5.4) we apply Rosenthal’s inequality,

i . r/2

J J
E|21+---+Zjl’sc(r)ZE|zz’+c<r><ZEz%> . r=2,

=1 =1

where Z, ..., Z; are independent and centred ransom variables. We apply this inequality to
the sum &, (A;) — cf. (4.15) — conditionally given 4,

I=m+1 I=m+1

. } 3/2
E(mitn [En(A0] < pg Y |2a(dr, 4D + (pq > gi(Ak,Az)> -

Finally, using Hoélder’s inequality, we bound the second sum above by

n 3/2 n
( Z g3(a, Az)> < (n—m)'? Z |g2(a, A7), ac. 7,

I=m+1 I=m+1

thus arriving at (5.4). O
Lemma 5.2. For each 0<d <m and x, y € R, and B(x) defined in Section 3.1, we have
BGx+ WP < ua()via(»), where Ug(y) =1+ quj S +1))7%
d \O(d)
and where the function uyq id defined in (4.8).

Proof. In the case where |x| = 7 + d, we have upy)(x) = 1 and the desired inequality follows
from the simple bound |f(x + y)| < L.
In the case where |x| <m + d, we apply the mean value theorem to obtain

|cos(x + y) — cos(x)| < |E sin(x + 6 )y
< (I + IyDIyl = ex® + (¢ + 1)y* (5.6)

In the last step we applied the inequality |xy| < cx? + ¢~!y? with ¢>0. Combining (5.6)
and the indentity |B(x + »)|> = 1 — 2pg(1 — cos(x + y)), we obtain
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B+ »PF <1-2pg(1 —cos(x) — ex® — (¢ + 1))?).
Now invoking (5.15), we obtain
Ba+P<=witw,  wi=1-pgOW) -2  wr=(c"+1)2pgy’.
But 1 — pgx?©(d) = d/m, for |x| <m+d. Hence, w,>d/n and therefore w; + wy <
wi(1 + td~'w,). Choosing ¢ = @(d)/4 completes the proof of the lemma. O

Lemma 5.3. Assume that B, = 1. For every s, t € R and 0<d <m, we have
12 by b
EZZ(Al)[[d](Al) = (N + S2>(1 - ZC[d]), Cla) = max{j; d—;}
Here Z(a) = tgi(a) + s and Ig(a) = I{H\|g1(a)| <d}, for a € A~
Remark. A similar inequality was wused by Hoglund (1978), where the constatnt

corresponding to cpg;) was not specified. For our purposes the dependence of c¢; on the
g [d]
parameters b; and d is important and thus we include the proof.

Proof. Denote .7 |q) = {k: Ijg(ax) = 0}. Clearly, for >0,
il = D 1= D lg@)Hi/d|" < np,ps"bid " (5.7)
ke%'m kE,Z}/l[J]
Furthermore, since EZ?(4;) = *N~! + 52, we have
2
EZ2 (A () =5+ = Wn's W= 3 ZXayp). (5.8)
ke?fl'[d]
The inequality (a + b)*> < 2a® + 2b% implies W < 2W; + 2W,, where
7 o,
Wy = s*|Kia, Wy = t* Z giay) < N”2/35§/3\%[d1|1/3-
ke.%'[d]

In the last step we applied Holder’s inequality to obtain
2/3

o= Y lgi@l| |[Zul

ke?/f‘[,(] kE,Z(f'[d]
Now, (5.7) (with r=2) implies W < s?ncy. Furthermore, (5.7) (with r=3) implies
W, < t?N~'ncy. These inequalities, combined with (5.8), complete the proof. O

Lemma 5.4. Assume that f, =1 and that (3.3) holds. For |t| < H; and |s| < mz, the
inequalities (4.9) hold true.

Proof. Throughout this proof we use the notation introduced in Section 4. Fix B C Q,,. By
Lemma 5.2,
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Zg = [ [ 1Bk + &n(A0)| < mma. 7= [ unto, 15 = [ [ o (tem(40).
keB keB keB

Using the inequality 1+ x < exp{x}, we obtain 73 < exp{pgt*xp|B|/N} and therefore,
(1 — Ip)n, < gp(f). Finally, combining the inequalities Zz < 1 and Zp < #5,7,, we obtain

Zp=1pZp+ (1 —1Ip)Zp<Ip+ (1 —Ipmm < Ip+¥s,

thus proving the first inequality in (4.9). Here the random variables Wy = 1, g5(?), kg and Ip
are defined in (4.7) and the function gp(?) is given by (4.8).

Clearly, Lemma 5.2 (with x = z; and y = 0) implies the second inequality of (4.9).

To prove the third and last one, observe that by Holder’s inequality we have

Elipl < 2 for every iy, ..., iy € Q,\B. (5.9)
To prove (5.9) note that the inequalities |¢| < H; and |s| < @z imply
uno < wid),  wid) =1-Zewmdmuo.  keQ,

where we denote Ij11(a) = I{H,|gi(a)| <1}. Therefore,

W3 = gy(m) < gy(m,  where = [ [ w(4y). (5.10)
keB
Denote Dy = {i1, ..., is} and D, = Q,\D,. By Theorem 4 of Hoeffding (1963),
o 1
E'vty < wlf‘, where wy = 1 —EQ(I)F*, Iy = — Z Zi][l](Ak)- (5.11)
2 |D2| keD,

Below we construct the following lower bound for I'x,

9 2\ 1
Ts >E<t2+%>ﬁ (5.12)

Combining (5.11), (5.12) and the inequality 1+ x <exp{x} we obtain # <
exp{—0.45pg®(1)(t*> + s?/q)|B|N~'}. Now (5.9) follows from (5.10).
Let us prove (5.12). We have

n 1
Iy =——EBZ2I(4) ———M M= 2 I1(4y). 1
« =-——Baln(d) ——— M, 1;1 wI1(Ar) (5.13)

The simple inequality (a + b)* < 2a® + 2b* gives

M < 8s%/7° + 217 M, My =" gl(4p). (5.14)

keD

By Holder’s inequality and (3.3),
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2/3
n
My <433 g1 (40 < 4PN < (4¢g)' /P —.

ke D, N

Here we have estimated 35/n < B4/n < co; see (3.3). This inequality, in combination with
(5.14) implies M < 100~ 'n(¢> + s?/q)N~', provided that ¢y in (3.3) is sufficiently small.
Substituting this bound in (5.13) and invoking Lemma 5.3, we obtain (5.12) thus completing
the proof of the lemma. O]

We have used, but not so far stated Hoeffding’s (1963) Theorem 4. Consider a population

Z of n numbers py, ..., p,. Let 27, ..., .4y denote a random sample without
replacement from & and let %y, ..., %/ denote a random sample with replacement from
7. In particular, 7/, ..., %/y are independent random variables.

Theorem (Hoeffding 1963). If the function f(x) is continuous and convex then
N N
Ef<2%1k> gEf(Zf//k>'
k=1 k=1

We conclude this paper by stating two inequalities proved by Hoglund (1978):

1
l—cosvzilﬂ@(u), forjv)]<m+u and O<u<nm, (5.15)
1/2 N
T sV = )" N2rs(l — s)n)'/? <1, with s = —, (5.16)
2 N n
where 1 < N < n.
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