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Levy and Taqqu (2000) considered a renewal reward process with both inter-renewal times and

rewards that have heavy tails with exponents á and â, respectively. When 1 ,á, â, 2 and the

renewal reward process is suitably normalized, the authors found that it converges to a symmetric â-

stable process fZâ(t), t 2 [0, 1]g which possesses stationary increments and is self-similar. They

identi®ed the limit process through its ®nite-dimensional characteristic functions. We provide an

integral representation for the process and show that it does not belong to the family of linear

fractional stable motions.
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1. Introduction

Renewal reward processes with heavy-tailed inter-renewal times were introduced by

Mandelbrot (1969) in an economics context. Mandelbrot's model was developed by Taqqu

and Levy (1986) and adapted to the telecommunications context by Taqqu et al. (1997) who

considered an on±off version of the model. If the number of replications grows to in®nity

then, after rescaling, the limit turns out to be fractional Brownian motion. Fractional

Brownian motion BH (t) is a Gaussian self-similar process with stationary increments. The

self-similarity property means that BH (at) and aH BH (t) have the same ®nite-dimensional

distributions for all a . 0. The self-similarity exponent equals

H � 3ÿ á

2
, (1:1)

where 1 ,á, 2 is the heavy-tail exponent of the inter-renewal times.

Levy and Taqqu (2000) studied what happens when the rewards are heavy-tailed as well,

with exponent â 2 (á, 2) (they are in the domain of attraction of a stable distribution with

index â). They showed that, in this case, the limit process fZâ(t), t 2 [0, 1]g is a

symmetric â-stable process with stationary increments which is self-similar with exponent

H � âÿ á� 1

â
: (1:2)
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Observe that (1.2) becomes (1.1) if one sets â � 2. The process Zâ was only identi®ed

through its ®nite-dimensional distributions. But, since linear fractional stable motions

(LFSMs, see (2.8) and (2.9) below) are stable counterparts of the Gaussian fractional

Brownian motion, a natural conjecture is that the process Zâ is an LFSM.

The purpose of this note is to show that this conjecture is false, namely that Zâ is a

different process. We will also provide an integral representation for Zâ. We will show that,

while that representation bears close resemblance to the integral representation of LFSMs,

Zâ is, in fact, a new process, which we characterize.

2. Integral representation and identi®cation

The process Zâ was described in Levy and Taqqu (2000) through its ®nite-dimensional

characteristic functions as follows. (The de®nition given below differs from the one in Levy

and Taqqu (2000) by a multiplicative constant.) Let 0 < t1, . . . , td < 1 be d time points and

è1, . . . , èd be arbitrary real numbers. Set t � (t1, . . . , td) and è � (è1, . . . , èd). Then

E exp i
Xd

j�1

è j Zâ(tj)

8<:
9=; � expfÿ(I(è, t)� J (è, t))g, (2:1)

where

I(è, t) �
�1

0

����Xd

j�1

è j(tj ^ v)

����âvÿá dv

and

J (è, t) �
�1

0

�1
0

����Xd

j�1

è j(tj ^ vÿ u)�

����âá(vÿ u)ÿáÿ1
� du dv:

This work focuses on the limit process Zâ. We give an integral representation for Zâ and

provide some insight into its structure. We start by deriving its integral representation.

Proposition 2.1. The process Zâ can be represented in the sense of the ®nite-dimensional

distributions as

Zâ(t) �
�1
ÿ1

�1
ÿ1

((t ^ vÿ u)� ÿ (0 ^ vÿ u)�)M(du, dv) (2:2)

�
�1
ÿ1

�1
ÿ1

� t

0

1fu,s,vgds

� �
M(du, dv), (2:3)

where M is a symmetric â-stable random measure on R2 with control measure

m(du, dv) � á(vÿ u)ÿáÿ1
� du dv: (2:4)
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Proof. We ®rst show that Zâ admits the representation (2.2). By Chapter 3 in Samorodnitsky

and Taqqu (1994), it is enough to show that, for t and è as above,�1
ÿ1

�1
ÿ1

����Xd

j�1

è j((tj ^ vÿ u)� ÿ (0 ^ vÿ u)�)

����âá(vÿ u)ÿáÿ1
� du dv � I(è, t)� J (è, t):

(2:5)

Set

f t(u, v) � (t ^ vÿ u)� ÿ (0 ^ vÿ u)� (2:6)

and express the double integral in (2.5) as the sum of four integrals�1
0

�1
0

�
�0

ÿ1

�1
0

�
�1

0

�0

ÿ1
�
�0

ÿ1

�0

ÿ1

 !����Xd

j�1

è j f tj
(u, v)

����âá(vÿ u)ÿáÿ1
� du dv

�: I1(è, t)� I2(è, t)� I3(è, t)� I4(è, t):

Since, for v , 0, f t(u, v) � 0 the integrals I2(è, t) � I4(è, t) � 0. For v . 0 and u . 0

f t(u, v) � (t ^ vÿ u)�. Hence I1(è, t) � J (è, t). If v . 0 and u , 0, then f t(u, v) �
t ^ vÿ uÿ (0ÿ u) � t ^ v and, by integrating with respect to u, we obtain that

I3(è, t) � I(è, t). This establishes relation (2.5) and, hence, representation (2.2).

To obtain (2.3) note that, for any reals u, v and t . 0,

(t ^ vÿ u)� ÿ (0 ^ vÿ u)� �
� t

0

1fu,s,vg ds,

since both sides are zero at t � 0 and have identical derivatives for t 6� u, t 6� v. h

Observe that the stationarity of the increments of Zâ follows easily from the

representation (2.3). This fact is not obvious from (2.1) (see Section 6 in Levy and Taqqu

2000). Observe also that the process Zâ has continuous paths, in the sense that it admits a

version which is continuous. This is because, for any p , â, the pth moment EjZâ(t)j p is

®nite and, by stationarity of the increments and H-self-similarity of the process Zâ,

EjZâ(t2)ÿ Zâ(t1)j p � EjZâ(t2 ÿ t1)j p � EjZâ(1)j pjt2 ÿ t1jHp � Cjt2 ÿ t1jHP: (2:7)

Since

H � âÿ á� 1

â
.

1

â
or â.

1

H

we can choose p , â such that pH . 1. The existence of a continuous modi®cation (version)

of Zâ then follows from (2.7) and Kolmogorov's theorem (see, for example, Theorem 12.4 in

Billingsley 1968).

Can one reduce the double integral that appears in (2.3) to a single one? We would like

to know, in particular, whether the process Zâ is one of the LFSMs
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Lâ(t) � Lâ, H (a, b; t) �
�1
ÿ1

fâ, H (a, b; t, u)M(du), (2:8)

where

fâ, H (a, b; t, u) � a((t ÿ u)
Hÿ1=â
� ÿ (ÿu)

Hÿ1=â
� )� b((t ÿ u) Hÿ1=â

ÿ ÿ (ÿu) Hÿ1=â
ÿ ), (2:9)

a and b are two reals such that jaj � jbj. 0, the self-similarity index H is de®ned by (1.2)

and M is a symmetric â-stable random measure on R with Lebesgue control measure (see,

for example, Section 7.4 in Samorodnitsky and Taqqu 1994). Observe that, since

H ÿ 1

â
� 1ÿ á

â
. 0,

the function fâ, H in (2.9) could be expressed as

fâ, H (a, b; t, u) � a9

� t

0

(sÿ u)
Hÿ1=âÿ1
� ds� b9

� t

0

(sÿ u) Hÿ1=âÿ1
ÿ ds,

where a9 � a(H ÿ 1=â) and b9 � b(H ÿ 1=â).

The following arguments may suggest a procedure for reducing the double integral in

(2.3) to a single integral. As a ®rst step, we want to interchange in (2.3) the double space

integral with the time integral and study the process�1
ÿ1

�1
ÿ1

1fu,s,vgM(du, dv), s > 0: (2:10)

Since �1
ÿ1

�1
ÿ1

1fu,s,vg
�� ��â(vÿ u)ÿáÿ1

� du dv � 1,

the process (2.10) is not well de®ned. It is easy, however, to overcome this dif®culty by

eliminating the high-frequency components that make the integral (2.10) diverge. Namely, for

å. 0, we introduce the processes

Zå
â(t) �

�1
ÿ1

�1
ÿ1

� t

0

1fu�å,sg1fs,vgds

� �
M(du, dv) (2:11)

and

Lå
â(t) �

�1
ÿ1

a9

� t

0

1fu�å,sg(sÿ u)
Hÿ1=âÿ1
� ds� b9

� t

0

1fs�å,ug(sÿ u) Hÿ1=âÿ1
ÿ ds

� �
M(du):

Observe that, when t is ®xed and å! 0, Zå
â(t) and Lå

â(t) converge in probability to Zâ(t) and

Lâ(t), respectively. By Theorems 11.4.1 and 11.3.2 in Samorodnitsky and Taqqu (1994), the

processes Zå
â and Lå

â could be represented as

Zå
â(t) �

� t

0

~Zå
â(s) ds, Lå

â(t) �
� t

0

~Lå
â(s) ds,

where
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~Zå
â(s) �

�1
ÿ1

�1
ÿ1

1fu�å,sg1fs,vgM(du, dv), (2:12)

~Lå
â(s) �

�1
ÿ1

a91fu�å,sg(sÿ u)
Hÿ1=âÿ1
� � b91fs�å,ug(sÿ u) Hÿ1=âÿ1

ÿ
� �

M(du): (2:13)

We will focus on the stationary processes ~Zå
â and ~Lå

â instead of considering the processes Zå
â

and Lå
â which have stationary increments.

The second step of the argument involves performing the integration over v in (2.12). If

we ®x s and set

~M(du) �
�1
ÿ1

1fu,s,vgM(du, dv),

then ~M is a symmetric â-stable random measure on R with control measure

~m(du) �
�1
ÿ1

1fu,s,vgá(vÿ u)ÿáÿ1
� du dv

� (sÿ u)ÿá� du � ((sÿ u)
Hÿ1=âÿ1
� )â du: (2:14)

In view of (2.14), we can set

~Zå
â(s)�d

�1
ÿ1

1fu�å,sg(sÿ u)
Hÿ1=âÿ1
� M(du) (fixed s), (2:15)

where M is stable with Lebesgue control measure. Comparing (2.15) with (2.13), we would

expect that the process ~Zå
â has the same ®nite-dimensional distributions as the process ~Lå

â,

when a9 � 1 and b9 � 0, and therefore that the process (2.3) reduces to an LFSM. Since
~M depends on s, this is true for the marginal distributions (®xed time point s) but is not

obvious when one considers the distribution of the vector

( ~Zå
â(s1), . . . , ~Zå

â(sd)), d > 2:

In fact, the following proposition shows that the process Zâ is not an LFSM.

Proposition 2.2. The process Zâ in (2.2) is not one of the linear fractional stable motions Lâ

in (2.8).

Proof. We will proceed by contradiction. Assume that there exist two reals a and b such that

fZâ(t), t 2 [0, 1]g�d fLâ, H (a, b; t), t 2 [0, 1]g, (2:16)

where the equality holds in the sense of the ®nite-dimensional distributions. Since both

processes are self-similar with exponent H and have stationary increments, we may assume

that t 2 R in (2.16). By Theorem 3.1 in RosinÂski (1994), there exist two Borel functions

ö � (ö1, ö2) : R! R2 and h : R! R such that
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a((t ÿ u)
Hÿ1=â
� ÿ (ÿu)

Hÿ1=â
� )� b((t ÿ u) Hÿ1=â

ÿ ÿ (ÿu) Hÿ1=â
ÿ )

� h(u)((t ^ ö1(u)ÿ ö2(u))� ÿ (0 ^ ö1(u)ÿ ö2(u))�) (2:17)

dt du a.e. Fix u � u0 for which this equation holds dt a.e. By taking t . 0 large enough, we

necessarily have a � 0. Equation (2.17) is then not possible as t tends to ÿ1 because its one

side is asymptotic to bjtjHÿ1=â, the other to h(u0)t and H ÿ 1=â � 1ÿ á=â 6� 1. Hence

assumption (2.16) is wrong. h

How then to characterize Zâ? Since its derivative Z9â is not de®ned, we will instead use

the stationary process ~Zå
â introduced earlier. Were Zâ a linear fractional stable motion, then

~Zå
â would be a moving average. As we will show, ~Zå

â is a `mixed moving average'.

De®nition 2.1. A symmetric â-stable (SâS) stationary process fXsgs2R is a mixed moving

average if there is a Borel space E equipped with a ó- ®nite measure í on E and a function

g 2 Lâ(R 3 E, Leb
 í) such that

fX sgs2R�d
�

R3E

g(sÿ u, x) ~M(du, dx)

� �
s2R

,

in the sense of the ®nite-dimensional distributions. Here ~M is a SâS random measure on

R 3 E with the control measure Leb
 í. (A Borel space is a measurable space which is

measurably isomorphic to a Borel subset of the real line, that is, there exists a one-to-one and

onto map ø between the two sets such that both ø and øÿ1 are measurable.)

The class of mixed moving averages was introduced by Surgailis et al. (1993) as an

important extension of the usual moving averages. It preserves ergodicity and is closed

under linear combinations. This class also appears in the decomposition of a stationary

symmetric stable process established by RosinÂski (1995).

Proposition 2.3. The SâS stationary process ~Zå
â corresponding to the stationary increment

process Zâ is a mixed moving average.

Proof. Rewrite (2.12) as

f ~Zå
â(s)gs2R �

�
R3R

1få, sÿu , vÿugM(du, dv)

� �
s2R

and make the change in variables u! u and vÿ u! x to obtain a mixed moving average

representation

f ~Zå
â(s)gs2R �

�
R3R

1få, sÿu , xg ~M(du, dx)

� �
s2R

�
�

R3R

g(sÿ u, x) ~M(du, dx)

� �
s2R

, (2:18)
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where g(u, x) � 1få,u,xg and ~M is a SâS random measure on R 3 R with control measure
~M(du, dx) � áxÿáÿ1

� du dx. h

Observe that ~Zå
â can then be rewritten as

~Zå
â(s) � á1=â

�1
ÿ1

�1
ÿ1

1få,sÿu,xgx
Hÿ2=âÿ1
� M(du, dx), (2:19)

where M is a SâS random measure on R 3 R with Lebesgue control measure

m(du, dx) � du dx. While representation (2.15) holds only for a ®xed s, (2.19) holds in

the sense of the ®nite-dimensional distributions. Consequently, for the process Zâ, which has

stationary increments, we obtain:

Corollary 2.1. The process Zâ can be expressed as

Zâ(t) � (P)lim
å!0

� t

0

~Zå
â(s) ds,

where ~Zå
â has the mixed moving average representation (2.18) or (2.19) and where (P)lim

denotes the limit in probability.

Remark. The covariance is not de®ned for â-stable processes with â, 2. One uses instead

other measures of dependence such as the covariation and the codifference (see

Samorodnitsky and Taqqu 1994). The asymptotic behaviour of the covariation and the

codifference for the stationary increment process Zâ(t � 1)ÿ Zâ(t) is given in Levy and

Taqqu (1999).
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