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1. Introduction

Models for spatial point processes, describing inhomogeneity as well as interaction between the

points, have recently attracted considerable attention; see Baddeley and Turner (2000), Baddeley

et al. (2000), Brix and Mùller (1998) and Stoyan and Stoyan (1998). This appears to be a very

natural step towards more realistic modelling, where both ®rst- and second-order properties of

the point pattern (such as the mean and variance in a univariate setting) are taken into account.

At least two of these model classes can be derived from homogeneous Markov point

processes. (In the present paper, we will add another of this type.) According to the

Hammersley±Clifford theorem (Ripley and Kelly 1977), such a process has a density with

respect to a Poisson point process of the form

f (x) �
Y
y�x

j(y),

where x � fx1, . . . , xng, xi 2 S and S is a bounded Borel subset of Rm, say. The integer n

may be 0 to allow for x � Æ. The function j is an interaction function, i.e. j(y) � 1, unless

all pairs of points in y are neighbours. The Markov point process is called homogeneous if j
is constant on all sets consisting of one point; see, for example, Ogata and Tanemura (1986)

and Stoyan and Stoyan (1998).

The ®rst type of models relates directly to the Hammersley±Clifford decomposition of

the density and has been suggested by, among others, Ogata and Tanemura (1986). The idea

is here to let the main effects in the decomposition (the interaction of one-point sets) be
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non-constant. Under regularity conditions, an approximation to the likelihood function can

be derived using methods from statistical physics. Stoyan and Stoyan (1998) have recently

discussed this model in a forestry setting. See also Ripley (1990) and Mùller et al. (1998).

Another type of models is constructed by using an independent thinning of a

homogeneous Markov point process; see Baddeley et al. (1998). This is a well-known

procedure for generating an inhomogeneous Poisson point process from a homogeneous one;

see, for example, Stoyan et al. (1995). In Baddeley et al. (1998), semi-parametric inference

of the thinned Markov point process is discussed.

In the present paper, yet another construction is suggested. The basic idea here is to

introduce the inhomogeneity by applying a transformation to a homogeneous Markov point

process. Inhomogeneous Poisson point processes as well as homogeneous Markov point

processes can be included in such a model. The transformed point process is still a Markov

point process with respect to the induced relation. This approach yields not only

inhomogeneity in the intensity of the point process, but also inhomogeneity in the strengths

of interactions among events. In particular, interactions are weaker among events in regions

of high intensity than in regions of low intensity. This is appealing from an ecological

perspective since competition among plants is weaker in regions where resources are

abundant than in regions where resources are limited.

One of the useful properties of our model class is that the inhomogeneity and interaction

can be separated. The statistical inference is based on the estimation of the transformation

which can remove the inhomogeneity. After application of this transformation we are left

with a homogeneous point pattern which can be analysed by known tools; see, for example,

Geyer (1999) and Mùller (1999).

The idea of modelling inhomogeneity by transformations has been applied in other areas

of spatial statistics; for instance, for modelling the covariance structure of a non-stationary

spatial process (Sampson and Guttorp 1992; Smith 1997). Related work can also be found

in Monestiez et al. (1993), Meiring (1995), Perrin (1997) and references therein.

In Section 2, the basic concepts relating to Markov point processes are outlined. In

Section 3, transformations of point processes are introduced and studied for Markov models.

Parametrized transformations are considered in Section 4, resulting in models for point

processes allowing for both inhomogeneity and interaction. An important particular case is

that of the exponential inhomogeneous Markov point processes for which explicit

expressions for the parametrized transformation can be found in the unit cube in Rm and

on the unit sphere in R3. In Section 5, maximum likelihood estimation for the models

described in Section 4 is discussed and the actual estimation procedure is applied to a

simulated inhomogeneous point pattern on the unit sphere. In this section, tests for simple

hypotheses are also derived. Section 6 discusses open questions and future work.

2. Markov point processes

In this section, we summarize some of the basic terminology for Markov point processes. A

more detailed account of the notation and set-up can be found in Baddeley and Mùller (1989)

and Mùller (1999).
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Let (S , B, ì) be a measure space where 0 , ì(S ) ,1 and B is separable and

contains all singletons. Let Ù be the set of ®nite subsets of S , equipped with the ó-®eld F ,

as de®ned in Mùller (1999). Then, a ®nite point process X is a measurable mapping de®ned

on some probability space and taking values in (Ù, F ). In what follows, it will be assumed

that X has a density f with respect to the Poisson point process on S with intensity

measure ì.

In order to de®ne a Markov point process, we need a re¯exive and symmetric relation �
on S . Two points î, ç 2 S are called neighbours if î � ç. For ç 2 S , the neighbourhood

of ç is the set

@ç � fî 2 S : î � çg:
A ®nite subset x of S is called a clique if all points in x are neighbours. A singleton is a

clique by the requirement that � is re¯exive. By convention, the empty set is a clique. The

set of cliques is denoted C .

A ®nite point process X is said to be a Markov point process if (Ripley and Kelly 1977):

(M1) f (x) . 0) f (y) . 0 for all y � x, x 2 Ù;

(M2) if f (x) . 0, then

ë(ç; x) � f (x [ fçg)= f (x), ç 2 S , x 2 Ù, ç =2 x,

depends only on ç and @ç \ x.

Note that ë(ç; x) can be regarded as the conditional `intensity' of adding an extra point ç to

the point con®guration x.

One way of introducing inhomogeneity into the model is to use a non-homogeneous

intensity measure ì of the reference Poisson point process. This is equivalent to using a

non-constant interaction function on singletons, but a homogeneous (Lebesgue, Hausdorff)

intensity measure ì.

The Hammersley±Clifford theorem gives a factorization of a Markov density in terms of

interactions which are only allowed between points in cliques.

Theorem 2.1 (Hammersley±Clifford). A density f de®nes a Markov point process with

respect to � if and only if there exists a function j : Ù! [0, 1), such that j(y) 6� 1 implies

that y 2 C , and such that

f (x) �
Y
y�x

j(y)

for all x 2 Ù. The function j is called the clique interaction function.

In the present paper, a Markov point process is called inhomogeneous if j is non-

constant on sets consisting of one point. Other de®nitions of inhomogeneity are of course

possible (Stoyan et al. 1995), but the de®nition given here suf®ces for the purposes of our

studies.

One of the most well-known homogeneous Markov point processes is the Strauss process
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(Strauss 1975). If we let n(x) be the number of elements in x, this process is characterized

by the clique interaction function

j(x) �

á if n(x) � 0,

â if n(x) � 1,

ã if n(x) � 2, x 2 C ,

1 otherwise,

8>>><>>>:
such that

f (x) � áân(x)ãs(x), x 2 Ù,

where s(x) is the number of neighbour pairs in x,

s(x) �
X
z�x

1[n(z) � 2, z 2 C ]:

Note that á � á(â, ã) is a function of â, ã. 0. Usually, it is also assumed that ã < 1.

3. Transformations of point processes

In this section, attention is restricted to the case where S is a k-dimensional differentiable

manifold X � Rm and ì is the k ±dimensional Hausdorff measure ëk
m in Rm; see, for

example, Jensen (1998, Chapter 2) for a formal de®nition of Hausdorff measures. Intuitively,

ëk
m measures k-dimensional volume in Rm. We will study smooth transformations of a point

process X on X . In Figure 1, an example of such a transformation is shown.

If it is important to emphasize the containing space X, the set of ®nite subsets of X is

from now on denoted ÙX and the associated ó-®eld F X . Likewise for other manifolds

appearing below.

Figure 1. Adding inhomogeneity through transformation. The original point process is a conditional

Strauss process on [0, 1]2 with 100 points and ã � 0:01. Two points are neighbours if their mutual

distance is less than R � 0:05.
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The coarea formula gives a useful transformation result for a mapping between two

manifolds; see Jensen (1998, Theorem 2.1).

Lemma 3.1 (Coarea formula). Let X � Rm and Y � Rd be differentiable manifolds of

dimension k. Let h : X ! Y be a one-to-one differentiable mapping of X onto Y . Then,

there exists a function Jh : X ! [0, 1), called the Jacobian, such that for any non-negative

measurable function g on X,�
X

g(x)Jh(x) dx k �
�

Y
g(hÿ1(y)) dy k ,

where dx k and dy k are abbreviations for ëk
m(dx) and ëk

d(dy), respectively.

Below, the coarea formula is used to ®nd the density of a transformed point process

h(X ) � fh(î) : î 2 Xg.

Proposition 3.2. Let X , Y and h be as in Lemma 3.1. Furthermore, suppose that X is a

point process on X with density fX with respect to the Poisson point process on X with

intensity measure ëk
m. Then, h(X ) is the point process on Y with density, with respect to the

Poisson point process on Y with intensity measure ëk
d, of the form

f h(X )(y) � fX (hÿ1(y))eë
k
d (Y )ÿë k

m(X )
Y
ç2 y

Jhÿ1(ç), y 2 ÙY :

Proof. Let F 2 F Y . Using the well-known expansion of the distribution of the Poisson point

process (see, for example, Mùller 1999, Section 2), we obtain

P(h(X ) 2 F) �
X1
n�0

eÿë
k
m(X ) 1

n!

�
X
� � �
�

X
1[fh(x1), . . . , h(xn)g 2 F]

3 f X (fx1, . . . , xng) dxk
1 � � � dxk

n

�
X1
n�0

eÿë
k
m(X ) 1

n!

�
Y
� � �
�

Y
1[fy1, . . . , yng 2 F]

3 f X (fhÿ1(y1), . . . , hÿ1(yn)g)
Yn

i�1

Jhÿ1(yi) dyk
1 � � � dyk

n:

In the latter expression, the coarea formula has been used on hÿ1. For the term indexed by n,

the formula has been used n times. The result now follows immediately. h

Next, attention will be restricted to transformations of a point process X , which is

Markov with respect to a relation � on X. In the corollary below it is shown that the

transformed process is again Markov with respect to the induced relation. As will be

apparent later in this paper, it is very important from a technical point of view to use the
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induced relation. It is also in many cases very natural, for instance in ecological

applications, because the criterion for being neighbours in the transformed point pattern is

stricter in regions where the transformation has attracted the points.

Corollary 3.3. Let X, Y and h be as in Lemma 3.1. Furthermore, suppose that X is a

Markov point process with respect to � such that

fX (x) �
Y
y�x

j(y), x 2 ÙX ,

where j is a clique interaction function. Then, Y � h(X ) is a Markov point process on Y
with respect to the induced relation �, de®ned for ç1, ç2 2 Y by

ç1 � ç2 , hÿ1(ç1) � hÿ1(ç2):

Furthermore, the density of Y is of the form

f Y (y) �
Y
z� y

ø(z), y 2 ÙY ,

where ø is the clique interaction function

ø(z) �
j(Æ)eë

k
d (Y )ÿë k

m(X ) if n(z) � 0

j(hÿ1(ç))Jhÿ1(ç) if n(z) � 1, z � fçg,
j(hÿ1(z)) otherwise:

8>><>>:
For the transformed point pattern it is worthwhile to notice that, except for the fact that

all interactions are evaluated on the inversely transformed point pattern, only the main

effects of the interaction function change. Furthermore, these values change with the same

factor, as if a single point is transformed from one manifold to another.

Proof of Corollary 3.3. Most of the results of the corollary follow from Proposition 3.2. It

only remains to verify that ø is a clique interaction function with respect to �. Thus, let us

suppose that ø(z) 6� 1. We want to show that z is a clique with respect to �. Since every set

with at most one point is a clique by convention, it suf®ces to consider the case where

n(z) > 2. Then, ø(z) � j(hÿ1(z)) and hÿ1(z) is a clique with respect to �. Accordingly, z is

a clique with respect to �. h

4. Exponential inhomogeneous Markov point processes

The transformation result from the previous section can be used to develop a new approach to

inhomogeneity. Transforming homogeneous Markov point processes by a suitable bijective

mapping, Markov point processes allowing for both interaction and inhomogeneity can be
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constructed. In what follows, we will restrict attention to the case where the transformation h

maps X onto itself, that is, Y � X.

Let X be a Markov point process on X with respect to a relation � and with clique

interaction function j. Furthermore, let gè : X ! [0; 1) be a parametrized model of the

inhomogeneity where è 2 È � R l. Suppose that we can ®nd, for each è 2 È, a

differentiable one-to-one transformation hè of X onto X such that

Jhÿ1
è (ç) � gè(ç), ç 2 X: (1)

Corollary 3.3 now gives that Y � hè(X ) is a Markov point process on X with respect to the

induced relation � and with density

f Y (y; è) �
Y
ç2 y

gè(ç)
Y

z�hÿ1
è ( y)

j(z), y 2 Ù: (2)

Notice that the inhomogeneity has been introduced by the transformation while the

interaction has been inherited from the original homogeneous Markov point process. This has

important consequences for statistical inference, as shown in the next section.

Using the coarea formula, it is easily seen that (1) implies that�
X

gè(ç) dçk � ëk
m(X ), for all è 2 È: (3)

Therefore, fgè : è 2 Èg can be regarded as a parametrized class of densities on X with

respect to the uniform distribution on X (density dçk=ëk
m(X )). A natural and useful choice

is an exponential family model of the inhomogeneity

gè(ç) � â(è)eè
:ô(ç), (4)

where : indicates inner product in R l and ô : X ! R l. Note that (3) then implies that

â(è) � ëk
m(X )

��
X

eè
:ô(ç)dçk :

A Markov point process with density (2) and gè given in (4) is called an exponential

inhomogeneous Markov point process. Such a process has density

f Y (y; è) � â(è)n( y)eè
: t( y)

Y
z�hÿ1

è ( y)

j(z), y 2 Ù, (5)

where t(y) �Pç2 yô(ç).

The problem left is to ®nd a bijective mapping hè that has inverse Jacobian gè. This

problem is equivalent to that of solving a differential equation, which is not always an easy

task. However, considering simple but still ¯exible types of inhomogeneity, it is possible to

solve the equation. In the following, two such examples will be studied. Both examples are

exponential inhomogeneous Markov point processes.

Example 4.1 The unit cube in Rm. Let X � [0, 1]m. Suppose that we are interested in

adding independent exponential inhomogeneity on each axis. That is, for è 2 Rm, we
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consider

gè(ç) � â(è)e
Pm

i�1
èiôi(çi), ç 2 [0, 1]m,

where ôi : R! R and çi is the ith coordinate of ç. For this choice of gè, there is a unique

solution hè to (1) among differentiable transformations of the form

hè(ç) � (hè1(ç1), . . . , hèm(çm)), ç 2 [0, 1]m,

where hèi is an increasing function of [0, 1] onto itself. The uniqueness can be seen, using

the fact that then hÿ1
è is of a similar form and

Jhÿ1
è (ç) �

Ym

i�1

@hÿ1
èi

@çi

(çi), ç 2 [0, 1]m:

For any è 2 Rm, the unique solution to (1) is given by

hÿ1
è (ç) � â1(è1)

�ç1

0

eè1ô1(u) du, . . . , âm(èm)

�çm

0

eèmôm(u) du

� �
, ç 2 [0, 1]m, (6)

where

âi(èi) �
�1

0

eèiôi(u) du

 !ÿ1

, i � 1, . . . , m,

and â(è) � Qm
i�1 âi(èi). Note that for è � (0, . . . , 0), hè is the identity mapping.

In particular, if ôi(u) � u for all i, the integrals in (6) can be calculated explicitly and

hè(ç) � 1

è1

log(1� (eè1 ÿ 1)ç1), . . . ,
1

èm

log(1� (eèm ÿ 1)çm)

� �
, ç 2 [0, 1]m: (7)

In Figure 2, some simulated realizations of the exponential inhomogeneous Strauss

process are shown.

Example 4.2 The unit sphere in R3. Let X � S2, the unit sphere in R3, and let us consider

exponential inhomogeneity which depends on m:ç, where m 2 S2 is ®xed. So the aim is for

è 2 R to ®nd a differentiable one-to-one mapping hè of S2 onto S2 with inverse Jacobian

Jhÿ1
è (ç) � â(è)eèô(m:ç), ç 2 S2, (8)

where ô : R! R. Note that for ô(u) � u, (8) is the density of the Fisher distribution in

directional statistics, whereas for ô(u) � u2, (8) is the density of the Dimroth±Watson

distribution (Mardia 1972).

Let us choose a coordinate system in R3 such that m � (0, 0, 1). In the appendix, it is

shown that there is a unique solution to (8) among differentiable one-to-one mappings hè of

S2 onto S2 of the form

hè(ç1, ç2, ç3) �
�����������������������
1ÿ rè(ç3)2

p �������������
1ÿ ç2

3

p ç1,

�����������������������
1ÿ rè(ç3)2

p �������������
1ÿ ç2

3

p ç2, rè(ç3)

 !
, (9)
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where rè is an increasing differentiable bijection on [ÿ1, 1]. Note that such a transformation

only changes the angle between ç � (ç1, ç2, ç3) and m � (0, 0, 1).

The solution is most easily expressed in terms of the inverse. We ®nd (see the

Appendix), that the unique solution to (8) is given by

hÿ1
è (ç1, ç2, ç3) �

������������������������
1ÿ gè(ç3)2

p �������������
1ÿ ç2

3

p ç1,

������������������������
1ÿ gè(ç3)2

p �������������
1ÿ ç2

3

p ç2, gè(ç3)

 !
,

where

gè(u) � 1ÿ
�1

u

â(è)eèô(v) dv, ÿ1 < u < 1,

and

â(è) � 2� 1

ÿ1
eèô(v) dv

:

Note that, for è � 0, hè is the identity mapping.

For ô equal to the identity mapping,

gè(u) � 1� â(è)

è
(eèu ÿ eè), ÿ1 < u < 1,

and

â(è) � 2è

eè ÿ eÿè
:

Figure 2. Conditional simulations of the exponential inhomogeneous Strauss process on [0, 1]2 with

100 points, R � 0:05 and ã as indicated. The inhomogeneity is introduced by the transformation (7)

with m � 2 and (è1, è2) � (ÿ1, ÿ3). The Jacobian of the inverse transformation is shown on the

right. Another realization of the process with parameters as in (a) is shown on the right in Figure 1.
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Hence,

rè(u) � 1

è
log

uÿ 1

2
(eè ÿ eÿè)� eè

� �
, ÿ1 < u < 1: (10)

In Figure 3, conditional simulations of the exponential inhomogeneous Strauss process

are shown with ô(u) � u and m � (0, 0, 1). The relation for the untransformed process is

given by

ç � î, d3(ç, î) , R, (11)

where d3 is the spatial distance. Note that the spatial distance is proportional to the geodesic

distance.

In Figure 4, a realization of the continuum random cluster process with tendency to

cluster (Mùller 1999) is transformed with three different transformation parameters. The

original untransformed process is shown in Figure 4(a). The relation is the one from (11).

h

Figure 3. Conditional simulations of the exponential inhomogeneous Strauss process on S2 with 200

points, R � 0:02 and ã as indicated. The inhomogeneity is introduced by the transformation (9) with

è � 3 and rè given in (10).

Figure 4. Conditional simulations of the exponential inhomogeneous continuum random cluster

process on S2 with 200 points, R � 0:05 and ã � 1000. As in Figure 3, the inhomogeneity is

introduced by the transformation (9), here with è as indicated.
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5. Statistical inference for exponential inhomogeneous Markov
point processes

An exponential inhomogeneous Markov point process has a density of the form (5). Note that

the Jacobian part

â(è)n( y)eè
: t( y)

of (5) is the density of hè(X ) when X is a homogeneous Poisson point process on X with

intensity measure ëk
m.

We will mainly discuss statistical inference conditional on n(Y ) � n, the observed

number of points. Using the fact that hè is one-to-one so that n(Y ) � n(hè(X )) � n(X ), it

is easy to see that the conditional density of Y given n(Y ) � n is of the form

f n(y; è) � â(è)neè
: t( y)

Y
z�hÿ1

è ( y)

ø(z), n(y) � n,

where

ø(z) �
j(z) if n(z) . 0,

j(Æ)

P(n(X ) � n)
if n(z) � 0:

8><>:
Let us suppose that the interaction function ø can be parametrized by some parameter

ã 2 Ã � R p. Let L(è, ã; y) be the conditional likelihood function based on the

inhomogeneous data y. Furthermore, let

L0(è; y) � â(è)neè
: t( y)

be the conditional likelihood function of è based on y, when disregarding the interaction, and

let

L1(ã; x) �
Y
z�x

ø(z; ã)

be the likelihood of ã, when observing x in the homogeneous model. Then,

L(è, ã; y) � L0(è; y)L1(ã; hÿ1
è (y)):

This decomposition of the likelihood function has important consequences for the

statistical inference. In particular, for each ®xed è, the maximum of L with respect to ã can

be found, using an algorithm developed for the homogeneous case with data hÿ1
è (y). Further

results concerning estimation can be obtained if we choose a speci®c model for the

interaction.

Let us assume that

L1(ã; x) � án(ã)ãu(x), n(x) � n, ã. 0, (12)
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such that the interaction model is a regular exponential family of order 1 (Barndorff-Nielsen

1978). There are three interesting special cases of this model:

· Strauss model (Strauss 1975),

u(x) � s(x) �
X
z�x

1(n(z) � 2, z 2 C ):

· Continuum random cluster model (Mùller 1999),

u(x) � ÿc(x),

where c(x) is the number of path-connected components in x.

· Area-interaction model (Baddeley and van Lieshout 1995),

u(x) � ÿëm([ç2x B(ç, R)),

where B(ç, R) � Rm is a ball with centre ç and radius R, and ëm � ëm
m is the

Lebesgue measure in Rm.

The reason for using a minus in the two latter models is that then the interaction parameter ã
has the same qualitative interpretation in all three models: ã, 1 corresponds to inhibition,

ã � 1 to independence and ã. 1 to clustering.

The continuum random cluster model is not a Markov model in the sense of Ripley and

Kelly (1977), but a nearest-neighbour Markov model (Baddeley and Mùller 1989), but this

distinction is not important here when discussing likelihood inference.

If a maximum likelihood estimate (è̂, ã̂) exists of (è, ã) under the interaction model (12),

then u(hÿ1

è̂
(y)) 2 int C, where C is the convex support of u(X ); see Barndorff-Nielsen

(1978, p. 151). It therefore suf®ces to restrict attention to transformations in

È� � fè 2 È : u(hÿ1
è (y)) 2 int Cg:

For è 2 È�, there is a unique ã � ã(è) for which L(è, :; y) attains its maximum, viz. the

unique solution of

Eã(è)u(X ) � u(hÿ1
è (y));

see Barndorff-Nielsen (1978, p. 152). This solution can be found using Markov chain Monte

Carlo (MCMC) simulations; see, for example, Geyer (1999) and Mùller (1999). An example

is given later in this section.

The next step is to evaluate the partially maximized likelihood function for è 2 È�,
L(è; y) � max

ã. 0
L(è, ã; y) � L0(è; y)án(ã(è))ã(è)u(hÿ1

è ( y)): (13)

This step also requires MCMC simulation since the normalizing constant án(ã(è)) is not

known explicitly. In order to obtain a stable calculation, it is very important to evaluate a

ratio of likelihoods instead of a likelihood directly; see, for example, Geyer (1999). Typically,

we want to determine, up to a constant, L(è; y) on a grid of è values. For this purpose, it

suf®ces, since L0(è; y) can be calculated directly, to calculate for pairs of neighbour grid

points è, ~è 2 È�,
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log
L(è; y)=L0(è; y)

L(~è; y)=L0(~è; y)

 !
� (u(hÿ1

è (y))ÿ u(hÿ1
~è

(y)))log ã(~è)� log Eã(è)

ã(~è)

ã(è)

 !u(X )ÿu(hÿ1
è ( y))

:

(14)

The mean value on the right-hand side of this formula can be evaluated using MCMC

simulations.

Being able to calculate the partially maximized likelihood function L, a maximum of L

can be searched for. Note that if L(:; y) is maximal at è̂, then L(:, :; y) is maximal at

(è̂, ã(è̂)).

For the Strauss model and the continuum random cluster model, u(X ) is discrete and the

function è! ã(è) is actually a step function. Let the support of u(X ) be

S � fuÿ, uÿ � 1, . . . , u�g
such that int C � int[uÿ, u�] � (uÿ, u�), and let, for i 2 S,

Èi � fè 2 È : u(hÿ1
è (y)) � ig:

Then,

È� �
[u�ÿ1

i�uÿ�1

Èi,

and for è 2 Èi, ã(è) � ãi, say. The partially maximized likelihood function becomes

L(è; y) � L0(è; y)án(ãi)ã
i
i, è 2 Èi,

i � uÿ � 1, . . . , u� ÿ 1. Accordingly, in the subregion Èi, L(è; y) will be a rescaling of

L0(è; y) with factor án(ãi)ãi
i. Therefore, L(:; y) is not continuous at è 2 @Èi \ @Èi9, i 6� i9,

and traditional iterative procedures such as Newton±Raphson do not seem to be appropriate

for seeking a maximum of L. Instead, tabulating L in a reduced parameter set Èred � È�, is a

better idea, when u(X ) is discrete. In order to be able to disregard parameter values outside

Èred, this reduced set should have the property that, for any è 2 È�nÈred, there exists

è9 2 Èred such that

L(è; y) < L(è9; y):

The ®rst procedure for reducing the parameter set is based on the proportionality of L

and L0 in the subregions Èi. Note that Èi does not need to be connected. Since L0(:; y) is

the likelihood function for an exponential family model, it is log-concave and thereby

unimodal. Let è̂0 be the maximum likelihood estimate of è based on L0(:; y). (If L0 is the

likelihood for a regular exponential family, then è̂0 exists and is unique if and only if t(y)

lies in the interior of its convex support.) If è is one-dimensional, all points in Èi can be

excluded except for points in the two sets

Èiÿ � fmaxfè 2 Èi : è < è̂0gg
and
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Èi� � fminfè 2 Èi : è > è̂0gg:
Each of these two sets consists of at most one point. See also the illustration in Figure 5,

where Èiÿ � fèiÿg and Èi� � fèi�g. So any set including[u�ÿ1

i�uÿ�1

Èiÿ [Èi�

can be used as Èred. Note that Èiÿ and Èi� can be found by tabulating the function

è! u(hÿ1
è (y))

and using the determined value of è̂0.

Similar procedures must be possible if the dimension of è is larger than 1.

The second procedure for reducing the parameter set requires that the only interaction

considered is inhibition, i.e. ã < 1. Such a restriction may be quite natural, however, since

we expect that it is going to be dif®cult to distinguish between inhomogeneity and

clustering. For è 2 È�, let ~ã(è) be the unique ã 2 (0, 1] maximizing L(è, :; y). Note that

~ã(è) � ã(è) ã(è) < 1,

1 ã(è) . 1:

�
Furthermore, let ~L(è; y) � maxã2(0,1] L(è, ã; y). Then we have the following proposition.

Proposition 5.1. Let è̂0 be the maximum likelihood estimate of è based on L0. Suppose that

è̂0 2 È�. Then, for any è 2 È�,
u(hÿ1

è (y)) > u(hÿ1

è̂0
(y))) ~L(è; y) < ~L(è̂0; y):

Figure 5. The partial log-likelihood function log L. The parallel curves are translations of log L0(è; y).

The intervals marked horizontally constitute Èi for the value of i corresponding to the second curve

from the top.
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Proof. Since è̂0 is the maximum likelihood estimate of è based on L0(:; y),

â(è)neè
: t( y) < â(è̂0)neè̂0

: t( y):

Therefore, since ãu(hÿ1
è ( y)) < ã

u(hÿ1

è̂0
( y))

for ã < 1,

L(è, ã; y) < L(è̂0, ã; y), ã < 1,

and accordingly, the corresponding relation holds for the partially maximized likelihood

function ~L. h

According to Proposition 5.1, when seeking a maximum of ~L, it is enough to search in

fè 2 È� : u(hÿ1
è (y)) < u(hÿ1

è̂0
(y))g:

As will be seen in the example below, this may result in a drastic reduction in the number of

è values at which ~L has to be evaluated.

Example 5.2 An application of the estimation procedure. In this example we will show how

the estimation procedure can be carried out, using a simulated point pattern y which is a

realization of an exponential inhomogeneous Strauss process on the unit sphere; see the right-

hand part of Figure 6. The density is given by

f n(y) � 2è

eè ÿ eÿè

� �n

eè
Pn

i�1
yi3án(ã)ãs(hÿ1

è ( y)), (15)

where y � fy1, . . . , yng and yi � (yi1, yi2, yi3), i � 1, . . . , n. The transformation hè is given

in (9) and (10) and the relation � is given in (11).

The aim is to estimate (è, ã) on the basis of the inhomogeneous data set y. We will

assume that ã < 1. As suggested earlier in this section, the estimation is based on a

tabulation of the partially maximized likelihood function ~L(è; y) in a reduced region Èred

which is known to contain è̂.

In order to construct Èred, we ®rst determine è̂0. For the example, è̂0 � 5:24 whereas the

true value is è � 5. Secondly, the mapping è! s(hÿ1
è (y)) is tabulated (Figure 7), and using

this information we ®nd

Figure 6. Transformation into the particular realization of the exponential inhomogeneous Strauss

process studied in Example 5.2. Here n � 400, ã � 0:5, R � 0:1 and è � 5.
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fè : s(hÿ1
è (y)) < s(hÿ1

è̂0
(y))g � fè : s(hÿ1

è (y)) 2 f110, 111, 112, 113gg � [4:45, 5:50]:

Then, according to Proposition 5.1, è̂ 2 [4:45, 5:50]. Furthermore, we know that è values

with the same value of s(hÿ1
è (y)) lie in the same Èi region and here we can restrict attention

to è values closest to è̂0. In the example, this means that è̂ 2 f5:02, 5:06, 5:08,

5:24, 5:27, 5:30g; see Figure 7. We can take any set containing these 6 values as Èred.

Since ~L(è; y) is evaluated by calculating ratios at pairs of close è values ± see (14) with L

replaced by ~L and ã(è) by ~ã(è) ± we take

Èred � f5:02, 5:03, . . . , 5:30g:
The next step is to determine è! ã(è). Using MCMC simulations, the mapping

ã! Eãs(X ) (16)

is tabulated on a coarse grid of ã values in (0, 1]. The mean value in (16) is calculated in the

homogeneous model. The function (16) is tabulated once more on a ®ner reduced grid,

Ãred � (0, 1], of ã values. This reduced set is chosen such that

fs(hÿ1
è (y)) : è 2 Èredg � fEã(s(X )) : ã 2 Ãredg,

as we are only interested in these particular values of neighbour pairs.

Regression analysis gives the relation

log(Eã(s(X ))) � á� â log(ã), ã 2 Ãred,

and, replacing Eã(s(X )) with s(hÿ1
è (y)), we obtain the approximation

~ã(è) � exp
log(s(hÿ1

è (y)))ÿ á

â

 !
, è 2 Èred:

Figure 7. The number of neighbours in the inversely transformed process and the likelihood functions

with and without the information about the interaction.
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In the example studied, á � 5:254 and â � 0:751. Note that ã(è) only depends on s(hÿ1
è (y))

which is discrete and constant in Èi regions. Therefore, these two functions jump at the same

time.

Now we are ready to ®nd the partially maximized likelihood function. If we let

Èred � fè0, è1, . . . , èdg,
~L(è; y), è 2 Èred, can be determined up to a constant by using the recursive formula

log
~L(èl; y)=L0(èl; y)

~L(è0; y)=L0(è0; y)

 !
�
Xl

j�1

log
~L(è j; y)=L0(è j; y)

~L(è jÿ1; y)=L0(è jÿ1; y)

 !
,

for l � 1, . . . , d. The terms in the sum can be found by MCMC simulation using (14).

Denoting the above expression by Ä l, we have that

log ~L(èl; y) � log L0(èl; y)� Ä l � constant:

Note that Ä l is constant on Èi.

In Figure 7, log ~L(è; y) is shown for a larger range of è values than Èred, in order to

form a general impression of the function. Note that this function is in fact the same as the

one shown in Figure 5. We ®nd (è̂, ã̂) � (è̂, ã(è̂)) � (5:02, 0:48).

Let us ®nally discuss two types of tests. Let us ®rst consider the hypothesis of no

interaction, H0 : ã � ã0, where ã0 � 1. Since L1(ã0; :) � 1, we ®nd

Q � L(è̂0, ã0; y)

L(è̂, ã̂; y)
� L0(è̂0; y)

L0(è̂; y)

L1(ã0; hÿ1

è̂
(y))

L1(ã̂; hÿ1

è̂
(y))

� Q0
. Q1,

where Q0 represents a comparison between è̂0 and è̂, while Q1 is a test for ã � ã0 on the

basis of x � hÿ1

è̂
(y). Note that

Q1 � Eã̂
ã0

ã̂

� �u(X )ÿu(x)
" #ÿ1

and can be calculated, using MCMC simulation.

It is also of interest to test for homogeneity. Let us suppose that this corresponds to

H0 : è � è0, where è0 � 0 and hè0
is the identity. Furthermore, let ã̂0 be the estimate of ã

under homogeneity. Then,

Q � L(è0, ã̂0; y)

L(è̂, ã̂; y)
� L0(è0; y)

L0(è̂; y)

L1(ã̂0; y)

L1(ã̂; hÿ1

è̂
(y))

� L0(è0; y)

L0(è̂; y)

L1(ã̂0; hÿ1

è̂
(y))

L1(ã̂; hÿ1

è̂
(y))

L1(ã̂0; y)

L1(ã̂0; hÿ1

è̂
(y))

� ~Q0
. ~Q1

. ã̂0
u( y)ÿu(hÿ1

è̂
( y)),

say. The intermediate ratio ~Q1 can be calculated using MCMC.
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Large values of the test statistics Q are critical. Since their distributions are not known

under the respective null hypotheses, simulations are needed in order to evaluate the

observed values.

6. Remarks, open questions and related work

The basic idea of the present paper is that of introducing inhomogeneity by transformation.

Observing an inhomogeneous point pattern, the problem is then to construct the inverse

transformation which can compensate for the inhomogeneity. Similar approaches can be

found in a number of related areas. In addition to the examples presented in the introduction,

one could mention that Baddeley and van Lieshout (1995, p. 605) discuss the possibility of

letting the balls, appearing in the area-interaction model, depend on a parameter è.

Note that our model may be extended to consider densities of the form

f Y (fy1, . . . , yng) /
Y

i

ø(hÿ1
è1

(yi))
Y
i , j

j(hÿ1
è2

(yi, yj)) � � �

(Jesper Mùller, personal communication). The approach by Ogata and Tanemura (1986) is

then obtained by letting hè2
be the identity, while our transformation approach corresponds to

hè1
� hè2

and

ø(z) � j(z)=Jh(z):

Note also that the model suggested by Ogata and Tanemura (1986) can be used to describe a

system of hard discs of ®xed diameters with location-dependent intensity. Such a system

cannot be described by the transformation set-up discussed in the present paper.

The differential equation (1) makes some restrictions on the kind of inhomogeneity

which can be described by the transformation approach. It will be of interest to characterize

the class of point processes that can be described by this approach.

From a practical point of view, it is going to be important to use concomitant

environmental variables to explain the inhomogeneity. In fact, the exponential inhomo-

geneity as described by (4) is identical to that considered in Rathbun (1996) if

ô(ç) � (ô1(ç), . . . , ô l(ç))

is a vector of explanatory variables evaluated at ç. Rathbun (1996) considers, however, only

the Poisson case. Our future plans include the analysis of concrete data sets of this type

where the interaction is also taken into account.

The estimation procedure developed in Section 5 worked surprisingly well on the

simulated example in Example 5.2. The main reason was that the mapping è! s(hÿ1
è (y))

was ®rst essentially decreasing and then essentially increasing with a minimum near è̂0.

Whether this is true more generally needs to be investigated.

Maximum likelihood estimation is somewhat involved and it is therefore of interest to

investigate alternative procedures such as pseudolikelihood estimation. See Baddeley and

Turner (2000) for its implementation in cases where both inhomogeneity and interaction are

present. An even simpler procedure would be to use è̂0 as the estimate of the
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inhomogeneity parameter. In the example, this appeared to work well. Such a procedure

would be justi®ed if the distribution of t(Y ) does not depend very much on è. If so, the

extensive work on estimating intensity functions in inhomogeneous Poisson models could

then also be applied. These estimation problems are currently under investigation (Nielsen

et al. 2000).

On the theoretical side, conditions still need to be found which ensure the existence and

uniqueness of the maximum likelihood estimates, an asymptotic distribution theory needs to

be developed for the maximum likelihood estimators as well as for the likelihood ratio tests.

Appendix

In this appendix, we show that, for è 2 R,

Jhÿ1
è (ç) � â(è)eèô(m:ç), ç 2 S2, (A:1)

has a unique solution among mappings of the form

hÿ1
è (ç1, ç2, ç3) �

������������������������
1ÿ gè(ç3)2

p �������������
1ÿ ç2

3

p ç1,

������������������������
1ÿ gè(ç3)2

p �������������
1ÿ ç2

3

p ç2, gè(ç3)

 !
, (A:2)

where gè is an increasing differentiable function from [ÿ1, 1] onto [ÿ1, 1]. This result is

used in Example 4.2.

Let

p : [0, ð) 3 [0, 2ð) 7! S2

(ù1, ù2) ! (sin(ù1)cos(ù2), sin(ù1)sin(ù2), cos(ù1))

be the polar coordinate mapping. Functions of the form (A.2) can then equivalently be

described as

hÿ1
è � p s kè s pÿ1, (A:3)

where kè(ù1, ù2) � (lè(ù1), ù2) and lè is an increasing differentiable bijection on the

interval [0, ð). Here s denotes the composition of mappings.

Below, we show the result

Jhÿ1
è ( p(ù1, ù2)) � Jkè(ù1, ù2)

sin lè(ù1)

sinù1

� l9è(ù1)
sin lè(ù1)

sinù1

: (A:4)

In order to prove the ®rst equality, we use the coarea formula and obtain, for an arbitrary

function f on S2, that
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�
S2

f (hè(ç)) dç2 �
�

S2

f ( p s kÿ1
è s pÿ1(ç)) dç2

�
�ð

0

�2ð

0

f ( p s kÿ1
è (ù1, ù2)) sinù1 dù2 dù1

�
�ð

0

�2ð

0

f ( p(ù1, ù2))Jkè(ù1, ù2) sin(lè(ù1)) dù2 dù1

�
�

S2

f (ç)Jkè( pÿ1(ç))
sin((kè s pÿ1(ç))1)

sin( pÿ1(ç)1)
dç2:

From these results, the ®rst equality of (A.4) follows. The next equality follows from the fact

that kè is a bijection on a subset of R2 of full dimension and

Dkè(ù1, ù2) � l9è(ù1) 0

0 1

� �
:

Combining (A.1) and (A.4), we ®nd

â(è)eèô(cos ù1) � l9è(ù1)
sin lè(ù1)

sinù1

,

or

(cos lè(ù1))9 � ÿâ(è)sin(ù1)eèô(cos ù1):

This equation has the unique solution, among increasing bijections on [0, ð),

cos lè(ù1) � 1ÿ
�1

cos(ù1)

â(è)eèô(u) du � gè(cosù1),

say, where

â(è) � 2� 1

ÿ1
eèô(u) du

:

Therefore, according to (A.3), hÿ1
è is of the form stated in (A.2).
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