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We de®ne hyperbolic von Mises distributions in any integral dimension as exit distribution of

hyperbolic Brownian motion (H
(á)
t , t > 0) with drift outside hyperbolic balls centred on the starting

point H0. Bidimensional unwrapped hyperbolic von Mises distributions are also considered.
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1. Introduction

Von Mises densities VM(k) on [ÿð, ð], given by

1

2ðI0(k)
exp(k cos(è)) � 1

2ð
� 1

ð

X1
m�1

Im(k)

I0(k)
cos(mè), k 2 R�,

were introduced by von Mises (1918) to study the deviations of measured atomic weights

from integral values (see Mardia 1972). Im is, of course, the modi®ed Bessel function of the

®rst kind and index m. Recall that VM(k) is the exit law of a complex Brownian motion with

drift (Zs � su, s > 0) starting at 0 outside the circle x2 � y2 � 1. Here k denotes the

Euclidean norm of the constant vector u. These distributions play a fundamental role in the

theory of statistical inference on the circle treated in Mardia (1972) and Watson (1983).

Moreover, a maximal entropy characterization in the class of circular distributions on S1 was

given by Mardia (1972).

Hartman (1976) deduced the in®nite divisibility of VM(k) from general results on linear

differential equations and from the existence of a distribution ìk on R� characterized by its

Laplace transform ë! I ����
2ë
p (k)=I0(k). Hence VM(k) is a mixture of wrapped normal

distributions WN(´) (modulo 2ð):

VM(k) �
��1

0

WN(ë)ìk(dë):

Kent (1977) gave a different analytical proof of the in®nite divisibility, based on the

Hartman±Watson mixture property.

These facts were given enlightening probabilistic proofs in Yor (1980) and Pitman and

Yor (1981) which we now recall. Let (Zt, 0 < t < ô) be a planar Brownian bridge of

duration ô starting at a point z0 6� 0 and such that Zô � z1 6� 0. De®ne its real-valued
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continuous winding process with respect to the origin (not modulo 2ð) (È t, 0 < t < ô) such

that È0 � 0. Then

Ez0
[exp(iuÈô)=Zô � z1] � I juj(r)

I0(r)
, r � jz0z1j

ô
: (1:1)

As usual, Ez0
denotes the expectation under the law of the process started at z0. Hence, the

skew product decomposition of planar Brownian motion enables us to rewrite (1.1) with the

help of the bracket hÈi t �
� t

0
ds=jZsj2. Thus if (r t, 0 < t < ô) is a Bessel bridge with index

0 such that r0 � a . 0 and rô � b . 0, the Laplace transform of the probability density of� ô
0
rÿ2

s ds is precisely I ����
2ë
p (r)=I0(r), where r � ab=ô.

Note that the right-hand side of (1.1) is roughly the quotient of densities of Bessel

processes with indices juj and 0 at time r. Indeed, the probability density function (pdf) of

a í Bessel process Bes(í) with respect to the Lebesgue measure is

pt(x, y) � y

t

y

x

� �í

exp
ÿ(x2 � y2)

2t

� �
Ií

xy

t

� �
, (1:2)

provided that x and t are positive. When d � 2í� 2 is an integer, Bessel processes are

simply the Euclidean norm of d-dimensional Brownian motions. Yor (1980) explained by

means of Girsanov's theorem why the pdf of a Bes(í) process at time t is linked with the

conditional characteristic function in (1.1). We show in Gruet (1997) that more generally the

conditional characteristic function of a winding in a two-point homogeneous symmetric space

of dimension 2 is proportional to the quotient of the pdf corresponding to the associated

Bessel processes with indices juj and 0.

A more pleasant representation of I juj(r)=I0(r) which does not use a Brownian bridge is

given in Pitman and Yor (1981). Consider (rs, s > 0) a Bessel process of index 0 with drift

ä, namely the modulus of Zt � ät where (Zt) is a complex Brownian motion starting at 0.

Denote its law by Pä, where ä is positive. Then if Tr is the ®rst hitting time of r, the time

inversion Zt ! tZ1= t yields

Eä
0 exp ÿë

��1
Tr

ds

r2
s

 ! !
� I ����

2ë
p (är)

I0(är)
:

In this paper we consider some hyperbolic analogues of these results. Our aim is to

discuss whether the ®ne properties of Euclidean Brownian motion ± the scaling property,

stability by time inversion, etc. ± are essential for solving these problems. Therefore, we

consider the simplest rotationally symmetric non-Euclidean Riemannian space, that is to say,

the real hyperbolic space with constant curvature ÿ1. Some structural insight should be

gained by the isolation of geometric properties from analytical considerations on second-

order differential operators.

An essentially different hyperbolic analogue of the Euclidean von Mises law was de®ned

by Barndorff-Nielsen (1978): he obtained a law on the entire hyperbolic d-dimensional

space, absolutely continuous with respect to the volume element. The analogy with the

Euclidean case raised statistical problems discussed by Jensen (1981) and Casalis et al.
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(1993). We believe that our hyperbolic von Mises laws could play some role in the study of

directional data on hyperbolic spaces. This geometry is relevant in a lot of physical

questions: for instance, radio waveguides in Gertsenshtein and Vasil'ev (1959) and

diffusions in random media in Comtet and Monthus (1996). Note that hyperbolic Brownian

motion with vertical drift is used in the latter paper. Hyperbolic heat kernels with uniform

magnetic ®eld are discussed by Ikeda and Matsumoto (1999).

This paper is organized as follows. In Section 2, we treat the simpler two-dimensional

case. In Section 3, we brie¯y consider the multidimensional case d � 2í� 2 which makes

sense even for positive real-valued í.

2. The two-dimensional case

2.1. Some background on hyperbolic planar geometry

We will use the PoincareÂ half-space model: H � R 3 R� is equipped with its hyperbolic

metric

ds2 � dx2 � dy2

y2
(2:1)

and its Laplace±Beltrami operator ÄH. The hyperbolic Brownian motion in®nitesimal

generator is

G 0 � 1

2
ÄH � 1

2
y2 @2

@x2
� @2

@ y2

 !
: (2:2)

More precisely, if B � (B
(1)
t , B

(2)
t ) denotes a two-dimensional Euclidean Brownian motion,

then the unique (strong) solution of the system

Xt � x�
� t

0

Ys dB(1)
s (2:3)

Yt � y�
� t

0

Ys dB(2)
s :

is referred to as B-hyperbolic Brownian motion (Ht � (Xt, Yt), t > 0) starting at

p � (x, y) 2 H.

Next, we de®ne the generator G (á) of hyperbolic Brownian motion with drift á along the

y-axis by adding áy@=@ y to G 0. Hence the second component becomes

Y
(á)
t � y exp B

(2)
t ÿ

t

2
� át

� �
, (2:4a)

and there exists a linear Brownian motion (ã t, t > 0) independent of B(2) such that

X
(á)
t � xã(A

(í)
t ), (2:4b)
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where A
(í)
t denotes the exponential functional

� t

0
exp(2(B(2)

s � ís)) ds with í � áÿ 1
2
.

2.2. Hyperbolic Brownian motion with drift

We ®rst explain why hyperbolic Brownian motion with drift is the hyperbolic analogue of the

well-known Euclidean object.

A hyperbolic translation T should be an isometry without ®nite ®xed points and such that

at least one geodesic is globally invariant. If the geodesic is supported by the y-axis,

obviously T (z) � q2z with q2 6� 0, q2 6� 1. We will say that the translation is vertical.

Observe that the second component of hyperbolic Brownian motion with drift (H
(á)
t , t > 0)

de®ned above has the same law as (eá tYt, t > 0).

More generally, a hyperbolic translation is a linear map z! (az� b)=(cz� d) associated

with a matrix conjugate to

q 0

0 1=q

� �
,

with q 6� 0 and q 6� 1. These elements are called hyperbolic in the literature (see Terras

1985). From our point of view, parabolic isometries (i.e. conjugate to z! z� c for some real

c) are not the natural hyperbolic translations.

Secondly, if P(á) denotes the law of (H
(á)
t , t > 0) on the canonical space C (R�, H)

endowed with its natural ®ltration (F t) t>0, we readily obtain, as a consequence of

Girsanov's theorem,

dP(á)

dP(0)
� Dt on F t (2:5)

for the positive martingale Dt � (Yt=y)á exp(ÿá(áÿ 1)t=2) � exp(áB
(2)
t ÿ (á2=2)t): Indeed,

há(t, x, y) � yá exp(ÿá(áÿ 1)t=2)) solves the equation @há=@ t � G 0 há � 0. In real

analysis such a function is called parabolic, whereas in probability theory Yor (1992), in a

Euclidean setting, called it a space-time G 0 harmonic function. For the rest of this section we

write ë � 1
2
á(áÿ 1).

We recall next the construction of the hyperbolic polar coordinates (r, u) 2 R� 3 R=2ðZ

with centre i:

x � sinh(r)sin(u)

cosh(r)� cos(u)sinh(r)
, y � 1

cosh(r)� cos(u)sinh(r)
: (2:6)

Note that we use u in the same way as Rogers and Williams (1987, p. 214) instead of the

classical 2u in Helgason (1984) or Terras (1985). Hence we can de®ne a polar decomposition

((Rt, Ut), t > 0) for every continuous nice (Hÿ fig)-valued process.

We will need some basic facts on Legendre functions of the ®rst kind, P(m)
ÿá . For any non-

negative integer m and any á, 1, we have, from formula 3.7(14) in Bateman et al. (1953),

P(m)
ÿá (cosh(r)) � Ã(m� 1ÿ á)

ðÃ(1ÿ á)

�ð
0

(cosh(r)� sinh(r)cos(è))ÿá cos(mè) dè: (2:7)
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If á. 0, we use Bateman et al. (1953, 3.7 (13)): for every non-negative integer m,

P(ÿm)
ÿá (cosh(r)) � Ã(á)

ðÃ(m� á)

�ð
0

(cosh(r)� sinh(r)cos(è))ÿá cos(mè) dè:

De®nition. Let Tr be the ®rst hitting time of the hyperbolic circle of radius r, centred at i.

The probability distribution of U (Tr) under the law P
(á)
i of the process (H

(á)
t , t > 0), starting

at i, is called the two-dimensional hyperbolic von Mises distribution Ëá(r, du) with

parameter á.

Proposition 1. The following explicit formula holds for any á:

Ëá(r, du) � 1

2ðP(0)
ÿá(cosh(r))

(cosh(r)� sinh(r)cos(u))ÿá1[ÿð,ð](u) du,

where P(0)
ÿá denotes the Legendre function of index 0.

Corollary 2. (A SchloÈmilch-like formula). If á, 1,

Ëá(r, du) � du

2ð
� 1

ðP(0)
ÿá(cosh(r))

X
m>1

Ã(1ÿ á)

Ã(m� 1ÿ á)
P(m)
ÿá (cosh(r))cos(mu)

 !
du,

If á. 0,

Ëá(r, du) � du

2ð
� 1

ðP(0)
ÿá(cosh(r))

X
m>1

Ã(m� á)

Ã(á)
P(ÿm)
ÿá (cosh(r))cos(mu)

 !
du:

Proof. By the absolute continuity result (2.5) and (2.6) we obtain

Ëá(r, du) � Ei(exp(ÿëTr))
1

2ð
(cosh(r)� sinh(r)cos(u))ÿá du:

Obviously under the law P
(0)
i U (Tr) is uniformly distributed on [ÿð, ð]. If (Rt) denotes the

radial part of the ordinary hyperbolic Brownian motion, we deduce from the integral

representation (2.7) that (P(0)
á (cosh(Rt^Tr

))exp(ÿë(t ^ Tr)), t > 0) is a bounded martingale.

Hence Ei(exp(ÿëTr)) � 1=P(0)
ÿá(cosh(r)). h

Consider for á. 1 the increasing solution of G j � ëj � (á(áÿ 1)=2)j,

r! P(0)
ÿá(cosh(r)) �

�
Sr

yá dó (z),

where Sr is the hyperbolic circle of radius r centred at i and dó the hyperbolic normalized

surface measure. Indeed, (x, y)! yá is hyperbolically subharmonic. Hence, we will also call

this function ö"ë(r) when we want to stress the monotonicity property. The use of down and

up arrows is taken from Pitman and Yor's (1981) study of conditioned diffusions.
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Remarks.

(i) Note that Terras (1985, Exercise 9, p. 141) erroneously refers to Lebedev (1972) who

does not consider (associated) Legendre functions P(m)
á with non-integer indices m. In fact,

the well-known formula (2.7) when m is integer was generalized by ErdeÂlyi (1941) to real

numbers. But this generalized formula takes a different form. Beware of the fact that P
ÿ(í)
A

and P
(í)
A are proportional if and only if í is an integer (Bateman et al. 1953, 3.3.1 (6)).

(ii) J. Kent remarked in the discussion following Mardia (1975) that the von Mises law

can be considered as the invariant probability of what he called an Ornstein±Uhlenbeck

process on the circle. Such a Markov process may be de®ned via its in®nitesimal generator

1

2

@2

@è2
ÿ k sin(è)

@

@è
:

We could de®ne for the same purpose hyperbolic Ornstein±Ulhenbeck processes on the

circle by their generators

1

2

@2

@è2
� á sinh(r)sin(è)

cosh(r)� sinh(r)cos(è)

@

@è

 !
:

(iii) (H
(1)
t , t > 0) is the process (Ht, t > 0) conditioned to hit the boundary @H at 1 in

Doob's sense.

(iv) Euclidean VM(ÿk) is the image of VM(k) by the half-turn z 7! ÿ z. We see from

Proposition 1 that, unfortunately, the image of Ëá(r, du) by the hyperbolic half-turn

z 7! I(z) � ÿ1=z (or (r, u) 7! (r, u� ð) in geodesic polar coordinates) is not a hyperbolic

von Mises distribution. In fact, the (I(H
(0)
t ), t > 0) law is absolutely continuous with

respect to the (Ht, t > 0) law. Expression (2.5) still holds if the function (x, y) 7! y is

replaced by the harmonic function (x, y) 7! h1(t, x, y) � y=(x2 � y2).

By a standard martingale argument we readily obtain the following:

Corollary 3. Let Q be the Legendre function of the second kind and A(ë) � 1
2
(1ÿ ��������������

1� 8ë
p

).

Write ö"ë(r) � P
(0)
ÿA(ë)(r) and ö#ë(r) � Q

(0)
ÿA(ë)(r) for the fundamental solutions of G j � ëj.

Then, for every non-negative ì, if 0 , a , r,

E(á)
a (exp(ÿìTr)) �

ö"ë(r)

ö"ë(a)

ö"ë�ì(a)

ö"ë�ì(r)
,

whereas if a > r,

E(á)
a (exp(ÿìTr)) � ö"ë(r)

ö"ë(a)

ö#ë�ì(a)

ö#ë�ì(r)
,

where, as usual, Eá
a denotes the expectation under the law of a hyperbolic Bessel process with

positive drift á starting at a, and ë � 1
2
á(áÿ 1).
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Proof. We use Proposition 3.1 in Pitman and Yor (1981): we have on the trace of F Tr
by the

event fTr ,1g,
dP(á)

a

dP(0)
a

� exp(ÿëTr)
ö"ë(XTr

)

ö"ë(a)
:

Hence

E(á)
a (exp(ÿìTr)) � Ea(exp(ÿ(ë� ì)Tr))

ö"ë(r)

ö"ë(a)
:

We conclude with the help of the appropriate stopped martingale. h

An easy consequence of the absolute continuity (2.5) is the hyperbolic translation of

Wendel's (1980) independence result:

Theorem 4. Denote by Tr the ®rst hitting time of the hyperbolic circle of radius r centred at

the starting point H
(á)
0 . Then, for every á, Tr and H (á)(Tr) are independent. Moreover, the

radial part (Rt, t < Tr) and the exit point are independent.

Proof. Remark that the density D(Tr) is the product of a ó (R(á)
s , s < Tr) measurable random

variable by a ó (H (á)(Tr)) one and then apply Lemma 5.1 in Pitman and Yor (1981). h

A remark about Barndorff-Nielsen's hyperboloid law. Consider the well-known isometry

(X 1, X2, X 3)! (X 2, X 3)

X 1

between the upper half-hyperboloid ÿX 2
1 � X 2

2 � X 2
3 � 1 and the unit disc. If we translate

Barndorff-Nielsen's de®nition from the hyperboloid to PoincareÂ half-plane setting, we obtain

the radial density exp(k)k exp(ÿk cosh(r)) with respect to the hyperbolic volume element

(1=2ð)sinh(r) dr du on H. Here k is a positive parameter. Hence the hyperboloid law has

more to do with the three-dimensional von Mises density of Fisher (1953) on [0, ð],

(k=2 sinh(k))exp(k cos(j))sin(j).

2.3. Hyperbolic Bessel processes with drift

Denote by (Rt) the radial part of (Ht): this is a time-homogeneous diffusion process called a

hyperbolic Bessel process of index í � 0. The corresponding in®nitesimal generator is half

the radial part of the hyperbolic Laplacian:

1

2

@2

@ r2
� coth(r)

@

@ r

� �
:

(for a similar result, see Rogers and Williams 1987). Its transition density with respect to the

Lebesgue measure is written in Gruet (1997):
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q2(t, x, y) � sinh(y)

��1
0

exp ÿ 1

4
� p2

� �
t

2

� �
P

(0)

ÿ1
2
�ip

(cosh(x))P
(0)

ÿ1
2
�ip

(cosh(y)) p tanh(ðp) d p:

When x � 0, the following well-known formula is obtained:

q2(t, 0, y) � sinh(y)ðÿ1=2 tÿ3=2 exp ÿ t

8

� ���1
y

u exp(ÿu2=2t)������������������������������������
cosh(u)ÿ cosh(y)
p du:

Although several integral representations are listed in Gruet (1996; 1997), these densities

cannot be much simpli®ed.

The results of Pitman and Rogers (1981) on Markov functions imply the following:

Theorem 5. Let H (á) be a hyperbolic Brownian motion with a vertical drift of magnitude á,

starting at the origin i. Then the radial part R is a time-homogeneous diffusion process on

[0, 1) with transition density exp(ÿ1
2
á(áÿ 1)t)q2(t, x, y)h2(á, y)=h2(á, x):

2.4. Unwrapped hyperbolic von Mises distribution

Let f (x) be a candidate probability density on R for an unwrapped hyperbolic von Mises

density with parameters á and r . 0, namelyX
k

f (x� 2kð) � Ëá(r, x);

this yields, by the Poisson summation formula,

f̂ (m) �
�2ð

0

cos(mu)Ëá(r, du) � ðam

where am is the Fourier cosine coef®cient (m 6� 0). If á. 0, we obtain

ðam � P(ÿm)
ÿá (cosh(r))

P(0)
ÿá(cosh(r))

Ã(m� á)

Ã(á)
:

Thus a candidate would be the even function öá such that, for every positive ë,

öá(ë) � Ã(ë� á)

Ã(á)

P(ÿë)
ÿá (cosh(r))

P(0)
ÿá(cosh(r))

:

The hyperbolic analogue of the series which de®nes the VM(k) density is

1

2ð
� 1

ð

X1
m�1

Ã(m� á)

Ã(á)

P(ÿm)
ÿá (cosh(r))

P(0)
ÿá(cosh(r))

cos(mè):

Theorem 6. If á. 0, the function

ë! Ã(
�����
2ë
p

� á)

Ã(á)

P(ÿ
����
2ë
p

)
ÿá (cosh(r))

P(0)
ÿá(cosh(r))

,
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de®ned on R�, is the Laplace transform of a probability çá,r on R�. Hence, every

unwrapped hyperbolic von Mises law with positive parameter á is a mixture of Gaussian

laws.

Remark. When the curvature ÿc of the hyperbolic space increases to zero, this hyperbolic

unwrapped von Mises distribution becomes the usual unwrapped von Mises distribution. The

metric becomes

1 0

0 A2(r)

 !
with A(r) � (1=c)sinh(cr) and r is multiplied by c.

The following identity deduced from Bateman et al. (1953, 3.7 (13)) yields

P(0)
ÿá(cosh(r))öá

ë2

2

� �
� 1

ð

�ð
0

1

cosh(r)ÿ sinh(r)cos(u)

� �á

cos(ëu) du

ÿ sin(ëð)

ð

��1
0

1

cosh(r)� sinh(r)cosh(u)

� �á

exp(ÿëu) du (2:8)

if á. 0 and ë > 0. This is the hyperbolic counterpart of the identity

Ië(r) � 1

ð

�ð
0

er cos(è)cos(ëè) dèÿ sin(ëð)

ð

��1
0

eÿr cosh( t)ÿë t dt, for ë > 0: (2:9)

Hence, if r is replaced by cr with c going to zero, we check that P
(0)

ÿá=c
(cosh(cr))öá=c(ë2=2)

goes to Ië(ár). Hence öá=c(ë2=2) goes to Ië(ár)=I0(ár).

Proof. Although this result is sketched in Hartman (1976, p. 272), we give some details.

We apply Theorem 1.2 of Hartman (1976). We choose ó � �1 and the principal

solution at 1, de®ned on T �]1, �1],

î(x, ì) � P
(ÿ

����
2ì
p

)
ÿá (x)Ã(á�

������
2ì

p
)

of the Legendre equation

(1ÿ x2)w 0(x)ÿ 2xw9(x)� (áÿ 1)áÿ 2ì

1ÿ x2

� �
u(x) � 0:

Then Hartman's hypothesis (A:3)ó ,

for every ì, í > 0, lim
x!�1

î(x, ì)

î(x, í)
� 1,

is satis®ed and q(x, ì) � 2ì(1ÿ x2)ÿ2 � á(áÿ 1)(x2 ÿ 1)ÿ1 has a positive partial derivative

in ì. h

Corollary 7. If á. 0, the unwrapped hyperbolic von Mises law and wrapped hyperbolic von

Mises law are in®nitely divisible.
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Proof. The idea is also borrowed from Hartman. His Theorem 1.1 implies, for any 0 , t , ô,
the existence of a measure W (dr, t, ô) on R� such that, for every ë > 0,

î(ô, ë)î(t, 0)

î(ô, 0)î(t, ë)
�
��1

0

exp(ÿër)W (dr, t, ô):

Obviously, if (ôk) is an increasing sequence,

W (:, ô1, ôn) � W (:, ô1, ô2)� . . . �W (:, ônÿ1, ôn)

and W (r, t, ô)! ä0(r) as t, ô! 0. Then W (:, t, ô) is in®nitely divisible. But from

hypothesis (A:3)ó , W (:, t, ô) narrowly converges to çá,r when ô increases to in®nity. h

Remarks.

(i) We are unable to ®nd a probabilistic proof of these results because we do not know a

family of diffusion processes with a kernel proportional to P(ÿí)
á (cosh(r)) such as the Bessel

processes in the Euclidean case. For instance, hyperbolic Bessel processes, associated with

1

2

@2

@ r2
� (2í� 1)coth(r)

@

@ r

� �
,

have complicated pdf; for the whole story, we refer to our previous work on hyperbolic

windings (Gruet, 1997). Contrary to the Euclidean situation, hyperbolic von Mises

distributions do not have obvious connections with hyperbolic Bessel processes of index

different from 0.

(ii) Moreover, Watanabe (1975) showed that if a diffusion process on the half-line enjoys

the time-inversion property, then this is a homomorphism of a Euclidean Bessel process

with drift. Of course, hyperbolic Bessel processes do not share this property.

We compute now the density of çá,r which looks very similar to the ordinary Hartman±

Watson one. Note that, due to the lack of scaling, two parameters r and á are required.

Theorem 8. The hyperbolic Hartman±Watson law has a density on R�,

çá,r(u) � 1

ð3=2(2u)1=2
exp

ð2

2u

� �
sinh(r)

P(0)
ÿá(cosh(r))

Øá,r(u),

with

Øá,r(u) �
��1

0

exp
ÿx2

2u

� �
á sinh(x)

(cosh(r)� sinh(r)cosh(x))á�1
sin

ðx

u

� �
dx:

Proof. We mimic Yor's (1980) proof for the Euclidean analogue (Theorem 5.4(ii)). Hence we

will skip some details, the use of Fubini's theorem for instance. We will consider the same

paths Cu in the complex plane supported by the boundary of an in®nite rectangle with

vertices ÿið�1, ÿið� u, �ið� u and ið�1 (see Yor's Fig. 1). From (2.8), we have
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P(0)
ÿá(cosh(r))öá(ë) � 1

2ið

�
C0

1

cosh(r)ÿ sinh(r)cosh(ù)

� �á

exp(ÿ
�����
2ë
p

ù) dù:

With the help of the well-known identity,

exp(ÿ
�����
2ë
p

x) �
��1

0

exp(ÿëu)
1

(2ðu3)1=2
x exp(ÿx2=2u) du,

we obtain that çá,r has the density (P(0)
ÿá(cosh(r)))ÿ1(2ðu3)ÿ1=2 H(u), where

H(u) �(def ) 1

2ið

�
C0

(cosh(r)ÿ sinh(r)cosh(ù))ÿáù exp(ÿù2=2u) dù:

Now 2ðH(u) may be written in the form��1
0

[(ÿ2x sin(ðx=u)� 2ð cos(ðx=u)]exp((ð2 ÿ x2)=2u)(cosh(r)� sinh(r)cosh(x))ÿá dx,

so that

H(u) � 1

ð
exp(ð2=2u)

��1
0

exp(ÿx2=2u)
áu sinh(r)sinh(x)

(cosh(r)� sinh(r)cosh(x))á�1
sin(ðx=u) dx

follows from integration by parts. h

We are now in a position to obtain an interesting consequence, namely to ®nd a second

hyperbolic analogue of Hartman±Watson law:

Corollary 9. If á is big enough, then ë! P(ÿë)
ÿá (cosh(r))=P(0)

ÿá(cosh(r)) is the Laplace

transform of a probability density on R� taken at ë2=2.

Proof. In fact, we show that ë! Ã(á)=Ã(á�
�����
2ë
p

) is a Laplace transform, provided

S �(def )
ãÿ á

P�1
k�11=k(k � á)� 1=á is negative.

Note that limá!1á
P�1

k�11=k(k � á) � 1. On the other hand, when á is too small we

see by an obvious monotonicity inspection that Ã(á)=Ã(á�
�����
2ë
p

) is de®nitely not a

decreasing function on the positive half-line.

We use the following facts collected in Yor (1993, Proposition 5):

(i) The Weierstrass product formula: if ã denotes the Euler constant,

exp(ÿãz)

Ã(z)
� z

Y1
k�1

1� z

k

� �
exp ÿ z

k

� �
:

(ii) The Laplace transform of the probability density (1=
������
2ð
p

)xÿ5=2 exp(ÿ1=2x)1R� (x) dx

is

ë! h(ë) �(def )
(1�

�����
2ë
p

)exp(ÿ
�����
2ë
p

):
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(iii) For every positive C, there exists a stable positive random variable TC of index 1
2

such that exp(ÿCjëj) � E(exp(ÿë2=2TC)).

Observe now that Ã(á)=Ã(á�
�����
2ë
p

) � exp(S
�����
2ë
p

)
Q1

k�0 h(ë=(k � á)2), where S is the

negative constant de®ned above. h

3. The multidimensional case

The three-dimensional (Euclidean) von Mises distribution was de®ned by Fisher (1953); this

is the law of the colatitude of the exit point B(Tr) for a Brownian motion with drift, starting

at the origin. Hartman and Watson (1974) studied the n-dimensional analogue.

We use the same framework on the hyperbolic half-space Hd � Rdÿ1 3 R�� . Let us

consider a colatitude j in [0, ð] such that xd � (cosh(r)� cos(j)sinh(r))ÿ1. The hyperbolic

Brownian motion with vertical drift áed is constructed exactly as in Section 2: to de®ne the

law P(á) we add áxd@=@xd to the classical hyperbolic Laplacian

1

2
ÄHd
� 1

2
x2

d

Xd

i�1

@2

@x2
i

� 1ÿ d

2

� �
xd

@

@xd

: (3:1)

As usual, we set d � 2í� 2.

Proposition 10. The colatitude of the exit point of a hyperbolic Brownian motion from the

sphere Sr with radius r has density

Ë̂á(r, dj) � sin2í(j)���
ð
p

Ã í� 1
2

ÿ � sinhí(r)

P(ÿí)
íÿá(cosh(r))

(cosh(r)� sinh(r)cos(j))ÿá dj:

This formula still has an analytical meaning for every non-integer í.ÿ1
2
.

Remark. The result agrees with Proposition 1, provided we take into account an extra factor

2 due to the different interval.

Proof. Observe ®rst that the angular part of the hyperbolic element is the same as the

Euclidean one. Therefore the angle j has the well-known density on [0, ð] (formula (6.2) in

Kent 1977):

1���
ð
p Ã(í� 1)

Ã(í� 1
2
)

sin2í(j): (3:2)

Apply Girsanov's theorem to remove the drift. The space-time harmonic function is now

exp(ÿët)xád with ë � á(áÿ 1)=2ÿ áí. Denote by (Ès) the angular part on the hyperbolic

sphere S1 with radius 1. Under the law P(0), È(Tr) is independent of Tr and uniformly

distributed on S1. Hence the desired von Mises density is proportional to

1

cosh(r)� cos(j)sinh(r)

� �á

sin2í(j):
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But from in Bateman et al. (1953, 3.7 (7)), if í.ÿ1
2
,

P(ÿí)
íÿá(cosh(r)) � 1���

ð
p 2ÿí

sinhí(r)

Ã(1
2
� í)

�ð
0

sin2í(j)(cosh(r)� sinh(r)cos(j))ÿá dj:

h

Remark. We now explain an easy way to recover the increasing `eigenvector' such that
1
2
ÄHd

j � ëj with j(0) � 1 and ë > 0. We choose the root

á � í� 1
2
�

��������������������������
2ë� (í� 1

2
)2

q
of the equation 2ë � á(áÿ 1)ÿ 2íá. Hence the spherical mean on Sr, r! �

Sr
xád dó , solves

the equation

@2ö

@ r2
� (d ÿ 1)coth(r)

@ö

@ r
� 2ëö: (3:3)

We can easily check, by means of Bateman et al. (1953, 3.7 (7)), that�
Sr

xád dó � Ã(1� í)2í sinhÿí(r)P(ÿí)
íÿá(cosh(r))

coincides with the function ö"ë de®ned in Gruet (1997), the unique increasing solution of

(3.3) such that ö"ë(0�) � 1=(2íÃ(1� í)).
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