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We give sufficient conditions on the rates of two asymmetric exclusion processes such that the
existence of an invariant blocking measure for the first implies the existence of such a measure for the
second. The main tool is a coupling between the two processes under which the first dominates
the second in an appropriate sense. In an appendix we construct a class of processes for which the
existence of a blocking measure can be proven directly; these are candidates for comparison processes
in applications of the main result.
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1. Introduction

We consider the exclusion process 77, on {0, 1}¥ with generator L given by
LI => > plx, y ML) = £ (1.1)
xeZ yeZ
Here f is a continuous function on {0, 1}Z (with the product topology) and, for x, y, z € Z,
n(x), if z=y,

@) =q ), ifz=x
n(2), otherwise.

The jump rate of particles from x to y in configuration 7, p(x, y; ), is a continuous function
of  which is zero unless n(x) =1 —n(y) = 1.
Let

X, = {77 €{0, 137:) nn) =Y (1 —n@x) < oo}
and

X:UXW

n
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The set X is countable; we will call elements of X blocking configurations, and call
probability measures supported on X blocking measures. We are interested in finding
sufficient conditions on the rates p for the existence of blocking measures which are invariant
for the process #;.

We will construct the process on blocking configurations directly. For the construction we
will use two conditions on the rates, which we assume throughout the paper; these could be
somewhat weakened at the expense of increasing the complexity of the exposition. (Liggett
(1985) gives conditions on the rates which ensure the existence of the process started from
an arbitrary initial condition.) First, we take the rates to be uniformly bounded; we can set
the upper bound equal to one by means of a time-scale change, and thus assume that

0= plx, y;m) <1 (1.2)
Second, we assume that the total rate for exiting any configuration of X is finite:
for any ¢ € X, ) = ZZp(x, y; €) < oo. (1.3)
x oy

This condition follows from (1.2) if there is an upper bound on the range of jumps.
Various special cases are of interest. The rates are simple when they are independent of
the configuration except for the exclusion condition, so that

p(x, ;) = c(x, y)nx)(1 —n(»), (1.4)
and are translation-invariant when
px, y; ) = p0, y — x; T_.1m),

where 7, is the operator of translation by z  When both of these conditions are satisfied the
rates can be written in the form

px, y; ) = a(y = )nx)(1 = n(y)). (1.5)

Liggett (1985) exhibits invariant blocking measures in the case of simple translation-invariant
rates with jumps restricted to length 1: a(z) =0 for |z| > 1 and a(l) > a(—1). A trivial
extension of his result is the following: if, for some a < 1, the rates have the form (1.4) with

c(x, y) =a Ye(y, x), for all x < y, (1.6)

then the product measure y with marginals

unx) =1) = (1.7)

1+ o*

is reversible for the process #,. This is a special case of a more general construction which
we describe in the Appendix.

For a more general set of rates, one might expect that blocking measures exist when the
process has a sufficiently strong positive drift, for example in the simple translation-
invariant case (that is, for rates satisfying (1.5)) when

Zya(y) >0 (1.8)
{r}
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(positive mean drift for the underlying random walk). Proving that (1.8) or a similar condition
implies the existence of blocking measures seems quite difficult; this is one of the open
problems of Liggett (1985).! When the rates p(x, y; 17) depend on the configuration # at sites
other than x and y, it is not even clear what necessary and/or sufficient condition to
conjecture. We do not deal directly with conditions like (1.8), but give a different sort of
sufficient condition, showing that when the rates of two processes are appropriately related,
existence of a blocking measure for one implies existence for the other.

Note that if u is any invariant blocking measure for 7, then u(X’,) # 0 for some n; since
each X, is a closed set for the process, the conditional measure u, = u(:|X,) is then also
an invariant blocking measure. Thus, if we permit ourselves a translation of the entire
system, there is no loss of generality in treating the existence of a blocking measure on X
as equivalent to the existence of a blocking measure on X,. We remark that if the rates are
simple and translation-invariant (see (1.5)) then X, is irreducible whenever there is a
positive rate for some forward and some backward jump, and the greatest common divisor
of {x #0: a(x) >0} is I, so that under these conditions each u, is unique and extremal
in the class of invariant blocking measures.

We now compare the process 77, with a second process 77, for which the generator L is
constructed as in (1.1) but with rates p(x, y; ). Our main result, presented in Section 4,
gives conditions on the rates p and p under which the existence of an invariant blocking
measure for the process 77, implies the existence of such a measure for #,. In the case in
which the rates are simple and translation-invariant, it takes the following form:

Theorem 1.1. Suppose that p(x, y; 1) = a(y — x)n(x)(1 — n(y)) and that
a(x) = a(y), for0<x=<y,
a(y) = ax), for y<x<0.

Then if 77, has an invariant blocking measure, so does 1;.

For example, we may take the weights p to have the form (1.6), with c(x, y) = a(y — x)
for x < y, as in (1.5), so that the requisite blocking measure is given by (1.7).

We remark that establishing the existence of invariant blocking measures is a special
case, and perhaps a first step towards the general case, of the problem of establishing the
existence of invariant shock measures: measures on {0, 1}¥ which have distinct asymptotic
limits to the right and left of the origin and which are time-invariant in some appropriate
sense, usually for the process as seen from a suitable random viewpoint. Such measures are
related to the shock solutions of the Burgers equation, which describes the process in the
hydrodynamical limit. The left and right asymptotic measures will be time-invariant for the
process in the usual sense, so that invariant shock measures appear in systems that have
more than one translation-invariant state. Given two such asymptotic measures, the shock

! After this paper was submitted, Bramson and Mountford proved the existence of blocking measures for processes
with simple translation-invariant rates when the range is finite and the drift is positive (M. Bramson, private
communication).
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measure describes one ultimate fate of the system when it starts with one of these on each
side of the origin (another is the so-called rarefaction fan). The blocking measures are the
simplest shock measures: conceptually, because they are invariant when seen from a fixed
viewpoint, and technically, because they have support on a countable state space.

In the case of simple exclusion the extremal time- and translation-invariant measures are
the one-parameter family of homogeneous product measures indexed by density. In nearest-
neighbour asymmetric simple exclusion, existence of invariant shock measures has been
established for the process as seen from a ‘second class particle’ (Ferrari et al. 1991;
Ferrari 1992; Derrida et al. 1993; 1998). The approach of Ferrari ef al. (1991) and Ferrari
(1992) was closely based on the known blocking measures for this process, the product
measures (1.7). Derrida et al. (1997; 1998) proposed other approaches to the problem of
describing shock measures.

The paper is organized as follows. In Section 2 we construct 7, on X using Poisson
processes (the Harris graphical construction); the construction is done in such a way as to
facilitate an appropriate coupling of two such process. The key idea for the proof of our
results is introduced in Section 3 — a certain partial order < on the space Xy of blocking
configurations with the property that, under the coupling, the conditions of Theorem 1.1 (or
the more general conditions to be given later) imply that if the initial configurations #y and
7o satisfy 1y < 7o, then this ordering is preserved by the dynamics: #; < 7, for all # = 0. In
Section 4 we state and prove our general result, of which Theorem 1.1 is an immediate
corollary. In Section 5 we present some applications, and in the Appendix we discuss the
construction of a class of possible comparison processes 77;.

2. Construction of the process

We now exhibit a special construction of the process in X. The construction requires the rates
p(x, y; ©) to satisfy conditions (1.2) and (1.3).

The graphical construction of an exclusion process is usually based on families of
independent Poisson processes that are associated with either lattice sites or particles. In the
latter case, for example, the process for a particle at site x in configuration # has rate
q(x; ) =, p(x, y; n); at a Poisson event time the particle attempts to jump, choosing the
target site y with probability p(x, v; 7)/q(x; 7). In contrast, our construction associates
distinct Poisson processes with each possible jump — specifically, with each pair (i, j),
where i is a particle label and j is the label of an empty site (labels correspond to ordinary
order). Two processes are associated with each (i, j), one controlling forward and one
backward jumps; at the event time of the forward (backward) processes the ith particle
attempts to jump to the jth site if that is a forward (backward) jump. All these processes
have unit rate; to tune the actual jump rate, a uniform random variable (called a mark) is
associated with each Poisson time event; the jump actually occurs if the mark satisfies a
certain inequality. Once the jump rates are adjusted correctly the two approaches are clearly
equivalent for describing a single exclusion process; the advantage of our approach is that it
permits a useful coupling of two such processes.
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We start by defining the labels of particles and empty sites. For a configuration 7 € X we
define ordered positions of the particles and empty sites by

xo(7) = min{x : 7(x) = 1}, 2.0
x(7) = min{x > x;_1 () : 7(x) = 1}, (22)
yo(17) = max{x : 5(x) = 0}, (2:3)
yi(n) = max{x < y;_1(y) : n(x) = 0}. (2:4)

For each pair (i, j) with i, j =0, let
O = (T3, U3, Ry, VD) = mym = 1}

m?

be a process with the following properties:

e Both (Tﬁ;f — Ti;j;l)rgl and (Rf;{ — R;’;l)mzl, where by convention Tf)’j = Ré’j =0, are
families of independent and exponentially distributed random variables of mean 1. In
other words, (7;/) and (R}/) are Poisson processes of rate 1 for all i, j.

e Both (U%/),=; and (V%/),=, are families of independent random variables, uniformly
distributed on [0, 1].

e All four of these families of variables are mutually independent.

We also assume that {©@%/ : i, j = 0} is a family of mutually independent processes. The
times 7'/ and R/ will be called Poisson events and the associated random variables U’/ and
Vi will be called marks.

We now construct the process 7, as a function of the marked Poisson processes and the
initial configuration 79 € X. Set 7o = 0 and suppose inductively that we have defined times
70, ..., Tn—1 and configurations %y, ..., %7, ,. Define

Ty = min{lirj;tl’({T',:j > T, UY < Auge, o))

li’]r{g{Rk" > Tt VI < A, j)}}, 2.5)

where, for i, j =0,
A+, i, ) = pGan), y;00; m) W) > x(n)}, (2.6)
A-(n, i, j) = pG(n), y;00); m) K yi(m) < xi(n)}- 2.7)

Here 1§ denotes the characteristic function of the set S. If (/,,, J,,) is the pair (i, j) such that
T} or R}’ realizes the infimum 7, for some k, set

X" = xln(n‘tnfl)»

Y, = an(’?Tnfl)’

and define
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= (ﬂrnfl)X”’Y"'

This completes the induction step. To finish the construction after all 7, and #,, are defined,
set

N, = Zn,nl{rn <t <Tu} for all = 0. (2.8)

n=0

Note that it is a consequence of (2.1)—(2.4) that labels are not permanently attached to
particles or holes. Because particles can jump over one another and thereby change their
order (as can holes), particles and holes are effectively relabelled after each jump, so that,
for all times ¢,

xi(m) < xp1(m) and  y;(m) = yia (), i, j=0.

The construction may be described in words as follows. We use independent times (7%/
and R/, respectively) for jumps to the right and jumps to the left; this is not necessary for
the construction here but ensures that the coupling we define later preserves a certain partial
order on configurations. The instant 7, is the first time after 7,_; at which a jump is
performed, and is the minimum of the first scheduled jump times to the right and to the
left. The first scheduled ]ump time to the right is the first 7} “/ for which the corresponding
uniform random variable U}’ is smaller than the threshold A+, defined by (2.6) to ensure
that the jump is indeed to the right and occurs at the correct rate (here we use the condition
(1.2) that p(x, y; ) < 1). Similarly, the first scheduled jump time to the left is the first R”
for which the corresponding uniform random variable V k’ is smaller than the threshold A_
defined by (2.7). The configuration at time 7, is then the one obtained by interchanging the
hole and the particle whose indices i, j correspond to the R}’ or T’ that realizes the time
Ty

To see that the above is well defined for initial configurations in X it suffices to see that,
for any initial ny € X, 7, is with probability 1 a strictly increasing sequence of (finite)
times. The conditional distribution of 7, — t,—-; given the past up to 7,_; is

P(T, — Tyt > S|y, ) = exp{ =3 plx, s mno}, (2.9)
X,y

by (2.5) — it is the minimum of independent random variables with exponential distribution
and inverse mean p(x, y; 1., ,). Since 7., , is obtained by carrying out at most n—1
modifications to the initial configuration 7y, it belongs to AX. By condition (1.3), the
conditional law (2.9) is that of a non-degenerate exponential random variable.

We now give a graphical interpretation of this construction, and of the coupling of the
processes to be introduced later. For simplicity, assume X = X,,. With each configuration
n € Xy associate an interface P corresponding to the integrated profile of 7. Here
P Xy — Zz is defined by either of two equivalent expressions



Blocking measures for asymmetric exclusion processes via coupling 941

(@) = —x+2> 7y (2.10)
y=x
=x+2) (1-n(») 2.11)
y>x

Note that ®% increases by 1 when a particle is present at x or decreases by 1 when no
particle is present at x, so that, in particular, |®n(x) — Pn(x+ 1) =1. The graph
{(x, (@n)(x))|x € Z} is a subset of the lattice 72 = {(x, y) € Z*|x+ y is even}. The
corresponding interface, which we will also refer to as ®, is the path obtained by joining
adjacent vertices of this graph with straight lines; each line segment with slope +1 (—1) of
this interface is identified with a particle (hole). A typical interface is shown in Figure 1.
The Heaviside configuration 5, given by n'(x) = 1{x = 1}, gives rise to the interface
Dn'(x) = |x].

The interface picture yields a geometric interpretation of the construction of the process
7;. Index the squares of the lattice ngen as {Si;|li,j€Z} as shown in Figure 1
(Sij={(x, M2i<x+y<2i+2,2j<y—x<2j+2}), and consider only those S;;
with i, j = 0. A line through S;; of slope —1 (+1) intersects the interface ®# at the line
segment corresponding to particle i (hole j). The interface lies above S;; if x;(7) < y;(7),
that is, if the jump of particle i to hole j is to the right, and below S;; if x,(57) > y;(n7), that

is, if the jump is to the left. Now think of the marked processes (T ’nf , U i;f) and (R’;;{ , V’;;{')

Figure 1. The heavy solid line is the interface for the configuration # = ... 0001010010110111 ....
The lower heavy dashed line is the interface after a jump of the particle at x(1) = —2 to the hole at
¥(2) = 0, triggered by the occurrence of a mark of the process T2, that is, the interface for #~2°.
The upper dashed line is the interface for 7>, after a jump triggered by the occurrence of a mark of
the process T33.
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as associated with S;;. When at the Poisson event 7%/ the corresponding uniform variable
U’ is less than p(xi(n), vi(m); n), then, if the interface ®# lies above S;;, we update the
interface by changing the line segment corresponding to particle i from slope +1 to slope
—1, and similarly the line segment corresponding to hole j from slope —1 to slope +1; this
has the effect of decreasing the interface height by two units in the interval (x;, y;].
Similarly, when at time R%/ the corresponding mark satisfies V% < p(x:(n), y;(n); 7) and
the interface lies below S;; we increase by two units the height of the interface in the
interval (y;, x;]. All of this is shown in Figure 1.
We now verify that this construction indeed produces the desired process.

Lemma 2.1. The process 1, defined by (2.8) has generator L given by (1.1).

Proof. Since the process is defined in X, a countable state space, it suffices to show that if
n € Xo then for all i, j, with x = x;(57) and y = y;(n),

lim b~ POy = 0™ e = ) = plx, yi ), 2.12)

and for all ¢ € X with § # » and § # Y for any x = x;,(n7), y = y:i(n),

tim s~ POy = Elipe =) = 0. (2.13)
To verify (2.12) we first write

1{’7r+h =0, 0 = 77}

=1{n, =n} (Z[l{y >x, TY € [t t+h), UY < p(x, y: m), A(n, h)}
k

+ 1y <x, RY €lt, t+h), Vi< p(x, y; ), A®m, h)}])

+ l{nl‘Jrh = nx,ya ne=n, Ac(na h)}a (214)

where A(n, h) is the event {if %, = then at most one particle jumps in the time interval
(¢, t + h]}. Taking the expectation of all but the last term on the right-hand side of (2.14)
conditioned on 7, = #, dividing by 4, and then taking the limit 4~ — 0, we obtain the right-
hand side of (2.12). Thus to complete the proof of (2.12) and prove (2.13) it suffices to show
that

}lirr(l)h’lP(AC(n, h)) = 0. (2.15)

We calculate P(A4°(#, h)) by conditioning on the time ¢+ ¢’ at which the first jump in
(¢, t + h] occurs and on the pair of sites x’, y’ involved. By an explicit consideration of the
® processes, similar to the argument above, we find that
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h
P(A(y, h)) = Zj e "W px', yy [l — e Ay

X',y
<hY pK,yimll—e o, (2.16)
&

where 7(77), the total rate for leaving #, was defined in (1.3). Now (2.15) follows from (2.16),
(1.3) and the Lebesgue dominated convergence theorem. O

We are really proving two somewhat different things here. One is that our condition (1.3)
does in fact suffice to make our process well defined; this is standard and has nothing to do
with the particular graphical construction we choose. The other is that our graphical
construction works; this is immediate from (2.14).

We finally remark that the above construction works also if the process restricted to X
has explosions, that is, if 7™ =lim, .7, satisfies P(T* < 0o) >0, but the resulting
process is of course defined only for r < T*.

3. An order relation on configurations

For configurations # and 77 € X, we say that
n < 77 if and only if for all 7, j = 0, x;() = x;(77) and y;() < y;(7).

It is easy to see that this is a partial order which corresponds to the natural order on
interfaces:

n < 77 if and only if (Py)(x) < (P7)(x) for all x € Z.

Under this ordering, the Heaviside configuration " precedes every other configuration:
nt < 5 for any 5 € X,. From (2.10) and (2.11) it follows that if 5 < 77 then, for all z € Z,

(@1)(2) — (Pn)(2) =2 Z Kxi() < z < x(m)} (€RY

=2 1{ym) <z <y}, (32)
J

and for all x, y such that n#(x) =1 and #(y) =0 and all z € Z,
(O )(z2) = (Py)(2) —21{x <z < y} + 21{y < z < x}. (3.3)

The following lemma says essentially that if we have two configurations which are
ordered by < then they will remain ordered after either (i) a jump in both configurations, in
the same direction, of the ith particle to the jth hole, or (ii) certain jumps in only one of
the configurations.
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Lemma 3.1. Assume 5 <1, fix i and j, and let x=x;(), y=y;(n), Xx=x(7) and
¥ = yj(i7). Then jumps preserve ordering in the following cases:

W) IfFxsx<y<j, then 7% < 1.
() If y<y<i<x, then 5 < ij°7.
(iii) If F<x<y< 7, then p*¥ < 7.
(iv) If y< 7 <X <x, then p*¥ < iJ7.
™) If x>y and £ <3, then 5 < 7% and p* < 1.

Before giving a formal proof of this lemma, we describe its graphical interpretation. The
interface @7 lies below ®77. In cases (i) and (iii) the square S;; lies below both interfaces,
so that for either interface a jump of the ith particle to the jth hole — or an (i, j) jump for
short — lowers the interface; (i) and (iii) assert respectively that the order is preserved by
either a jump in the lower interface only, or a jump for both interfaces. Similarly, in cases
(if) and (iv) S;; lies above both interfaces, an (i, j) jump raises either interface, and the
order is preserved by such a jump in either the upper interface alone or in both. Finally, in
case (v) S;; lies between the two interfaces, an (i, j) jump for the lower interface raises it
and for the upper interface lowers it, and (v) asserts that such a jump for either interface
alone preserves the order. These properties are easy to check in the graphical representation.

Proof. Statements (i) and (ii) follow immediately from (3.3). Under the hypothesis of (iii),
x < y and x < y. Hence, by (3.3),

(P7™")(2) = (P)(2) — 2H{x < z < y}; (3.6)
an analogous identity holds for 7. Since # < 7 and x < x < y < j, by (3.1) and (3.2),
(O)(z) < (PN)(z) —21{x <z <x} -21{y <z < j}. 3.7
Subtracting 21{x < z < y} from both sides of the above inequality, we obtain
(P)(2) —21{x < z < y} < (PY)(2) —21{x < z < 7},
which by (3.3) is the same as (®Pn*?)(z) < (P7%Y)(z). In this way we get #°¥ < 77 and (iii)

is proven. Statement (iv) is verified analogously.
By 3.1),

(@)(2) — (P)(2) = 21{y < z < j},
(@)(2) — (Pn)(z) = 21{x < z < x}.
Under the hypothesis of (v), this implies that
(@7)(2) — (@)(z) = 21{min{y, 5} < z < max{7, x}}.

Applying (3.3), we obtain (v). U
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4. Statement and proof of main result

We now consider two processes 1, and 77, with rates p and p respectively, as discussed in
Section 1. Our main result is the following:

Theorem 4.1. Suppose that whenever n < 17 and n(x) = 9(x) = 1, n(y) = 7(y) =0,
plx, yim) = p(x, yi1p),  if xSx<ys}y, 4.1
px, y;m) < p(%, ¥, 1), fys<sj<isnx. (4.2)

Then if 1, restricted to X has an invariant blocking measure, so does 1.

Theorem 1.1 is an immediate corollary of Theorem 4.1.

We construct simultaneously the two processes #; and 7, using the same marked Poisson
processes ((T%/, U%J), (R%/, V'+/)). This joint construction is called coupling and is the key
to the proof.

Lemma 4.2. Assume that 1, and 1], are processes with rates p and p satisfying (4.1)—(4.2)
and defined for 0 < t < T* where T* is a random time. Under the coupling, if ny < ijo are
both configurations of X, then for 0 < t < T* n, < 7.

Proof. This is a mark-by-mark proof. Set 6y =0 and let 8, < 6, < ... be the instants at
which there is a jump for at least one of the processes #;, #7;. Assume inductively that
ne, , < 1o, ,, so that if (x;, y;) and (X;, ;) are the sites and holes of 7y, , and 7,
respectively, at time 6,_;, then

Xi = .fi and y/ = }_//, i, ] = (. (43)
Let 7, and 7, be the times defined as in (2.5) for the processes 7, and #,, so that
0, = min{min{r; > 6,_}, min{7; > 6,_1}}.

Let (/, J, K) be the indices which realize the infimum (2.5) defining the time 6,, so that
0, € {T, RY}. Let U e {UY, V}/} be the uniform random variable related with the
indexes realizing the infimum, and let 0 = + indicate the direction of the jump at 8,: 0 = +

if0, =Ty and U=U}/, 0=~ if 6, = R and U =V}, Let
X =xy, X =%, Y=y, Y=y
‘E =MN06,_,» é: 779%1;

B:A(I(EJ 17 J)a E:A(I(éa [: J)
Since (4.3) implies that X < X and Y < ¥, there are three cases to consider

1. X < X <Y =Y. By hypothesis (4.1), B < B. Hence there are two possibilities:
(@) U< B<B. In this case 75y, =E"Y and 7y, = EXY. By Lemma 3.1(iii),
M6, =19,
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(b) B< U < B. In this case ng, = E¥7 and 75, = & By Lemma 3.1(i), 7s, < g,
2. Y <Y < X < X. By hypothesis (4.2), B < B. Hence there are two possibilities:
(@ U<B<B. In this case 59, =&Y and 7y, = EXY. By Lemma 3.1(iv),
N6, =< 16, .
(b) B< U < B. In this case 19, = £¥Y and 7y, = £&. By Lemma 3.1(ii), 179, < 7o,
3. X > Y and X < Y. There are two possibilities: o
(@ 0=+ and 0=B<U=UY <B. In this case 1y, =& and 7, = E¥'. By
Lemma 3.1(v), ng, < 7o,
(b) 0 =— and 0= B< U = Vg’ < B. In this case 5y, = EXY and 77y, = £&. Again
by Lemma 3.1(v), ne, < 7,- O

Notice that if we had used the same Poisson process for both forward and backward
jumps then in the situation of case 3 above jumps could have occurred simultaneously in #
and 7, in opposite directions, which could destroy the ordering. For example, the Heaviside
configuration 7 = 5'! is below 5’ = (")*! (the configuration obtained from 7" when the
first particle jumps one unit to the left). Now, a simultaneous jump of the first particle to
the first hole of each of those configurations takes # to #' and #' to #, inverting the order.

We remark that Lemma 4.2 applies even if one of the processes 7,, 7, has explosions,
that is, if P(T™ < o) > 0.

Proof of Theorem 4.1. As remarked in Section 1 it suffices to show that if 77, has an invariant
measure in Xy, then so does 7,. By restricting to a subset of X' C X (if necessary) we may
assume that 77, is ergodic with invariant measure # having support X’. This excludes
explosions for the process 77, starting with configurations in X.

Start the coupled process with any two configurations ¢ < C, with € X’ and & € X.
We know that:

1. The process 7, is defined for all time, by the above remark.

2. Since 77, is a continuous-time ergodic Markov process in a countable state space, it
converges in distribution to its unique invariant measure f;

3. n: <1, for all ¢ for which 7, is defined, by Lemma 4.2.

Further, we may show by an argument similar to the one in the proof of Lemma 4.2 that no
explosions occur for 7, so that #, is defined for all time. Hence any weak Cesaro limit u of
the distribution of #, is coupled with & in such a way that v, the coupled measure with
marginals x4 and i, satisfies

v, )<, peX)=1
In particular, this implies that wu(Xy) =1, since wu(Xo)=nm(XoX X') and XX

X' D>{(m,n):n=<mn,ne€ X} Since u is a Cesaro limit, u is invariant for 7,. This implies
the theorem. O
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5. Applications

To apply Theorem 4.1 one needs a suitable comparison process 77 which is known to have an
invariant blocking measure. Obvious candidates are processes satisfying (1.6), for which the
product measures (1.7) are invariant; in this section we draw some simple conclusions from
this comparison. In the Appendix we discuss briefly the existence of other possible
comparison processes: those which satisfy detailed balance with respect to a Gibbs measure
obtained from a suitable potential (Hamiltonian).

Theorem 5.1. Suppose that the exclusion process 1, has simple translation-invariant rates
p(x, v; ) = a(y — x)n(x)(1 — n(y)) which, for some a with 0 < a <1, satisfy

) <a' i
a(—x) < o’ g;fs a)
for all x > 0. Then n, has an invariant blocking measure.

Proof. The process with rates p(x, y; ) = a(y — x)n(x)(1 — n(y)), where, for x > 0,

ax) = 0inf a(y) and a(—x) = a*a(x),
<ysx

has an invariant measure of the form (1.7). Thus the process 7, has an invariant blocking
measure by Theorem 1.1. O

As a second example, consider a process with symmetric ‘disorder’, in which translation-
invariant, asymmetric, nearest-neighbour rates are perturbed by arbitrary, bounded, sym-
metric nearest-neighbour rates. Specifically, take p(x, y; n7) = c(x, y)n(x)(1 — n(y)), where
c(x, ¥) = colx, y) + ci(x, y) with ¢o(x, y) = c1(x, y) =0 if |[x — y| > 1 and

colx, x+ 1) = K, co(x+1,x) =0, cilx, x+ 1) = c(x+1, x) = h(x),

with K > 0 and % : Z — R, an arbitrary bounded function. It follows from Theorem 4.1 that
this process has a blocking measure. A suitable comparison process has rates p(x, y; 1) =
(x, yyn(x)(1 —n(y)) with é(x, x+1)=c(x,x+ 1), é(x+ 1, x) = ac(x, x+ 1) and &(x, y)
=0 if |[x— y| > 1, where a = M /(M + K) with M an upper bound on A(x); these rates
satisfy (1.6) and hence have a blocking measure as given in (1.7). We single out this rather
trivial example because in this case it is easy to see that the product measures with constant
density are invariant measures, since if u is such a measure then Lju = L u = 0 and hence
(Ly + LT)u =0, where L} is the adjoint of the generator for the process with rates c;.

Appendix

The remark that processes satisfying (1.6) have invariant product blocking measures of the
form (1.7) can be generalized to processes which satisfy detailed balance with respect to a
Gibbs measure obtained from a suitable potential (Hamiltonian). The latter is specified (see
Liggett 1985) by a collection of real numbers {Jr} indexed by finite subsets R of Z and
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satisfying > gsy|Jr| < oo for each x € Z. We show that if these coupling constants are
chosen appropriately, then blocking Gibbs measures for this potential arise as the limit of
finite-volume measures.

Let Ty =[-N+1,N]NZ and Yy ={0,1}7v. For € Yy, let 5™ € X be the
configuration which agrees with # in Ty and with 5! outside Ty. The energy of the
configuration 7 is

Hyn = Y. Jrxx(r"),

{R|IRNTy#£D}

where Xr(8) = [ rxer(28(x) — 1); the variables 2¢(x) — 1 are spins which take values +1.
The corresponding finite-volume Gibbs measure vy on Yy is defined by

vv({n}) = Zy' exp(= Hy(1)
for y € Yy, with Zy = > rey,exp(— Hn($)) a normalization constant; vy defines a measure
on {0, 1} by setting vy(4) = vy({n € Yy|n* € A}). Now let us assume for simplicity that
all n-body terms in the potential, for » = 2, are translation-invariant, that is, that Jz,, = Jr
for k € Z and |R| = 2 (this assumption could easily be relaxed), and let K = 3 5 |gj=2|/ |-

Theorem A.1. Suppose that as x approaches ‘0o, the one-particle potential J ., approaches
Foo sufficiently fast that

D exp2Jy) <oo and Y exp(—2J () < 0. (A1)
x=1 x<0

Then v =limy_VyN exists and is a blocking measure. Moreover, if the rates p(x, y; 1)
satisfy the detailed balance condition

plx, y; n)eXp< > JRXR(n)> =p(y, x; nx’y)eXp< > JRXR(W"’y)>,

{R|x€R or yeR} {R|xER or yeR}

(A2)

then v is reversible for the process with rates p.

Proof- We wish to compare the measures vy and v,, where N < M. For n € Yy we let
n' € Yy be the configuration which agrees with # in 7Ty and with ™ in Ty \Ty, and for
€ € Yy we let § € Yy be the restriction of § to Ty; thus {' = (§)' € Ty. Now fix € Yy,
let S = {x|8(x) # ¢'(x)}, and set S, =SN{x=1}, S_ =S5N{x <0}. Then

Hy(©) = Hu(@) =23 T +2) Jg+ Y. Jrbr@E) = xC€™)]
xeSy xesS_ RT]Z\;?@

= Hy(C) -2 Z(J{x} +K)+2 Z(J{x} - K).

xeSy xeS_

Thus if 5 € Yy,
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M M-1
e M) < §7 e MO < oM TT (14 V00 T (1 +et0),
é:n x=N+1 x=—N

Since the infinite products [].=;(1 +e*’=7X) and [].<o(1 + e*~/=5) converge by
(A.1), we have, for any ¢ > 0,

e~ Hu) < Ze*HM(C) < e*HM(VI')(l +o), (A3)
=y
when N is sufficiently large, uniformly in M.
Now suppose that 4 C {0, 1}¥ is such that 14(5) depends on 7 only through the

variables #(x) for a finite number of sites — say, for x € 7;. Since for 5 € Yy,
Hy(n) — Hy(n') is independent of 7.

—Hy —Huy('
Dneryarea® NP S evyyreae M)
— - _ 1 s
E Yy Hy(n) E pe¥y @ Hy(n')

and with (A.3) this implies that if N = L,

vyn(4) =

(140 'wy(4) < vy(4) < (1 + vy (A).

Hence limy .o vy(4) exists, so that v exists. Similarly, if B C {0, 1}? is the event that
n(x) = nt(x) for x¢ Ty then vy (B) = Z3} > yeyy exp(—Hu(n')) = (14+¢)7' by (A.3), so
that v is a blocking measure.

The measure v is reversible for the process with rates p if, for any continuous f defined
on {0, 1}% and any x, y € Z,

Jp(x, v L) — fOp] dv = 0;

see the proof of the analogous result for stochastic Ising models in Liggett (1985). But this
integral may be calculated to arbitrary accuracy by replacing v with vy for suitably large N
(here continuity of p in 5 is needed), and the fact that the integral with respect to vy
vanishes is an immediate consequence of (A.2). U
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