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Let X;, i=1, ..., n, be independent random variables, and consider an optimal stopping problem
where an observation not chosen in the past is still available i steps later with some probability p;,
1=p=...=p,_1 =0. Only one object may be chosen. After formulating the general solu-
tion to this optimal stopping problem, we consider ‘prophet inequalities’ for this situation.
Let Vp(X1, ..., X,) be the optimal value to the statistician. We show that for all non-trivial,
non-negative X; and all »n =2, the ‘ratio prophet inequality’ E[max(Xj,...,X,)] <2 —
Pn-1)Vp(X1, ..., X,) holds, and 2 — p,_; is the best constant. This generalizes the classical prophet
inequality with no recall, in which the best constant is 2. For any 0 < X; < 1, the ‘difference prophet
inequality’ E[max(Xi, ..., X,)] = Vp(X1, ..., X)) < (1 — pp—)[1 — (1 — p,,,l)'/z]z/pzn_1 holds. Pro-
phet regions are also discussed.
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1. Introduction and summary

Let Xy, X5, ... be a finite or infinite sequence of random variables with finite expectations,
which are observed sequentially. Classical optimal stopping theory deals with the existence
and structure of an optimal stopping rule ¢, and its value, EX,. The ‘stopping rule’ refers to
an integer-valued random variable such that the event {# = i} may depend on the already
observed random variables X1, ..., X;, and possibly on external variables, but not on the
future. When the sequence is infinite the requirement is that P{# < oo} = 1, and when the
sequence is of length n the requirement is P{¢ < n} = 1. In the latter case an optimal rule
always exists, and can be obtained by backward induction (dynamic programming). Chow
et al. (1971) cover the general theory of optimal stopping.

In the present paper we consider the situation where the optimal stopper has a chance to
‘recall’ a previously observed X. If the variable X was observed j time units ago, the
probability that it is still available is p;. Hence the term ‘probabilistic recall’. The term
‘backward solicitation’ is also used in the literature, especially in papers where ‘recall’ is a
synonym for ‘memory’. We make the realistic assumption that 1 = p; = ... = p,_; = 0.
‘Geometric recall’ is the special case where p; = p/, i=1,2,..., for some value p,
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0 < p < 1. Probabilistic recall has been discussed in the literature for specific structures or
specific problems. Karni and Schwartz (1977) assume that there is a cost attached to the
observation, ITkuta (1988) assumes cost and discounting, and Petrucelli (1981; 1982)
considers the ‘secretary problem’. Saito (1998) gives a review of the literature. He assumes
independent and identically distributed (i.i.d.) observations, each of which carries an
associated cost. We are not aware of any work dealing with a completely general model for
recall, corresponding to Chow et al. (1971).

The model of optimal stopping with probabilistic recall is often more realistic than that
with no possibility of recall. Consider, for example, the situation where the X; are the
scores of applicants for a job. An applicant who did not seem sufficiently attractive when
first interviewed may later be deemed quite desirable, other candidates having been
observed. The applicant may still be available with some probability, typically decreasing as
time goes by. A similar situation arises when the X, are the scores given to prospective
houses when a house purchase is being considered.

In Section 2 we describe several models for probabilistic recall, and give a recursion
formula for obtaining the optimal rule and its value for one of the models.

Our main interest in the present paper is in deriving ‘prophet inequalities’ for
probabilistic recall in the case where the X; are independent, non-negative and not all
identically zero. In this case, with no recall, the classical ratio prophet inequality states that,
for all n =2,

E(An}ax X,-) = E[X; V...V X,] <2V(X1, ..., X»); (1.1)

.....

see, for example, Krengel and Sucheston (1978) or Hill and Kertz (1981a). Here
V(Xi1, ..., Xn) =sup,EX,. The term °‘prophet inequality’ stems from the fact that
E[X: V...V X,] can be thought of as the value to a ‘prophet’” who can foresee all the
X; and thus pick the largest. (In the present terminology he could also be thought of as
having perfect recall.) V(Xy, ..., X,) is the value to the statistician (or mortal) who acts
optimally. Inequality (1.1) holds also in the infinite case, and 2 is the best (smallest) constant
¢ for which E[X; V...V X,] <cV(Xy, ..., X,) holds for all sequences of non-negative
independent X.

In the present paper we generalize (1.1) to the case in which recall is allowed. Since the
option of recall improves the situation of the statistician, bringing him °‘closer’ to the
prophet, the best constant 2 of (1.1) may in fact be replaced by a smaller constant. Let
p=(pi,..., Pn—1), Where 1=p =...=p, 1 =0, and let V,(Xy, ..., X,) be the
optimal value to the statistician with probabilistic recall, which is described in detail in
Section 2. We prove the following:

Theorem 1.1. Let n =2, and let X;, i=1, ..., n, be independent, non-negative random
variables with finite expectations, not all identically zero. If p,—1 <1, then

E[X, V...V X,] < Q2= pu DVp(X1, ..., X, (1.2)

and 2 — p,_1 is the best constant. If p,_1 = 1 the inequality in (1.2) is replaced by equality.
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For an infinite sequence X, X»,... as above, with lim, .o py = psc =0 and
E[sup X;] < oo,

E(supX,») < Q2= p)Vp(X1, Xa, ). (1.3)

i=1

The corresponding classical ‘difference prophet inequality’ for bounded independent
random variables such that a < X; < b states that

ELX1 V.V X ] = V(X X)) < = (1.4)
see Hill and Kertz (1981b). Here we prove the following:
Theorem 1.2. Let n = 2, and let X; be independent, a < X; <b, i =1, ..., n. Then
E[X, V...V X,]— Vo(X1, ..., X,) < {[1 (- pnl)l/z]z%}(b —a), (1.5)
n—1

and a corresponding statement is true in the infinite case where p,_ is replaced by
Poo = lim p,. In both cases it is a best bound.

Note that when p,_; — 0 the limiting value of the right-hand side of (1.5) is (b — a)/4.

The above theorems are obtained by first considering in Section 3 the ‘prophet region’
for the case of probabilistic recall. A prophet region S is the collection of points (x, y) such
that x = V(Xy, ..., X,) and y=E[X| V...V X,], for some Xi,..., X,. For the in-
dependent case with 0 < X; < 1, no recall and any » = 2, Hill (1983) shows that

S={(x,»:0<x<1,x<y<2x—x} (1.6)

Inequalities (1.1) and (1.4) are easily obtained from (1.6), though chronologically the results
were not obtained in this order.
For the present case, we prove in Theorem 3.1 that, for independent X; with 0 < X; < 1

and any n where x = Vp(Xi, ..., X,), the prophet region is given by
2 — Py —
{(x, y);Ostl,xSysw}. (1.7)
l = ppax

Theorems 1.1 and 1.2 are proved in Section 4 using (1.7). Section 5 includes some additional
remarks.

2. Models of probabilistic recall

Consider a general probability vector p = (p1, ..., pn—1), Where 1 = p, = ... = p,_; = 0.
The geometric case where p; = p' for some p, 0 < p < 1, is of special interest, but will not
be treated separately here. Since the case where p,_; = 1 is trivial, it will not be considered
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any further. We consider two modes of availability and three modes of stopping, giving six
models, some of which coincide.
The modes of availability

(I) If an item X; is not available at time k > i, it will remain unavailable beyond *.

(I) The item may become available, either by some specified probabilistic model, or by
probabilistic recall using the vector p above. In this case the availability of a given
item might behave as independent ‘coin tossings’ with the specified probabilities.

In both modes we naturally assume that the de facto availability of a previously observed
item becomes known only when an attempt to recall it is made.

Another realistic mode, which will not be discussed here, is where availability of X;
depends not only on the time elapsed since the item was seen, but also on the ‘quality’ of
the item. Thus a large X; value may have a smaller probability of being available at a later
time. (If X; measures some quality of a candidate for a job, this mode seems especially
suitable, due to other offers he/she may receive.) This mode is studied in Petrucelli (1982)
in relation to the full-information, best-choice ‘secretary problem’, with no relation to
prophet inequalities. Lee (2001) has studied the case where the recall probabilities depend
on the value observed, but not on the time elapsed, for the case of i.i.d. uniform [0,1]
random variables.

The three modes of stopping are as follows:

(A) Continue until an item has been selected — either through direct choice at time of
observation, or through recalling, or by reaching time » and being forced to stop.

(B) If a recalled item is unavailable one must stop, and the reward is the present
observation.

(C) If a recalled item is unavailable one must stop and the reward is 0.

In Section 3 we consider non-negative X; only. For this case clearly the combination
(I, C) is the least favourable for the statistician, and hence the prophet inequalities will be
most extreme for this case. It turns out, however, that the prophet inequalities and region
obtained in later sections for this case are valid in all six models considered.

We first describe the value and the optimal stopping rule for the combination (I, C). Let
po=1, and for k=1,..., n let F; be the o-field generated by X, ..., X; and possibly
some unrelated variables needed for randomization, when considering randomized stopping
rules. It will be convenient to let F, be the trivial o-field consisting only of the whole
space and the empty set. In the present section there is no need to assume that the X; are
independent. Define the optimal value, denoted Vy(X1, ..., X,), as follows. For j =i let
Z;; be the indicator of the event that the item observed at time i is still available at time j.
Thus Z;; takes the values 0 and 1 with P(Z;,; =1)= p;_;. (Note that in some of the
models, for fixed i, the Z;; are dependent.) For model (I, C) define

Vp(X1, ..., Xy) =supE [V(E(zi,t)Xi)] ,

i=1
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with the supremum taken over all stopping rules 7. An optimal stopping rule may be
described recursively as follows. Let

WaXy, - X)) =\ (pamiX)). @.1)
i=1

Note that W} (X, ..., X,) represents the ‘actual optimal payoff” if one has reached time n
without stopping earlier, the quotation marks denoting that Z;; has been replaced by its
expected value. Next, let

Wi (X1, Xoo)) = EIW (X1, o, X)) Fui] (2.2
and
n—1
WZ—l(Xls cee X}’l*l) = max{ \/ pl’lflflAXl'a W;(:_](le e X}’ll)}'
i=1

Generally define, for k=n—-1,n -2, ..., 1,

WiXy, ..., Xp) = E[Wi (X1, ... Xee)| Fil- (2.3)
W¥(X1, ..., Xy) is the optimal payoff which can be expected in the future, having seen
X1, ..., Xi and not having stopped. Let
k
WXL, ..., Xi) = max{\/pk,-X,-, WXL, ..., Xk)}. (2.4)
i=1

Then it is clear by backward induction that the optimal value is
Vo(X1, ..., X)) = W = E[W(X1)|Fol, (2.5)

and an optimal rule (which stops as early as possible) is
k
t=inf{ k : WX, ...,Xk):\/pk,iXi :
i=1

When ¢ = k the j < k actually chosen is any j for which p;_;X; = \/f‘:1 Pi—iXi.

Although this description is simple in principle, the evaluation and implementation of this
rule is usually not straightforward in practice.

A referee has kindly pointed out to us that the optimal stopping problem (I, C) is
equivalent to the optimal stopping problem for the dependent random variables Yy, ..., ¥,
where Y; = max{p;, Xy, ..., ;mXi—1, X;}. Prophet inequalities involving dependent ran-
dom variables, and in particular random variables that are certain functions of independent
random variables, have been discussed in the past by Choi and Klass (1997), Wittmann
(1995) and Brunel and Krengel (1979), among others.

It should be noted that the p; can also be thought of as ‘discounting factors’. Thus the
value X;, when chosen only j time periods later, is worth only p;X;. This interpretation is,
however, different from the usual discounting concept, where right from outset the values in
the future are discounted. Thus the usual discounting forces the optimal stopper to stop
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‘sooner’ than with no discounting. Clearly the possibility of recall causes the optimal
stopper to stop ‘later’ than with no recall.

The special case where p; = ... = p,_; is worth mentioning. Though possibly not very
realistic, the optimal rule simplifies considerably in this case, since clearly no recall should
be attempted (in situation (I, C)) before reaching time ¢ = n.

The ‘indifference value’ u satisfying u = W7 (u) will play a special role in the next
section. Clearly it is unique. When X| = u one will be indifferent between picking u right
at time 1, on the one hand, and not picking it and continuing optimally, on the other. It is
clear (and can be shown by induction) that when the X; are independent, and when using
an optimal rule, if one has not stopped earlier, and the present observation X; satisfies
X; > u, one should stop and pick it. (One might also stop for smaller values of X;.)

3. Construction of extremal distributions

We now return to the case of independent X;. In the present section we consider bounded
random variables, and for convenience take 0 < X; =< 1, excluding the trivial case where
X, =... =X, =0. Since for non-negative random variables model (I, C) is the worst for
the statistician, we shall at present consider this situation only. Later it is shown that the
results obtained are valid more generally.

Consider the prophet region

Sy = {x, ) :x=Vp(X1, ..., Xn), y=E[X; V...V X,] forsome 0 < X; <1}. (3.1)
Our aim in the present section is to construct this region. Clearly 0 < x < 1, and for a given
value of x we show that x < y < y(x), where

y(x) =max{E[X; V...V X,]: Vp(Xi, ..., Xn) =x} 3.2)

and p and n are considered fixed. The function y(x) satisfies y(0) =0, y(1) =1, and S; is
completely characterized by y(x).

A vector of random variables (X1, ..., X,), and its distribution, will be called extremal if
Vp(X1, ..., X,) =x for some 0<x<1, and E[X; V...V X,]=y(x), and a point
(x, ¥(x)) will be called an extremal point.

Using standard arguments, consider the problem of maximizing Dg(X 1y -+ -, Xy), defined
by

D;‘(Xl, oL X)) = E[X 1 V.. VX = alp(Xy, ., X)), (3.3)
over (X1, ..., X,,) where a > 0. Let supy, . x, Dg(Xl, ..., X,) =d(a; p), and let
a* = sup{a : d(a; p) > 0}. (3.4)
Let
E[X| V...V X,]
Rp(Xy, ..., Xy) = (3.5)

V(X e, X))

We have the following proposition:
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Proposition 3.1.

sup Ry(Xi, ..., X,)=a". (3.6)
X

Proof. Suppose Rp(Xy, ..., X)) =a> a*, for some Xy, ..., X,. Then E[X| V...V X,]
= alp(Xy, ..., X,), ie. Dg“(Xl, ..., X,)>0 for a > ay > a*, contrary to the definition
of a®. Now suppose supy,. . x, R Xy, ..., Xy)=a< a®. Then for all (X, ..., X,) the
inequality E[X; V...V X,] < aVy(Xi, ..., X,) holds, i.e. Dg(Xl, ..., X)) =<0 for all
a > @, again contradicting the definition of a*. O

We note in passing that necessarily

1

*

a® = ,
DPn—1

3.7)

since the rule which waits to the end and then recalls the largest X; has a value of at least
pn—lE[Xl V...V Xn], and thus Vp(Xl, ey Xn) = pn—lE[Xl V...V Xn]

In the sequel we shall make use of dilation. Dilation of X in the interval [a, b] creates a
new variable, say X, such that

a’

X when X ¢ [a, b],
Xb=2{b with probability E{[X — a]l(a < X < b)}/(b — a), (3.8)
a with probability E{[b — X]I/(a < X < b)}/(b — a).

X Z has the following properties:

Pla< X <b)= Pla< X’ <b), (3.92)

EX =EX; (3.9)

Eh(X Z) = Eh(X), for any convex function 4. (3.9¢)

In the following series of lemmas we shall stepwise replace one set of variables

(X4, ..., X,) by another, thereby increasing Dg for 0 < a < 1/p,—;. This will lead to a set
of extremal distributions.

Our first step is to show that, for any given X, ..., X, the value of Dg is maximal

when X is replaced by a constant.

Lemma 3.1. Let n =2 and X, ..., X, be given, not all identically 0. Then for every a
there exists a constant c, such that, for any X,

DXX, ..., Xp) < DXcas Xas ..., Xy). (3.10)

Proof. Let
max Dg(x, Xy oo, Xp) = Dg(ca, X2, ooty Xn)-

O=x=<l
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(The maxima are attained since the corresponding functions are continuous in x.) Now let X
be any random variable, independent of X, ..., X,, satisfying 0 < X| < 1, with cdf F.
Then

1 1

E(xV X, V...V X,)dF(x) — aJ Vp(x, X2, ..., X;)dF(x)

Dg(Xl’ 9XVI)ZJ
0

0
< D%cas Xas -, Xo). 0

(Note that the proof utilizes the fact that the value of X; will be known before a decision
to stop with ¢r=1, or to continue, must be made. Hence V,(Xy,...,X,)=
pr(x, Xs, ..., X,)dF(x). A similar conditioning on the value of X; for j=2 is
impossible.)

Lemma3.2. Let 0<c <1 and for i=2, ..., n, let X\ = X;,I(X; > c). Then

Dg(c, Xo, oo, Xp) < Dg(c’ ch), o X(nC))'

Proof. Clearly E[cV X3 V...V X,] = E[cV X V... v X)), whereas Vp(c, Xa, ..., Xy)
= Ve, X9, ..., X19), O

Since for given p,_; the value to the optimal stopper is worst when p; = ... = p,_1, we
shall henceforth assume this, and denote the common value by p. Clearly this assumption
renders V), the smallest, and hence Dy the largest. Note that with this assumption an
optimal rule need never recall before time » (if at all).

Lemma3.3. Let pj=...= p,—1 = p, and suppose X;=XI(X;>¢), i=2,...,n, for
some 0 < ¢ < u, where u is the indifference value for X,, ..., X,, i.e. satisfies u = WT(/J).
Then, for all 0 <a < 1/p,
Dg(c, Xz,...,Xn)SDg(u, Xoy ooy Xp)- (3.11)

Proof. Let y=P(X;=...=X,=0)=0. Then

El[cvVX,V...VX,]=E[X, V...V X, ]+ yc (3.12)
and

Vole, Xa, ...y Xu) = Vp(0, Xo, ..., Xy) + ypc; (3.13)

(3.13) follows since the optimal rule will recall (if at all) only at the nth stage, and then will
recall ¢ only if all the other X; are 0. Thus

Di(c, Xa, ..oy Xo) = E[X2 V...V X, ] — aVp(0, Xa, ..., X,) + ey(1 — pa),

which is non-decreasing in ¢ for all 0 < a < 1/p (which by (3.7) are the only values of
interest). 0
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Lemma 3.4. Let (c, X, ..., X,) be given, py = ... = p,_1 = p, and suppose that X; =
Xi(X; > c), where u < c <1 and u is the indifference value for X,, ..., X,. Let

> 1 with probability B[X; — c]T /(1 — ¢) = f8;,
b= {0 with probability 1 — f3;. (3.14)
Then

Di(c, X, ... Xo) < Di(c, X, .., Xp). (3.15)

Proof. Consider first the case ¢ = u. Here the optimal rule for the X; either picks u at
time ¢ = 1, or otherwise stops (without recall) with the smallest i (if any) such that X; = u.
If no such i exists, it will recall u at time n. Now dilate X; in the interval [u, 1]. This
yields a random variable X; taking values 1, u and 0, with probabilities f;,
E[(1 — X)I(X; = w)]/(1 —u) and P(X; = 0) respectively, where f3; is defined in (3.14) for
¢ =u. By (3.9), P(X; = u) = P(X; = u) and EX;I(X; = u) = EX;,I(X; = ), and hence the
optimal stopping values for the corresponding sequences satisfy

Voltly Xy ooy X)) = V(s X2, ooy X,). (3.16)

Since dilation can only increase the expected value of the maximum, it follows that
E[uV X,V ...VX,] <E[uV X, V...V X,]. Using Lemma 3.2, X, can now be replaced by
X, I(X; > u) = X;, yielding (3.15).

Now consider ¢ > u. Here the optimal rule must pick ¢ at time ¢ = 1. Dilating X; in
[c, 1] to yield a three-valued random variable X; will yield a possibly new indifference
value i for the X, with f<¢c. Again using Lemma 3.2 to replace X; by
X, I(X; > ¢) = X, yields (3.15) in this case. O

Lemma 3.5. Let n =2, let p be given with py = ... = p,_| and fix a, 0 < a <1/p,_;.
Then, for any (Xi,...,X,) there exist (X’lk, ...,X;f) of the form X’f =c,
X;=...=X,=0and

X* =

n

1 with probability d,
0 with probability 1 — 9,

such that

DXy, ..., X)) < Dy(XT, ..., X}). (3.17)

Proof. Using Lemmas 3.1-3.4, it follows that X can be replaced by a constant, and, for
p*=(p, ..., p) where p= p,_;, all other random variables can be replaced by binary
random variables X;, i =2, ..., n.

Let 0 = P(Xi =1 for some i=2,...,n), and let Xjf =1 and 0 with probabilities
6 and 1-—0, respectively Let X =0 for i=2,...,n—1 Then clearly
E[cVX, V...V X,]=E[cVXSV...VX¥] and Vpe(c, Xa, ..., Xn) = Vpe(c, X3, ...,
X¥). For p and any X, ..., X, clearly Vy(Xi, ..., X,) = Vy(X1, ..., X,), whereas
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Vp(c, X;‘, e, Xj:) = Vpe(c, Xx .., X:), thus generally Dg(Xl, LX) S D;‘*(Xl,
..., X,), but for the random variables X7, ..., X we have
DXy, ooy X)) < D (X1, ooy X)) < Dyu(XT, oo, X0) = DY(XT, .., X7). O
Theorem 3.1. For n =2 and any vector p with py = ... = p,_1, a collection of extremal
random variables is X, =x, X, =---=X,_; =0 and
Y — 1 with probability x(1 — p,—1)/(1 — pp—1x), (3.18)
"0 with probability (1 — x)/(1 — pp_1x), ‘

where 0 < x < 1, and the prophet region Sl’; of (3.1) depends only on p,_| = p (and not on
the rest of the vector p, nor on n) and is given by

(3.19)

2—p—
Sp:{(x,y)50$x$1’x$ygw}'

1— px

Proof. Using Lemma 3.5, it follows that, for each fixed value of a, one must determine
0= P(X;L< = 1) and x in such a way that Dg(x, 0,...,0, X:) is maximal. Now

D(x, 0, ..., 0, X7) = [0+ (1 — O)x] — amax(x, 6 + p(1 — O)x).

Simple arithmetic shows that for fixed @ and p this is maximal for some pair (x, d) for
which x =0 4+ p(1 — d)x holds. Thus x turns out to be the indifference value. Hence
Vp(x,0,...,0, X)=xand 6 = x(1 — p)/(1 — px), yielding the variables in (3.18). For the
latter variables the value of E[X; V...V X,] is x(2 — p — x)/(1 — px), which is the value
¥(x) in (3.19). Note that x(2— p —x)/(1 — px) is a strictly concave function. Hence

maximizing Dg(X 1, .., Xy) for all a >0 yields the same curve that is obtained by
maximizing, for each 0 < x <1, the value of E[X; V...V X,] over all Xy, ..., X, for
which Vp(Xy, ..., X)) =x.

To see that all values (x, y) as described in (3.19) are attainable, let (xg, ) be a point
with 0 <xp <1 and xp < yp < y(x9). We shall show that (xo, yo) € S,. Let X| = xo,
XZZ :anl =0 and

1 with probability (yo — x0)/(1 — xo),
X = {O with probability (1 — yp)/(1 — xo). (3.20)
Then Vp(Xl, ey Xn) = X0 and E[X] V...V Xn] = )o.
Note that since for the random variables in (3.18) and (3.20) the values of py, ..., py—2
are irrelevant, the result holds for any vector p. O

It is worthwhile to note that the extremal cases obtained here reduce to those obtained in
the references mentioned when there is no possibility of recall, i.e. when p,_; =0. In
particular, note that (3.19) becomes (1.6) when p = 0.

Corollary 3.1. Theorem 3.1 is true for all six options of probabilistic recall defined in
Section 2.
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Proof. We have seen that for non-negative X; the case (I, C) is the least favourable for the
statistician, thus the prophet region for all other cases must be a subset of S, given in (3.19).
But for the variables given in (3.18) (and also for those of (3.20)) the value Vy(X1, ..., X))
is the same in all six options considered. O

Remark 3.1. Note that when p < g the relation S, D S, holds.

4. Proofs of the ratio and difference prophet inequalities

It is now a simple matter to prove Theorem 1.2. Note that for the variables in (3.18) one has

22— p—
D:,(Xl,...,X,,):x(#—Q, (4.1
1— px
where we have written p instead of p,_;. Maximizing (4.1) over x, 0 < x < 1, for a fixed p,
one finds that the maximum is attained at
1= -p'?

Y= (4.2)

and yields

[1-(-p"Pd-p)
P ’
where the value on the right-hand side of (4.3) is a best bound, obtained for the variables in
(3.18) with x, given in (4.2). When a < X; < b one can define X; = (X; — a)/(b — a), and
then 0 = X| =< 1, for which (4.3) holds. Converting back yields Theorem 1.2 for the original
X;. In stopping mode (C) of Section 2, the reward when a recalled item is unavailable must
here be taken as the minimal possible value, i.e. a. Note that by Corollary 3.1 it follows that
Theorem 1.2 holds for all six cases considered.
For an infinite sequence X, X, ... one has

Dy(X1, .., Xy) <

(4.3)

E(supX,) = lim E[X, V...V X,],  Vp(X1, Xa,..) = lim Vp(Xy, ..., X,). (4.4)
i n—0o0o n—o0o

If lim, . p» = P then, by Remark 3.1, it follows that the prophet region for the infinite
case, S, contains S, for all n, thus is the limiting set S, _ except possibly for the upper
boundary x(2 — ps — x)/(1 — psox), Which may not be attainable for 0 <x < 1. Thus a
statement corresponding to (4.3) holds for D:,(X 1, X2, ...), where on the right-hand side of
(4.3) poo must be substituted for p. It will still be a best bound, except that equality may not
be attainable in all cases.

Now consider the ratio prophet inequality. When 0 < X; < 1 it follows from (3.19) that,
for a given value 0 <x = Vy(Xy, ..., X,),

2—ppo1—x

Ry(X1, ..., Xy = R
1 — ppx

(4.5)
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where equality holds for the variables of (3.18). Now the right-hand side of (4.5) is
decreasing in x, and tends to 2 — p,_; as x — 0, but this value is not attainable. This proves
Theorem 1.1 for 0 < X; < 1.

Now suppose 0 <X;<B, i=1,...,n Then X?=X,;/B satisfy 0 < X? <1, and
clearly Ry(X1, ..., X,) = Ry(XE, ..., XB), thus (1.2) holds for any non-negative bounded
random variables. But when 0 < X; < oo with EX; < oo, then

E(X, v...vxn):;iggoE[va...\/Xf]

and
Vp(X1, ..ou Xy) = lim Vo(XB, ., X8 =x>0
(if the X; are not identically 0), thus
. 2—pp1—x
Ry( X1, ...y Xp) = BIEIDIORP(XB, L XB < T

and therefore (1.2) holds by letting x — 0. Clearly 2 — p,,_; is the best constant. For the
infinite case (1.3) follows, using (4.4) and (4.5), since the stopping region for the infinite
case, S, equals S, except possibly for the upper boundary of S, .

5. Additional remarks

Remark 5.1. As with the prophet inequalities without recall, the present prophet inequalities
also have an order selection interpretation (see Hill 1983). This says that if the random
variables X1, ..., X, are presented in any known order — even in the order least favourable
to the optimal stopper — the optimal stopper can guarantee to obtain at least (2 — p,_ 1)~}
times the value to the prophet (which is order-independent).

Remark 5.2. All the results obtained clearly remain valid if the probability of recalling item {
at time j, 1 <i<j, is py, i.e. is time-dependent, as long as p; = p,. It should be noted
that nowhere in our proofs have we utilized p; = ... = p,_;. This assumption was made
only to make the model attractive. The only inequality really needed is p; = p,_; for
j=1,...,n—=2.

Remark 5.3. 1t should be noted that, for » = 2, inequality (1.2) also holds for non-negative
dependent random variables. This can be seen as follows. Let p; = p, 0 < p < 1. Then
E[X, V X,] = EX, + E[X, — X|]T < EX,| +E[X, — pX|]" 5.1
= (1 — pEX| + E[X2 V pXi]

with strict inequality unless X; =0 or E[X, — pX|]" =0, ie. E[X| V X»] = EX|. Both
these exceptional cases are uninteresting, since for both R,(X;, X,) = 1. Further,
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Vp(Xl, Xz) = E[max{Xl, E(X2 V pX, |X1)}]
= max{EX;, E[E(X, V pX:|X))]}
:max{EXl,E[Xz\/le]}. (52)
There are two cases to consider.
Case (i): EX| > E[X, V pX|]. Using (5.1) and (5.2) for this case yields
(1 - pEX| +EX;
EX; B
Case (ii): 0 < EX;| < E[X;, V pX]. Then (5.3) holds when, instead of EX;, one writes

E[X, V pX|] everywhere. The strict inequality in (5.3) for this case holds
since strict inequality must hold in (5.1).

R,(X1, X5) < 2-p. (5.3)
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