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observations of y ¼ Ax in Hilbert scales. Both the white noise and density observation models are

considered. We propose an estimation procedure that adapts to unknown smoothness of x, of f , and of

the noise covariance operator. It is shown that accuracy of this adaptive estimator is worse only by a

logarithmic factor than one could achieve in the case of known smoothness. As an illustrative

example, the problem of deconvolving a bivariate density with singular support is considered.

Keywords: adaptive estimation; Hilbert scales; inverse problems; linear functionals; minimax risk;

regularization

1. Introduction

Consider an operator equation

Ax ¼ y, (1)

where A is a linear compact injective operator from some real Hilbert space X into a real

Hilbert space Y. We denote the inner products in the Hilbert spaces X, Y by h	, 	i and

corresponding norms by k 	 k ¼ h	, 	i1=2. It will be always clear from the context which space

is being considered. The problem of inverse statistical estimation is to reconstruct x or a

functional of it, provided that the right-hand side of (1) is observed with a random error. The

statistical model can be written in the form

y� ¼ Axþ ��, (2)

where � is a random noise, and � is a small positive number measuring the noise level.

Two typical models of observations have been considered in the statistical literature. One

can assume that � is the Gaussian white noise of the intensity � (Skorohod 1974). This

specifically means that for every element � 2 Y we can observe

y�(�) ¼ hAx, �i þ ��(�), (3)

where �(�) is a Gaussian random variable on a probability space (�, A, P) with zero mean
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and variance k�k2. Denoting by E the expectation with respect to P, we have in addition

E[�(�)�(ł)] ¼ h�, łi, for all �, ł 2 Y. We refer to such a model as the white noise model.

On the other hand, in some practical situations it is natural to assume that we are given

an independent and identically distributed (i.i.d.) sample Y1, . . . , Yn of random elements on

a probability space (�, A, P) which are in some sense directly related to y. In this case the

data allow us to construct i.i.d. statistics ŷy1, . . . , ŷyn defined on the same probability space

and taking values in Y with the following properties: E ŷyi ¼ y and Ek ŷyik2 , 1. Then a

sensible estimator of y is given by

y� ¼
1

n

Xn
i¼1

ŷyi, and Eky� � yk2 ¼ O(n�1), n ! 1: (4)

This observation scheme corresponds to (2) with � ¼ ffiffiffi
n

p
(y� � y) and � ¼ n�1=2; here � is a

zero-mean random element of Y with compact covariance operator. We will refer to such a

model as the density observation model because it is typical in applications related to density

estimation from indirect data. For examples of inverse estimation in this set-up, see

Ruymgaart (1993), Mair and Ruymgaart (1996) and van Rooij et al. (2000).

In this paper we consider the problem of estimating a linear functional lf (x) ¼ h f , xi for

the two aforementioned models of indirect observations. The problem of minimax

estimation of linear functionals from noisy data is a subject with a considerable literature.

Ibragimov and Khas’minskii (1984) study the model with direct white noise observations

where A is the identity operator. The case of arbitrary Gaussian noise is considered in

Ibragimov and Khas’minskii (1987). For models with indirect observations we refer to

Donoho (1994) and references therein.

It is well known that achievable accuracy in estimating lf (x) is essentially determined by:

(i) the ill-posedness of the problem (1), (2); (ii) the smoothness of the representer f ; (iii)

the smoothness of the unknown solution x. In addition, it is important to realize that noise

properties also influence the estimation accuracy. Specifically, if � is a zero-mean Gaussian

noise, then smoothing properties of the covariance operator are important (see Ibragimov

and Khas’minskii 1987; Nussbaum and Pereverzev 1999). Typically (i), (ii) and (iii) are

characterized using specific properties of the operator A involved. For example, if a singular

value decomposition (SVD) of A is known and � is the Gaussian white noise, then (2) can

be equivalently represented as a sequence space model with Gaussian errors. In this case

both the ill-posedness index of A and the smoothness of f and x are naturally measured by

the rate at which corresponding coefficients of the SVD representation decrease (see

Cavalier and Tsybakov 2002).

In this paper we adopt a different approach. In order to quantify the effect of factors (i)–

(iii) and of noise properties on estimation accuracy, we embed the problem in a Hilbert

scale. This approach to statistical inverse estimation has been advocated by Mair and

Ruymgaart (1996) and Mathé and Pereverzev (2001). A typical example of a Hilbert scale

is the scale of Sobolev spaces containing periodic functions on [0, 1] with square-integrable

derivatives. The derivative order, defined via Fourier coefficients, plays the role of the scale

index. The operator A should act along the Hilbert scale. For example, if A is the a-fold

integration operator then it acts boundedly from a Sobolev space with index � to the
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Sobolev space with index �þ a; both spaces belong to the same scale. Thus the ill-

posedness index of A can be naturally measured in the Hilbert scale framework. If the

operator A does not fit some standard Hilbert scale such as the Sobolev scale, a Hilbert

scale associated with A can be always constructed using the generating operator

L: ¼ (A�A)�1 (Natterer 1984; Hegland 1995). In what follows we call the Hilbert scale

generated by (A�A)�1 natural. The smoothness of x and f , the ill-posedness of (1) and (2),

and the smoothing properties of the noise covariance operator are to be characterized with

respect to a chosen Hilbert scale.

A clear advantage of the Hilbert scale approach is that a unified regularized estimator can

be developed irrespective of the type of operator A involved. Typically, in order to choose

the regularization parameter one needs to know the smoothness of x and f and the

smoothing properties of the noise covariance operator measured with respect to the chosen

Hilbert scale (see Mair and Ruymgaart 1996). We note that characterizing the smoothness

properties of x and f and of the noise covariance operator relative to a particular Hilbert

scale may be a difficult task. In particular, this is the case when the properties of A are

poorly understood, and the natural Hilbert scale is used. Therefore developing a general

inverse estimator that does not use prior information on the smoothness of x and f and of

the noise covariance operator is of keen interest. This is the main objective of the present

paper.

It is important to realize that even though f is completely known (in contrast to x and

the noise covariance operator), its regularity with respect to a particular Hilbert scale may

be unknown. In addition, as we shall see, our estimator also works even if f is not directly

available but is given implicitly via an oracle which, for given x, reports on the

corresponding value of the linear functional lf (x). This assumption is quite reasonable and

is in the spirit of the information-based complexity theory (see Traub et al. 1988).

Our first example illustrates issues discussed in the preceding paragraphs.

Example 1. Let z be a bivariate random variable that has a singular distribution on the plane

with mass concentrated on a contour with given parametric representation. In particular, let

z ¼ r(j)expfijg, where r(	) is a given positive periodic function on [0, 2�] and j is a

random variable with unknown density x on [0, 2�]. Suppose we observe

Y j ¼ r(j j)expfij jg þ wj, j ¼ 1, . . . , n, (5)

where the wj are bivariate Gaussian normal variables with zero mean and covariance matrix

� 2 I . Here we identify R2 with the complex plane C. The objective is to estimate the density

x at a single point j0 2 [0, 2�]. It will be shown in Section 5 that if r(Ł) 6¼ const: and

x 2 L2(0, 2�), then x satisfies the integral equation

Ax(t) :¼
ð2�
0

J0(tr(j))x(j) dj ¼ y(t), t 2 [0, r], for any r . 0: (6)

Here J0(	) is the Bessel function of order 0, A: L2(0, 2�) ! L2(0, r), and y is a function that

can be estimated from the data at the parametric rate. Thus this formulation is in the

framework of the density observation model. We can embed the problem in the natural

Hilbert scale and apply a general regularized inverse estimator. We note, however, that the
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smoothness indices of x and f and the smoothing properties of the covariance operator with

respect to the natural Hilbert scale are unknown. Therefore this information cannot be used in

the estimator construction.

Let l̂l� ¼ l̂l�(x) be an estimate of lf (x) based on the available data. The accuracy of an

estimate l̂l�(x) is measured by its uniform risk with respect to W ,

R[ l̂l�; W ] :¼ sup
x2W

Ejlf (x)� l̂l�(x)j2,

where W is a prespecified subset of X reflecting prior knowledge of the smoothness of

x ¼ A�1 y. The minimax risk is defined by

R�[�; W ] :¼ inf
l̂l�
R[ l̂l�; W ],

where the infimum is taken over all possible estimates l̂l�. The objective is to construct an

order-optimal estimate l̂l� ¼ l̂l�(x) of a functional lf (x) ¼ h f , xi satisfying

R[ l̂l�; W ] < O(1)R�[�; W ], � ! 0:

Typically, order-optimal estimators are based on prior knowledge of the solution set W which

is often not available. Recent progress in nonparametric estimation is related to developing

adaptive estimators. An estimator l̂l�(x) is said to be adaptive with respect to a collection W�

(possibly growing as � ! 0) of solution sets W if

sup
W2W�

R[ l̂l�; W ]=R�[�; W ]
� �

< C(�), (7)

where sup�C(�) , 1, or C(�) grows slowly as � ! 0, that is, lim�!0[C(r�)=C(�)] ¼ 1 for

any r . 0.

An inverse estimator of a linear functional lf (x) in Hilbert scales, adaptive to the

unknown smoothness of x, has been developed recently by Goldenshluger and Pereverzev

(2000) for the white noise model. It was assumed there that the smoothness of the

representer f with respect to the corresponding Hilbert scale is known. The adaptive

estimator in Goldenshluger and Pereverzev (2000) is based on the general adaptation

scheme proposed by Lepski (1990). It is our goal in this paper to develop a single

estimation method for which (7) holds uniformly over a wide collection F of representers

f . In addition, in the density observation model, under some natural assumptions on the

noise, we show that our estimator is adaptive uniformly over a wide collection K of noise

covariance operators. In other words, our procedure can estimate adaptively any linear

functional lf (x) such that f 2 F , provided that the covariance operator of the noise belongs

to the collection K. This substantially extends the results in Goldenshluger and Pereverzev

(2000) where the representer f is fixed, its smoothness is completely known, and only the

white noise model is considered. The proposed adaptive estimator may be viewed as a two-

stage Lepski scheme with additional adaptation to unknown order of the variance term.

Such a procedure may be of interest in other nonparametric estimation problems. For the

white noise model we show that the accuracy of the proposed estimator is worse only by a

logarithmic factor than one could achieve for a fixed representer f in the case where W is
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known exactly. It is well known that this extra logarithmic factor often cannot be avoided in

adaptive estimating linear functionals (cf. Lepski 1990; 1992; Brown and Low 1996). In

these situations our estimator has the best possible adaptation properties. In order to

illustrate the general results we consider the problem of deconvolving a bivariate density

with singular support described in Example 1.

The rest of the paper is organized as follows. In Section 2 we introduce notation and

describe a general method for constructing inverse estimators in Hilbert scales. Section 3

defines our adaptive estimator and establishes our main results for the white noise model.

The results are extended to the density observation model in Section 4. In Section 5 we

consider the problem of inverse estimation of a bivariate density with singular support.

Some concluding remarks are made in Section 6.

2. Hilbert scale set-up

Recall that a Hilbert scale Xºf gº2R is a family of Hilbert spaces Xº with inner products

hu, viº :¼ hLºu, Lºvi, where L is a given unbounded strictly positive self-adjoint operator

in a dense domain of the initial Hilbert space X. More precisely, Xº is the completion of

the intersection of domains of the operators Ls, s > 0, endowed with the norm k 	 kº defined

by k 	 kº :¼ h	, 	i1=2º . Here X0 ¼ X and k 	 k0 ¼ k 	 k.
Following Natterer (1984), we assume that A is adapted to the Hilbert scale in the

following sense.

Assumption A. There exist positive constants a, d and D such that

dkuk�a < kAuk < Dkuk�a, 8u 2 X: (8)

Examples of operators A satisfying (8) can be found in Vainikko and Hämarik (1985),

Neubauer (1988), Mair and Ruymgaart (1996) and Mathé and Pereverzev (2001). As

already mentioned, even if the operator A does not fit some standard Hilbert scale (e.g., as

in Example 1), one can always construct a scale adapted to A: any compact injective

operator A meets condition (8) for a ¼ 1
2
and the Hilbert scale generated by the operator

L ¼ A�Að Þ�1
, where A� is the adjoint of the operator A in X, that is, A� : Y ! X.

Within the Hilbert scale set-up the natural assumption on the linear functional

lf (x) ¼ h f , xi is that both the representer f and the unknown solution x belong to some

balls in the Hilbert scale. In particular, suppose that

x 2 W�(M), W�(M) :¼ fx 2 X� : kxk� < Mg,

for some index � . 0 and constant M . 0. Since the dual space of X� is X�� (Krein et al.

1982, p. 237), and Xr is embedded in Xs for r . s, we also need the condition

f 2 X	, 	 > ��, to ensure that the linear functional lf (x) ¼ h f , xi is well defined. To be

more specific, we assume that

f 2 W	(N ), 	 > ��: (9)
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Condition (8) implies that the inverse operator A�1 acts boundedly from Y into X�a. Since

the norm k 	 k�a is weaker than the norm k 	 k of the initial Hilbert space X, problem (1) is

ill-posed.

It is well known (Tautenhahn 1996) that a wide variety of regularization methods for ill-

posed problems can be constructed in the following way. Let gÆ(	) be a piecewise

continuous function on [0, D 2] depending on a regularization parameter Æ . 0 and

satisfying the following conditions:

sup
º2[0,D2]

jºª gÆ(º)j < cªÆ
ª�1, 0 < ª < 1,

sup
º2[0,D2]

jº�[1� ºgÆ(º)]j < c�Æ
�, 0 < � < 1,

where D is given in (8), and cª, c� are positive constants. Fix a non-negative number s and

define the regularized estimator l̂l�Æ,s(x) of lf (x) ¼ h f , xi by

l̂l�Æ,s(x) ¼ hy�, AL�s gÆ(L
�sA�AL�s)L�s f i , (10)

where y� is given by (3) for the white noise model and by (4) for the density observation

model. Observe that if s > �	 then AL�s gÆ(L
�sA�AL�s)L�s f 2 Y, and the estimate is well

defined. The well-known Tikhonov–Phillips regularization method is characterized by (10)

with gÆ(º) ¼ (ºþ Æ)�1 and s ¼ 0.

The mean squared error of the estimate l̂l�Æ,s(x) admits the following standard bias–

variance decomposition:

Ejlf (x)� l̂l�Æ,s(x)j2 ¼ b2Æ,s( f , x)þ �2Ev2Æ,s( f , �),

where

lf (x)� l̂l�Æ,s ¼ bÆ,s( f , x)þ �vÆ,s( f , �)

and

bÆ,s( f , x) ¼ h f , (I � L�s gÆ(L
�sA�AL�s)L�sA�A)xi,

vÆ,s( f , �) ¼ �h�, AL�s gÆ(L
�sA�AL�s)L�s f i: (11)

The next statement was proved in Goldenshluger and Pereverzev (2000).

Lemma 1. Let Assumption A hold, f 2 W	(N ), 	 , a, and l̂l�Æ,s(x) be associated with

s > maxf0, �	g. Then, for every � 2 (�	, 2sþ a],

sup
x2W�(M)

jbÆ,s( f , x)j < c1Mk f k	Æ(�þ	)=2(aþs), (12)

where c1 ¼ c1(	, a, s, d, D) depends on 	, a, s, d, D only.

We observe that Lemma 1 holds both for the white noise and the density observation model.
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3. White noise model

3.1. Preliminaries

In this section we consider the white noise model given by (3). Under this assumption, the

stochastic error vÆ,s( f , �) defined in (11) is a Gaussian random variable with zero mean and

variance

Ev2Æ,s( f , �) ¼ kAL�s gÆ(L
�sA�AL�s)L�s f k2: (13)

The following lemma was established in Goldenshluger and Pereverzev (2000).

Lemma 2. Suppose that Assumption A is satisfied and that s > maxf0, �	g. Then, for

f 2 W	(N ), 	 , a,

Ev2Æ,s( f , �) < c2Æ
(	�a)=(aþs), (14)

where c2 ¼ c2(	, a, s, N ) depends on 	, a, s and N only.

Lemmas 1 and 2 allow us to establish upper bounds on the uniform risk of l̂l�Æ,s(x). In

particular, the uniform risk of the estimate l̂l�Æ,s(x) associated with s > maxf0, �	g and

Æ . 0 admits the upper bound

R[ l̂l�Æ,s; W�(M)] < c3 M2Æ(�þ	)=(aþs) þ �2Æ(	�a)=(aþs)
� �

, 8� 2 (�	, 2sþ a],

where c3 ¼ c3(	, s, a, N , d, D). Thus, with the optimal choice Æ� � (M�1�)2(aþs)=(�þa) we

have

R[ l̂l�Æ�,s; W�(M)] < c3M
�2(	�a)=(�þa)�2(�þ	)=(�þa), 8� 2 (�	, 2sþ a], (15)

where ‘�’ means equivalent in the sense of the order. It follows from the renormalization

argument of Donoho and Low (1992) that the rate of convergence on the right-hand side of

(15) cannot be improved for estimating linear functionals with representer f 2 W	(N ). Thus,

the estimate l̂l�Æ�,s(x) is order-optimal for any pair of balls W	(N ) and W�(M) satisfying

� 2 (�	, 2sþ a], 	 , a. We observe, however, that prior knowledge of the smoothness of

the unknown solution x is needed in order to choose the regularization parameter optimally.

An inverse estimator of a linear functional lf (x) ¼ h f , xi, f 2 W	(N ), which

automatically adapts to the unknown smoothness of x was developed in Goldenshluger

and Pereverzev (2000). The adaptation procedure there is a particular implementation of the

Lepski (1991) general adaptation scheme for the case where the class W	(N ) is completely

specified. We note that this construction depends crucially on the smoothness index 	 of f

because the ‘typical value’ of the stochastic term in the error decomposition depends on 	
(cf. (14)).

In view of Lemma 2, it is reasonable to characterize the effective smoothness of the

representer f via the behaviour of the stochastic error of the regularized inverse estimator

l̂l�Æ,s(x). We say that f has the effective smoothness 	 if the following assumption is valid:
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Assumption F1. f 2 X	, and there exists a constant c� ¼ c�(	, a, s) such that, for all

sufficiently small Æ,

kAL�s gÆ(L
�sA�AL�s)L�s f k > c�Æ(	�a)=2(aþs): (16)

Condition (16) is quite natural. It means that for the functionals considered the order of the

variance indicated in (14) cannot be improved in the power scale. Using the same argument

as in Neubauer (1997), one can show that (14) implies only f 2 Xr for all r , 	. Thus, (16)
allows the smoothness of f to be specified through the properties of a fixed estimator

determined by concrete gÆ. For this reason we treat 	 in Assumption F1 as the effective

smoothness of the representer f.

We now we define a two-stage estimator which is adaptive in the sense of (7) over a wide

collection of solution sets W�(M) and of representer sets W	(N ).

3.2. Adaptive estimator

We introduce assumptions on the collection of possible representer sets W	(N ). Assume that

f 2 W	(N ), where 	 is unknown and belongs to the discrete set

˜	 :¼ f	0, . . . , 	mg, 	 ¼ 	0 , 	1 , . . . , 	m ¼ 	 , a:

Let � :¼ minf	i � 	i�1: i ¼ 1, . . . , mþ 1g, where 	mþ1 :¼ a by definition.

The basic idea underlying the construction of our adaptive estimator is the following.

Consider a discrete ordered set ˜Æ of possible regularization parameters, and a family of

estimates l̂l�Æ,s(x) associated with Æ 2 ˜Æ. For every fixed smoothness index 	 j from ˜	 we

can choose adaptively the regularization parameter from ˜Æ using the Lepski adaptation

procedure. In this way we obtain a family of mþ 1 estimates corresponding to different

thresholds in the adaptation scheme. If a parameter 	 j 2 ˜	 is greater than the actual

smoothness index 	, then the threshold in the adaptation scheme is small, and on a set of

‘large’ probability the adaptation procedure yields ‘too small’ a value for the regularization

parameter. It turns out that this can be detected very precisely from the data using a special

construction of the set ˜Æ. Thus the adaptive estimator is defined in two steps. First, using

the Lepski adaptation scheme, we obtain a sequence of regularization parameters

corresponding to different smoothness indices 	 j 2 ˜	. Second, we select from among

these the minimal regularization parameter which is not ‘too small’.

Fix Æ ¼ 1 and let

Æ ¼ � p, p ¼ 4(aþ s)

�

a� 	

a� 	

� �
: (17)

For q . 1, define

˜Æ ¼ fÆ 2 [Æ, Æ]: Æ ¼ Æ j ¼ q jÆ, j ¼ 0, 1, . . .g:

Let r	(ª) ¼ ª�(a�	)=(2(aþs)), and, for brevity, write l̂lª for l̂l�ª,s(x). For a given k > 1, let Æ̂Æ j

denote the maximal Æ from ˜Æ such that
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j l̂lª � l̂l�j < 2k�[r	 j
(ª)þ r	 j

(�)], 8ª, � < Æ, ª, � 2 ˜Æ: (18)

In other words, Æ̂Æ j denotes the regularization parameter chosen by the Lepski procedure with

the threshold associated with the smoothness index 	 j 2 ˜	. The basic property of the

sequence Æ̂Æ j, j ¼ 0, 1, . . . , m, is that it is monotone non-increasing:

Æ̂Æ0 > Æ̂Æ1 > . . . > Æ̂Æm: (19)

Indeed, the threshold on the right-hand side of (18) decreases monotonically as 	 j grows.

Therefore the set of estimates satisfying the inequality becomes smaller as 	 j increases.

Let � ¼ �2(aþs)=(a�	) and

jþ :¼ maxf j : j 2 J �g, J � :¼ f j : Æ̂Æ j > �, j ¼ 0, . . . , mg: (20)

Define Æ̂Æþ ¼ Æ̂Æ jþ if the set J � is not empty; otherwise set Æ̂Æþ ¼ �. The estimate we are

interested in is defined as

l̂lþ(x) ¼ l̂l�Æ̂Æþ,s
(x):

We stress that the parameters � and M of the solution set W�(M), and the parameter 	 of the

representer set W	(N ) are not involved in the construction of the estimator l̂lþ(x). Note that

l̂lþ(x) depends on the three design parameters k, s and q; in what follows k will be chosen as

a function of �, s and q, and other known parameters of the problem.

3.3. Main result

The following theorem, proved in the Appendix, establishes an upper bound on the risk of

the estimate l̂lþ(x) ¼ l̂l�Æ̂Æþ ,s
(x).

Theorem 1. Suppose that Assumptions A and F1 are met, and that (9) is satisfied for some

	 2 ˜	 and N < N, where N is known. Let � be small enough that, for some constant

C1 ¼ C1(	, a, s, d, D, q),

�
ffiffiffiffiffiffiffiffiffiffiffiffi
ln ��1

p
< C1 minfM , M�(a�	)=(�þ	)g: (21)

Assume also that

� 2 (�	, 2sþ a]: (22)

Then there exists a constant C2 ¼ C2(a, s, 	, 	, d, D, N ) such that, for the estimate l̂lþ(x)
associated with k ¼ C2

ffiffiffiffiffiffiffiffiffiffiffiffi
ln ��1

p
and s > maxf0, �	g,

R[ l̂lþ; W�(M)] < C3 M2(a�	)=(�þa)(�2 ln ��1)(�þ	)=(�þa) þ m�2(ln ��1)3=2

 �

, (23)

where C3 ¼ C3(a, s, q, 	, N , d, D, c�).

Note that C2 depends only on known parameters of the problem so that the choice of k
can be implemented. If we knew in advance the parameters �, M of the solution set

W�(M) and the smoothness index 	 of the representer f we could achieve the minimax rate
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of convergence given in (15). Thus the accuracy of our adaptive estimator coincides to

within a factor logarithmic in ��1 with the minimax rate of convergence, that is,

R[ l̂lþ; W�(M)] � R�[�; W�(M)](ln ��1)(�þ	)=(�þa), � ! 0:

We stress, however, that the upper bound (23) holds simultaneously over wide collections W
and F of solution sets W�(M) and representer sets W	(N ). Both W and F are defined by the

conditions of the theorem. In particular, W is the family of balls W�(M) with parameters �
and M satisfying (21) and (22), while F is the family of sets W	(N ) with 	 2 ˜	 and N < N

satisfying (22), (16) and s > maxf0, �	g. One can also argue that in many important cases

the estimate l̂lþ(x) has the best possible adaptive properties; for a discussion of this issue, see

Goldenshluger and Pereverzev (2000).

4. Density model

In this section we consider the density observation model. Here the noisy data are

represented by y�, a random element of Y defined in (4).

4.1. Preliminaries

Consider i.i.d. Y-valued random elements Łi ¼ ŷyi � y, i ¼ 1, . . . , n, and let PŁ denote the

probability distribution of Ł (we write Ł for a generic random element in Y with the same

distribution as Łi). We will need the following conditions on PŁ.

Assumption P1. PŁ is a Radon probability measure on Y which has strong second order, that

is, EkŁk2 ¼
Ð
kŁk2PŁ(dŁ) , 1. In addition, the mean value of the probability measure PŁ is

equal to 0, that is,

EhŁ, �i ¼
ð
hŁ, �iPŁ(dŁ) ¼ 0, 8� 2 Y: (24)

The covariance operator KŁ: Y ! Y of PŁ is defined by the relation

hKŁ�1, �2i ¼
ð
hŁ, �1ihŁ, �2iPŁ(dŁ), �1, �2 2 Y:

Assumption P2. There exist positive constants b1 and H1 such that

E e tkŁk ¼
ð
e tkŁkPŁ(dŁ) < b1 , 1, for jtj < H1:

Assumption P3. There exist positive constants b2 and H2 such that

PfkŁk < tg < b2 t, 0 < t < H2: (25)
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It is well known that KŁ is a self-adjoint positive operator with finite trace

tr(KŁ) ¼
Ð
kŁk2PŁ(dŁ) , 1 (Vakhania et al. 1987, p. 177); hence the operator K

1=2
Ł such

that (K1=2
Ł

)2 ¼ KŁ is well defined. Assumptions P2 and P3 require existence of the

exponential moment and some form of regularity of PŁ near zero, respectively. We note that

Assumption P3 is only one of the possible assumptions on the regularity of the distribution

of kŁk near zero. In fact, any polynomial decrease in PfkŁk < tg as t ! 0 will be

appropriate.

Consider the general regularized inverse estimator l̂l�Æ,s(x) defined in Section 2. Lemma 1

establishes an upper bound on its bias. For the density observation model the stochastic

error vÆ,s( f , �) is a zero-mean random variable with variance Ev2Æ,s ¼ hKŁ�Æ, �Æi, where
�Æ ¼ AL�s gÆ(L

�sA�AL�s)L�s f (see (13)). Because KŁ is a self-adjoint operator with finite

trace, the order of the variance term is, in general, smaller than that in the white noise

model. This suggests that faster rates of convergence are achievable in the density

observation model (see Nussbaum and Pereverzev 1999). The next assumption is an

analogue of Assumption F1.

Assumption F2. There exist a real number ~		 2 [	, a) and positive constants º and º such

that, for s $ maxf0, �	g and for all sufficiently small Æ,

ºÆ(	�a)=2(aþs) < kK1=2
Ł AL�s gÆ(L

�sA�AL�s)L�s f k < ºÆ(	�a)=2(aþs): (26)

Following our terminology for the white noise model, we could call ~		 the effective

smoothness of the representer f . Similarly to the white noise model, the effective

smoothness of the representer f is characterized through the properties of the estimate

l̂l�Æ,s(x). However, it is important to emphasize that ~		 depends on the actual smoothness 	 of

the representer, on the ill-posedness index a of the operator A, and on smoothing properties

of the covariance operator KŁ. In order to illustrate this relationship we consider the

following example (cf. Nussbaum and Pereverzev 1999).

Example 2. Let X ¼ L2(0, 1), and let X� be the Sobolev space of periodic functions on [0, 1]

with norm

kxk� ¼ jx̂x(0)j2 þ
X1
k¼�1

jkj2�jx̂x(k)j2 , 1,

where x̂x(k), k ¼ 0, �1, �2, . . . are Fourier coefficients: x(t) ¼
P1

k¼�1 x̂x(k)eik2� t. Thus fX�g
is the Hilbert scale generated by the operator

Lx(t) ¼ x̂x(0)þ
X1
k¼�1

jkjx̂x(k)eik2� t:

Let A : X ! X be the a-fold integration operator

Ax(t) ¼ 1

ˆ(aþ 1)

ð1
0

(t � �)a�1x(�)d�:

Adaptive inverse estimation in Hilbert scales 793



Assume that � is a zero-mean L2(0, 1)-valued Gaussian random noise defined on the

probability space (�, A, P) and having the series representation

�(t) ¼
X1
k¼�1

h�, eik2�	ieik2� t ¼
X1
k¼�1

ºk�ke
ik2� t,

which converges almost surely in L2(0, 1). Here ºk 2 R, and �k are i.i.d. N (0, 1) random

variables. Assume that ºk � jkj�� for some � 2 [0, a]. Under these assumptions it is easily

verified that the variance term of l̂l�Æ,s(x) is not greater than O(Æ(	�aþ�)=(a��þs)) provided that

	 , a� �. Thus the covariance operator KŁ acting along the same Hilbert scale reduces ill-

posedness index a of the underlying operator A. The upper bound of (26) is satisfied with

~		 ¼ aþ aþ s

a� �þ s

� �
(	� aþ �):

We note also that ~		 . 	 whenever � . 0; that is, effectively the representer f is smoother

when the noise is correlated.

It is important to realize that our definition of the effective smoothness ~		 in (26) is rather

arbitrary. For example, we could define the upper and lower bounds in (26) to be of the

order Æ~		 for some ~		 , 0. The only important requirement for our purposes is that the

unknown rate parameter ~		 belongs to a known discrete set such as ˜	. In this case the two-

stage adaptive estimator of Section 3 can be applied; it adapts to the unknown ‘true’ value

of the effective smoothness index. We intentionally consider (26) (cf. (13)) in order to

define the adaptive estimator in the same way for the both models, and to give a unified

proof of main results.

4.2. Main result

Lemma 1 and Assumption F2 allow us to establish an upper bound on the uniform risk of

l̂l�Æ,s(x). In particular, for the estimate l̂l�Æ,s(x) associated with s > maxf0, �	g and small

enough Æ,

R[ l̂l�Æ,s(x); W�(M)] < c4 M2Æ(�þ	)=(aþs) þ n�1Æ(~		�a)=(aþs)
� �

,

where c4 ¼ c4(	, s, a, d, D, N , º). With the optimal choice Æ� � (M
ffiffiffi
n

p
)�2(aþs)=(�þaþ	�~		),

we have

R[ l̂l�Æ�,s(x); W�(M)] < c4M
2(a�~		)=(�þaþ	�~		)n�(�þ	)=(�þaþ	�~		), 8� 2 (�	, 2sþ a]:

Let l̂lþ(x) be the adaptive estimator of Section 3, where � ¼ n�1=2. We formulate an

analogue of Theorem 1 for the density observation model under Assumptions P1–P3 and

F2. Unless explicitly stated otherwise, the constants appearing in the following theorem may

depend on a, s, d, D, q, º, º, and on all parameters involved in Assumptions P2 and P3.

Theorem 2. Suppose that Assumptions A, P1–P3 and F2 are valid. Assume that (9) is
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fulfilled with N < N, where N is known, and (22) is valid. Let ~		 defined in Assumption F2 be

such that

	 < ~		 , 	þ �

2

a� 	

a� 	

� �
: (27)

If ~		 2 ˜	, and ffiffiffiffiffiffiffiffi
n

ln n

r
> C4 maxf1, M , M (a�	)=(�þ	)g,

for some constant C4, then there exists a constant C5 ¼ C5(a, s, 	, 	, N , d, D, º) such that,

for the estimate l̂lþ(x) associated with k ¼ C5

ffiffiffiffiffiffiffiffi
ln n

p
and s > maxf0, �	g, we have

R[ l̂lþ; W�(M)] < C6 M2(a�~		)=(�þaþ	�~		) ln n

n

� �(�þ	)=(�þaþ	�~		)

þ m

n
(ln n)3=2

" #
:

Observe also that C5 is defined only in terms of known parameters of the problem.

Therefore the choice of k can be implemented. The performance of the proposed estimator

is worse only by a logarithmic factor than that of the estimator knowing the effective

smoothness ~		 of the representer f . However, in the density model this parameter is hardly

known, since the smoothing properties of the covariance operator are usually unknown. The

upper bound of Theorem 2 holds uniformly for the collection of representers f and

covariance operators KŁ satisfying Assumption F2 and (27).

We note that (27) can be viewed as a restriction on the smoothness of the noise

covariance operator. In particular, in the context of Example 2, (27) is written as

0 < � ,
aþ s

sþ 	þ ~pp

� �
~pp, ~pp ¼ �

2

a� 	

a� 	

� �
,

that is, the covariance operator should not be too smooth. We use (27) along with Assumption

P2 in order to derive an exponential inequality for the stochastic error of the estimator (see

Lemma 5 below). A similar exponential inequality can be established without (27) if a more

stringent assumption than Assumption P2 is imposed. For example, if instead of Assumption

P2 we suppose that

E exp tkK1=2
Ł �Æk�1hŁ, �Æi

n o
< b1, for jtj < H1, (28)

where �Æ ¼ AL�s gÆ(L
�sA�AL�s)L�s f , then the statement of Theorem 2 is valid without

(27). However, in our view, (28) is less natural and is hard to verify. Theorem 2 shows that

under (27) one cannot expect that the order of the uniform risk for the density model can be

much improved in comparison to the white noise model (see Theorem 1 with the usual

rescaling � ¼ n�1=2). At this point one can observe that in the framework of the density

model the noise belongs to the observation space, and properties of such a noise are close to

those of deterministic noise. On the other hand, it follows from Donoho (1994) that the

optimal risk of linear functional estimation has the same order for the model with white noise

as well as with deterministic noise.
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5. Deconvolving bivariate densities with singular support

To illustrate general results of Section 4.2 we consider the problem of estimating a bivariate

density with singular support from indirect observations on the plane.

Let �V (u) ¼ E expfiV Tug be the characteristic function of a random variable

V 2 R2 ¼ C. For u ¼ t expfi
g we write �V (u) ¼ �V (t, 
). Then in the context of

Example 1, �Y (u) ¼ �z(u)�w(u) where z ¼ r(j) expfijg. For any u 2 R2, we have

~yy(u) ¼ ~yy(t, 
) :¼ ��1
w (t, 
)�Y (t, 
)

¼ E expfir(j)t cos(j� 
)g ¼
ð2�
0

expfir(j)t cos(j� 
)gx(j)dj:

Integrating both sides of the last equality over 
 2 [0, 2�], we obtain

y(t) :¼ 1

2�

ð2�
0

~yy(t, 
)d
 ¼
ð2�
0

J0(tr(j))x(j)dj, (29)

where J0(	) is the Bessel function of zero order. If r(j) 6¼ const:, the integral on the right-

hand side of (29) can be considered as an integral operator acting from L2(0, 2�) to L2(0, r)

for some r . 0.

The function y(	) on the left-hand side of (29) can be estimated from the observations Y j,

j ¼ 1, . . . , n, given by (5). By definition,

~yy(u) ¼ ~yy(t, 
) ¼ E expf� 2juj2=2g expfiYT
j ug

h i
¼ expf� 2 t2=2gE expfitjY jj cos(arg(Y j)� 
)g


 �
,

and therefore, y(t) ¼ expf� 2 t2=2gE[J0(tjY jj)]. Now setting, for j ¼ 1, . . . , n,

ŷyj(t) ¼ expf� 2 t2=2gJ0(tjY jj), t 2 [0, r],

we have E ŷyj ¼ y, and Ek ŷyjk2 < r expf� 2 r2g , 1, where k 	 k denotes the norm in L2(0, r).

In addition, for y� ¼ n�1
Pn

j¼1 ŷyj,

Eky� � yk2 < 4r expf� 2 r2gn�1

because jJ0(t)j < 1, for all t. Thus we are in the framework of the density observation model,

and our goal is to apply general results of Section 4.2 to this particular estimation problem.

First, we verify Assumptions P1–P3 for our problem. Assumption P1 is trivially satisfied,

and Assumption P2 holds because

kŁ jk2 ¼ k ŷyj � yk2

¼
ð r
0

expf� 2 t2g J0(tjY jj)� EJ0(tjY jj)

 �2

dt (30)

< 4r expf� 2 r2g , 1:

In order to check Assumption P3 we observe that the integrand in (30) is a bounded
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continuous and positive function of t. Therefore, it is sufficient to verify condition (25) for

the random variable jJ0(k�jY j)j, where k� 2 [0, r] is a constant. Because jJ0(k�jY j)j is a

smooth function of jY j with uniformly bounded first derivative, Assumption P3 will follow if

the distribution of jY j has property (25). But this is an immediate consequence of the fact

that Y has a bounded infinitely differentiable density function on the plane.

Clearly, one cannot expect that for a given contour the operator A from (6) will satisfy

(8) with some standard Hilbert scale such as the Sobolev scale. Therefore it is reasonable to

embed the problem in the natural Hilbert scale generated by the operator L ¼ (A�A)�1. Of

course, the smoothness of the representer f of the functional lf (x) ¼ x(j0), which we are

interested in, and the smoothness of the solution x relative to such a scale are generally

unknown. In addition, the noise covariance structure cannot be specified precisely. We note,

however, that in this situation Assumption F2 is quite natural, and we can apply our

adaptive estimator from Section 3.2 because (8) is satisfied automatically with a ¼ 1
2
and

d ¼ D ¼ 1.

From the Taylor expansion of the Bessel function one can see that the singular values of

the operator A tend to zero at exponential rate. Moreover, if r(	) is a continuous function

then all eigenfunctions of A�A are continuous too. Therefore, for any positive �, all terms

of the SVD of (A�A)� are continuous functions and the corresponding series converges

uniformly on [0, 2�]. This means that even for small positive � the spaces X� from the

natural Hilbert scale consist of continuous functions, and the linear functional lf (x) ¼ x(j0)

is well defined on such a space. For such a scale the representer of this linear functional

belongs to a ball W	(N ) with negative 	 which is close to zero. Moreover, the operator A is

automatically injective in its natural Hilbert scale. In this case it is reasonable to consider

the regularized estimator (10) associated with s ¼ 0. We choose gÆ(º) ¼ (ºþ Æ)�1; this

corresponds to the Tikhonov–Phillips regularization method. With such a choice the

regularized estimator l̂lÆ of lf (x) ¼ x(j0) is defined as l̂lÆ(x) ¼ xÆ(j0), where xÆ(j) is the

solution of the Fredholm integral equation of the second kind

ÆxÆ(j)þ
ð2�
0

a(j, ł)xÆ(ł)dł ¼ gn(j), j 2 [0, 2�],

where

a(j, ł) ¼
ð r
0

J0(tr(j))J0(tr(ł))dt, gn(j) ¼
1

n

Xn
j¼1

ð r
0

J0(tr(j)) ŷyj(t)dt:

Then the next statement is an immediate consequence of Theorem 2.

Theorem 3. Let Assumption F2 with (27) hold for the covariance operator KŁ of Łi ¼ ŷyi � y,

i ¼ 1, 2, . . . , n. Assume that the effective smoothness ~		 of the representer of functional

lf (x) ¼ x(j0) relative to the natural Hilbert scale belongs to the set ˜	, 	 ¼ 0, and

� 2 (�	, 1
2
]. Then, for sufficiently large n, there exists a constant C1 depending on 	 , j0 and

º such that, for Æ̂Æþ defined by (18), (20) with k ¼ C1

ffiffiffiffiffiffiffiffi
ln n

p
,
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Ejx(j0)� xÆ̂Æþ(j0)j2 < C2 kxk(1�2~		)=(�þ1=2þ	�~		)
�

ln n

n

� �(�þ	)=(�þ1=2þ	�~		)

þ m

n
(ln n)3=2

" #
:

Some comments regarding Theorem 3 are in order. Assumptions F2 and P1–P3

determine the class of noise covariance operators KŁ to which the proposed procedure

adapts. We emphasize that the adaptive estimator does not use a priori information on this

class. While Assumptions P1–P3 are easily verifiable in the context of deconvolving

singular densities on the plane, Assumption F2 is much more difficult to check.

Nevertheless, we can argue that Assumption F2 is fulfilled in several important cases of

interest, and Theorem 3 is valid in these cases.

Let A ¼
P1

k¼1skukhvk , 	i be the SVD of the operator from (29). It is natural to assume

that for random noise Ł ¼ y� � y the Fourier coefficients huk , Łi are independent random

variables. This assumption allows to treat the covariance operator KŁ as a diagonal one.

Keeping in mind that the representer of the functional lf (x) ¼ x(j0) can formally be written

as f (j) ¼
P1

k¼1vk(j0)vk(j), we obtain

kK1=2
Ł AgÆ(A

�A) f k2 ¼
X1
k¼1

Œ2k s
2
k

(Æþ s2k)
2
jvk(j0)j2,

where Œ2k ¼ Ejhuk , Łij2, k ¼ 1, 2, . . .. As mentioned above, f 2 W	(N ) with negative 	
which is close to zero, that is, X1

k¼1

s�4	
k jvk(j0)j2 , 1:

This means that there is a negative ~		 such that 	 , ~		 , 0, and s�4~		
k jvk(j0)j2

< c1, k ¼ 1, 2, . . .. Then

kK1=2
Ł AgÆ(A

�A) f k2 < c1 tr(KŁ)sup
k

s2þ4~		
k

(Æþ s2k)
2
< (º)2Æ2~		�1,

which gives us the upper bound (26) for a ¼ 1
2
, s ¼ 0. To check the lower bound, we observe

that the singular values of the operator A from (29) tend to zero very fast (such that only

finitely many of them can be taken into account). Using the Taylor coefficients of the Bessel

function, one can estimate the lower bound as

sk < (c2k)
�ø1 k ,

sk

sk�1

> k�ø2 ,

where ø1, ø2 . 0, 0 , c2 , 1. Then it is natural to assume that Œk . s�2	1
k , k ¼ 1, 2, . . . ,

for some small negative 	1, because the covariance operator is usually not so smooth.

Moreover, for any sufficiently small Æ . 0, one can find m , ln (1=Æ) such that

sm�1 >
ffiffiffi
Æ

p
> sm. For simplicity we assume that jvm(j0)j . c3 (in view of the negative

smoothness of f , jvm(j0)j can even increase with m). Thenffiffiffi
Æ

p
> sm > sm�1m

�ø2 >
ffiffiffi
Æ

p
m�ø2 >

ffiffiffi
Æ

p
ln �ø2

1

Æ
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and

kK1=2
Ł AgÆ(A

�A) f k2 > Œ2ms
2
m

(Æþ s2m)
2
jvm(j0)j2 > c23

s2�4	1
m

(Æþ s2m)
2

>
Æ�1�2	1

ln ø2(2�4	1)(1=Æ)
(º)2 > (º )2Æ2~		�1þ�,

where � . �2(~		þ 	1) . 0 can be sufficiently small due to small size of ~		, 	1. Thus, in the

case considered we have a small gap between the upper and lower bounds in (26) in the sense

of the order. This gap could be reduced under an additional assumption concerning the rate of

increase of jvm(j0)j, which depends on the parametrization r. Nevertheless, Theorem 3 is

still valid even with such a gap if � is chosen as a minimal step for the set ˜	 (see also

Remark 2 in Section 6).

6. Concluding remarks

Remark 1. In our main results we assume that the discrete set ˜	 is such that � is fixed and

positive. It can be seen from the proofs that this assumption may be relaxed. In particular,

one can assume that � tends slowly to zero as � ! 0. In this case the only important

requirement is that the true effective smoothness index belongs to the set ˜	 eventually as

� ! 0. The statements of Theorems 1 and 2 remain valid under these circumstances.

Remark 2. Inspection of the proofs in the Appendix reveals that Theorems 1 and 2 also hold

under relaxed Assumptions F1 and F2. For example, the right-hand side of (16) may have

order Æ(	�aþ�=2)=(2(aþs)), that is, there is a gap between the upper and lower bounds of the

variance term. In particular, this situation occurs when f 2 X	, but it is effectively smoother,

and this cannot be described in the terms of the chosen Hilbert scale. In this case the

estimator should be modified: one should put 2p instead of p in (17). The resulting accuracy

will be the best that one can achieve with fixed Hilbert scale and the fixed set ˜	.

Remark 3. The Lepski adaptive scheme is based on the assumption that the order of the error

variance term is completely known. Our adaptive procedure can be viewed as a two-stage

Lepski adaptive scheme with additional adaptation to unknown order of the variance term. As

is shown in Section 4, the advantage of the proposed two-stage estimator is fully revealed in

the density model where the noise covariance structure is unknown. Such a procedure may be

of interest in other nonparametric estimation problems. It seems that certain inverse problems

of the convolution type with imprecisely specified convolution kernel can be treated using

these ideas.
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Appendix

In the proofs below c1, c2, . . . and k1, k2, . . . stand for constants depending on parameters

of the problem. They may be different on different occasions.

A. Proofs for the white noise model

The goal of this section is to prove Theorem 1. Denote

BÆ(x) ¼ c1kxk�k f k	Æ(�þ	)=(2(aþs)), (31)

where c1 is the constant appearing on the right-hand side of (12). Define

Æ� ¼ maxfÆ 2 ˜Æ : BÆ(x) < k�r	(Æ)g. In fact, Æ� is the ideal regularization parameter that

balances the squared bias and variance. Consider the event

�k :¼ ø 2 �: max
Æ2˜Æ

[r�1
	 (Æ)jvÆ,s( f , �)j] < k

n o
: (32)

The event �k corresponds to the ‘typical’ behaviour of the stochastic term vÆ,s( f , �). Also,
for notational convenience, we denote t :¼ minf j 2 f0, . . . , mg : 	 j . 	g, that is, 	 ¼ 	 t�1

for some t 2 f1, . . . , mg.
First, we establish some auxiliary lemmas. The next statement shows that, conditionally

on �k, the regularization parameter Æ̂Æ t given by the adaptive scheme is typically ‘small’.

Recall that Æ̂Æ t corresponds to the threshold with 	 t . 	 ¼ 	 t�1; here 	 is the effective

smoothness of f .

Lemma 3. Suppose the Assumption F1 is satisfied and that Æ� > Æ(a�	 t)=(a�	). Then, for

every � 2 ˜Æ satisfying

� > Æ(a�	 t)=(a�	) (33)

and large enough k �
ffiffiffiffiffiffiffiffiffiffiffiffi
ln ��1

p
,

PfÆ̂Æ t > � j�kg < k1kÆ(	 t�	)=2(aþs), (34)

where k1 ¼ k1(c�, a, s, 	, 	, d, D, N , q) and c� is defined in (16).

Proof. We prove the lemma considering the cases � < Æ� and � . Æ� separately.

First, assume that � < Æ�. We have

PfÆ̂Æ t > �j�kg < Pfj l̂l� � l̂lÆj < 2k�[r	 t
(�)þ r	 t

(Æ)] j�kg

¼ 1� Pfj l̂l� � l̂lÆj . 2k�[r	 t
(�)þ r	 t

(Æ)] j�kg: (35)

On the set �k,
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j l̂l� � l̂lÆj > j l̂lÆ � lj � j l̂l� � lj

> �jvÆ,s( f , �)j � BÆ(x)� 2k�r	(�)

> �jvÆ,s( f , �)j � 3k�r	(�):

Here we have used the fact that j l̂l� � lj < 2k�r	(�) on the set �k, and BÆ(x)

< B�(x) < k�r	(�) because � < Æ�. Thus we have

Pfj l̂l� � l̂lÆj . 2k�[r	 t
(�)þ r	 t

(Æ)] j�kg

> Pf�jvÆ,s( f , �)j . k�[2r	 t
(Æ)þ 2r	 t

(�)þ 3r	(�)] j�kg (36)

> Pf�jvÆ,s( f , �)j . k�[4r	 t
(Æ)þ 3r	(�)] j�kg:

By (33), r	 t
(Æ) dominates r	(�): r	(�) < r	 t

(Æ). Therefore the last probability in (36) is

bounded from below by

PfjvÆ,s( f , �)j . 7kr	 t
(Æ) j�kg ¼ 1� PfjvÆ,s( f , �)j < 7kr	 t

(Æ) j�kg

> 1� PfjN (0, 1)j < 7k[Ev2Æ,s( f , �)]
�1=2 r	 t

(Æ)g Pf�kg½ 
�1
,

where N (0, 1) denotes the standard Gaussian random variable. Arguing as in the proof of

Theorem 1 in Goldenshluger and Pereverzev (2000), we obtain Pf�kg < SÆ expf�~kkk2=2g,
where SÆ ¼ card(˜Æ) and ~kk ¼ ~kk(	, N , a, s, d, D). Hence, for large enough k �

ffiffiffiffiffiffiffiffiffiffiffiffi
ln ��1

p
,

PfjvÆ,s( f , �)j . 7kr	 t
(Æ) j�kg > 1� 14kffiffiffiffiffiffi

2�
p

r	 t
(Æ)[Ev2Æ,s( f , �)]

�1=2

1� SÆ expf�~kkk2=2g

> 1� k1kÆ(	 t�	)=2(aþs), (37)

Combining (37) and (36) with (35), we obtain (34) under assumption that � < Æ�.
Now consider the case where � . Æ�. Here, by definition of Æ̂Æ t,

PfÆ̂Æ t > � j�kg < Pfj l̂lÆ� � l̂lÆj < 2k�[r	 t
(Æ�)þ r	 t

(Æ)j�kg:

The proof now proceeds along the same lines as in the case with � replaced by Æ�. h

An immediate consequence of (19) and Lemma 3 is that the same bound holds for all

estimates Æ̂Æ j associated with 	 j . 	; namely, under conditions (33) we have

PfÆ̂Æ j > �j�kg < k1kÆ(	 t�	)=2(aþs), 8 j > t ¼ minf j : 	 j . 	g: (38)

Thus Lemma 3 shows that if we misspecify 	 in the threshold of the procedure (18) by

choosing a value greater than 	, the scheme will yield a regularization parameter which with

‘large’ probability is less than Æ(	 t�	)=(a�	).

The above considerations motivated our rule (20). We show that under some natural

conditions on �, the quantity jþ determined there detects the ‘right’ value of 	 with ‘large’

probability conditionally on �k.
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Lemma 4. Suppose that Æ(a�	 t)=(a�	) < � < Æ� and inequality (16) hold. If the event �k

occurs then jþ > t � 1. In addition, for large enough k �
ffiffiffiffiffiffiffiffiffiffiffiffi
ln ��1

p
,

P( jþ ¼ t � 1 j�k) > 1� k1kÆ(	 t�	)=2(aþs), (39)

where k1 is defined in Lemma 3.

Proof. The first statement follows immediately from (19) and the standard properties of the

Lepski adaptation scheme. Indeed, if we put the ‘right’ value of 	 ¼ 	 t�1 in the threshold on

the right-hand side of (18), then on the set �k the resulting regularization parameter Æ̂Æ t�1

will be greater than Æ� by construction (see Goldenshluger and Pereverzev 2000). In view of

� < Æ� and monotonicity of fÆ̂Æ jg, on the set �k, J � 
 f0, 1, . . . , t � 1g. Hence jþ > t � 1

as claimed.

To prove (39) we note that the event f jþ > tg means that there exists an estimate Æ̂Æ j

associated with 	 j . 	 such that Æ̂Æ j > �. But by Lemma 3 (see also (38)), for j > t,

PfÆ̂Æ j > � j�kg < k1kÆ(	 t�	)=2(aþs):

This completes the proof. h

Proof of Theorem 1. Write

Ej l̂lþ � lj2 ¼ I1 þ I2 :¼ E[j l̂lþ � lj21(�k)]þ E[j l̂lþ � lj21(�k)],

where l ¼ lf (x) ¼ h f , xi. We bound I1 and I2 separately.

It follows immediately from (12) and (9) that

k�r	(qÆ�) , BqÆ� (x) < c1Mk f k	(qÆ�)(�þ	)=2(aþs)

and

Æ� > q�1[(c1Mk f k	)�1k�]2(aþs)=(�þa) > [k2M
�1k�]2(aþs)=(�þa) (40)

for some constant k2 ¼ k2(a, s, 	, d, N , D, q). Note that (21) ensures that Æ� 2 [�, Æ] for

small enough �. Further, for our choice of � ¼ �2(aþs)=(a�	) and Æ given by (17), we have

� > Æ(a�	 t)=(a�	). In order to show this it is sufficient to verify that

p
a� 	 t

a� 	

� �
>

2(aþ s)

a� 	
:

This follows because

2

�
(a� 	)

a� 	 t

a� 	

� �
>

2

�
(a� 	 t) > 2:

Thus, Lemma 4 is applicable with our choice of � and Æ.
First we bound I1. Assume that the event �k occurs; then, by Lemma 4, jþ > t � 1, that

is, �k � f jþ > t � 1g. Consider the events Bj ¼ f jþ ¼ jg, j ¼ t � 1, t, . . . , m. Lemma 4

implies that

802 A. Goldenshluger and S.V. Pereverzev



P(Bt�1j�k) > 1� k1kÆ(	 t�	)=2(aþs),

P(Bj j�k) < k1kÆ(	 t�	)=2(aþs), 8 j ¼ t, . . . , m, (41)

with k1 defined in Lemma 3. Write

I1 ¼
Xm
j¼ t�1

E[j l̂lþ � lj21(�k \ Bj)]:

On the set �k \ Bt�1 we have Æ̂Æþ ¼ Æ̂Æ t�1, and the adaptive procedure runs with the ‘right’

value of 	 ¼ 	 t�1. In this case Æ̂Æþ ¼ Æ t�1 > Æ�. Standard calculations (see Goldenshluger

and Pereverzev 2000, p. 178) yield j l̂lÆ̂Æþ � lj < 6k�r	(Æ�), showing that

E[j l̂lþ � lj21(�k \ Bt�1)] < [6k�r	(Æ�)]2:

Now assume that the event �k \ Bj holds for j > t. This means that the algorithm chooses

Æ̂Æþ ¼ Æ̂Æ j > � corresponding to some 	 j . 	. In this case

j l̂lÆ̂Æþ � lj ¼ j l̂lÆ̂Æ j
� lj < j l̂lÆ̂Æ j

� l̂l�j þ j l̂l� � lj

< 4k�r	 j
(�)þ B�(x)þ �jv�,s( f , �)j

< 4k�r	 j
(�)þ 2k�r	(�) < 6k�r	(�): (42)

Here we have taken into account that:

(i) Æ̂Æþ ¼ Æ̂Æ j > � by construction. Hence, the distance between l̂lÆ̂Æþ and l̂l� can be

bounded in terms of the threshold corresponding to 	 ¼ 	 j.

(ii) � < Æ� by the premise of the theorem. Therefore on the set �k \ Bj the typical

value of the stochastic error dominates the bias.

(iii) r	(�) decreases when 	 grows and � is fixed, that is, r	 j
(�) < r	(�).

It follows from (41) and (42) that, for any j > t,

E[j l̂lþ � lj21(�k \ Bj)] < [6k�r	(�)]2P(�k \ Bj)

< [6k�r	(�)]2k1kÆ(	 t�	)=2(aþs):

Thus we have the following bound on I1:

I1 ¼ E[j l̂lþ � lj21(�k)] < k1mkÆ(	 t�	)=2(aþs)[6k�r	(�)]2 þ [6k�r	(Æ�)]2:

Using (17), we obtain

Æ(	 t�	)=2(aþs)[r	(�)]
2 < �

2(	�	)

a�	 < 1

so that

I1 < [6k�r	(Æ�)]2 þ k1mk3�2,

and substituting the expression for Æ� (see (40)) we finally obtain
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I1 < k3 M2(a�	)=(�þa)(�2 ln ��1)(�þ	)=(�þa) þ m�2(ln ��1)3=2

 �

,

where k3 ¼ k3(a, s, q, 	, N , d, D, c�).
Now we consider the case where the event �k occurs. Here our algorithm will choose a

value that is not less than �. The rest of the proof follows the proof given in Goldenshluger

and Pereverzev (2000), with obvious modifications (Æ in the paper should be replaced by �).
We emphasize only that in this case k is chosen as k4

ffiffiffiffiffiffiffiffiffiffiffiffi
ln ��1

p
, where k4 depends on a, s, 	,

	, d, D and N . h

B. Proofs for the density model

Basically, the proof of Theorem 2 follows similar lines to that of Theorem 1. The main

difference is that the noise � is a random element of the Hilbert space Y with compact

covariance operator KŁ. We indicate how, using Assumptions P1–P3 and F2, one can

modify the arguments in the proof of Theorem 1 in order to prove Theorem 2.

Recall that the estimate l̂lÆ,s(x) associated with the regularization parameter Æ is defined

by (10), and

lf (x)� l̂lÆ,s(x) ¼ bÆ,s( f , x)þ n�1=2vÆ,s( f , �),

where vÆ,s( f , �) ¼ �h�, �Æi, � ¼ n�1=2
Pn

i¼1Łi ¼ n�1=2
Pn

i¼1( ŷyi � y) and

�Æ :¼ AL�s gÆ L�sA�AL�sð ÞL�s f : (43)

By (24) and independence of Łi, i ¼ 1, . . . , n, we have

Ev2Æ,s( f , �) ¼ E

���� 1ffiffiffi
n

p
Xn
i¼1

hŁi, �Æi
����2 ¼ EjhŁi, �Æij2 ¼ hKŁ�Æ, �Æi:

Assumption F2 provides evident upper and lower bounds on Ev2Æ,s( f , �).
Similarly to the proof of Theorem 1, we define

Æ� ¼ maxfÆ 2 ˜Æ : BÆ(x) < k�r~		(Æ)g,
where BÆ(x) is given by (31). In this case Æ� is bounded from below by

[kn�1=2]2(aþs)=(�þaþ	�~		) multiplied by a constant (compare with (40)). Also we denote

t :¼ minf j 2 f0, . . . , mg : 	 j . ~		g, that is, ~		 ¼ 	 t�1 for some t 2 f1, . . . , mg. For a fixed

k > 1, the event �k is defined by (32) with r�1
	 (Æ) replaced by r�1

~		 (Æ). The proof of Theorem
1 is essentially based on the fact that the constant k can be chosen in such a way that the

event �k is of ‘large’ probability. This is easily proved for the white noise model because

vÆ,s( f , �) is a Gaussian normal variable. We now establish a similar exponential inequality

for the density observation model.

Lemma 5. Suppose that Assumptions P1–P3 and F2 are satisfied, and 	 <

~		 , 	þ 1
2
�(a� 	)=(a� 	), where �, 	 and 	 are the same as in (17). Then there exists a

constant k5 ¼ k5(º, 	, a, s, N , b1, H1) such that, for any positive k < k5n
�,

0 , � , 1� 2��1(~		� 	)(a� 	)=(a� 	),
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P(�k) < 2 SÆ exp � k2

2k6

� �
,

where SÆ ¼ card(˜Æ), and k6 ¼ k6(º, 	, a, s, N ).

Proof. Write

~vvÆ,s( f , �) ¼ r�1
~		 (Æ)vÆ,s( f , �) ¼

r�1
~		 (Æ)ffiffiffi

n
p

Xn
i¼1

hŁi, �Æi,

where �Æ is defined in (43). Note that the random variables hŁi, r�1
~		 (Æ)�Æi have zero mean.

In view of Assumption P2,

E expftr�1
~		 (Æ)hŁ, �Æig < E expftr�1

~		 (Æ)kŁk k�Ækg < b1 , 1,

for 0 < t < H1 º�1Æ(~		�	)=2(aþs), where º is defined in Assumption F2. Thus, for fixed �Æ, the

random variable r�1
~		 (Æ)hŁ, �Æi has moments of all orders and the following relation holds:

log E exp tr�1
~		 (Æ)hŁ, �Æi

� �
 �
¼ 1

2
t2 r�2

~		 (Æ)EjhŁ, �Æij2 þ o(t2), as t ! 0:

Taking into account the upper bound in (26), we obtain that, for any constant k6 > º=2, the
inequality

log E exp thŁ, r�1
~		 (Æ)�Æi

� �
 �
< 1

2
k7 t

2

holds for sufficiently small t. In other words, there exist positive constants k6 ¼
k6(º, 	, a, s, N ) and ~HH1 such that

E exp thŁ, r�1
~		 (Æ)�Æi

� �
< expfk6 t2=2g, for 0 < t < ~HH1Æ

(~		�	)=2(aþs):

Then Theorem 2.6 in Petrov (1995) implies that

Pf~vvÆ,s( f , �) > kg ¼ P
Xn
i¼1

hŁi, r�1
~		 (Æ)�Æi >

ffiffiffi
n

p
k

( )
< exp � k2

2k6

� �
for 0 < k < k6 ~HH1

ffiffiffi
n

p
Æ(~		�	)=2(aþs). The bound on Pf~vvÆ,s( f , �) < �kg is derived similarly, so

that

Pfj~vvÆ,s( f , �)j > kg < 2 exp � k2

2k6

� �
, 0 < k < k6 ~HH1

ffiffiffi
n

p
Æ(~		�	)=2(aþs):

The statement of the lemma is an immediate consequence of these results and the fact that Æ
is bounded from below by Æ given in (17). h

Proof of Theorem 2. The proof is identical to that of Theorem 1 in every detail, with only

the following differences.

First, we note that, under Assumptions P1–P3 and F2, Lemma 3 remains valid with 	
replaced by ~		, and the bound (34) holds provided n is large enough. Here, in order to prove
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(37), we use Lemma 5 and Assumption P3. Then Lemma 4 follows with obvious

modifications.

The proof of Theorem 2 on the set �k coincides with the proof of Theorem 1. To bound

the error on the complimentary event �k we use the exponential inequality of Lemma 5.

h
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