Projections and invariant means related to some Banach algebras

Ali Ghaffari

Abstract

Let *A* be a Banach algebra with a bounded approximate identity. Our first purpose in this paper is to generalize Bekka's results for a certain class of Banach algebras. Let *G* be an amenable locally compact topological group, and let *A* be a left Banach *G*-module. Our second purpose, among the other things, is to define certain weak*-closed subspaces of $\mathcal{B}(A, A^*)$ to consider when their weak*-closed subspaces are the range of a bounded projection on $\mathcal{B}(A, A^*)$. Finally, we explore the link between the projections properties and amenability of semigroup algebras.

1 Introduction

Let *G* be a locally compact group with left invariant Haar measure and let $L^p(G)$, $1 \le p \le \infty$, be the complex Lebesgue spaces associated with it [16]. It was shown by Lau [20] that if *G* is an amenable locally compact group, then any weak*-closed self-adjoint left translation invariant subalgebra of $L^{\infty}(G)$ is the range of a continuous projection commuting with left translations. Also, as shown in [19], if *G* is an infinite locally compact group and *X* is any closed subspace of Wap(G) containing $C_0(G)$, then *X* is uncomplemented in $L^{\infty}(G)$. For a locally compact abelian group *G*, Gilbert [15] characterized weak*-closed translation invariant complemented subspaces of $L^{\infty}(G)$ by their spectra. In [27], Wood investigated the ideals in the Fourier algebra of a locally compact group *G* which are complemented by an invariant projection.

Bull. Belg. Math. Soc. Simon Stevin 18 (2011), 121-133

Received by the editors November 2009.

Communicated by F. Bastin.

²⁰⁰⁰ Mathematics Subject Classification : Primary: 43A22; Secondary: 43A60.

Key words and phrases : Amenability, Banach algebras, projections, semigroup algebras, weak* closed subspace.

In our earlier paper [10], we proved that if *G* is an amenable locally compact group and *A* is a right Banach *G*-module, then every weak*-closed translation invariant complemented subspace of *A** is the range of a bounded projection on *A** commuting with left translations. The bounded projections on $L^{\infty}(G)$ onto a weak*-closed subspace *X* of $L^{\infty}(G)$ which commute with translation have been studied by Takahashi in [25] and by Bekka in [3] (see also [26]). Bekka has proved that a weak*-closed left translation invariant subspace *X* of $L^{\infty}(G)$ is invariantly complemented if and only if $^{\perp}X$ has a bounded right approximate identity.

In this paper, our first purpose is to generalize some of Bekka's results for a certain class of Banach algebras. Let *G* be an amenable locally compact group. Let *A* be a left Banach *G*-module, and let *X* be a weak*-closed translation invariant subspace of $\mathcal{B}(A, A^*)$, i.e., $S_x(TL_{x^{-1}}) \in X$ for each $T \in X$ and $x \in G$. In this paper, we prove that if *X* is the range of a bounded projection on $\mathcal{B}(A, A^*)$, then $\mathcal{M}(A, A^*) \cap X$ is the range of a bounded projection on $\mathcal{M}(A, A^*)$ which commutes with translations.

Let *S* be a foundation semigroup with identity, and let *X* be a weak*-closed translation invariant subspace of $M_a(S, \omega)^*$. If $\mathcal{M}(M_a(S, \omega), X)$ is the range of a bounded projection on $\mathcal{M}(M_a(S, \omega), M_a(S, \omega)^*)$, then *X* is the range of a bounded projection on $M_a(S, \omega)^*$, see Theorem 4.4. Finally, we study characterizations of amenability in terms of existence properties of left invariant means and in terms of the projections on semigroup algebras.

2 Notation and preliminary results

We introduce our notations briefly; for other ideas used here we refer the reader to [10], [23] and [26]. For any Banach space X, in this paper, the value of an element $x^* \in X^*$ at the element $x \in X$ is denoted by $\langle x^*, x \rangle$. For any Banach algebra A, the second dual A^{**} of A can be given a Banach algebra structure by means of the first Arens product (see [2], [7] and [21]). For $a, b \in A$, f in A^* and $E, F \in A^{**}$, the elements fa, Ef of A^* and EF of A^{**} are defined as follows:

$$\langle fa,b\rangle = \langle f,ab\rangle, \ \langle Ff,a\rangle = \langle F,fa\rangle, \ \langle EF,f\rangle = \langle E,Ff\rangle.$$

For $a \in A$ the maps L_a and R_a from A^* into itself are defined by $L_a(f) = af$ and $R_a(f) = fa$. We define the subspaces A^*A and AA^* of A^* as

$$A^*A = \{ fa; f \in A^* \text{ and } a \in A \} \text{ and } AA^* = \{ af; a \in A \text{ and } f \in A^* \}.$$

If *A* has a bounded approximate identity, then by Cohen's factorization theorem, the spaces A^*A and AA^* are closed in A^* .

Let *A* be a Banach algebra, and let *I* be a closed left ideal in *A*. Then

$$I^{\perp} = \{ f \in A^*; \langle f, a \rangle = 0 \text{ for all } a \in A \}$$

is a weak*-closed subspace of A^* . For each $a \in A$, $f \in I^{\perp}$ and $i \in I$, $\langle fa, i \rangle = \langle f, ai \rangle = 0$. This shows that $R_a(f) \in I^{\perp}$ for all $f \in I^{\perp}$ and $a \in A$. Conversely, suppose that $X \subseteq A^*$ is a weak*-closed subspace of A^* such that $R_a(f) \in X$ for all $f \in X$ and $a \in A$. $^{\perp}X = \{a \in A; \langle f, a \rangle = 0 \text{ for all } f \in X\}$ is a closed left

ideal in *A*. It is easy to verify that the mapping $I \mapsto I^{\perp}$ is a bijection from the set of closed left ideals in *A* onto the set of weak*-closed subspaces *X* of *A** such that $R_a(X) \subseteq X$ for all $a \in A$. Indeed, let *I* and *J* be closed left ideals in *A* with $I^{\perp} = J^{\perp}$. By Theorem 4.7 in [24],

$$I = \overline{I} = {}^{\perp}(I^{\perp}) = {}^{\perp}(J^{\perp}) = \overline{J} = J.$$

This shows that $I \mapsto I^{\perp}$ is injective. Next let *X* be a weak*-closed subspace of *A** such that $R_a(X) \subseteq X$ for all $a \in A$ (*X* is said to be right translation invariant). By Theorem 4.7 in [24], $^{\perp}(X^{\perp}) = \overline{X} = X$, where the closure is taken in the weak*-topology. We have shown that $I \mapsto I^{\perp}$ is surjective.

3 Projections on Banach algebras

In [28], Wood proved that if *A* is an operator amenable Banach algebra, and *I* a closed ideal, then I^{\perp} is completely complemented if and only if *I* has a bounded approximate identity. Bekka [3] proved that if *X* is a weak*-closed translation invariant subspace of $L^{\infty}(G)$, then *X* is complemented in $L^{\infty}(G)$ if and only if $^{\perp}X$ has a right bounded approximate identity. Our first result is a generalization of this fact to a Banach algebra with a bounded approximate identity.

Lemma 3.1. Let *A* be a Banach algebra with a bounded approximate identity, and let *X* be a weak*-closed right translation invariant subspace in A^* . Then the following are equivalent:

- (1) there exists a bounded projection *P* of A^* onto *X* such that $PR_a = R_a P$ for all $a \in A$;
- (2) there exists a bounded projection *P* of A^*A onto $X \cap A^*A$ such that $PR_a = R_a P$ for all $a \in A$;
- (3) $\perp X$ has a bounded right approximate identity.

Proof. (1) \Rightarrow (2) Let $P : A^* \to X$ be a bounded projection such that $PR_a = R_aP$ for all $a \in A$. We show that P restricted to A^*A is a projection from A^*A onto $X \cap A^*A$. To see that P is a projection of A^*A onto $X \cap A^*A$, it suffices to show that $P(A^*A) \subseteq X \cap A^*A$ and that $f \in X \cap A^*A$ implies P(f) = f. Let f be an element of A^*A . Then f is of the form f = ga for some g in A^* and a in A. Hence P(f) = P(ga) = P(g)a. Thus we conclude that $P(A^*A) \subseteq X \cap A^*A$. Next, let $f \in X \cap A^*A$. By assumption, we have P(f) = f. It is clear that $PR_a = R_aP$ for all $a \in A$.

(2) \Rightarrow (3) Let *P* be a bounded projection from A^*A onto $X \cap A^*A$ such that $PR_a = R_a P$ for all $a \in A$. Let (e_α) be a bounded approximate identity for *A*. Then we may suppose that (e_α) converges in the weak*-topology on A^{**} , say to *F* [7].

Define $P' : A^* \to A^*$ by setting $\langle P'(f), a \rangle = \langle F, P(fa) \rangle$ $(a \in A)$. Then P' is a bounded linear map. For $f \in X$ and $a \in A$, we have

$$\langle P'(f), a \rangle = \langle F, P(fa) \rangle = \langle F, fa \rangle = \lim_{\alpha} \langle e_{\alpha}, fa \rangle$$

= $\lim_{\alpha} \langle f, ae_{\alpha} \rangle = \langle f, a \rangle,$

and so P' is the identity map on X. If $f \in A^*$, then

$$\langle P'(f), a \rangle = \langle F, P(fa) \rangle = \lim_{\alpha} \langle F, P(fe_{\alpha}a) \rangle = \lim_{\alpha} \langle F, P(fe_{\alpha})a \rangle$$

=
$$\lim_{\alpha} \langle aF, P(fe_{\alpha}) \rangle = \lim_{\alpha} \langle a, P(fe_{\alpha}) \rangle = 0,$$

for each $a \in {}^{\perp}X$. Since *X* is a weak*-closed subspace of A^* , $({}^{\perp}X)^{\perp} = X$ and so $P'(f) \in X$ (see Theorem 4.7 in [24]). Consequently P' is an extension of *P* to A^* as a bounded projection.

Let $f \in ({}^{\perp}X)^*$, and let f' be any Hahn-Banach extension of f to a continuous functional on A^* , see Theorem A.3.19 in [7]. We consider $E : ({}^{\perp}X)^* \to \mathbb{C}$ defined by $\langle E, f \rangle = \langle F, f' - P'(f') \rangle$. Let $f'', f' \in A^*$ be two extension of $f \in ({}^{\perp}X)^*$. For any $a \in {}^{\perp}X$,

$$\langle f''-f',a\rangle = \langle f'',a\rangle - \langle f',a\rangle = \langle f,a\rangle - \langle f,a\rangle = 0.$$

Hence $f'' - f' \in (^{\perp}X)^{\perp} = X$, and so P'(f'' - f') = f'' - f'. This shows that $\langle E, f' - P'(f') \rangle = \langle E, f'' - P'(f'') \rangle$, so that $E : (^{\perp}X)^* \to \mathbb{C}$ is well-defined. It is clear that $E \in (^{\perp}X)^{**}$. For every $a \in ^{\perp}X$ and $f \in (^{\perp}X)^*$, we have

$$\langle F, (fa)' - P'((fa)') \rangle = \langle F, f'a - P'(f'a) \rangle = \lim_{\alpha} \langle F, f'a - P'(f'e_{\alpha}a) \rangle$$

=
$$\lim_{\alpha} \langle F, f'a - P'(f'e_{\alpha})a \rangle = \langle F, f'a \rangle.$$

Hence we conclude that

One verifies easily that *E* is a right identity for $(^{\perp}X)^{**}$. Hence $^{\perp}X$ has a bounded right approximate identity, see [[4], p.146].

 $(3) \Rightarrow (1)$ By Proposition 6.4 in [9], (3) implies (1). \Box

Throughout *S* denotes a locally compact Hausdorff topological semigroup. A positive and continuous function ω on *S* satisfying $\omega(xy) \leq \omega(x)\omega(y)$ $(x, y \in S)$, $\omega(e) = 1$ will be called a *weight* function. Let $M(S, \omega)$ be the Banach space of all complex regular Borel measures μ on *S* such that $\|\mu\|_{\omega} = \int \omega(t)d|\mu|(t) < \infty$ [8]. We can identify $M(S, \omega)$ with the dual of the Banach space $C_0(S, \omega^{-1})$; the latter being the Banach space of all continuous function ϕ on *S* such that $\frac{\phi}{\omega} \in C_0(S)$, with the norm in $C_0(S, \omega^{-1})$ defined by $\|\phi\|_{\omega} = \sup \{|\frac{\phi(x)}{\omega(x)}|; x \in S\}$. Under convolution product

$$\langle \mu * \nu, \phi \rangle = \int \int \phi(xy) d\mu(x) d\nu(y) \qquad (\mu, \nu \in M(S, \omega), \ \phi \in C_0(S, \omega^{-1})),$$

 $M(S, \omega)$ becomes a Banach algebra.

Recall that $M_a(S)$ denotes the space of all measures $\mu \in M(S)$ for which the mappings $x \mapsto \delta_x * |\mu|$ and $x \mapsto |\mu| * \delta_x$ from *S* into M(S) are weakly continuous. We denote by $M_a(S, \omega)$ the space of all $\mu \in M(S, \omega)$ such that $\omega \mu \in M_a(S)$. A *foundation* semigroup is a locally compact semigroup such that $\bigcup \{supp(\mu); \mu \in M_a(S)\}$ is dense in *S*. A trivial example is a topological group and in this case $M_a(S) = L^1(S)$ (for more information on foundation semigroups, see [1], [8] and [10]). It is well known that $M_a(S, \omega)$ is a closed two sided *L*-ideal of $M(S, \omega)$ [8]. Weighted hypergroup algebras have been studied by Ghahramani and Medghalchi in [13] and [14].

Lemma 3.2. Let *S* be a foundation topological semigroup with identity, and let *X* be a weak*-closed subspace of $M_a(S, \omega)^*$ such that $X\delta_x \subseteq X$ for every $x \in S$. Then the following conditions hold:

- (1) *X* is topologically right invariant, i.e., $f\mu \in X$ for all $f \in M_a(S, \omega)^*$ and $\mu \in M_a(S, \omega)$;
- (2) let $P : M_a(S, \omega)^* M_a(S, \omega) \to X$ be a bounded linear map. Then $P(f\mu) = P(f)\mu$ for all $f \in M_a(S, \omega)^* M_a(S, \omega)$ and $\mu \in M_a(S, \omega)$ if and only if $P(f\delta_x) = P(f)\delta_x$ for all $x \in S$ and $f \in M_a(S, \omega)^* M_a(S, \omega)$.

Proof. (1) Assume that there exist $f \in X$ and $\mu \in M_a(S, \omega)$ such that $f\mu \notin X$. Without loss of generality, we may assume that $\mu \ge 0$ and $\|\mu\|_{\omega} = 1$. Since X is a weak*-closed subspace in $M_a(S, \omega)^*$, by Hahn-Banach Theorem [24], there exist $\nu \in M_a(S, \omega)$ and $\gamma_1, \gamma_2 \in \mathbb{R}$ such that

$$Re\langle \nu, f\delta_x \rangle < \gamma_1 < \gamma_2 < Re\langle \nu, f\mu \rangle,$$

where $x \in S$. By Lemma 3.4 in [12],

$$\begin{aligned} Re\langle f\mu,\nu\rangle &= Re\langle f,\mu*\nu\rangle = Re\int \langle f,\delta_x*\nu\rangle d\mu(x) \\ &\leq \gamma_1 < \gamma_2 < Re\langle f\mu,\nu\rangle. \end{aligned}$$

We would come to a contradiction. Therefore $f \mu \in X$.

(2) Let $P : M_a(S, \omega)^* M_a(S, \omega) \to X$ be a bounded linear map with $P(f\mu) = P(f)\mu$ for all $f \in M_a(S, \omega)^* M_a(S, \omega)$ and $\mu \in M_a(S, \omega)$. Let $f \in M_a(S, \omega)^* M_a(S, \omega)$, $x \in S$. By Lemma 3.4 in [18], $M_a(S, \omega)$ has a bounded approximate identity, say (e_{α}) . It is easy to see that $fe_{\alpha} * \delta_x \to f\delta_x$ in the norm topology. Hence

$$P(f\delta_x) = \lim_{\alpha} P(fe_{\alpha} * \delta_x) = \lim_{\alpha} P(f)e_{\alpha} * \delta_x.$$

On the other hand, $P(f)e_{\alpha} * \delta_x$ converges to $P(f)\delta_x$ in the weak*-topology. Thus $P(f\delta_x) = P(f)\delta_x$.

The converse is obvious. \Box

Let *S* be a foundation semigroup with identity. Then a function $f \in C(S, \omega)$ is called ω -left uniformly continuous if the mapping $x \mapsto \frac{L_x f}{\omega(x)}$ of *S* into $C(S, \omega)$

is norm continuous, where $L_x(f)(y) = f(xy)$ for every $x, y \in S$. As known $LUC(S, \omega^{-1}) = M_a(S, \omega)^* M_a(S, \omega)$ (see Proposition 3.5 in [18]). Let *S* be a locally compact Hausdorff topological group. Bekka in [3] has proved that a weak^{*}-closed left translation invariant subspace *X* of $L^{\infty}(S)$ is invariantly complemented if and only if $^{\perp}X$ has a bounded right approximate identity. In the following Theorem, our main purpose is to generalize Bekka's results in [3] for a certain class of weighted semigroup algebras.

Theorem 3.3. Let *S* be a foundation topological semigroup with identity, and let *X* be a weak*-closed left translation invariant subspace of $M_a(S, \omega)^*$. Then the following conditions are equivalent:

- (1) there exists a bounded projection *P* of $M_a(S, \omega)^*$ onto *X* such that $PR_{\mu} = R_{\mu}P$ for all $\mu \in M_a(S, \omega)$;
- (2) there exists a bounded projection *P* of $LUC(S, \omega^{-1})$ onto $X \cap LUC(S, \omega^{-1})$ such that $PR_{\mu} = R_{\mu}P$ for all $\mu \in M_a(S, \omega)$;
- (3) there exists a bounded projection *P* of $LUC(S, \omega^{-1})$ onto $X \cap LUC(S, \omega^{-1})$ such that $PR_x = R_x P$ for all $x \in S$;
- (4) $^{\perp}X$ has a bounded right approximate identity.

Proof. This is immediate from Lemma 3.1 and Lemma 3.2.

4 Projections and amenability

We recall that a locally compact group *G* is *amenable* if there is a positive norm one linear functional on $L^{\infty}(G)$ which is invariant under left translation. Every abelian group is amenable. The discrete free group F_2 on two generators *a* and *b* is not amenable [22].

Definition 4.1. An *action* of a semigroup *S* on a Banach algebra *A* is a mapping $\sigma : S \times A \rightarrow A$ such that:

- (1) $\sigma(x, a + b) = \sigma(x, a) + \sigma(x, b), \alpha \sigma(x, a) = \sigma(x, \alpha a), \sigma(xy, a) = \sigma(x, ya)$ and $\sigma(e, a) = a$, where $\alpha \in \mathbb{C}$, $x, y \in S$ and $a, b \in A$;
- (2) for all $a \in A$, the map $x \mapsto \sigma(x, a)$ is continuous from *S* into *A*;
- (3) there exists $k \in \mathbb{R}$ such that $\|\sigma(x, a)\| \le k \|a\|$ for every $x \in S$ and $a \in A$.

We shall write *xa* for $\sigma(x, a)$. A left Banach *S*-module is a pair (*S*, *A*), where *A* is a Banach algebra and σ is an action of *S* on *A*.

Let *A* be a Banach algebra. As is well known, we can define an isometric linear isomorphism from $(A \otimes_p A)^*$ onto $\mathcal{B}(A, A^*)$ by the correspondence between *f* and Φ_f defined by $\Phi_f(a)(b) = \langle f, a \otimes b \rangle$ for each $a, b \in A$ [4].

Now, let *A* be a left Banach *S*-module, and let $x \in S$ and $T \in \mathcal{B}(A, A^*)$ (see [10]). We define $S_x(T) \in \mathcal{B}(A, A^*)$ by $\langle S_x(T)(a), b \rangle = \langle T(a), xb \rangle$. Then S_x is a bounded linear map of $\mathcal{B}(A, A^*)$ into $\mathcal{B}(A, A^*)$. If $x \in S$, we consider $L_x : a \mapsto xa, A \to A$. Clearly $L_x \in \mathcal{B}(A, A)$. We consider the space $\mathcal{M}(A, A^*)$ of all $T \in \mathcal{B}(A, A^*)$ for which $S_x(T) = TL_x$ for all $x \in S$ [17].

Theorem 4.2. Let *G* be a locally compact abelian group, and let *A* be a left Banach *G*-module. Let *X* be a weak*-closed subspace of $\mathcal{B}(A, A^*)$ satisfying $S_x(TL_{x^{-1}}) \in X$ for each $T \in X$ and $x \in G$. If there exists a bounded projection from $\mathcal{B}(A, A^*)$ onto *X*, then there exists a bounded projection *P* from $\mathcal{M}(A, A^*)$ onto $\mathcal{M}(A, A^*) \cap X$ such that $C_x P = PC_x$ for all $x \in G$, where $C_x(T) = S_x(TL_{x^{-1}})$.

Proof. We can prove this Theorem by using an argument similar to one of the proof of Lemma 4 in [26]. Let *M* be a right invariant mean on $L^{\infty}(G)$. Let *Q* be a bounded projection of $\mathcal{B}(A, A^*)$ onto *X*. Take $\phi \in A \otimes_p B$ and $T \in \mathcal{B}(A, A^*)$. The mapping

$$f_T^{\phi}: x \mapsto \langle \Phi^{-1}(C_{x^{-1}}QC_x(T)), \phi \rangle$$

$$G \to \mathbb{C}$$

belongs to $L^{\infty}(G)$. If $T \in \mathcal{B}(A, A^*)$, we consider the mapping $f_T : \phi \mapsto \langle M, f_T^{\phi} \rangle$. Now we consider $P : \mathcal{M}(A, A^*) \to \mathcal{M}(A, A^*) \cap X$ defined by $\langle P(T)(a), b \rangle = \langle M, f_T^{a \otimes b} \rangle$. We claim that P is a bounded projection of $\mathcal{M}(A, A^*)$ onto $\mathcal{M}(A, A^*) \cap X$ and that $C_x P = PC_x$ for all $x \in G$. Let $\phi \in {}^{\perp}(\Phi^{-1}(X))$ and $T \in \mathcal{M}(A, A^*)$. Then $\langle \Phi^{-1}(C_{x^{-1}}QC_x(T)), \phi \rangle = 0$ for all $x \in G$, since $C_{x^{-1}}QC_x(T) \in X$. Hence

$$\langle \Phi^{-1}(P(T)), \phi \rangle = \langle f_T, \phi \rangle = \langle M, f_T^{\phi} \rangle = 0,$$

and so $P(T) \in X$. This shows that $P(\mathcal{M}(A, A^*)) \subseteq X$. Next, let $T \in X \cap \mathcal{M}(A, A^*)$. Then $QC_x(T) = C_x(T)$ for each $x \in G$, and so $\Phi^{-1}(C_{x^{-1}}QC_x(T)) = \Phi^{-1}(T)$. We have

$$\langle \Phi^{-1}(P(T)), \phi \rangle = \langle f_T, \phi \rangle = \langle M, f_T^{\phi} \rangle = \langle \Phi^{-1}(T), \phi \rangle$$

for each $\phi \in A \otimes_p A$. Hence P(T) = T. For every $a \otimes b \in A \otimes_p B$ and $x, y \in G$,

$$\begin{split} f_{C_y(T)}^{a \otimes b}(x) &= \langle \Phi^{-1}(C_{x^{-1}}QC_xC_y(T)), a \otimes b \rangle \\ &= \langle \Phi^{-1}(S_{x^{-1}}(Q(S_x(S_y(TL_{y^{-1}})L_{x^{-1}}))L_x)), a \otimes b \rangle \\ &= \langle \Phi^{-1}(S_{x^{-1}}(Q(S_{xy}(TL_{(xy)^{-1}}))L_x)), a \otimes b \rangle \\ &= \langle \Phi^{-1}(S_y(S_{y^{-1}}(S_{x^{-1}}(QC_{xy}(T)L_x)L_y)L_{y^{-1}})), a \otimes b \rangle \\ &= \langle \Phi^{-1}(S_y(S_{(xy)^{-1}}(QC_{xy}(T)L_{xy})L_{y^{-1}})), a \otimes b \rangle \\ &= \langle \Phi^{-1}(S_y(C_{(xy)^{-1}}QC_{xy}(T)L_{y^{-1}})), a \otimes b \rangle = f_T^{y^{-1}a \otimes yb}(xy). \end{split}$$

Thus

$$\langle PC_y(T)(a), b \rangle = \langle P(C_y(T))(a), b \rangle = \langle M, f_{C_y(T)}^{a \otimes b} \rangle = \langle M, f_T^{y^{-1}a \otimes yb} \rangle$$

= $\langle P(T)(y^{-1}a), yb \rangle = \langle C_y P(T)(a), b \rangle.$

Hence we have $C_y P = PC_y$ for all $y \in G$. If $T \in \mathcal{M}(A, A^*)$, then $S_x(T) = TL_x$ for all $x \in G$. For every $a \in A$ and $x \in G$,

$$S_x(P(T))(a) = S_x(P(T))(L_{x^{-1}}L_xa) = S_x(P(T)L_{x^{-1}})(L_xa)$$

= $C_xP(T)L_x(a) = PC_x(T)L_x(a)$
= $P(S_x(TL_{x^{-1}}))L_x(a) = P(T)L_x(a).$

This proves that $S_x(P(T)) = P(T)L_x$, and so $P(\mathcal{M}(A, A^*)) \subseteq \mathcal{M}(A, A^*)$. Consequently we conclude that *P* is a bounded projection from $\mathcal{M}(A, A^*)$ onto $\mathcal{M}(A, A^*) \cap X$. This completes the proof. \Box

Theorem 4.3. Let *G* be an amenable locally compact group, and let *A* be a left Banach *G*-module. Let *X* be a weak*-closed subspace of *A** such that $S_x(TL_{x^{-1}})(a) \in X$ for all $T \in X$, $a \in A$ and $x \in G$. Let *P* be a bounded projection of *A** onto *X*. Then there exists a bounded projection from $\mathcal{B}(A, A^*)$ onto $\mathcal{M}(A, X)$.

Proof. For $a, b \in A$ and $T \in \mathcal{B}(A, A^*)$, we define $f_T^{a,b} : G \to \mathbb{C}$ by $f_T^{a,b}(x) = \langle P(T)(xa), x^{-1}b \rangle$. We see immediately that $f_T^{a,b} \in L^{\infty}(G)$. Let M be a right invariant mean on $L^{\infty}(G)$ [22]. For $T \in \mathcal{B}(A, A^*)$, we define $\langle F_T(a), b \rangle = \langle M, f_T^{a,b} \rangle$. Clearly $F_T \in \mathcal{B}(A, A^*)$. Let Q denote the function on $\mathcal{B}(A, A^*)$ defined by $Q(T) = F_T$. We claim that Q is a bounded projection of $\mathcal{B}(A, A^*)$ onto $\mathcal{M}(A, X)$. For $T \in \mathcal{B}(A, A^*)$, $y \in G$ and $a, b \in A$, we have

$$f_T^{a,yb}(x) = \langle P(T)(xa), x^{-1}yb \rangle = \langle P(T)(xy^{-1}ya), x^{-1}yb \rangle = f_T^{ya,b}(xy^{-1}).$$

Since *M* is a right invariant mean, we have

$$\langle Q(T)(a), yb \rangle = \langle M, f_T^{a, yb} \rangle = \langle M, f_T^{ya, b} \rangle = \langle Q(T)(ya), b \rangle.$$

Hence $S_y(Q(T)) = Q(T)L_y$, and so $Q(\mathcal{B}(A, A^*)) \subseteq \mathcal{M}(A, A^*)$. Let $T \in \mathcal{B}(A, A^*)$ and $a \in A$. Then $\langle P(T)(xa), x^{-1}b \rangle = 0$ for each $x \in G$ and $b \in {}^{\perp}X$, since $S_x(P(T)L_{x^{-1}})(a) \in X$. Thus $\langle Q(T)(a), b \rangle = \langle M, f_T^{a,b} \rangle = 0$, and so $Q(T)(a) \in ({}^{\perp}X)^{\perp} = X$. This shows that $Q(\mathcal{B}(A, A^*)) \subseteq \mathcal{M}(A, X)$. Next, let $T \in \mathcal{M}(A, X)$. Then P(T(xa)) = T(xa) for each $x \in G$ and $a \in A$. For every $x \in G$,

$$f_T^{a,b}(x) = \langle P(T(xa)), x^{-1}b \rangle = \langle T(xa), x^{-1}b \rangle = \langle S_x(T)(a), x^{-1}b \rangle$$

= $\langle T(a), b \rangle = f_T^{a,b}(e).$

Hence

$$\langle Q(T)(a),b\rangle = \langle M, f_T^{a,b}\rangle = \langle M, f_T^{a,b}(e)1\rangle = f_T^{a,b}(e) = \langle T(a),b\rangle.$$

It follows that Q(T) = T. This completes our proof. \Box

Let *S* be a foundation topological semigroup. If *H* is a subsemigroup of *S*, we put

$$X_H = \{ f \in M_a(S, \omega)^*; f \delta_x = \delta_x f = f \text{ for all } x \in H \}.$$

We can easily see that every X_H is a weak* closed linear subspace of $M_a(S, \omega)^*$ which $\delta_x X_H \subseteq X_H$ and $X_H \delta_x \subseteq X_H$ for all $x \in S$. In the following Theorem, we shall study relation between the weak*-closed subspace X of $M_a(S, \omega)^*$ and $\mathcal{M}(M_a(S, \omega), X)$. Note that $(S, M_a(S, \omega))$ is a left Banach S-module under the natural action $(x, \mu) \mapsto \delta_x * \mu$. If S is a commutative semigroup, then $T \in$ $\mathcal{M}(M_a(S, \omega), M_a(S, \omega)^*)$ if and only if T commutes with translations, see [12] and [17].

Theorem 4.4. Let *S* be a foundation semigroup with identity, and let *X* be a weak*-closed subspace of $M_a(S, \omega)^*$ such that $X\delta_x \subseteq X$ for all $x \in S$:

- (1) let $T \in \mathcal{B}(M_a(S, \omega), M_a(S, \omega)^*)$ satisfying $T(\mu * \delta_x) = T(\mu)\delta_x$ for each $x \in S$. Then there is a unique $f \in M_a(S, \omega)^*$ such that $T(\mu) = f\mu$. Moreover ||T|| = ||f||;
- (2) $\mathcal{M}(M_a(S,\omega), X)$ is a closed subspace of $\mathcal{M}(M_a(S,\omega), M_a(S,\omega)^*)$ (in the weak* operator topology).
- (3) further suppose that *S* is commutative. Let *Q* be a bounded projection from $\mathcal{M}(M_a(S,\omega), M_a(S,\omega)^*)$ onto $\mathcal{M}(M_a(S,\omega), X)$. Then there exists a bounded projection *P* of $M_a(S,\omega)^*$ onto *X*.

Proof. (1) For every $\mu, \nu, \eta \in M_a(S, \omega)$, we have

$$\begin{aligned} \langle T(\mu * \nu), \eta \rangle &= \langle T^*(\eta), \mu * \nu \rangle = \int \langle T^*(\eta), \mu * \delta_x \rangle d\nu(x) \\ &= \int \langle T(\mu * \delta_x), \eta \rangle d\nu(x) = \int \langle T(\mu) \delta_x, \eta \rangle d\nu(x) \\ &= \int \langle T(\mu), \delta_x * \eta \rangle d\nu(x) = \langle T(\mu) \nu, \eta \rangle. \end{aligned}$$

Hence $T(\mu * \nu) = T(\mu)\nu$. Now, let (e_{α}) be a bounded approximate identity of norm 1 in $M_a(S)$ (see Lemma 3.4 in [18]). Without loss of generality, we may assume that $T(e_{\alpha}) \rightarrow f$ in the weak*-topology. It is clear that

$$\langle T(\mu),\nu\rangle = \lim_{\alpha} \langle T(e_{\alpha}*\mu),\nu\rangle = \lim_{\alpha} \langle T(e_{\alpha}),\mu*\nu\rangle = \langle f,\mu*\nu\rangle = \langle f\mu,\nu\rangle,$$

where $\mu, \nu \in M_a(S, \omega)$. This shows that $T(\mu) = f\mu$. It is easy to see that ||T|| = ||f||. It is obvious that the correspondence between *T* and *f* is an isometric isomorphism.

(2) Clearly $\mathcal{M}(M_a(S,\omega), X)$ is a subspace of $\mathcal{M}(M_a(S,\omega), M_a(S,\omega)^*)$. If (T_α) is a net in $\mathcal{M}(M_a(S,\omega), X)$ that converges weak* to some $T \in \mathcal{M}(M_a(S,\omega), M_a(S,\omega)^*)$, then $T_\alpha(\mu)$ converges to $T(\mu)$ in the weak*-topology (for any $\mu \in M_a(S,\omega)$). Pick $T(\mu) \notin X$. Since X is weak*-closed, Theorem 3.5 in [24], shows that there is a $\nu \in M_a(S,\omega)$ such that $\langle f, \nu \rangle = 0$ for every $f \in X$, but $\langle T(\mu), \nu \rangle \neq 0$. Hence $\langle T_\alpha(\mu), \nu \rangle = 0$ for every α , but $\langle T(\mu), \nu \rangle \neq 0$ which is a contradiction. This proves that $\mathcal{M}(M_a(S,\omega), X)$ is weak*-closed.

(3) For $f \in M_a(S, \omega)^*$, define $\lambda_f : M_a(S, \omega) \to M_a(S, \omega)^*$ by $\lambda_f(\mu) = f\mu$. As above, the map $\Lambda : M_a(S, \omega)^* \to \mathcal{M}(M_a(S, \omega), M_a(S, \omega)^*)$ given by $\Lambda(f) = \lambda_f$,

is an isometric isomorphism. Now we consider $P : M_a(S, \omega)^* \to M_a(S, \omega)^*$ defined by $P(f) = \Lambda^{-1}(Q(\Lambda(f)))$. To see that P is a projection of $M_a(S, \omega)^*$ onto X, it suffices to show that $P(M_a(S, \omega)) \subseteq X$ and that $f \in X$ implies P(f) = f. Fix $f \in M_a(S, \omega)^*$. As above, there exists $f' \in M_a(S, \omega)^*$ with $Q(\lambda_f) = \lambda_{f'}$. By assumption, $Q(\lambda_f)(\mu) \in X$ for every $\mu \in M_a(S, \omega)$. Pick $\nu \in {}^{\perp}X$, so that $\langle f'\mu, \nu \rangle = \langle Q(\lambda_f)(\mu), \nu \rangle = 0$ for all $\mu \in M_a(S, \omega)$. By Lemma 3.4 in [18], there is an approximate identity (e_{α}) in $M_a(S, \omega)$. We have

$$\langle f', \nu \rangle = \lim_{\alpha} \langle f', e_{\alpha} * \nu \rangle = \lim_{\alpha} \langle f' e_{\alpha}, \nu \rangle = 0,$$

and so $f' \in X$. Hence $P(M_a(S, \omega)^*) \subseteq X$. Next, let $f \in X$. By Lemma 3.2, $f\mu \in X$ for every $\mu \in M_a(S, \omega)$. This shows that $\lambda_f \in \mathcal{M}(M_a(S, \omega), X)$. Therefore $P(f) = \Lambda^{-1}(Q(\Lambda(f))) = f$. This completes our proof. \Box

Let A be a Banach algebra. Given $a \in A$, let I_a be the norm-closure of

 ${x - xa; x \in A}$

in *A*, see [5] and [6]. Let *S* be a locally compact foundation semigroup with identity, and let $\eta \in M_a(S, \omega)$. It is easy to see that I_{η} is a left closed ideal in $M_a(S, \omega)$ and its annihilator $I_{\eta}^{\perp} = \left(\frac{M_a(S, \omega)}{I_{\eta}}\right)^*$ is the space $\{f \in M_a(S, \omega)^*; \eta f = f\}$ which we call the η -harmonic functional on $M_a(S, \omega)$.

Lemma 4.5. Let *S* be a foundation topological semigroup with identity, and let $\eta \in M_a(S, \omega)$. Then $I_{\eta}^{\perp} \cap M_a(S, \omega)^* M_a(S, \omega)$ is weak*-dense in I_{η}^{\perp} .

Proof. Let (e_{α}) be an approximate identity of norm 1 in $M_a(S, \omega)$, and let $f \in I_{\eta}^{\perp}$. Then $fe_{\alpha} \in I_{\eta}^{\perp} \cap M_a(S, \omega)^* M_a(S, \omega)$ and for $\mu \in M_a(S, \omega)$, we have $\langle f, \mu \rangle = \lim_{\alpha} \langle f, e_{\alpha} * \mu \rangle$. This shows that (fe_{α}) converges to f in the weak*-topology.

For $x \in S$, we observe that $\delta_x(I_\eta^{\perp}) \subseteq I_\eta^{\perp}$ if and only if

$$\delta_x(I_n^{\perp} \cap M_a(S,\omega)^* M_a(S,\omega)) \subseteq I_n^{\perp} \cap M_a(S,\omega)^* M_a(S,\omega).$$

This follows from the fact that $I_{\eta}^{\perp} \cap M_a(S, \omega)^* M_a(S, \omega)$ is weak^{*} dense in I_{η}^{\perp} and that $x \mapsto \delta_x f$ from *S* into $M_a(S, \omega)^*$ is weak^{*}-continuous, where $f \in M_a(S, \omega)^*$. Moreover, if η is central which means that $\delta_x * \eta = \eta * \delta_x$ for all $x \in S$, then $\delta_x(I_{\eta}^{\perp}) \subseteq I_{\eta}^{\perp}$ for all $x \in S$. It is easy to see that $\delta_x(I_{\eta}^{\perp}) \subseteq I_{\eta}^{\perp}$ for all $x \in S$ if and only if I_{η} is a two sided ideal in $M_a(S, \omega)$.

Proposition 4.6. Let $a \in A$ and suppose $||a|| \leq 1$. Then there exists a projection *P* from A^* onto I_a^{\perp} .

Proof. Fix a Banach limit *LIM* on *N*. For $f \in A^*$ and $x \in A$, put

$$\langle P(f), x \rangle = LIM_n \langle f, xa^n \rangle$$

Then $P : A^* \to A^*$ is a well-defined, contractive linear map.

Clearly P(f) = f for each $f \in I_a^{\perp}$. If $f \in A^*$ is arbitrary and $x \in A$, we have

and so by continuity $P(f) \in I_a^{\perp}$, as required. \Box

Theorem 4.7. Let *S* be a foundation semigroup, and let η be a probability measure in M(S). If $dim I_n^{\perp} = 1$, then *S* is amenable.

Note that a topological semigroup *S* is *amenable* if there is a positive norm one linear functional *M* on $M_a(S)^*$ such that $\langle M, f \delta_x \rangle = \langle M, f \rangle$ for all $f \in M_a(S)^*$ and $x \in S$ [11].

Proof. From the above construction of P_{η} , there is (P_n) in $co\{\rho_{\eta}^{*n}; n \in \mathbb{N}\}$ such that $||P_n|| \leq 1$ and $P_n(1) = 1$ for $n \in \mathbb{N}$ and such that $P_n \to P_\eta$ as $n \to \infty$. For every $f \in M_a(S)^*$ and $n \in \mathbb{N}$, $P_n(f\delta_x) = P_n(f)\delta_x$ where $x \in S$. It follows that $P_\eta(f\delta_x) = P_\eta(f)\delta_x$. Define $M : M_a(S)^* \to \mathbb{C}$ by $\langle M, f \rangle = \langle P_\eta(f), \eta \rangle$. Since M is positive linear and $\langle M, 1 \rangle = 1$, so M is a mean on $M_a(S)^*$. Next, suppose that $f \in M_a(S)^*$ and $x \in S$. Since $dim I_{\eta}^{\perp} = 1$, $P_{\eta}(f) = c_f 1$ for a constant c_f . We have

$$\begin{array}{lll} \langle M, f\delta_x \rangle &=& \langle P_\eta(f\delta_x), \eta \rangle = \langle P_\eta(f)\delta_x, \eta \rangle = \langle P_\eta(f), \delta_x * \eta \rangle \\ &=& \langle c_f 1, \delta_x * \eta \rangle = c_f = \langle c_f 1, \eta \rangle \\ &=& \langle P_\eta(f), \eta \rangle = \langle M, f \rangle. \end{array}$$

Therefore *S* is amenable. \Box

Let *S* be a foundation topological semigroup. If η is a probability measure, then I_{η} is contained in the ideal { $\mu \in M_a(S, \omega)$; $\mu(S) = 0$ }. If η is a probability measure, then evidently $I_{\eta} = {\mu \in M_a(S, \omega); \mu(S) = 0}$ if and only if $dim I_{\eta}^{\perp} = 1$, in other words, the bounded η -harmonic functions are constant. Indeed, if $I_{\eta} =$ { $\mu \in M_a(S, \omega); \mu(S) = 0$ }, then the map $T : \frac{M_a(S, \omega)}{I_{\eta}} \to \mathbb{C}$ given by $T(\mu + I_{\eta}) =$ $\mu(S)$ is a linear isomorphism. It follows that $dim I_{\eta}^{\perp} = 1$. Conversely, since

$$I_{\eta} \subseteq \{\mu \in M_a(S,\omega); \ \mu(S) = 0\} \subsetneqq M_a(S,\omega),$$

this shows that $I_{\eta} = \{ \mu \in M_a(S, \omega); \ \mu(S) = 0 \}.$

By Theorem 4.7, $I_{\eta} = \{\mu \in M_a(S); \mu(S) = 0\}$ implies that *S* is amenable.

Acknowledgment: I would like to thank the referee for his/her careful reading of my paper and many valuable suggestions.

References

[1] M. Amini and A. R. Medghalchi, *Fourier algebras on topological foundation* **semigroup*, Semigroup Forum, **68**, 322–334 (2004).

- [2] J. Baker, A. T. Lau and J. S. Pym, Module homomorphisms and topological centers associated with weakly sequentially complete Banach algebras, J. Funct. Anal., 158, 186–208 (1998).
- [3] M. E. B. Bekka, Complemented subspace of $L^{\infty}(G)$, ideals of $L^{1}(G)$ and amenability, Monatsh. Math., **109**, 195–203 (1990).
- [4] F. F. Bonsall and J. Duncan, *Complete normed algebras*, Springer-Verlag, Berlin, 1973.
- [5] C. H. Chu and A. T. Lau, *Harmonic functions on groups and Fourier algebras*, Lecture Notes in Mathematics **1782**, Springer-Verlag, Berlin, 2002.
- [6] C. H. Chu and A. T. Lau, *Jordan structures in harmonic functions and Fourier algebras on homogeneous spaces*, Math. Ann., **336**, 803–840 (2006).
- [7] H. G. Dales, *Banach algebra and automatic continuity*, London Math. Soc. Monogr. Ser. Clarendon Press, 2000.
- [8] H. A. M. Dzinotyiweyi, *The analogue of the group algebra for topological semigroup*, Pitman, Boston, London, 1984.
- [9] B. Forrest, Amenability and bounded approximate identities in ideals of A(G), Illinois J. Math., 34, 1–25 (1990).
- [10] A. Ghaffari, Projections onto invariant subspaces of some Banach algebras, Acta Math. Sinica, English Series 24, 1089–1096 (2008).
- [11] A. Ghaffari, Strongly and weakly almost periodic linear maps on semigroup algebras, Semigroup Forum, 76, 95–106 (2008).
- [12] A. Ghaffari and A. R. Medghalchi, *Characterization of operators on the dual of hypergroups which commute with translations and convolutions*, Acta Math. Sinica, English Series, 20, 201–208 (2004).
- [13] F. Ghahramani and A. R. Medghalchi, *Compact multipliers on hypergroup algebras*, Math. Proc. Camb. Philos. Soc., 98, 493–500 (1985).
- [14] F. Ghahramani and A. R. Medghalchi, Compact multiplier on hypergroup algebras II, Math. Proc. Camb. Philos. Soc., 100, 145–149 (1986).
- [15] J. E. Gilbert, On projections of $L^{\infty}(G)$ onto translation invariant subspaces, Proc. London Math. Soc., **19**, 69–88 (1969).
- [16] E. Hewitt and K. A. Ross, Abstract Harmonic analysis, Vol. I, Springer Verlage, Berlin, 1963; Vol. II, Springer Verlage, Berlin, 1970.
- [17] R. Larsen, *An introduction to the theory of multipliers*, Springer Verlag, Berlin, Heidelberg, New York 1971.
- [18] M. Lashkarizadeh Bami, Function algebras on weighted topological semigroups, Math. Japon., 47, 217–227 (1998).

- [19] A. T. Lau and V. Losert, Complementation of certain subspaces of $L^{\infty}(G)$ of a locally compact group, Pacific J. Math., **141**, 295–310 (1990).
- [20] A. T. Lau, Invariantly complemented subspaces of $L^{\infty}(G)$ and amenable locally group, Illinois J. Math., 26, 226–235 (1982).
- [21] A. T. Lau and A. Ulger, *Topological centers of certain dual algebras*, Trans. Amer. Math. Soc., **348**, 1191–1212 (1996).
- [22] A. L. T. Paterson, *Amenability*, Amer. Math. Soc. Math. Survey and Monographs 29, Providence, Rhode Island, 1988.
- [23] H. P. Rosenthal, *Projections onto translation invariant subspaces of* $L^{p}(G)$, Memoirs Amer. Math. Soc., **63** (1996).
- [24] W. Rudin, *Functional analysis*, McGraw Hill, New York, 1991.
- [25] Y. Takahashi, A characterization of certain weak*-closed subalgebras of $l^{\infty}(G)$, Hokkaido Math. J., **11**, 116–124 (1982).
- [26] Y. Takahashi, *Remarks on certain complemented subspaces on groups*, Hokkaido Math. J., 13, 260–270 (1984).
- [27] P. J. Wood, *Invariant complementation and projectivity in the fourier algebra*, Proc. Amer. Math. Soc., **131**, 1881–1890 (2002).
- [28] P. J. Wood, *Complemented ideals in the fourier algebra of a locally compact group*, Proc. Amer. Math. Soc., **128**, 445–451 (1999).

Department of Mathematics Semnan University, P.O.Box 35195-363, Semnan, Iran email: aghaffari@semnan.ac.ir