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Abstract

Let A be a Banach algebra with a bounded approximate identity. Our
first purpose in this paper is to generalize Bekka’s results for a certain class
of Banach algebras. Let G be an amenable locally compact topological group,
and let A be a left Banach G-module. Our second purpose, among the other
things, is to define certain weak∗-closed subspaces of B(A, A∗) to consider
when their weak∗-closed subspaces are the range of a bounded projection on
B(A, A∗). Finally, we explore the link between the projections properties and
amenability of semigroup algebras.

1 Introduction

Let G be a locally compact group with left invariant Haar measure and let Lp(G),
1 ≤ p ≤ ∞, be the complex Lebesgue spaces associated with it [16]. It was shown
by Lau [20] that if G is an amenable locally compact group, then any weak∗-
closed self-adjoint left translation invariant subalgebra of L∞(G) is the range of a
continuous projection commuting with left translations. Also, as shown in [19],
if G is an infinite locally compact group and X is any closed subspace of Wap(G)
containing C0(G), then X is uncomplemented in L∞(G). For a locally compact
abelian group G, Gilbert [15] characterized weak∗-closed translation invariant
complemented subspaces of L∞(G) by their spectra. In [27], Wood investigated
the ideals in the Fourier algebra of a locally compact group G which are comple-
mented by an invariant projection.
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In our earlier paper [10], we proved that if G is an amenable locally compact
group and A is a right Banach G-module, then every weak∗-closed translation
invariant complemented subspace of A∗ is the range of a bounded projection on
A∗ commuting with left translations. The bounded projections on L∞(G) onto a
weak∗-closed subspace X of L∞(G) which commute with translation have been
studied by Takahashi in [25] and by Bekka in [3] (see also [26]). Bekka has proved
that a weak∗-closed left translation invariant subspace X of L∞(G) is invariantly
complemented if and only if ⊥X has a bounded right approximate identity.

In this paper, our first purpose is to generalize some of Bekka’s results for a
certain class of Banach algebras. Let G be an amenable locally compact group.
Let A be a left Banach G-module, and let X be a weak∗-closed translation invari-
ant subspace of B(A, A∗), i.e., Sx(TLx−1) ∈ X for each T ∈ X and x ∈ G. In
this paper, we prove that if X is the range of a bounded projection on B(A, A∗),
then M(A, A∗) ∩ X is the range of a bounded projection on M(A, A∗) which
commutes with translations.

Let S be a foundation semigroup with identity, and let X be a weak∗-closed
translation invariant subspace of Ma(S, ω)∗. If M(Ma(S, ω), X) is the range of a
bounded projection on M(Ma(S, ω), Ma(S, ω)∗), then X is the range of a bounded
projection on Ma(S, ω)∗, see Theorem 4.4. Finally, we study characterizations of
amenability in terms of existence properties of left invariant means and in terms
of the projections on semigroup algebras.

2 Notation and preliminary results

We introduce our notations briefly; for other ideas used here we refer the reader
to [10], [23] and [26]. For any Banach space X, in this paper, the value of an
element x∗ ∈ X∗ at the element x ∈ X is denoted by 〈x∗, x〉. For any Banach
algebra A, the second dual A∗∗ of A can be given a Banach algebra structure by
means of the first Arens product (see [2], [7] and [21]). For a, b ∈ A, f in A∗ and
E, F ∈ A∗∗, the elements f a, E f of A∗ and EF of A∗∗ are defined as follows:

〈 f a, b〉 = 〈 f , ab〉, 〈F f , a〉 = 〈F, f a〉, 〈EF, f 〉 = 〈E, F f 〉.

For a ∈ A the maps La and Ra from A∗ into itself are defined by La( f ) = a f and
Ra( f ) = f a. We define the subspaces A∗A and AA∗ of A∗ as

A∗A = { f a; f ∈ A∗ and a ∈ A} and AA∗ = {a f ; a ∈ A and f ∈ A∗}.

If A has a bounded approximate identity, then by Cohen’s factorization theorem,
the spaces A∗A and AA∗ are closed in A∗.

Let A be a Banach algebra, and let I be a closed left ideal in A. Then

I⊥ = { f ∈ A∗; 〈 f , a〉 = 0 for all a ∈ A}

is a weak∗-closed subspace of A∗. For each a ∈ A, f ∈ I⊥ and i ∈ I, 〈 f a, i〉 =
〈 f , ai〉 = 0. This shows that Ra( f ) ∈ I⊥ for all f ∈ I⊥ and a ∈ A. Conversely,
suppose that X ⊆ A∗ is a weak∗-closed subspace of A∗ such that Ra( f ) ∈ X for
all f ∈ X and a ∈ A. ⊥X = {a ∈ A; 〈 f , a〉 = 0 for all f ∈ X} is a closed left
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ideal in A. It is easy to verify that the mapping I 7→ I⊥ is a bijection from the
set of closed left ideals in A onto the set of weak∗-closed subspaces X of A∗ such
that Ra(X) ⊆ X for all a ∈ A. Indeed, let I and J be closed left ideals in A with
I⊥ = J⊥. By Theorem 4.7 in [24],

I = I = ⊥(I⊥) = ⊥(J⊥) = J = J.

This shows that I 7→ I⊥ is injective. Next let X be a weak∗-closed subspace of A∗

such that Ra(X) ⊆ X for all a ∈ A (X is said to be right translation invariant). By
Theorem 4.7 in [24], ⊥(X⊥) = X = X, where the closure is taken in the weak∗-
topology. We have shown that I 7→ I⊥ is surjective.

3 Projections on Banach algebras

In [28], Wood proved that if A is an operator amenable Banach algebra, and I a
closed ideal, then I⊥ is completely complemented if and only if I has a bounded
approximate identity. Bekka [3] proved that if X is a weak∗-closed translation
invariant subspace of L∞(G), then X is complemented in L∞(G) if and only if ⊥X
has a right bounded approximate identity. Our first result is a generalization of
this fact to a Banach algebra with a bounded approximate identity.

Lemma 3.1. Let A be a Banach algebra with a bounded approximate identity,
and let X be a weak∗-closed right translation invariant subspace in A∗. Then the
following are equivalent:

(1) there exists a bounded projection P of A∗ onto X such that PRa = RaP for
all a ∈ A;

(2) there exists a bounded projection P of A∗A onto X ∩ A∗A such that PRa =
RaP for all a ∈ A;

(3) ⊥X has a bounded right approximate identity.

Proof. (1) ⇒ (2) Let P : A∗ → X be a bounded projection such that PRa = RaP
for all a ∈ A. We show that P restricted to A∗A is a projection from A∗A onto
X ∩ A∗A. To see that P is a projection of A∗A onto X ∩ A∗A, it suffices to show
that P(A∗A) ⊆ X ∩ A∗A and that f ∈ X ∩ A∗A implies P( f ) = f . Let f be an
element of A∗A. Then f is of the form f = ga for some g in A∗ and a in A. Hence
P( f ) = P(ga) = P(g)a. Thus we conclude that P(A∗A) ⊆ X ∩ A∗A. Next, let
f ∈ X ∩ A∗A. By assumption, we have P( f ) = f . It is clear that PRa = RaP for all
a ∈ A. Hence we conclude that P is a bounded projection of A∗A onto X ∩ A∗A
such that PRa = RaP for all a ∈ A.

(2) ⇒ (3) Let P be a bounded projection from A∗A onto X ∩ A∗A such that
PRa = RaP for all a ∈ A. Let (eα) be a bounded approximate identity for A. Then
we may suppose that (eα) converges in the weak∗-topology on A∗∗, say to F [7].
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Define P′ : A∗ → A∗ by setting 〈P′( f ), a〉 = 〈F, P( f a)〉 (a ∈ A). Then P′ is a
bounded linear map. For f ∈ X and a ∈ A, we have

〈P′( f ), a〉 = 〈F, P( f a)〉 = 〈F, f a〉 = lim
α
〈eα, f a〉

= lim
α
〈 f , aeα〉 = 〈 f , a〉,

and so P′ is the identity map on X. If f ∈ A∗, then

〈P′( f ), a〉 = 〈F, P( f a)〉 = lim
α
〈F, P( f eαa)〉 = lim

α
〈F, P( f eα)a〉

= lim
α
〈aF, P( f eα)〉 = lim

α
〈a, P( f eα)〉 = 0,

for each a ∈ ⊥X. Since X is a weak∗-closed subspace of A∗, (⊥X)⊥ = X and so
P′( f ) ∈ X (see Theorem 4.7 in [24]). Consequently P′ is an extension of P to A∗

as a bounded projection.
Let f ∈ (⊥X)∗, and let f ′ be any Hahn-Banach extension of f to a continuous

functional on A∗, see Theorem A.3.19 in [7]. We consider E : (⊥X)∗ → C defined
by 〈E, f 〉 = 〈F, f ′ − P′( f ′)〉. Let f ′′, f ′ ∈ A∗ be two extension of f ∈ (⊥X)∗. For
any a ∈ ⊥X,

〈 f ′′ − f ′, a〉 = 〈 f ′′, a〉 − 〈 f ′, a〉 = 〈 f , a〉 − 〈 f , a〉 = 0.

Hence f ′′ − f ′ ∈ (⊥X)⊥ = X, and so P′( f ′′ − f ′) = f ′′ − f ′. This shows that
〈E, f ′ − P′( f ′)〉 = 〈E, f ′′ − P′( f ′′)〉, so that E : (⊥X)∗ → C is well-defined. It is
clear that E ∈ (⊥X)∗∗. For every a ∈ ⊥X and f ∈ (⊥X)∗, we have

〈F, ( f a)′ − P′(( f a)′)〉 = 〈F, f ′a − P′( f ′a)〉 = lim
α
〈F, f ′a − P′( f ′eαa)〉

= lim
α
〈F, f ′a − P′( f ′eα)a〉 = 〈F, f ′a〉.

Hence we conclude that

〈E f , a〉 = 〈E, f a〉 = 〈F, ( f a)′ − P′(( f a)′)〉 = 〈F, f ′a〉

= 〈 f ′, a〉 = 〈 f , a〉.

One verifies easily that E is a right identity for (⊥X)∗∗. Hence ⊥X has a bounded
right approximate identity, see [[4], p.146].

(3) ⇒ (1) By Proposition 6.4 in [9], (3) implies (1). �

Throughout S denotes a locally compact Hausdorff topological semigroup. A
positive and continuous function ω on S satisfying ω(xy) ≤ ω(x)ω(y) (x, y ∈ S),
ω(e) = 1 will be called a weight function. Let M(S, ω) be the Banach space of all
complex regular Borel measures µ on S such that ‖µ‖ω =

∫

ω(t)d|µ|(t) < ∞ [8].

We can identify M(S, ω) with the dual of the Banach space C0(S, ω−1); the latter

being the Banach space of all continuous function φ on S such that
φ
ω ∈ C0(S),

with the norm in C0(S, ω−1) defined by ‖φ‖ω = sup
{
∣

∣

φ(x)
ω(x)

∣

∣; x ∈ S
}

. Under

convolution product

〈µ ∗ ν, φ〉 =
∫ ∫

φ(xy)dµ(x)dν(y) (µ, ν ∈ M(S, ω), φ ∈ C0(S, ω−1)),
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M(S, ω) becomes a Banach algebra.
Recall that Ma(S) denotes the space of all measures µ ∈ M(S) for which

the mappings x 7→ δx ∗ |µ| and x 7→ |µ| ∗ δx from S into M(S) are weakly
continuous. We denote by Ma(S, ω) the space of all µ ∈ M(S, ω) such that
ωµ ∈ Ma(S). A foundation semigroup is a locally compact semigroup such that
⋃

{supp(µ); µ ∈ Ma(S)} is dense in S. A trivial example is a topological group
and in this case Ma(S) = L1(S) (for more information on foundation semigroups,
see [1], [8] and [10]). It is well known that Ma(S, ω) is a closed two sided L-ideal
of M(S, ω) [8]. Weighted hypergroup algebras have been studied by Ghahramani
and Medghalchi in [13] and [14].

Lemma 3.2. Let S be a foundation topological semigroup with identity, and let
X be a weak∗-closed subspace of Ma(S, ω)∗ such that Xδx ⊆ X for every x ∈ S.
Then the following conditions hold:

(1) X is topologically right invariant, i.e., f µ ∈ X for all f ∈ Ma(S, ω)∗ and
µ ∈ Ma(S, ω);

(2) let P : Ma(S, ω)∗Ma(S, ω) → X be a bounded linear map. Then P( f µ) =
P( f )µ for all f ∈ Ma(S, ω)∗Ma(S, ω) and µ ∈ Ma(S, ω) if and only if
P( f δx) = P( f )δx for all x ∈ S and f ∈ Ma(S, ω)∗Ma(S, ω).

Proof. (1) Assume that there exist f ∈ X and µ ∈ Ma(S, ω) such that f µ /∈ X.
Without loss of generality, we may assume that µ ≥ 0 and ‖µ‖ω = 1. Since X is a
weak∗-closed subspace in Ma(S, ω)∗, by Hahn-Banach Theorem [24], there exist
ν ∈ Ma(S, ω) and γ1, γ2 ∈ R such that

Re〈ν, f δx〉 < γ1 < γ2 < Re〈ν, f µ〉,

where x ∈ S. By Lemma 3.4 in [12],

Re〈 f µ, ν〉 = Re〈 f , µ ∗ ν〉 = Re
∫

〈 f , δx ∗ ν〉dµ(x)

≤ γ1 < γ2 < Re〈 f µ, ν〉.

We would come to a contradiction. Therefore f µ ∈ X.
(2) Let P : Ma(S, ω)∗Ma(S, ω) → X be a bounded linear map with P( f µ) =

P( f )µ for all f ∈ Ma(S, ω)∗Ma(S, ω) and µ ∈ Ma(S, ω). Let f ∈ Ma(S, ω)∗Ma(S, ω),
x ∈ S. By Lemma 3.4 in [18], Ma(S, ω) has a bounded approximate identity, say
(eα). It is easy to see that f eα ∗ δx → f δx in the norm topology. Hence

P( f δx) = lim
α

P( f eα ∗ δx) = lim
α

P( f )eα ∗ δx.

On the other hand, P( f )eα ∗ δx converges to P( f )δx in the weak∗-topology. Thus
P( f δx) = P( f )δx .

The converse is obvious. �

Let S be a foundation semigroup with identity. Then a function f ∈ C(S, ω)

is called ω-left uniformly continuous if the mapping x 7→ Lx f
ω(x)

of S into C(S, ω)
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is norm continuous, where Lx( f )(y) = f (xy) for every x, y ∈ S. As known
LUC(S, ω−1) = Ma(S, ω)∗Ma(S, ω) (see Proposition 3.5 in [18]). Let S be a locally
compact Hausdorff topological group. Bekka in [3] has proved that a weak∗-
closed left translation invariant subspace X of L∞(S) is invariantly complemented
if and only if ⊥X has a bounded right approximate identity. In the following
Theorem, our main purpose is to generalize Bekka’s results in [3] for a certain
class of weighted semigroup algebras.

Theorem 3.3. Let S be a foundation topological semigroup with identity, and let
X be a weak∗-closed left translation invariant subspace of Ma(S, ω)∗. Then the
following conditions are equivalent:

(1) there exists a bounded projection P of Ma(S, ω)∗ onto X such that PRµ =
RµP for all µ ∈ Ma(S, ω);

(2) there exists a bounded projection P of LUC(S, ω−1) onto X ∩ LUC(S, ω−1)
such that PRµ = RµP for all µ ∈ Ma(S, ω);

(3) there exists a bounded projection P of LUC(S, ω−1) onto X ∩ LUC(S, ω−1)
such that PRx = RxP for all x ∈ S;

(4) ⊥X has a bounded right approximate identity.

Proof. This is immediate from Lemma 3.1 and Lemma 3.2. �

4 Projections and amenability

We recall that a locally compact group G is amenable if there is a positive norm
one linear functional on L∞(G) which is invariant under left translation. Every
abelian group is amenable. The discrete free group F2 on two generators a and b
is not amenable [22].

Definition 4.1. An action of a semigroup S on a Banach algebra A is a mapping
σ : S × A → A such that:

(1) σ(x, a + b) = σ(x, a) + σ(x, b), ασ(x, a) = σ(x, αa), σ(xy, a) = σ(x, ya) and
σ(e, a) = a, where α ∈ C, x, y ∈ S and a, b ∈ A;

(2) for all a ∈ A, the map x 7→ σ(x, a) is continuous from S into A;

(3) there exists k ∈ R such that ‖σ(x, a)‖ ≤ k‖a‖ for every x ∈ S and a ∈ A.

We shall write xa for σ(x, a). A left Banach S-module is a pair (S, A), where A is
a Banach algebra and σ is an action of S on A.

Let A be a Banach algebra. As is well known, we can define an isometric linear
isomorphism from (A ⊗p A)∗ onto B(A, A∗) by the correspondence between f
and Φ f defined by Φ f (a)(b) = 〈 f , a ⊗ b〉 for each a, b ∈ A [4].
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Now, let A be a left Banach S-module, and let x ∈ S and T ∈ B(A, A∗) (see
[10]). We define Sx(T) ∈ B(A, A∗) by 〈Sx(T)(a), b〉 = 〈T(a), xb〉. Then Sx is
a bounded linear map of B(A, A∗) into B(A, A∗). If x ∈ S, we consider Lx :
a 7→ xa, A → A. Clearly Lx ∈ B(A, A). We consider the space M(A, A∗) of all
T ∈ B(A, A∗) for which Sx(T) = TLx for all x ∈ S [17].

Theorem 4.2. Let G be a locally compact abelian group, and let A be a left
Banach G-module. Let X be a weak∗-closed subspace of B(A, A∗) satisfying
Sx(TLx−1) ∈ X for each T ∈ X and x ∈ G. If there exists a bounded projection
from B(A, A∗) onto X, then there exists a bounded projection P from M(A, A∗)
onto M(A, A∗)∩X such that CxP = PCx for all x ∈ G, where Cx(T) = Sx(TLx−1).

Proof. We can prove this Theorem by using an argument similar to one of the
proof of Lemma 4 in [26]. Let M be a right invariant mean on L∞(G). Let Q be a
bounded projection of B(A, A∗) onto X. Take φ ∈ A ⊗p B and T ∈ B(A, A∗). The
mapping

f
φ
T : x 7→ 〈Φ−1(Cx−1 QCx(T)), φ〉

G → C

belongs to L∞(G). If T ∈ B(A, A∗), we consider the mapping fT : φ 7→ 〈M, f
φ
T 〉.

Now we consider P : M(A, A∗) → M(A, A∗) ∩ X defined by 〈P(T)(a), b〉 =

〈M, f a⊗b
T 〉. We claim that P is a bounded projection of M(A, A∗) onto M(A, A∗)∩

X and that CxP = PCx for all x ∈ G. Let φ ∈ ⊥(Φ−1(X)) and T ∈ M(A, A∗).
Then 〈Φ−1(Cx−1 QCx(T)), φ〉 = 0 for all x ∈ G, since Cx−1 QCx(T) ∈ X. Hence

〈Φ−1(P(T)), φ〉 = 〈 fT , φ〉 = 〈M, f
φ
T 〉 = 0,

and so P(T) ∈ X. This shows that P(M(A, A∗)) ⊆ X. Next, let T ∈ X ∩
M(A, A∗). Then QCx(T) = Cx(T) for each x ∈ G, and so Φ

−1(Cx−1 QCx(T)) =
Φ

−1(T). We have

〈Φ−1(P(T)), φ〉 = 〈 fT , φ〉 = 〈M, f
φ
T 〉 = 〈Φ−1(T), φ〉

for each φ ∈ A ⊗p A. Hence P(T) = T. For every a ⊗ b ∈ A ⊗p B and x, y ∈ G,

f a⊗b
Cy(T)

(x) = 〈Φ−1(Cx−1 QCxCy(T)), a ⊗ b〉

= 〈Φ−1(Sx−1(Q(Sx(Sy(TLy−1)Lx−1))Lx)), a ⊗ b〉

= 〈Φ−1(Sx−1(Q(Sxy(TL(xy)−1))Lx)), a ⊗ b〉

= 〈Φ−1(Sy(Sy−1(Sx−1(QCxy(T)Lx)Ly)Ly−1)), a ⊗ b〉

= 〈Φ−1(Sy(S(xy)−1(QCxy(T)Lxy)Ly−1)), a ⊗ b〉

= 〈Φ−1(Sy(C(xy)−1 QCxy(T)Ly−1)), a ⊗ b〉 = f
y−1a⊗yb
T (xy).

Thus

〈PCy(T)(a), b〉 = 〈P(Cy(T))(a), b〉 = 〈M, f a⊗b
Cy(T)

〉 = 〈M, f
y−1a⊗yb
T 〉

= 〈P(T)(y−1a), yb〉 = 〈CyP(T)(a), b〉.



128 A. Ghaffari

Hence we have CyP = PCy for all y ∈ G. If T ∈ M(A, A∗), then Sx(T) = TLx for
all x ∈ G. For every a ∈ A and x ∈ G,

Sx(P(T))(a) = Sx(P(T))(Lx−1 Lxa) = Sx(P(T)Lx−1)(Lxa)

= CxP(T)Lx(a) = PCx(T)Lx(a)

= P(Sx(TLx−1))Lx(a) = P(T)Lx(a).

This proves that Sx(P(T)) = P(T)Lx , and so P(M(A, A∗)) ⊆ M(A, A∗). Conse-
quently we conclude that P is a bounded projection from M(A, A∗) onto M(A, A∗)∩
X. This completes the proof. �

Theorem 4.3. Let G be an amenable locally compact group, and let A be a left Ba-
nach G-module. Let X be a weak∗-closed subspace of A∗ such that Sx(TLx−1)(a) ∈
X for all T ∈ X, a ∈ A and x ∈ G. Let P be a bounded projection of A∗ onto X.
Then there exists a bounded projection from B(A, A∗) onto M(A, X).

Proof. For a, b ∈ A and T ∈ B(A, A∗), we define f a,b
T : G → C by f a,b

T (x) =

〈P(T)(xa), x−1b〉. We see immediately that f a,b
T ∈ L∞(G). Let M be a right in-

variant mean on L∞(G) [22]. For T ∈ B(A, A∗), we define 〈FT(a), b〉 = 〈M, f a,b
T 〉.

Clearly FT ∈ B(A, A∗). Let Q denote the function on B(A, A∗) defined by Q(T) =
FT . We claim that Q is a bounded projection of B(A, A∗) onto M(A, X). For
T ∈ B(A, A∗), y ∈ G and a, b ∈ A, we have

f
a,yb
T (x) = 〈P(T)(xa), x−1yb〉 = 〈P(T)(xy−1ya), x−1yb〉 = f

ya,b
T (xy−1).

Since M is a right invariant mean, we have

〈Q(T)(a), yb〉 = 〈M, f
a,yb
T 〉 = 〈M, f

ya,b
T 〉 = 〈Q(T)(ya), b〉.

Hence Sy(Q(T)) = Q(T)Ly, and so Q(B(A, A∗)) ⊆ M(A, A∗). Let T ∈ B(A, A∗)

and a ∈ A. Then 〈P(T)(xa), x−1b〉 = 0 for each x ∈ G and b ∈ ⊥X, since

Sx(P(T)Lx−1)(a) ∈ X. Thus 〈Q(T)(a), b〉 = 〈M, f a,b
T 〉 = 0, and so Q(T)(a) ∈

(⊥X)⊥ = X. This shows that Q(B(A, A∗)) ⊆ M(A, X). Next, let T ∈ M(A, X).
Then P(T(xa)) = T(xa) for each x ∈ G and a ∈ A. For every x ∈ G,

f a,b
T (x) = 〈P(T(xa)), x−1b〉 = 〈T(xa), x−1b〉 = 〈Sx(T)(a), x−1b〉

= 〈T(a), b〉 = f a,b
T (e).

Hence

〈Q(T)(a), b〉 = 〈M, f a,b
T 〉 = 〈M, f a,b

T (e)1〉 = f a,b
T (e) = 〈T(a), b〉.

It follows that Q(T) = T. This completes our proof. �

Let S be a foundation topological semigroup. If H is a subsemigroup of S, we
put

XH = { f ∈ Ma(S, ω)∗; f δx = δx f = f for all x ∈ H}.
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We can easily see that every XH is a weak∗ closed linear subspace of Ma(S, ω)∗

which δxXH ⊆ XH and XHδx ⊆ XH for all x ∈ S. In the following Theorem,
we shall study relation between the weak∗-closed subspace X of Ma(S, ω)∗ and
M(Ma(S, ω), X). Note that (S, Ma(S, ω)) is a left Banach S-module under the
natural action (x, µ) 7→ δx ∗ µ. If S is a commutative semigroup, then T ∈
M(Ma(S, ω), Ma(S, ω)∗) if and only if T commutes with translations, see [12]
and [17].

Theorem 4.4. Let S be a foundation semigroup with identity, and let X be a
weak∗-closed subspace of Ma(S, ω)∗ such that Xδx ⊆ X for all x ∈ S:

(1) let T ∈ B(Ma(S, ω), Ma(S, ω)∗) satisfying T(µ ∗ δx) = T(µ)δx for each x ∈
S. Then there is a unique f ∈ Ma(S, ω)∗ such that T(µ) = f µ. Moreover
‖T‖ = ‖ f‖;

(2) M(Ma(S, ω), X) is a closed subspace of M(Ma(S, ω), Ma(S, ω)∗) (in the
weak∗ operator topology).

(3) further suppose that S is commutative. Let Q be a bounded projection
from M(Ma(S, ω), Ma(S, ω)∗) onto M(Ma(S, ω), X). Then there exists a
bounded projection P of Ma(S, ω)∗ onto X.

Proof. (1) For every µ, ν, η ∈ Ma(S, ω), we have

〈T(µ ∗ ν), η〉 = 〈T∗(η), µ ∗ ν〉 =
∫

〈T∗(η), µ ∗ δx〉dν(x)

=
∫

〈T(µ ∗ δx), η〉dν(x) =
∫

〈T(µ)δx , η〉dν(x)

=
∫

〈T(µ), δx ∗ η〉dν(x) = 〈T(µ)ν, η〉.

Hence T(µ ∗ ν) = T(µ)ν. Now, let (eα) be a bounded approximate identity of
norm 1 in Ma(S) (see Lemma 3.4 in [18]). Without loss of generality, we may
assume that T(eα) → f in the weak∗-topology. It is clear that

〈T(µ), ν〉 = lim
α
〈T(eα ∗ µ), ν〉 = lim

α
〈T(eα), µ ∗ ν〉 = 〈 f , µ ∗ ν〉 = 〈 f µ, ν〉,

where µ, ν ∈ Ma(S, ω). This shows that T(µ) = f µ. It is easy to see that
‖T‖ = ‖ f‖. It is obvious that the correspondence between T and f is an iso-
metric isomorphism.

(2) Clearly M(Ma(S, ω), X) is a subspace of M(Ma(S, ω), Ma(S, ω)∗). If (Tα)
is a net in M(Ma(S, ω), X) that converges weak∗ to some T ∈ M(Ma(S, ω), Ma(S, ω)∗),
then Tα(µ) converges to T(µ) in the weak∗-topology (for any µ ∈ Ma(S, ω)). Pick
T(µ) /∈ X. Since X is weak∗-closed, Theorem 3.5 in [24], shows that there is a
ν ∈ Ma(S, ω) such that 〈 f , ν〉 = 0 for every f ∈ X, but 〈T(µ), ν〉 6= 0. Hence
〈Tα(µ), ν〉 = 0 for every α, but 〈T(µ), ν〉 6= 0 which is a contradiction. This proves
that M(Ma(S, ω), X) is weak∗-closed.

(3) For f ∈ Ma(S, ω)∗ , define λ f : Ma(S, ω) → Ma(S, ω)∗ by λ f (µ) = f µ. As
above, the map Λ : Ma(S, ω)∗ → M(Ma(S, ω), Ma(S, ω)∗) given by Λ( f ) = λ f ,
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is an isometric isomorphism. Now we consider P : Ma(S, ω)∗ → Ma(S, ω)∗

defined by P( f ) = Λ
−1(Q(Λ( f ))). To see that P is a projection of Ma(S, ω)∗ onto

X, it suffices to show that P(Ma(S, ω)) ⊆ X and that f ∈ X implies P( f ) = f .
Fix f ∈ Ma(S, ω)∗. As above, there exists f ′ ∈ Ma(S, ω)∗ with Q(λ f ) = λ f ′ .

By assumption, Q(λ f )(µ) ∈ X for every µ ∈ Ma(S, ω). Pick ν ∈ ⊥X, so that
〈 f ′µ, ν〉 = 〈Q(λ f )(µ), ν〉 = 0 for all µ ∈ Ma(S, ω). By Lemma 3.4 in [18], there is
an approximate identity (eα) in Ma(S, ω). We have

〈 f ′, ν〉 = lim
α
〈 f ′, eα ∗ ν〉 = lim

α
〈 f ′eα, ν〉 = 0,

and so f ′ ∈ X. Hence P(Ma(S, ω)∗) ⊆ X. Next, let f ∈ X. By Lemma 3.2,
f µ ∈ X for every µ ∈ Ma(S, ω). This shows that λ f ∈ M(Ma(S, ω), X). There-

fore P( f ) = Λ
−1(Q(Λ( f ))) = f . This completes our proof. �

Let A be a Banach algebra. Given a ∈ A, let Ia be the norm-closure of

{x − xa; x ∈ A}

in A, see [5] and [6]. Let S be a locally compact foundation semigroup with iden-
tity, and let η ∈ Ma(S, ω). It is easy to see that Iη is a left closed ideal in Ma(S, ω)

and its annihilator Iη
⊥ =

(Ma(S,ω)
Iη

)∗
is the space { f ∈ Ma(S, ω)∗ ; η f = f} which

we call the η-harmonic functional on Ma(S, ω).

Lemma 4.5. Let S be a foundation topological semigroup with identity, and let
η ∈ Ma(S, ω). Then I⊥η ∩ Ma(S, ω)∗Ma(S, ω) is weak∗-dense in I⊥η .

Proof. Let (eα) be an approximate identity of norm 1 in Ma(S, ω), and let f ∈ I⊥η .

Then f eα ∈ I⊥η ∩ Ma(S, ω)∗Ma(S, ω) and for µ ∈ Ma(S, ω), we have 〈 f , µ〉 =

limα〈 f , eα ∗ µ〉. This shows that ( f eα) converges to f in the weak∗-topology.�

For x ∈ S, we observe that δx(I⊥η ) ⊆ I⊥η if and only if

δx(I⊥η ∩ Ma(S, ω)∗Ma(S, ω)) ⊆ I⊥η ∩ Ma(S, ω)∗Ma(S, ω).

This follows from the fact that I⊥η ∩ Ma(S, ω)∗Ma(S, ω) is weak∗ dense in I⊥η and

that x 7→ δx f from S into Ma(S, ω)∗ is weak∗-continuous, where f ∈ Ma(S, ω)∗ .
Moreover, if η is central which means that δx ∗ η = η ∗ δx for all x ∈ S, then
δx(I⊥η ) ⊆ I⊥η for all x ∈ S. It is easy to see that δx(I⊥η ) ⊆ I⊥η for all x ∈ S if and

only if Iη is a two sided ideal in Ma(S, ω).

Proposition 4.6. Let a ∈ A and suppose ‖a‖ ≤ 1. Then there exists a projection P
from A∗ onto I⊥a .

Proof. Fix a Banach limit LIM on N. For f ∈ A∗ and x ∈ A, put

〈P( f ), x〉 = LIMn〈 f , xan〉
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Then P : A∗ → A∗ is a well-defined, contractive linear map.
Clearly P( f ) = f for each f ∈ I⊥a . If f ∈ A∗ is arbitrary and x ∈ A, we have

〈P( f ), x − xa〉 = LIMn〈 f , xan〉 − 〈 f , xan+1〉

= LIMn〈 f , xan〉 − LIMm〈 f , xam〉 = 0.

and so by continuity P( f ) ∈ I⊥a , as required. �

Theorem 4.7. Let S be a foundation semigroup, and let η be a probability measure
in M(S). If dimI⊥η = 1, then S is amenable.

Note that a topological semigroup S is amenable if there is a positive norm one
linear functional M on Ma(S)∗ such that 〈M, f δx〉 = 〈M, f 〉 for all f ∈ Ma(S)∗

and x ∈ S [11].

Proof. From the above construction of Pη , there is (Pn) in co{ρ∗η
n; n ∈ N} such

that ‖Pn‖ ≤ 1 and Pn(1) = 1 for n ∈ N and such that Pn → Pη as n → ∞. For
every f ∈ Ma(S)∗ and n ∈ N, Pn( f δx) = Pn( f )δx where x ∈ S. It follows that
Pη( f δx) = Pη( f )δx . Define M : Ma(S)∗ → C by 〈M, f 〉 = 〈Pη( f ), η〉. Since M is
positive linear and 〈M, 1〉 = 1, so M is a mean on Ma(S)∗. Next, suppose that
f ∈ Ma(S)∗ and x ∈ S. Since dimI⊥η = 1, Pη( f ) = c f 1 for a constant c f . We have

〈M, f δx〉 = 〈Pη( f δx), η〉 = 〈Pη( f )δx , η〉 = 〈Pη( f ), δx ∗ η〉

= 〈c f 1, δx ∗ η〉 = c f = 〈c f 1, η〉

= 〈Pη( f ), η〉 = 〈M, f 〉.

Therefore S is amenable. �

Let S be a foundation topological semigroup. If η is a probability measure,
then Iη is contained in the ideal {µ ∈ Ma(S, ω); µ(S) = 0}. If η is a probability

measure, then evidently Iη = {µ ∈ Ma(S, ω); µ(S) = 0} if and only if dimI⊥η = 1,
in other words, the bounded η-harmonic functions are constant. Indeed, if Iη =

{µ ∈ Ma(S, ω); µ(S) = 0}, then the map T :
Ma(S,ω)

Iη
→ C given by T(µ + Iη) =

µ(S) is a linear isomorphism. It follows that dimI⊥η = 1. Conversely, since

Iη ⊆ {µ ∈ Ma(S, ω); µ(S) = 0} $ Ma(S, ω),

this shows that Iη = {µ ∈ Ma(S, ω); µ(S) = 0}.
By Theorem 4.7, Iη = {µ ∈ Ma(S); µ(S) = 0} implies that S is amenable.
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