Projections and invariant means related to some Banach algebras

Ali Ghaffari

Abstract

Let A be a Banach algebra with a bounded approximate identity. Our first purpose in this paper is to generalize Bekka's results for a certain class of Banach algebras. Let G be an amenable locally compact topological group, and let A be a left Banach G-module. Our second purpose, among the other things, is to define certain weak*-closed subspaces of $\mathcal{B}\left(A, A^{*}\right)$ to consider when their weak ${ }^{*}$-closed subspaces are the range of a bounded projection on $\mathcal{B}\left(A, A^{*}\right)$. Finally, we explore the link between the projections properties and amenability of semigroup algebras.

1 Introduction

Let G be a locally compact group with left invariant Haar measure and let $L^{p}(G)$, $1 \leq p \leq \infty$, be the complex Lebesgue spaces associated with it [16]. It was shown by Lau [20] that if G is an amenable locally compact group, then any weak*closed self-adjoint left translation invariant subalgebra of $L^{\infty}(G)$ is the range of a continuous projection commuting with left translations. Also, as shown in [19], if G is an infinite locally compact group and X is any closed subspace of $\operatorname{Wap}(G)$ containing $C_{0}(G)$, then X is uncomplemented in $L^{\infty}(G)$. For a locally compact abelian group G, Gilbert [15] characterized weak*-closed translation invariant complemented subspaces of $L^{\infty}(G)$ by their spectra. In [27], Wood investigated the ideals in the Fourier algebra of a locally compact group G which are complemented by an invariant projection.

[^0]In our earlier paper [10], we proved that if G is an amenable locally compact group and A is a right Banach G-module, then every weak*-closed translation invariant complemented subspace of A^{*} is the range of a bounded projection on A^{*} commuting with left translations. The bounded projections on $L^{\infty}(G)$ onto a weak*-closed subspace X of $L^{\infty}(G)$ which commute with translation have been studied by Takahashi in [25] and by Bekka in [3] (see also [26]). Bekka has proved that a weak*-closed left translation invariant subspace X of $L^{\infty}(G)$ is invariantly complemented if and only if ${ }^{\perp} X$ has a bounded right approximate identity.

In this paper, our first purpose is to generalize some of Bekka's results for a certain class of Banach algebras. Let G be an amenable locally compact group. Let A be a left Banach G-module, and let X be a weak*-closed translation invariant subspace of $\mathcal{B}\left(A, A^{*}\right)$, i.e., $S_{x}\left(T L_{x^{-1}}\right) \in X$ for each $T \in X$ and $x \in G$. In this paper, we prove that if X is the range of a bounded projection on $\mathcal{B}\left(A, A^{*}\right)$, then $\mathcal{M}\left(A, A^{*}\right) \cap X$ is the range of a bounded projection on $\mathcal{M}\left(A, A^{*}\right)$ which commutes with translations.

Let S be a foundation semigroup with identity, and let X be a weak*-closed translation invariant subspace of $M_{a}(S, \omega)^{*}$. If $\mathcal{M}\left(M_{a}(S, \omega), X\right)$ is the range of a bounded projection on $\mathcal{M}\left(M_{a}(S, \omega), M_{a}(S, \omega)^{*}\right)$, then X is the range of a bounded projection on $M_{a}(S, \omega)^{*}$, see Theorem 4.4. Finally, we study characterizations of amenability in terms of existence properties of left invariant means and in terms of the projections on semigroup algebras.

2 Notation and preliminary results

We introduce our notations briefly; for other ideas used here we refer the reader to [10], [23] and [26]. For any Banach space X, in this paper, the value of an element $x^{*} \in X^{*}$ at the element $x \in X$ is denoted by $\left\langle x^{*}, x\right\rangle$. For any Banach algebra A, the second dual $A^{* *}$ of A can be given a Banach algebra structure by means of the first Arens product (see [2], [7] and [21]). For $a, b \in A, f$ in A^{*} and $E, F \in A^{* *}$, the elements $f a, E f$ of A^{*} and $E F$ of $A^{* *}$ are defined as follows:

$$
\langle f a, b\rangle=\langle f, a b\rangle, \quad\langle F f, a\rangle=\langle F, f a\rangle, \quad\langle E F, f\rangle=\langle E, F f\rangle .
$$

For $a \in A$ the maps L_{a} and R_{a} from A^{*} into itself are defined by $L_{a}(f)=a f$ and $R_{a}(f)=f a$. We define the subspaces $A^{*} A$ and $A A^{*}$ of A^{*} as

$$
A^{*} A=\left\{f a ; f \in A^{*} \text { and } a \in A\right\} \text { and } A A^{*}=\left\{a f ; a \in A \text { and } f \in A^{*}\right\} .
$$

If A has a bounded approximate identity, then by Cohen's factorization theorem, the spaces $A^{*} A$ and $A A^{*}$ are closed in A^{*}.

Let A be a Banach algebra, and let I be a closed left ideal in A. Then

$$
I^{\perp}=\left\{f \in A^{*} ;\langle f, a\rangle=0 \text { for all } a \in A\right\}
$$

is a weak*-closed subspace of A^{*}. For each $a \in A, f \in I^{\perp}$ and $i \in I,\langle f a, i\rangle=$ $\langle f, a i\rangle=0$. This shows that $R_{a}(f) \in I^{\perp}$ for all $f \in I^{\perp}$ and $a \in A$. Conversely, suppose that $X \subseteq A^{*}$ is a weak*-closed subspace of A^{*} such that $R_{a}(f) \in X$ for all $f \in X$ and $a \in A .{ }^{\perp} X=\{a \in A ;\langle f, a\rangle=0$ for all $f \in X\}$ is a closed left
ideal in A. It is easy to verify that the mapping $I \mapsto I^{\perp}$ is a bijection from the set of closed left ideals in A onto the set of weak*-closed subspaces X of A^{*} such that $R_{a}(X) \subseteq X$ for all $a \in A$. Indeed, let I and J be closed left ideals in A with $I^{\perp}=J^{\perp}$. By Theorem 4.7 in [24],

$$
\left.I=\bar{I}={ }^{\perp}\left(I^{\perp}\right)\right)^{\perp}\left(J^{\perp}\right)=\bar{J}=J .
$$

This shows that $I \mapsto I^{\perp}$ is injective. Next let X be a weak*-closed subspace of A^{*} such that $R_{a}(X) \subseteq X$ for all $a \in A$ (X is said to be right translation invariant). By Theorem 4.7 in [24], ${ }^{\perp}\left(X^{\perp}\right)=\bar{X}=X$, where the closure is taken in the weak*topology. We have shown that $I \mapsto I^{\perp}$ is surjective.

3 Projections on Banach algebras

In [28], Wood proved that if A is an operator amenable Banach algebra, and I a closed ideal, then I^{\perp} is completely complemented if and only if I has a bounded approximate identity. Bekka [3] proved that if X is a weak*-closed translation invariant subspace of $L^{\infty}(G)$, then X is complemented in $L^{\infty}(G)$ if and only if ${ }^{\perp} X$ has a right bounded approximate identity. Our first result is a generalization of this fact to a Banach algebra with a bounded approximate identity.

Lemma 3.1. Let A be a Banach algebra with a bounded approximate identity, and let X be a weak*-closed right translation invariant subspace in A^{*}. Then the following are equivalent:
(1) there exists a bounded projection P of A^{*} onto X such that $P R_{a}=R_{a} P$ for all $a \in A$;
(2) there exists a bounded projection P of $A^{*} A$ onto $X \cap A^{*} A$ such that $P R_{a}=$ $R_{a} P$ for all $a \in A ;$
(3) ${ }^{\perp} X$ has a bounded right approximate identity.

Proof. (1) $\Rightarrow(2)$ Let $P: A^{*} \rightarrow X$ be a bounded projection such that $P R_{a}=R_{a} P$ for all $a \in A$. We show that P restricted to $A^{*} A$ is a projection from $A^{*} A$ onto $X \cap A^{*} A$. To see that P is a projection of $A^{*} A$ onto $X \cap A^{*} A$, it suffices to show that $P\left(A^{*} A\right) \subseteq X \cap A^{*} A$ and that $f \in X \cap A^{*} A$ implies $P(f)=f$. Let f be an element of $A^{*} A$. Then f is of the form $f=g a$ for some g in A^{*} and a in A. Hence $P(f)=P(g a)=P(g) a$. Thus we conclude that $P\left(A^{*} A\right) \subseteq X \cap A^{*} A$. Next, let $f \in X \cap A^{*} A$. By assumption, we have $P(f)=f$. It is clear that $P R_{a}=R_{a} P$ for all $a \in A$. Hence we conclude that P is a bounded projection of $A^{*} A$ onto $X \cap A^{*} A$ such that $P R_{a}=R_{a} P$ for all $a \in A$.
(2) \Rightarrow (3) Let P be a bounded projection from $A^{*} A$ onto $X \cap A^{*} A$ such that $P R_{a}=R_{a} P$ for all $a \in A$. Let $\left(e_{\alpha}\right)$ be a bounded approximate identity for A. Then we may suppose that $\left(e_{\alpha}\right)$ converges in the weak*-topology on $A^{* *}$, say to F [7].

Define $P^{\prime}: A^{*} \rightarrow A^{*}$ by setting $\left\langle P^{\prime}(f), a\right\rangle=\langle F, P(f a)\rangle(a \in A)$. Then P^{\prime} is a bounded linear map. For $f \in X$ and $a \in A$, we have

$$
\begin{aligned}
\left\langle P^{\prime}(f), a\right\rangle & =\langle F, P(f a)\rangle=\langle F, f a\rangle=\lim _{\alpha}\left\langle e_{\alpha}, f a\right\rangle \\
& =\lim _{\alpha}\left\langle f, a e_{\alpha}\right\rangle=\langle f, a\rangle,
\end{aligned}
$$

and so P^{\prime} is the identity map on X. If $f \in A^{*}$, then

$$
\begin{aligned}
\left\langle P^{\prime}(f), a\right\rangle & =\langle F, P(f a)\rangle=\lim _{\alpha}\left\langle F, P\left(f e_{\alpha} a\right)\right\rangle=\lim _{\alpha}\left\langle F, P\left(f e_{\alpha}\right) a\right\rangle \\
& =\lim _{\alpha}\left\langle a F, P\left(f e_{\alpha}\right)\right\rangle=\lim _{\alpha}\left\langle a, P\left(f e_{\alpha}\right)\right\rangle=0,
\end{aligned}
$$

for each $a \in{ }^{\perp} X$. Since X is a weak*-closed subspace of $A^{*},\left({ }^{\perp} X\right)^{\perp}=X$ and so $P^{\prime}(f) \in X$ (see Theorem 4.7 in [24]). Consequently P^{\prime} is an extension of P to A^{*} as a bounded projection.

Let $f \in\left({ }^{\perp} X\right)^{*}$, and let f^{\prime} be any Hahn-Banach extension of f to a continuous functional on A^{*}, see Theorem A.3.19 in [7]. We consider $E:\left({ }^{\perp} X\right)^{*} \rightarrow \mathbb{C}$ defined by $\langle E, f\rangle=\left\langle F, f^{\prime}-P^{\prime}\left(f^{\prime}\right)\right\rangle$. Let $f^{\prime \prime}, f^{\prime} \in A^{*}$ be two extension of $f \in\left({ }^{\perp} X\right)^{*}$. For any $a \in{ }^{\perp} X$,

$$
\left\langle f^{\prime \prime}-f^{\prime}, a\right\rangle=\left\langle f^{\prime \prime}, a\right\rangle-\left\langle f^{\prime}, a\right\rangle=\langle f, a\rangle-\langle f, a\rangle=0 .
$$

Hence $f^{\prime \prime}-f^{\prime} \in\left({ }^{\perp} X\right)^{\perp}=X$, and so $P^{\prime}\left(f^{\prime \prime}-f^{\prime}\right)=f^{\prime \prime}-f^{\prime}$. This shows that $\left\langle E, f^{\prime}-P^{\prime}\left(f^{\prime}\right)\right\rangle=\left\langle E, f^{\prime \prime}-P^{\prime}\left(f^{\prime \prime}\right)\right\rangle$, so that $E:\left({ }^{\perp} X\right)^{*} \rightarrow \mathbb{C}$ is well-defined. It is clear that $E \in\left({ }^{\perp} X\right)^{* *}$. For every $a \in{ }^{\perp} X$ and $f \in\left({ }^{\perp} X\right)^{*}$, we have

$$
\begin{aligned}
\left\langle F,(f a)^{\prime}-P^{\prime}\left((f a)^{\prime}\right)\right\rangle & =\left\langle F, f^{\prime} a-P^{\prime}\left(f^{\prime} a\right)\right\rangle=\lim _{\alpha}\left\langle F, f^{\prime} a-P^{\prime}\left(f^{\prime} e_{\alpha} a\right)\right\rangle \\
& =\lim _{\alpha}\left\langle F, f^{\prime} a-P^{\prime}\left(f^{\prime} e_{\alpha}\right) a\right\rangle=\left\langle F, f^{\prime} a\right\rangle .
\end{aligned}
$$

Hence we conclude that

$$
\begin{aligned}
\langle E f, a\rangle & =\langle E, f a\rangle=\left\langle F,(f a)^{\prime}-P^{\prime}\left((f a)^{\prime}\right)\right\rangle=\left\langle F, f^{\prime} a\right\rangle \\
& =\left\langle f^{\prime}, a\right\rangle=\langle f, a\rangle .
\end{aligned}
$$

One verifies easily that E is a right identity for $\left({ }^{\perp} X\right)^{* *}$. Hence ${ }^{\perp} X$ has a bounded right approximate identity, see [[4], p.146].
$(3) \Rightarrow(1)$ By Proposition 6.4 in [9], (3) implies (1).
Throughout S denotes a locally compact Hausdorff topological semigroup. A positive and continuous function ω on S satisfying $\omega(x y) \leq \omega(x) \omega(y)(x, y \in S)$, $\omega(e)=1$ will be called a weight function. Let $M(S, \omega)$ be the Banach space of all complex regular Borel measures μ on S such that $\|\mu\|_{\omega}=\int \omega(t) d|\mu|(t)<\infty$ [8]. We can identify $M(S, \omega)$ with the dual of the Banach space $C_{0}\left(S, \omega^{-1}\right)$; the latter being the Banach space of all continuous function ϕ on S such that $\frac{\phi}{\omega} \in C_{0}(S)$, with the norm in $C_{0}\left(S, \omega^{-1}\right)$ defined by $\|\phi\|_{\omega}=\sup \left\{\left|\frac{\phi(x)}{\omega(x)}\right| ; x \in S\right\}$. Under convolution product

$$
\langle\mu * v, \phi\rangle=\iint \phi(x y) d \mu(x) d v(y) \quad\left(\mu, v \in M(S, \omega), \phi \in C_{0}\left(S, \omega^{-1}\right)\right)
$$

$M(S, \omega)$ becomes a Banach algebra.
Recall that $M_{a}(S)$ denotes the space of all measures $\mu \in M(S)$ for which the mappings $x \mapsto \delta_{x} *|\mu|$ and $x \mapsto|\mu| * \delta_{x}$ from S into $M(S)$ are weakly continuous. We denote by $M_{a}(S, \omega)$ the space of all $\mu \in M(S, \omega)$ such that $\omega \mu \in M_{a}(S)$. A foundation semigroup is a locally compact semigroup such that $\bigcup\left\{\operatorname{supp}(\mu) ; \mu \in M_{a}(S)\right\}$ is dense in S. A trivial example is a topological group and in this case $M_{a}(S)=L^{1}(S)$ (for more information on foundation semigroups, see [1], [8] and [10]). It is well known that $M_{a}(S, \omega)$ is a closed two sided L-ideal of $M(S, \omega)$ [8]. Weighted hypergroup algebras have been studied by Ghahramani and Medghalchi in [13] and [14].

Lemma 3.2. Let S be a foundation topological semigroup with identity, and let X be a weak*-closed subspace of $M_{a}(S, \omega)^{*}$ such that $X \delta_{x} \subseteq X$ for every $x \in S$. Then the following conditions hold:
(1) X is topologically right invariant, i.e., $f \mu \in X$ for all $f \in M_{a}(S, \omega)^{*}$ and $\mu \in M_{a}(S, \omega)$;
(2) let $P: M_{a}(S, \omega)^{*} M_{a}(S, \omega) \rightarrow X$ be a bounded linear map. Then $P(f \mu)=$ $P(f) \mu$ for all $f \in M_{a}(S, \omega)^{*} M_{a}(S, \omega)$ and $\mu \in M_{a}(S, \omega)$ if and only if $P\left(f \delta_{x}\right)=P(f) \delta_{x}$ for all $x \in S$ and $f \in M_{a}(S, \omega)^{*} M_{a}(S, \omega)$.

Proof. (1) Assume that there exist $f \in X$ and $\mu \in M_{a}(S, \omega)$ such that $f \mu \notin X$. Without loss of generality, we may assume that $\mu \geq 0$ and $\|\mu\|_{\omega}=1$. Since X is a weak*-closed subspace in $M_{a}(S, \omega)^{*}$, by Hahn-Banach Theorem [24], there exist $v \in M_{a}(S, \omega)$ and $\gamma_{1}, \gamma_{2} \in \mathbb{R}$ such that

$$
\operatorname{Re}\left\langle v, f \delta_{x}\right\rangle<\gamma_{1}<\gamma_{2}<\operatorname{Re}\langle v, f \mu\rangle
$$

where $x \in S$. By Lemma 3.4 in [12],

$$
\begin{aligned}
\operatorname{Re}\langle f \mu, v\rangle & =\operatorname{Re}\langle f, \mu * v\rangle=\operatorname{Re} \int\left\langle f, \delta_{x} * v\right\rangle d \mu(x) \\
& \leq \gamma_{1}<\gamma_{2}<\operatorname{Re}\langle f \mu, v\rangle .
\end{aligned}
$$

We would come to a contradiction. Therefore $f \mu \in X$.
(2) Let $P: M_{a}(S, \omega)^{*} M_{a}(S, \omega) \rightarrow X$ be a bounded linear map with $P(f \mu)=$ $P(f) \mu$ for all $f \in M_{a}(S, \omega)^{*} M_{a}(S, \omega)$ and $\mu \in M_{a}(S, \omega)$. Let $f \in M_{a}(S, \omega)^{*} M_{a}(S, \omega)$, $x \in S$. By Lemma 3.4 in [18], $M_{a}(S, \omega)$ has a bounded approximate identity, say $\left(e_{\alpha}\right)$. It is easy to see that $f e_{\alpha} * \delta_{x} \rightarrow f \delta_{x}$ in the norm topology. Hence

$$
P\left(f \delta_{x}\right)=\lim _{\alpha} P\left(f e_{\alpha} * \delta_{x}\right)=\lim _{\alpha} P(f) e_{\alpha} * \delta_{x} .
$$

On the other hand, $P(f) e_{\alpha} * \delta_{x}$ converges to $P(f) \delta_{x}$ in the weak*-topology. Thus $P\left(f \delta_{x}\right)=P(f) \delta_{x}$.

The converse is obvious.
Let S be a foundation semigroup with identity. Then a function $f \in C(S, \omega)$ is called ω-left uniformly continuous if the mapping $x \mapsto \frac{L_{x} f}{\omega(x)}$ of S into $C(S, \omega)$
is norm continuous, where $L_{x}(f)(y)=f(x y)$ for every $x, y \in S$. As known $\operatorname{LUC}\left(S, \omega^{-1}\right)=M_{a}(S, \omega)^{*} M_{a}(S, \omega)$ (see Proposition 3.5 in [18]). Let S be a locally compact Hausdorff topological group. Bekka in [3] has proved that a weak*closed left translation invariant subspace X of $L^{\infty}(S)$ is invariantly complemented if and only if ${ }^{\perp} X$ has a bounded right approximate identity. In the following Theorem, our main purpose is to generalize Bekka's results in [3] for a certain class of weighted semigroup algebras.

Theorem 3.3. Let S be a foundation topological semigroup with identity, and let X be a weak*-closed left translation invariant subspace of $M_{a}(S, \omega)^{*}$. Then the following conditions are equivalent:
(1) there exists a bounded projection P of $M_{a}(S, \omega)^{*}$ onto X such that $P R_{\mu}=$ $R_{\mu} P$ for all $\mu \in M_{a}(S, \omega) ;$
(2) there exists a bounded projection P of $\operatorname{LUC}\left(S, \omega^{-1}\right)$ onto $X \cap \operatorname{LUC}\left(S, \omega^{-1}\right)$ such that $P R_{\mu}=R_{\mu} P$ for all $\mu \in M_{a}(S, \omega)$;
(3) there exists a bounded projection P of $\operatorname{LUC}\left(S, \omega^{-1}\right)$ onto $X \cap \operatorname{LUC}\left(S, \omega^{-1}\right)$ such that $P R_{x}=R_{x} P$ for all $x \in S$;
(4) ${ }^{\perp} X$ has a bounded right approximate identity.

Proof. This is immediate from Lemma 3.1 and Lemma 3.2.

4 Projections and amenability

We recall that a locally compact group G is amenable if there is a positive norm one linear functional on $L^{\infty}(G)$ which is invariant under left translation. Every abelian group is amenable. The discrete free group F_{2} on two generators a and b is not amenable [22].

Definition 4.1. An action of a semigroup S on a Banach algebra A is a mapping $\sigma: S \times A \rightarrow A$ such that:
(1) $\sigma(x, a+b)=\sigma(x, a)+\sigma(x, b), \alpha \sigma(x, a)=\sigma(x, \alpha a), \sigma(x y, a)=\sigma(x, y a)$ and $\sigma(e, a)=a$, where $\alpha \in \mathbb{C}, x, y \in S$ and $a, b \in A ;$
(2) for all $a \in A$, the map $x \mapsto \sigma(x, a)$ is continuous from S into A;
(3) there exists $k \in \mathbb{R}$ such that $\|\sigma(x, a)\| \leq k\|a\|$ for every $x \in S$ and $a \in A$.

We shall write $x a$ for $\sigma(x, a)$. A left Banach S-module is a pair (S, A), where A is a Banach algebra and σ is an action of S on A.

Let A be a Banach algebra. As is well known, we can define an isometric linear isomorphism from $\left(A \otimes_{p} A\right)^{*}$ onto $\mathcal{B}\left(A, A^{*}\right)$ by the correspondence between f and Φ_{f} defined by $\Phi_{f}(a)(b)=\langle f, a \otimes b\rangle$ for each $a, b \in A[4]$.

Now, let A be a left Banach S-module, and let $x \in S$ and $T \in \mathcal{B}\left(A, A^{*}\right)$ (see [10]). We define $S_{x}(T) \in \mathcal{B}\left(A, A^{*}\right)$ by $\left\langle S_{x}(T)(a), b\right\rangle=\langle T(a), x b\rangle$. Then S_{x} is a bounded linear map of $\mathcal{B}\left(A, A^{*}\right)$ into $\mathcal{B}\left(A, A^{*}\right)$. If $x \in S$, we consider L_{x} : $a \mapsto x a, A \rightarrow A$. Clearly $L_{x} \in \mathcal{B}(A, A)$. We consider the space $\mathcal{M}\left(A, A^{*}\right)$ of all $T \in \mathcal{B}\left(A, A^{*}\right)$ for which $S_{x}(T)=T L_{x}$ for all $x \in S$ [17].

Theorem 4.2. Let G be a locally compact abelian group, and let A be a left Banach G-module. Let X be a weak*-closed subspace of $\mathcal{B}\left(A, A^{*}\right)$ satisfying $S_{x}\left(T L_{x^{-1}}\right) \in X$ for each $T \in X$ and $x \in G$. If there exists a bounded projection from $\mathcal{B}\left(A, A^{*}\right)$ onto X, then there exists a bounded projection P from $\mathcal{M}\left(A, A^{*}\right)$ onto $\mathcal{M}\left(A, A^{*}\right) \cap X$ such that $C_{x} P=P C_{x}$ for all $x \in G$, where $C_{x}(T)=S_{x}\left(T L_{x^{-1}}\right)$.

Proof. We can prove this Theorem by using an argument similar to one of the proof of Lemma 4 in [26]. Let M be a right invariant mean on $L^{\infty}(G)$. Let Q be a bounded projection of $\mathcal{B}\left(A, A^{*}\right)$ onto X. Take $\phi \in A \otimes_{p} B$ and $T \in \mathcal{B}\left(A, A^{*}\right)$. The mapping

$$
\begin{aligned}
\quad f_{T}^{\phi} & : x \mapsto\left\langle\Phi^{-1}\left(C_{x^{-1}} Q C_{x}(T)\right), \phi\right\rangle \\
G & \rightarrow \mathbb{C}
\end{aligned}
$$

belongs to $L^{\infty}(G)$. If $T \in \mathcal{B}\left(A, A^{*}\right)$, we consider the mapping $f_{T}: \phi \mapsto\left\langle M, f_{T}^{\phi}\right\rangle$. Now we consider $P: \mathcal{M}\left(A, A^{*}\right) \rightarrow \mathcal{M}\left(A, A^{*}\right) \cap X$ defined by $\langle P(T)(a), b\rangle=$ $\left\langle M, f_{T}^{a \otimes b}\right\rangle$. We claim that P is a bounded projection of $\mathcal{M}\left(A, A^{*}\right)$ onto $\mathcal{M}\left(A, A^{*}\right) \cap$ X and that $C_{x} P=P C_{x}$ for all $x \in G$. Let $\phi \in{ }^{\perp}\left(\Phi^{-1}(X)\right)$ and $T \in \mathcal{M}\left(A, A^{*}\right)$. Then $\left\langle\Phi^{-1}\left(C_{x^{-1}} Q C_{x}(T)\right), \phi\right\rangle=0$ for all $x \in G$, since $C_{x^{-1}} Q C_{x}(T) \in X$. Hence

$$
\left\langle\Phi^{-1}(P(T)), \phi\right\rangle=\left\langle f_{T}, \phi\right\rangle=\left\langle M, f_{T}^{\phi}\right\rangle=0,
$$

and so $P(T) \in X$. This shows that $P\left(\mathcal{M}\left(A, A^{*}\right)\right) \subseteq X$. Next, let $T \in X \cap$ $\mathcal{M}\left(A, A^{*}\right)$. Then $Q C_{x}(T)=C_{x}(T)$ for each $x \in G$, and so $\Phi^{-1}\left(C_{x^{-1}} Q C_{x}(T)\right)=$ $\Phi^{-1}(T)$. We have

$$
\left\langle\Phi^{-1}(P(T)), \phi\right\rangle=\left\langle f_{T}, \phi\right\rangle=\left\langle M, f_{T}^{\phi}\right\rangle=\left\langle\Phi^{-1}(T), \phi\right\rangle
$$

for each $\phi \in A \otimes_{p} A$. Hence $P(T)=T$. For every $a \otimes b \in A \otimes_{p} B$ and $x, y \in G$,

$$
\begin{aligned}
f_{C_{y}(T)}^{a \otimes b}(x) & =\left\langle\Phi^{-1}\left(C_{x^{-1}} Q C_{x} C_{y}(T)\right), a \otimes b\right\rangle \\
& =\left\langle\Phi^{-1}\left(S_{x^{-1}}\left(Q\left(S_{x}\left(S_{y}\left(T L_{y^{-1}}\right) L_{x^{-1}}\right)\right) L_{x}\right)\right), a \otimes b\right\rangle \\
& =\left\langle\Phi^{-1}\left(S_{x^{-1}}\left(Q\left(S_{x y}\left(T L_{(x y)^{-1}}\right)\right) L_{x}\right)\right), a \otimes b\right\rangle \\
& =\left\langle\Phi^{-1}\left(S_{y}\left(S_{y^{-1}}\left(S_{x^{-1}}\left(Q C_{x y}(T) L_{x}\right) L_{y}\right) L_{y^{-1}}\right)\right), a \otimes b\right\rangle \\
& =\left\langle\Phi^{-1}\left(S_{y}\left(S_{(x y)^{-1}}\left(Q C_{x y}(T) L_{x y}\right) L_{y^{-1}}\right)\right), a \otimes b\right\rangle \\
& =\left\langle\Phi^{-1}\left(S_{y}\left(C_{(x y)^{-1}} Q C_{x y}(T) L_{y^{-1}}\right)\right), a \otimes b\right\rangle=f_{T}^{y^{-1} a \otimes y b}(x y) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\langle P C_{y}(T)(a), b\right\rangle & =\left\langle P\left(C_{y}(T)\right)(a), b\right\rangle=\left\langle M, f_{C_{y}(T)}^{a \otimes b}\right\rangle=\left\langle M, f_{T}^{y^{-1} a \otimes y b}\right\rangle \\
& =\left\langle P(T)\left(y^{-1} a\right), y b\right\rangle=\left\langle C_{y} P(T)(a), b\right\rangle
\end{aligned}
$$

Hence we have $C_{y} P=P C_{y}$ for all $y \in G$. If $T \in \mathcal{M}\left(A, A^{*}\right)$, then $S_{x}(T)=T L_{x}$ for all $x \in G$. For every $a \in A$ and $x \in G$,

$$
\begin{aligned}
S_{x}(P(T))(a) & =S_{x}(P(T))\left(L_{x^{-1}} L_{x} a\right)=S_{x}\left(P(T) L_{x^{-1}}\right)\left(L_{x} a\right) \\
& =C_{x} P(T) L_{x}(a)=P C_{x}(T) L_{x}(a) \\
& =P\left(S_{x}\left(T L_{x^{-1}}\right)\right) L_{x}(a)=P(T) L_{x}(a) .
\end{aligned}
$$

This proves that $S_{x}(P(T))=P(T) L_{x}$, and so $P\left(\mathcal{M}\left(A, A^{*}\right)\right) \subseteq \mathcal{M}\left(A, A^{*}\right)$. Consequently we conclude that P is a bounded projection from $\mathcal{M}\left(A, A^{*}\right)$ onto $\mathcal{M}\left(A, A^{*}\right) \cap$ X. This completes the proof.

Theorem 4.3. Let G be an amenable locally compact group, and let A be a left Banach G-module. Let X be a weak ${ }^{*}$-closed subspace of A^{*} such that $S_{x}\left(T L_{x^{-1}}\right)(a) \in$ X for all $T \in X, a \in A$ and $x \in G$. Let P be a bounded projection of A^{*} onto X. Then there exists a bounded projection from $\mathcal{B}\left(A, A^{*}\right)$ onto $\mathcal{M}(A, X)$.

Proof. For $a, b \in A$ and $T \in \mathcal{B}\left(A, A^{*}\right)$, we define $f_{T}^{a, b}: G \rightarrow \mathbb{C}$ by $f_{T}^{a, b}(x)=$ $\left\langle P(T)(x a), x^{-1} b\right\rangle$. We see immediately that $f_{T}^{a, b} \in L^{\infty}(G)$. Let M be a right invariant mean on $L^{\infty}(G)$ [22]. For $T \in \mathcal{B}\left(A, A^{*}\right)$, we define $\left\langle F_{T}(a), b\right\rangle=\left\langle M, f_{T}^{a, b}\right\rangle$. Clearly $F_{T} \in \mathcal{B}\left(A, A^{*}\right)$. Let Q denote the function on $\mathcal{B}\left(A, A^{*}\right)$ defined by $Q(T)=$ F_{T}. We claim that Q is a bounded projection of $\mathcal{B}\left(A, A^{*}\right)$ onto $\mathcal{M}(A, X)$. For $T \in \mathcal{B}\left(A, A^{*}\right), y \in G$ and $a, b \in A$, we have

$$
f_{T}^{a, y b}(x)=\left\langle P(T)(x a), x^{-1} y b\right\rangle=\left\langle P(T)\left(x y^{-1} y a\right), x^{-1} y b\right\rangle=f_{T}^{y a, b}\left(x y^{-1}\right)
$$

Since M is a right invariant mean, we have

$$
\langle Q(T)(a), y b\rangle=\left\langle M, f_{T}^{a, y b}\right\rangle=\left\langle M, f_{T}^{y a, b}\right\rangle=\langle Q(T)(y a), b\rangle .
$$

Hence $S_{y}(Q(T))=Q(T) L_{y}$, and so $Q\left(\mathcal{B}\left(A, A^{*}\right)\right) \subseteq \mathcal{M}\left(A, A^{*}\right)$. Let $T \in \mathcal{B}\left(A, A^{*}\right)$ and $a \in A$. Then $\left\langle P(T)(x a), x^{-1} b\right\rangle=0$ for each $x \in G$ and $b \in{ }^{\perp} X$, since $S_{x}\left(P(T) L_{x^{-1}}\right)(a) \in X$. Thus $\langle Q(T)(a), b\rangle=\left\langle M, f_{T}^{a, b}\right\rangle=0$, and so $Q(T)(a) \in$ $\left({ }^{\perp} X\right)^{\perp}=X$. This shows that $Q\left(\mathcal{B}\left(A, A^{*}\right)\right) \subseteq \mathcal{M}(A, X)$. Next, let $T \in \mathcal{M}(A, X)$. Then $P(T(x a))=T(x a)$ for each $x \in G$ and $a \in A$. For every $x \in G$,

$$
\begin{aligned}
f_{T}^{a, b}(x) & =\left\langle P(T(x a)), x^{-1} b\right\rangle=\left\langle T(x a), x^{-1} b\right\rangle=\left\langle S_{x}(T)(a), x^{-1} b\right\rangle \\
& =\langle T(a), b\rangle=f_{T}^{a, b}(e) .
\end{aligned}
$$

Hence

$$
\langle Q(T)(a), b\rangle=\left\langle M, f_{T}^{a, b}\right\rangle=\left\langle M, f_{T}^{a, b}(e) 1\right\rangle=f_{T}^{a, b}(e)=\langle T(a), b\rangle .
$$

It follows that $Q(T)=T$. This completes our proof.
Let S be a foundation topological semigroup. If H is a subsemigroup of S, we put

$$
X_{H}=\left\{f \in M_{a}(S, \omega)^{*} ; f \delta_{x}=\delta_{x} f=f \text { for all } x \in H\right\} .
$$

We can easily see that every X_{H} is a weak* closed linear subspace of $M_{a}(S, \omega)^{*}$ which $\delta_{x} X_{H} \subseteq X_{H}$ and $X_{H} \delta_{x} \subseteq X_{H}$ for all $x \in S$. In the following Theorem, we shall study relation between the weak*-closed subspace X of $M_{a}(S, \omega)^{*}$ and $\mathcal{M}\left(M_{a}(S, \omega), X\right)$. Note that $\left(S, M_{a}(S, \omega)\right)$ is a left Banach S-module under the natural action $(x, \mu) \mapsto \delta_{x} * \mu$. If S is a commutative semigroup, then $T \in$ $\mathcal{M}\left(M_{a}(S, \omega), M_{a}(S, \omega)^{*}\right)$ if and only if T commutes with translations, see [12] and [17].

Theorem 4.4. Let S be a foundation semigroup with identity, and let X be a weak ${ }^{*}$-closed subspace of $M_{a}(S, \omega)^{*}$ such that $X \delta_{x} \subseteq X$ for all $x \in S$:
(1) let $T \in \mathcal{B}\left(M_{a}(S, \omega), M_{a}(S, \omega)^{*}\right)$ satisfying $T\left(\mu * \delta_{x}\right)=T(\mu) \delta_{x}$ for each $x \in$ S. Then there is a unique $f \in M_{a}(S, \omega)^{*}$ such that $T(\mu)=f \mu$. Moreover $\|T\|=\|f\| ;$
(2) $\mathcal{M}\left(M_{a}(S, \omega), X\right)$ is a closed subspace of $\mathcal{M}\left(M_{a}(S, \omega), M_{a}(S, \omega)^{*}\right)$ (in the weak* operator topology).
(3) further suppose that S is commutative. Let Q be a bounded projection from $\mathcal{M}\left(M_{a}(S, \omega), M_{a}(S, \omega)^{*}\right)$ onto $\mathcal{M}\left(M_{a}(S, \omega), X\right)$. Then there exists a bounded projection P of $M_{a}(S, \omega)^{*}$ onto X.

Proof. (1) For every $\mu, v, \eta \in M_{a}(S, \omega)$, we have

$$
\begin{aligned}
\langle T(\mu * v), \eta\rangle & =\left\langle T^{*}(\eta), \mu * v\right\rangle=\int\left\langle T^{*}(\eta), \mu * \delta_{x}\right\rangle d v(x) \\
& =\int\left\langle T\left(\mu * \delta_{x}\right), \eta\right\rangle d v(x)=\int\left\langle T(\mu) \delta_{x}, \eta\right\rangle d v(x) \\
& =\int\left\langle T(\mu), \delta_{x} * \eta\right\rangle d v(x)=\langle T(\mu) v, \eta\rangle
\end{aligned}
$$

Hence $T(\mu * v)=T(\mu) v$. Now, let $\left(e_{\alpha}\right)$ be a bounded approximate identity of norm 1 in $M_{a}(S)$ (see Lemma 3.4 in [18]). Without loss of generality, we may assume that $T\left(e_{\alpha}\right) \rightarrow f$ in the weak*-topology. It is clear that

$$
\langle T(\mu), v\rangle=\lim _{\alpha}\left\langle T\left(e_{\alpha} * \mu\right), v\right\rangle=\lim _{\alpha}\left\langle T\left(e_{\alpha}\right), \mu * v\right\rangle=\langle f, \mu * v\rangle=\langle f \mu, v\rangle,
$$

where $\mu, v \in M_{a}(S, \omega)$. This shows that $T(\mu)=f \mu$. It is easy to see that $\|T\|=\|f\|$. It is obvious that the correspondence between T and f is an isometric isomorphism.
(2) Clearly $\mathcal{M}\left(M_{a}(S, \omega), X\right)$ is a subspace of $\mathcal{M}\left(M_{a}(S, \omega), M_{a}(S, \omega)^{*}\right)$. If $\left(T_{\alpha}\right)$ is a net in $\mathcal{M}\left(M_{a}(S, \omega), X\right)$ that converges weak* to some $T \in \mathcal{M}\left(M_{a}(S, \omega), M_{a}(S, \omega)^{*}\right)$, then $T_{\alpha}(\mu)$ converges to $T(\mu)$ in the weak*-topology (for any $\mu \in M_{a}(S, \omega)$). Pick $T(\mu) \notin X$. Since X is weak*-closed, Theorem 3.5 in [24], shows that there is a $v \in M_{a}(S, \omega)$ such that $\langle f, v\rangle=0$ for every $f \in X$, but $\langle T(\mu), v\rangle \neq 0$. Hence $\left\langle T_{\alpha}(\mu), v\right\rangle=0$ for every α, but $\langle T(\mu), v\rangle \neq 0$ which is a contradiction. This proves that $\mathcal{M}\left(M_{a}(S, \omega), X\right)$ is weak*-closed.
(3) For $f \in M_{a}(S, \omega)^{*}$, define $\lambda_{f}: M_{a}(S, \omega) \rightarrow M_{a}(S, \omega)^{*}$ by $\lambda_{f}(\mu)=f \mu$. As above, the $\operatorname{map} \Lambda: M_{a}(S, \omega)^{*} \rightarrow \mathcal{M}\left(M_{a}(S, \omega), M_{a}(S, \omega)^{*}\right)$ given by $\Lambda(f)=\lambda_{f}$,
is an isometric isomorphism. Now we consider $P: M_{a}(S, \omega)^{*} \rightarrow M_{a}(S, \omega)^{*}$ defined by $P(f)=\Lambda^{-1}(Q(\Lambda(f)))$. To see that P is a projection of $M_{a}(S, \omega)^{*}$ onto X, it suffices to show that $P\left(M_{a}(S, \omega)\right) \subseteq X$ and that $f \in X$ implies $P(f)=f$. Fix $f \in M_{a}(S, \omega)^{*}$. As above, there exists $f^{\prime} \in M_{a}(S, \omega)^{*}$ with $Q\left(\lambda_{f}\right)=\lambda_{f^{\prime}}$. By assumption, $Q\left(\lambda_{f}\right)(\mu) \in X$ for every $\mu \in M_{a}(S, \omega)$. Pick $v \in{ }^{\perp} X$, so that $\left\langle f^{\prime} \mu, v\right\rangle=\left\langle Q\left(\lambda_{f}\right)(\mu), v\right\rangle=0$ for all $\mu \in M_{a}(S, \omega)$. By Lemma 3.4 in [18], there is an approximate identity $\left(e_{\alpha}\right)$ in $M_{a}(S, \omega)$. We have

$$
\left\langle f^{\prime}, v\right\rangle=\lim _{\alpha}\left\langle f^{\prime}, e_{\alpha} * v\right\rangle=\lim _{\alpha}\left\langle f^{\prime} e_{\alpha}, v\right\rangle=0,
$$

and so $f^{\prime} \in X$. Hence $P\left(M_{a}(S, \omega)^{*}\right) \subseteq X$. Next, let $f \in X$. By Lemma 3.2, $f \mu \in X$ for every $\mu \in M_{a}(S, \omega)$. This shows that $\lambda_{f} \in \mathcal{M}\left(M_{a}(S, \omega), X\right)$. Therefore $P(f)=\Lambda^{-1}(Q(\Lambda(f)))=f$. This completes our proof.

Let A be a Banach algebra. Given $a \in A$, let I_{a} be the norm-closure of

$$
\{x-x a ; x \in A\}
$$

in A, see [5] and [6]. Let S be a locally compact foundation semigroup with identity, and let $\eta \in M_{a}(S, \omega)$. It is easy to see that I_{η} is a left closed ideal in $M_{a}(S, \omega)$ and its annihilator $I_{\eta}{ }^{\perp}=\left(\frac{M_{a}(S, \omega)}{I_{\eta}}\right)^{*}$ is the space $\left\{f \in M_{a}(S, \omega)^{*} ; \eta f=f\right\}$ which we call the η-harmonic functional on $M_{a}(S, \omega)$.

Lemma 4.5. Let S be a foundation topological semigroup with identity, and let $\eta \in M_{a}(S, \omega)$. Then $I_{\eta}^{\perp} \cap M_{a}(S, \omega)^{*} M_{a}(S, \omega)$ is weak*-dense in I_{η}^{\perp}.

Proof. Let $\left(e_{\alpha}\right)$ be an approximate identity of norm 1 in $M_{a}(S, \omega)$, and let $f \in I_{\eta}^{\perp}$. Then $f e_{\alpha} \in I_{\eta}^{\perp} \cap M_{a}(S, \omega)^{*} M_{a}(S, \omega)$ and for $\mu \in M_{a}(S, \omega)$, we have $\langle f, \mu\rangle=$ $\lim _{\alpha}\left\langle f, e_{\alpha} * \mu\right\rangle$. This shows that ($f e_{\alpha}$) converges to f in the weak*-topology.

For $x \in S$, we observe that $\delta_{x}\left(I_{\eta}^{\perp}\right) \subseteq I_{\eta}^{\perp}$ if and only if

$$
\delta_{x}\left(I_{\eta}^{\perp} \cap M_{a}(S, \omega)^{*} M_{a}(S, \omega)\right) \subseteq I_{\eta}^{\perp} \cap M_{a}(S, \omega)^{*} M_{a}(S, \omega)
$$

This follows from the fact that $I_{\eta}^{\perp} \cap M_{a}(S, \omega)^{*} M_{a}(S, \omega)$ is weak* dense in I_{η}^{\perp} and that $x \mapsto \delta_{x} f$ from S into $M_{a}(S, \omega)^{*}$ is weak*-continuous, where $f \in M_{a}(S, \omega)^{*}$. Moreover, if η is central which means that $\delta_{x} * \eta=\eta * \delta_{x}$ for all $x \in S$, then $\delta_{x}\left(I_{\eta}^{\perp}\right) \subseteq I_{\eta}^{\perp}$ for all $x \in S$. It is easy to see that $\delta_{x}\left(I_{\eta}^{\perp}\right) \subseteq I_{\eta}^{\perp}$ for all $x \in S$ if and only if I_{η} is a two sided ideal in $M_{a}(S, \omega)$.

Proposition 4.6. Let $a \in A$ and suppose $\|a\| \leq 1$. Then there exists a projection P from A^{*} onto I_{a}^{\perp}.

Proof. Fix a Banach limit LIM on N. For $f \in A^{*}$ and $x \in A$, put

$$
\langle P(f), x\rangle=\operatorname{LIM}_{n}\left\langle f, x a^{n}\right\rangle
$$

Then $P: A^{*} \rightarrow A^{*}$ is a well-defined, contractive linear map.
Clearly $P(f)=f$ for each $f \in I_{a}^{\perp}$. If $f \in A^{*}$ is arbitrary and $x \in A$, we have

$$
\begin{aligned}
\langle P(f), x-x a\rangle & =\operatorname{LIM}_{n}\left\langle f, x a^{n}\right\rangle-\left\langle f, x a^{n+1}\right\rangle \\
& =\operatorname{LIM}_{n}\left\langle f, x a^{n}\right\rangle-\operatorname{LIM}_{m}\left\langle f, x a^{m}\right\rangle=0 .
\end{aligned}
$$

and so by continuity $P(f) \in I_{a}^{\perp}$, as required.
Theorem 4.7. Let S be a foundation semigroup, and let η be a probability measure in $M(S)$. If $\operatorname{dim} I_{\eta}^{\perp}=1$, then S is amenable.

Note that a topological semigroup S is amenable if there is a positive norm one linear functional M on $M_{a}(S)^{*}$ such that $\left\langle M, f \delta_{x}\right\rangle=\langle M, f\rangle$ for all $f \in M_{a}(S)^{*}$ and $x \in S$ [11].

Proof. From the above construction of P_{η}, there is $\left(P_{n}\right)$ in $\operatorname{co}\left\{\rho_{\eta}^{* n} ; n \in \mathbb{N}\right\}$ such that $\left\|P_{n}\right\| \leq 1$ and $P_{n}(1)=1$ for $n \in \mathbb{N}$ and such that $P_{n} \rightarrow P_{\eta}$ as $n \rightarrow \infty$. For every $f \in M_{a}(S)^{*}$ and $n \in \mathbb{N}, P_{n}\left(f \delta_{x}\right)=P_{n}(f) \delta_{x}$ where $x \in S$. It follows that $P_{\eta}\left(f \delta_{x}\right)=P_{\eta}(f) \delta_{x}$. Define $M: M_{a}(S)^{*} \rightarrow \mathbb{C}$ by $\langle M, f\rangle=\left\langle P_{\eta}(f), \eta\right\rangle$. Since M is positive linear and $\langle M, 1\rangle=1$, so M is a mean on $M_{a}(S)^{*}$. Next, suppose that $f \in M_{a}(S)^{*}$ and $x \in S$. Since $\operatorname{dim} I_{\eta}^{\perp}=1, P_{\eta}(f)=c_{f} 1$ for a constant c_{f}. We have

$$
\begin{aligned}
\left\langle M, f \delta_{x}\right\rangle & =\left\langle P_{\eta}\left(f \delta_{x}\right), \eta\right\rangle=\left\langle P_{\eta}(f) \delta_{x}, \eta\right\rangle=\left\langle P_{\eta}(f), \delta_{x} * \eta\right\rangle \\
& =\left\langle c_{f} 1, \delta_{x} * \eta\right\rangle=c_{f}=\left\langle c_{f} 1, \eta\right\rangle \\
& =\left\langle P_{\eta}(f), \eta\right\rangle=\langle M, f\rangle .
\end{aligned}
$$

Therefore S is amenable.
Let S be a foundation topological semigroup. If η is a probability measure, then I_{η} is contained in the ideal $\left\{\mu \in M_{a}(S, \omega) ; \mu(S)=0\right\}$. If η is a probability measure, then evidently $I_{\eta}=\left\{\mu \in M_{a}(S, \omega) ; \mu(S)=0\right\}$ if and only if $\operatorname{dim} I_{\eta}^{\perp}=1$, in other words, the bounded η-harmonic functions are constant. Indeed, if $I_{\eta}=$ $\left\{\mu \in M_{a}(S, \omega) ; \mu(S)=0\right\}$, then the map $T: \frac{M_{a}(S, \omega)}{I_{\eta}} \rightarrow \mathbb{C}$ given by $T\left(\mu+I_{\eta}\right)=$ $\mu(S)$ is a linear isomorphism. It follows that $\operatorname{dim} I_{\eta}^{\perp}=1$. Conversely, since

$$
I_{\eta} \subseteq\left\{\mu \in M_{a}(S, \omega) ; \mu(S)=0\right\} \varsubsetneqq M_{a}(S, \omega)
$$

this shows that $I_{\eta}=\left\{\mu \in M_{a}(S, \omega) ; \mu(S)=0\right\}$.
By Theorem 4.7, $I_{\eta}=\left\{\mu \in M_{a}(S) ; \mu(S)=0\right\}$ implies that S is amenable.
Acknowledgment: I would like to thank the referee for his/her careful reading of my paper and many valuable suggestions.

References

[1] M. Amini and A. R. Medghalchi, Fourier algebras on topological foundation *semigroup, Semigroup Forum, 68, 322-334 (2004).
[2] J. Baker, A. T. Lau and J. S. Pym, Module homomorphisms and topological centers associated with weakly sequentially complete Banach algebras, J. Funct. Anal., 158, 186-208 (1998).
[3] M. E. B. Bekka, Complemented subspace of $L^{\infty}(G)$, ideals of $L^{1}(G)$ and amenability, Monatsh. Math., 109, 195-203 (1990).
[4] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin, 1973.
[5] C. H. Chu and A. T. Lau, Harmonic functions on groups and Fourier algebras, Lecture Notes in Mathematics 1782, Springer-Verlag, Berlin, 2002.
[6] C. H. Chu and A. T. Lau, Jordan structures in harmonic functions and Fourier algebras on homogeneous spaces, Math. Ann., 336, 803-840 (2006).
[7] H. G. Dales, Banach algebra and automatic continuity, London Math. Soc. Monogr. Ser. Clarendon Press, 2000.
[8] H. A. M. Dzinotyiweyi, The analogue of the group algebra for topological semigroup, Pitman, Boston, London, 1984.
[9] B. Forrest, Amenability and bounded approximate identities in ideals of $A(G)$, Illinois J. Math., 34, 1-25 (1990).
[10] A. Ghaffari, Projections onto invariant subspaces of some Banach algebras, Acta Math. Sinica, English Series 24, 1089-1096 (2008).
[11] A. Ghaffari, Strongly and weakly almost periodic linear maps on semigroup algebras, Semigroup Forum, 76, 95-106 (2008).
[12] A. Ghaffari and A. R. Medghalchi, Characterization of operators on the dual of hypergroups which commute with translations and convolutions, Acta Math. Sinica, English Series, 20, 201-208 (2004).
[13] F. Ghahramani and A. R. Medghalchi, Compact multipliers on hypergroup algebras, Math. Proc. Camb. Philos. Soc., 98, 493-500 (1985).
[14] F. Ghahramani and A. R. Medghalchi, Compact multiplier on hypergroup algebras II, Math. Proc. Camb. Philos. Soc., 100, 145-149 (1986).
[15] J. E. Gilbert, On projections of $L^{\infty}(G)$ onto translation invariant subspaces, Proc. London Math. Soc., 19, 69-88 (1969).
[16] E. Hewitt and K. A. Ross, Abstract Harmonic analysis, Vol. I, Springer Verlage, Berlin, 1963; Vol. II, Springer Verlage, Berlin, 1970.
[17] R. Larsen, An introduction to the theory of multipliers, Springer Verlag, Berlin, Heidelberg, New York 1971.
[18] M. Lashkarizadeh Bami, Function algebras on weighted topological semigroups, Math. Japon., 47, 217-227 (1998).
[19] A. T. Lau and V. Losert, Complementation of certain subspaces of $L^{\infty}(G)$ of a locally compact group, Pacific J. Math., 141, 295-310 (1990).
[20] A. T. Lau, Invariantly complemented subspaces of $L^{\infty}(G)$ and amenable locally group, Illinois J. Math., 26, 226-235 (1982).
[21] A. T. Lau and A. Ulger, Topological centers of certain dual algebras, Trans. Amer. Math. Soc., 348, 1191-1212 (1996).
[22] A. L. T. Paterson, Amenability, Amer. Math. Soc. Math. Survey and Monographs 29, Providence, Rhode Island, 1988.
[23] H. P. Rosenthal, Projections onto translation invariant subspaces of $L^{p}(G)$, Memoirs Amer. Math. Soc., 63 (1996).
[24] W. Rudin, Functional analysis, McGraw Hill, New York, 1991.
[25] Y. Takahashi, A characterization of certain weak*-closed subalgebras of $l^{\infty}(G)$, Hokkaido Math. J., 11, 116-124 (1982).
[26] Y. Takahashi, Remarks on certain complemented subspaces on groups, Hokkaido Math. J., 13, 260-270 (1984).
[27] P. J. Wood, Invariant complementation and projectivity in the fourier algebra, Proc. Amer. Math. Soc., 131, 1881-1890 (2002).
[28] P. J. Wood, Complemented ideals in the fourier algebra of a locally compact group, Proc. Amer. Math. Soc., 128, 445-451 (1999).

Department of Mathematics
Semnan University, P.O.Box 35195-363,

Semnan, Iran
email: aghaffari@semnan.ac.ir

[^0]: Received by the editors November 2009.
 Communicated by F. Bastin.
 2000 Mathematics Subject Classification : Primary: 43A22; Secondary: 43A60.
 Key words and phrases : Amenability, Banach algebras, projections, semigroup algebras, weak* closed subspace.

