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Abstract

Let H be a finite dimensional semisimple Hopf algebra, A a differen-
tial graded (dg for short) H-module algebra. Then the smash product al-
gebra A#H is a dg algebra. For any dg A#H-module M, there is a quasi-
isomorphism of dg algebras: RHomA(M, M)#H −→ RHomA#H(M⊗ H, M⊗
H). This result is applied to d-Koszul algebras, Calabi-Yau algebras and AS-
Gorenstein dg algebras.

1 Introduction

Let G be a finite group, R be a G-group algebra. For modules M and N over the
skew group algebra R ∗ G, there are “natural” G-actions on the extension groups
Ext∗R(M, N) and the Hochschild cohomologies of R (see [19, 20]). Naturally, the
group actions on extension groups or Hochschild cohomologies can be general-
ized to Hopf algebra actions [7, 23]. It seems not easy to find an explicit relation
between the extensions of modules over R ∗ G and that of modules over R. Let
R be a positively graded algebra and G be a finite group of grading preserving
automorphisms of R. In [19], the author established an interesting link between
the Yoneda algebra of the trivial module over R ∗ G and that of the trivial mod-
ule over R. In [20], the authors discussed the Hochschild cohomology algebra of
skew group algebras. In both papers, the results were proved through discussing
the structures of extension groups directly.
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Since the extension groups of modules and Hochschild cohomologies can be
computed through differential graded (dg, for short) modules and dg algebras,
we try to deal with the group actions on extensions in the framework of dg set-
tings, and we find that this is an efficient way to do these things. So we first need
to discuss properties of the group (more generally, Hopf algebra) actions on dg
algebras. Let H be a finite dimensional semisimple Hopf algebra, and A be a
dg H-module algebra. Our main result (Theorem 2.8) says that there is a quasi-
isomorphism of dg algebras: RHomA(M, M)#H −→ RHomA#H(M ⊗ H, M ⊗ H)
for any dg A#H-module M. This quasi-isomorphism yields the isomorphism
in [19, Theorem 10] and generalizes of [24, Theorem 2.3] to the level of derived
functors. We apply the main result to d-Koszul algebras, Calabi-Yau algebras and
AS-Gorenstein algebras. We show that the smash product algebra of a d-Koszul
algebra and finite dimensional semisimple Hopf algebra is also a d-Koszul alge-
bra, and the Galois covering algebras of a d-Koszul Calabi-Yau algebras are also
Calabi-Yau.

Throughout, k is an algebraically closed field of characteristic zero and all
algebras are k-algebras; unadorned ⊗ means ⊗k and Hom means Homk. By a dg
algebra we mean a cochain dg algebra, that is, a graded algebra A =

⊕

n∈Z An

with a differential d of degree 1, such that for all homogeneous elements a, b ∈ A

we have d(ab) = d(a)b + (−1)|a|ad(b) where |a| denotes the degree of a. An
associative algebra R may be regarded as a dg algebra concentrated in degree
zero with zero differentials, and then a complex of R-modules may be regarded
as a dg R-module. A (left) dg A-module is a graded A-module M = ⊕n∈Z Mn

with a differential d of degree 1 such that for all homogeneous elements a ∈ A

and m ∈ M we have d(am) = d(a)m + (−1)|a|ad(m). Similarly, we have right dg
modules. In this paper, by a dg module we always mean a left dg module.

Let A be a dg algebra, M and N dg A-modules. We write HomA(M, N) =

⊕i∈Z Homi
A(M, N), where Homi

A(M, N) is the set of all graded A-module maps
of degree i. Then HomA(M, N) is a complex with the canonical differential d
which acts on a homogeneous element f ∈ HomA(M, N) by d( f ) = dN ◦ f −

(−1)| f | f ◦ dM. A dg A-module P is said to be homotopically projective (or K-projec-
tive) if HomA(P,−) preserves the quasi-trivial dg modules, and a dg A-module
I is said to be homotopically injective (or K-injective) if HomA(−, I) preserves the
quasi-trivial dg modules (see [16, Chapter 8]).

For more properties of dg algebras and modules, we refer to the references
[1, 8, 14, 17].

2 Hopf algebra actions on dg algebras

Let A be a dg algebra, H a Hopf algebra. We call A a dg H-module algebra if

(i) A is a graded H-module algebra, that is; for a ∈ Ai, b ∈ Aj and h ∈ H,
h · a ∈ Ai and h · (ab) = (h(1) · a)(h(2) · b), and

(ii) the differential d of A is compatible with the H-module action, that is,
d(h · a) = h · d(a) .
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If A is a left dg H-module algebra, then the cohomology algebra H(A) is a
graded H-module algebra, and the smash product A#H is also a dg algebra with
the differential δ = d ⊗ id.

Proposition 2.1. If A is a dg H-module algebra, then H(A#H) ∼= H(A)#H as graded
algebras.

Since A is a dg subalgebra of A#H, any dg A#H-modules M and N can be
viewed as dg A-modules. Also M and N are complexes of H-modules. If the
antipode S of H is bijective, there is a natural H-module structure on the complex
HomA(M, N). Explicitly, for f ∈ HomA(M, N), and h ∈ H, the H-module action
is defined by

(h ⇀ f )(m) = h(2) f (S−1h(1)m), for m ∈ M, h ∈ H. (1)

Given an H-module X, we write XH = {x ∈ X|hx = ε(h)x, for all h ∈ H}
for the invariant submodule. If M is a complex of H-modules, then MH is a
subcomplex of M.

Lemma 2.2. Let H be a Hopf algebra with a bijective antipode.
(i) If A is a dg H-module algebra, M and N are dg A#H-modules, then

HomA#H(M, N) ∼= HomA(M, N)H

as complexes of vector spaces
(ii) If H is semisimple, then ( )H preserves exact sequences.

Proof. The assertion (i) follows directly from the definition. For the assertion (ii),
just observe that ( )H ∼= HomH(k,−) is exact.

Let M be a dg A-module. Then HomA(M, M) is a dg algebra. For conve-
nience, the multiplication of HomA(M, M) is defined as follows: for homoge-

neous elements f , g ∈ HomA(M, M), f ∗ g = (−1)| f ||g|g ◦ f .
From now on, H will always be a Hopf algebra with a bijective antipode.

Lemma 2.3. Let A be a dg H-module algebra, M a dg A#H-module. Then B =
HomA(M, M) is a dg H-module algebra.

Proof. Straightforward.
Let M be a dg A#H-module, W a dg H-modules. Then M ⊗ W is a dg A#H-

module through the action defined by

(a#h)(m ⊗ w) = (a#h(1))m ⊗ h(2)w. (2)

Lemma 2.4. Let M and N be dg A#H-modules, W a dg H-modules. Then the Hom-
Tensor adjoint isomorphism

ϕ : Hom(W, HomA(M, N)) −→ HomA(M ⊗ W, N)

is an H-module morphism.
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Proof. For homogeneous elements f ∈ Hom(W, HomA(M, N)) and m ∈ M,

w ∈ W, recall that ϕ( f )(m ⊗ w) = (−1)|m||w| f (w)(m). Hence for h ∈ H, we
have

ϕ(h ⇀ f )(m ⊗ w) = (−1)|m||w|(h ⇀ f )(w)(m)

= (−1)|m||w|[h(1) ⇀ ( f (S−1(h(1))w))](m)

= (−1)|m||w|h(3)( f (S−1(h(1))w))(S−1(h(2))m),

(h ⇀ ϕ( f ))(m ⊗ w) = h(2)ϕ( f )(S−1(h(1))(m ⊗ w))

= h(3)ϕ( f )(S−1(h(2))m ⊗ S−1(h(1))w))

= (−1)|m||w|h(3)( f (S−1(h(1))w))(S−1(h(2))m).

Therefore ϕ is an H-module morphism.

Proposition 2.5. Let H be a finite dimensional semisimple Hopf algebra, A a dg H-
module algebra. Then a dg A#H-module P is K-projective if and only if P is K-projective
as a dg A-module.

Proof. Assume that P is a K-projective A-module. We only need to show that the
functor HomA#H(P,−) preserves the quasi-trivial dg modules. By Lemma 2.2,
we have

HomA#H(P,−) = ( )H ◦ HomA(P,−).

Since H is semisimple, by Lemma 2.3 the functor ( )H preserves exact sequences.
Hence ( )H ◦ HomA(P,−) preserves quasi-trivial dg modules.

Conversely, suppose that P is a K-projective A#H-module. Since P is homo-
topically equivalent to a semifree dg A#H-module (see [1, 8]), we may assume
that P is semifree. Let

0 ⊆ P(0) ⊆ P(1) ⊆ · · · ⊆ P(n) ⊆ P(n + 1) ⊆ · · ·

be a semifree filtration of the dg A#H-module P. Then P(n + 1)/P(n) is a free
dg A#H-module (i.e., it is a direct sum of shifts of A#H). Moreover, A#H is also
a free dg A-module. Hence, the above filtration is also a semifree filtration of the
dg A-module P. So P is K-projective as a dg A-module.

Proposition 2.6. Let A and H be as above. A dg A#H-module I is K-injective if and
only if it is K-injective as a dg A-module.

Proof. Assume that I is a K-injective dg A#H-module. We have to show that the
functor HomA(−, I) preserves quasi-trivial dg A-modules. As a dg A-module,
we have I ∼= HomA#H(A#H, I). Hence we get

HomA(−, I) ∼= HomA(−, HomA#H(A#H, I)) ∼= HomA#H(A#H ⊗A −, I).

Since A#H is a free right dg A-module, A#H ⊗A − preserves quasi-trivial dg
A-modules. Therefore HomA(−, I) preserves the quasi-trivial dg modules.

The other direction follows from the following isomorphism:

HomA#H(−, I) ∼= ( )H ◦ HomA(−, I).
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Lemma 2.7. Let P and Q be dg A#H-modules. If H is finite dimensional, then there is a
natural isomorphism of complexes of vector spaces:

HomA#H(P ⊗ H, Q ⊗ H) ∼= HomA(P, Q)⊗ H.

Proof. By Lemma 2.2, we have

HomA#H(P ⊗ H, Q ⊗ H) ∼= HomA(P ⊗ H, Q ⊗ H)H.

On the other hand, we have an isomorphism of complexes of H-modules

HomA(P ⊗ H, Q ⊗ H) ∼= Hom(H, HomA(P, Q ⊗ H)).

Hence

HomA#H(P ⊗ H, Q ⊗ H) ∼= Hom(H, HomA(P, Q ⊗ H))H

∼= HomH(H, HomA(P, Q ⊗ H))
∼= HomA(P, Q ⊗ H)
∼= HomA(P, Q)⊗ H.

We may write out explicitly the isomorphism in the lemma above as

θ : HomA(P, Q)⊗ H −→ HomA#H(P ⊗ H, Q ⊗ H),

acting on elements as

θ( f ⊗ h)(p ⊗ g) = g(2) f (S−1(g(1))p)⊗ g(3)h,

where f ∈ HomA(P, Q), p ∈ P and g, h ∈ H.
Let M be a dg A#H-module. Let P be a K-projective resolution of the dg

A#H-module M. From Proposition 2.5, it follows that P is also K-projective as
a dg A-module. Then RHomA(M, M) = HomA(P, P), and hence is a dg alge-
bra. By Lemma 2.3, RHomA(M, M) is a dg H-module algebra. Of course the dg
H-module algebra structure of RHomA(M, M) depends on the choice of the K-
projective resolution of M. However the dg algebra structures on RHomA(M, M)
induced from different K-projective resolutions are quasi-isomorphic to each other
as A∞-algebras. This does not matter since such dg algebras have the same ho-
mological properties. Also the H-module structures are compatible with the as-
sociated quasi-isomorphisms.

Theorem 2.8. Let H be a finite dimensional semisimple Hopf algebra, A a dg H-module
algebra. If M is a dg A#H-module, then there is a quasi-isomorphism of dg algebras:

RHomA(M, M)#H −→ RHomA#H(M ⊗ H, M ⊗ H).

Proof. Let P be a K-projective resolution of the dg A#H-module M. Then dg A#H-
module P⊗ H is quasi-isomorphic to the dg A#H-module M⊗ H. By Proposition
2.5, P⊗ H is a K-projective dg A#H-module. Hence we have RHomA#H(M, M) =
HomA#H(P ⊗ H, P ⊗ H) and RHomA(M, M) = HomA(P, P). By Lemma 2.7, we
have a quasi-isomorphism of complexes:

θ : HomA(P, P)⊗ H −→ HomA#H(P ⊗ H, P ⊗ H),
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and for f ∈ HomA(P, P), h, g ∈ H and p ∈ P,

θ( f ⊗ h)(p ⊗ g) = g(2) f (S−1(g(1))p)⊗ g(3)h.

We claim that θ is a morphism of dg algebras.
For homogeneous elements f , f ′ ∈ HomA(P, P), h, h′, g ∈ H and p ∈ P, we

have
θ(( f ′#h′)( f #h))(p ⊗ g)

= θ( f ′ ∗ (h′(1) ⇀ f )#h′(2)h)(p ⊗ g)

= g(2)[ f
′ ∗ (h′(1) ⇀ f )](S−1(g(1))p)⊗ g(3)h

′
(2)h

= (−1)| f ||g|g(2)(h
′
(1) ⇀ f )

(

f ′(S−1(g(1))p
)

⊗ g(3)h
′
(2)h,

and

[θ( f ′#h′) ∗ θ( f #h)](p ⊗ g)

= (−1)| f ||g|θ( f #h) ◦ θ( f ′#h′)(p ⊗ g)

= (−1)| f ||g|θ( f #h)(g(2) f ′(S−1(g(1))p)⊗ g(3)h
′)

= (−1)| f ||g|g(4)h
′
(2) f [S−1(g(3)h

′
(1))g(2) f ′(S−1(g(1))p)] ⊗ g(5)h

′
(3)h

= (−1)| f ||g|g(2)(h
′
(1) ⇀ f )

(

f ′(S−1(g(1))p
)

⊗ g(3)h
′
(2)h.

Hence θ is compatible with the multiplications, and by Lemma 2.7 it is a quasi-
isomorphism.

Let M and N be dg A#H-modules. Since RHomA(M, N) is a complex of H-

modules, the extension group Ext∗A(M, N) = ⊕i∈Z Exti
A(M, N) is a graded H-

module, and Ext∗A(M, M) is a graded H-module algebra.

Corollary 2.9. Let A and H be as above, M and N be dg A#H-modules.

(i) Ext∗A#H(M, N) ∼= Ext∗A(M, N)H ;

(ii) Ext∗A#H(M, M) ∼= Ext∗A(M, M)H as graded algebras;

(iii) Ext∗A#H(M ⊗ H, M ⊗ H) ∼= Ext∗A(M, M)#H as graded algebras.

Proof. (i) Let P and Q be K-projective resolutions of the dg A#H-modules M
and N respectively. Then RHomA#H(M, N) = HomA#H(P, Q) ∼= HomA(P, Q)H .
Hence

Ext∗A#H(M, N) = H∗(RHomA#H(M, N)) ∼= H∗(HomA(P, Q)H)
∼= (H∗ HomA(P, Q))H ∼= Ext∗A(M, N)H .

The assertion (ii) is directly from (i). Then assertion (iii) is a direct consequence
of Theorem 2.8.

Group actions on extension groups have been discussed by several authors
(see [19, 20]) by the use of the traditional homological tools. In Corollary 2.9,
when H = kG is a group algebra of finite group G, then assertion (ii) becomes
Proposition 2.6 in [20], and assertion (iii) becomes Theorem 10 in [19]. Moreover,
assertion (iii) is a generalization of [24, Theorem 2.3] to the level of derived func-
tors.
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3 Applications

Throughout this section, H is a finite dimensional semisimple Hopf algebra.

3.1 Hopf algebra actions on d-Koszul algebras

Let R = ⊕n≥0Rn be a positively graded algebra such that R0 is semisimple,
dimRi < ∞ for all i ≥ 0 and RiRj = Ri+j. Recall that R is called a homoge-
neous algebra if R ∼= TR0

(R1)/I, where I is an ideal generated by elements in
R1 ⊗R0

· · · ⊗R0
R1

︸ ︷︷ ︸

d f actors

(d ≥ 2). R is called a connected graded algebra if R0
∼= k. A

homogeneous algebra R is called a d-Koszul algebra if the trivial module R0 has a
graded projective resolution

· · · −→ P−n −→ P−n+1 −→ · · · −→ P0 −→ R0 −→ 0,

such that the graded module P−n is generated in degree n
2 d if n is even and n−1

2 d+
1 if n is odd for all n ≥ 0. When d = 2, then a d-Koszul algebra is usually
called a Koszul algebra which was introduced by Priddy in [21]. The concept of
d-Koszul algebra was introduced by Berger in [2], where a d-Koszul algebra is
called a generalized Koszul algebra. Many interesting algebras are proved to be
d-Koszul algebras. For example, 3-dimensional graded Calabi-Yau algebras [6]
are d-Koszul algebras.

For simplicity, write Ei(R) = Exti
R(R0, R0) and E(R) = ⊕i≥0 Exti

R(R0, R0). En-
dowed with the Yoneda product, E(R) is a graded algebra. We call E(R) some-
times the Yoneda Ext-algebra of R. For the d-Koszul algebras, we have the follow-
ing properties.

Theorem 3.1. [3, 5, 11, 12] Let R be as above.

(i) R is a Koszul algebra if and only if E(R) is generated by E0(R) and E1(R).

(ii) If R is a homogeneous algebra, then R is a d-Koszul algebra (d ≥ 3) if and only if
E(R) is generated by E0(R), E1(R) and E2(R).

Applying the main result from the last section, we are able to show that the
d-Koszulness of a graded algebra can be lifted to a smash product of the graded
algebra.

Theorem 3.2. Let R be a homogeneous algebra. Assume that there is an H-action on R
so that R is a graded H-module algebra. Then R#H is a d-Koszul algebra if and only if R
is a d-Koszul algebra. Moreover, E(R#H) ∼= E(R)#H.

Proof. Since R is an H-module algebra, R is a graded R#H-module. In particular,
R0 is an R#H-module. Let

P• := · · · −→ P−n −→ P−n+1 −→ · · · −→ P0 −→ R0 −→ 0
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be a graded projective resolution of the R#H-module R0. Write B = R#H. Then
B0 = R0#H. As a left graded B-module, B0

∼= R0 ⊗ H, where the left B-module
structure of R0 ⊗ H is defined by the equation (2). Therefore

· · · −→ P−n ⊗ H −→ P−n+1 ⊗ H −→ · · · −→ P0 ⊗ H −→ B0 −→ 0

is a graded projective resolution of the B-module B0. We have the following iso-
morphisms of graded algebras

E(R#H) = ⊕i≥0Hi HomR#H(P
• ⊗ H, P• ⊗ H)

∼= ⊕i≥0Hi(HomR(P
•, P•)#H)

∼= E(R)#H.

It is clear that E(R#H) is generated by E0(R#H), E1(R#H) and E2(R#H) if and
only if E(R) is generated by E0(R), E1(R) and E2(R). Now the proof follows
directly from Theorem 3.1.

If R is Koszul and H is the group algebra of a finite group G, then the theorem
above implies [19, Theorem 14].

3.2 Calabi-Yau algebras

Let R be a positively graded algebra, Re = R⊗ Rop be the enveloping algebra. R is
called a graded Calabi-Yau algebra of dimension p (in the sense of Ginzburg [9]) if (i)
R is homologically smooth, that is, as an Re-module R has a projective resolution
of finite length given by finitely generated modules; (ii) there is a graded R-R-
bimodule isomorphism [4]

Exti
Re(R, Re) ∼=

{
0, i 6= p,
R(l), i = p,

(3)

where l is an integer, and R(l) is the shift of R.
Let E be a finite dimensional graded algebra. We say that E is graded symmetric

if there is an integer n and a homogeneous nondegenerate bilinear form 〈−,−〉 :

E × E −→ k(n) such that 〈xy, z〉 = 〈x, yz〉 and 〈x, y〉 = (−1)|x||y|〈y, x〉 for all
homogeneous elements x, y, z ∈ E.

Proposition 3.3. Let Q be a finite quiver. A d-Koszul algebra R = kQ/I is a Calabi-Yau
algebra if and only if E(R) is a graded symmetric algebra.

Proof. Assume that R is a Calabi-Yau algebra of dimension p. By [15, Lemma
4.1] the triangulated category Db(R) is a Calabi-Yau category, where Db(R) is the
triangulated subcategory of the derived category of R consisting of complexes
whose cohomology has finite total dimension. Then the Yoneda Ext-algebra
E(R) = ⊕n≥0 Extn

R(R0, R0) = ⊕0≤n≤p HomDb(R)(R0, R0[n]) is graded symmetric

(see [15, Sect. 2.6], or the appendix of [6]).
Conversely, assume E(R) is graded symmetric. Suppose that the global di-

mension of R is p. By [3, Theorem 1.2] or [18, Theorem 12.5], R is an AS-Gorenstein
algebra. By [4, Proposition 4.5] R is a Calabi-Yau algebra of dimension p if and
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only if εp+1 ◦ φ = id, where ε is the isomorphism of R defined by ε(r) = (−1)|r|r
for a homogeneous element r ∈ R, and φ is the isomorphism of R such that φ|R1

is the dual map of the restriction map of the Nakayama automorphism of E(R)
to E1(R). If d ≥ 3, then gldim(R) = p must be odd. In this case, E(R) is exactly a
symmetric algebra. Hence the Nakayama automorphism of E(R) is the identity.
Therefore φ = id. Since p is odd, εp+1 = id. Hence εp+1 ◦ φ = id. That is, R is
a Calabi-Yau algebra. If d = 2, then gldim(R) = p can be any positive integer.
Thus if p is odd, the proof is the same as above. However, if p is even, then the

Nakayama automorphism ν of E(R) satisfies ν(x) = (−1)|x|x for homogeneous
elements x ∈ E(R). Hence φ = ε and εp+1 ◦ φ = id. That is, R is a Calabi-Yau
algebra.

Let G be a finite group. Suppose that R is an N × G-graded algebra such
that R0,e = k and R0,g = 0 for g 6= e, and Ri = ⊕g∈GRi,g is finite dimensional
for all i ≥ 0. Let M and N be finite generated N × G-graded R-modules. Then
HomR(M, N) is an N × G-graded vector space. On the other hand, the N × G-
graded algebra R has a natural kG∗-module structure so that it is an (N-)graded
kG∗-module algebra. Similarly, the graded N × G-graded R-modules M and N
can be regarded as graded R#kG∗-modules. Hence HomR(M, N) is a graded
kG∗-module with the module structure given by the equation (1). However, the
N × G-grading on HomR(M, N) also induces a graded kG∗-module structure.
It is not hard to check that the two kG∗-modules described as above coincide.
Similarly, if P• and Q• are complexes of graded N × G-graded R-modules, then
HomR(P

•, Q•) is a complex of N × G-graded vector spaces.
We say that an N × G-graded algebra R is a Calabi-Yau algebra of dimension p

if the isomorphism in (3) also respects the G-grading. That is, the isomorphism
Ext

p
Re(R, Re) ∼= R(l) is also an isomorphism of G-graded spaces.

Corollary 3.4. Let R be as above. Then R is a d-Koszul Calabi-Yau algebra of dimension
p, then so is R#kG∗.

Proof. If R is a d-Koszul algebra, by Theorem 3.2 R#kG∗ is a d-Koszul algebra.
By Theorem 2.8, RHomR#kG∗(k ⊗ kG∗, k ⊗ kG∗) ∼= RHomR(k, k)#kG∗ . Since R is a
Calabi-Yau algebra of dimension p, the global dimension of R is p. Let

P• := 0 −→ P−p −→ · · · −→ P−1 −→ P0 −→ k −→ 0

be a minimal N × G-graded projective resolution of the trivial module k. By the
Koszulness of R, the projective module Pi is finitely generated for all i ≤ 0. Now

RHomR(k, k)#kG∗ = HomR(P
•, P•)#kG∗,

and hence

E(R#kG∗) ∼= H∗(HomR(P
•, P•))#kG∗ ∼= E(R)#kG∗ .

Since the Yoneda Ext-algebra E(R) is the cohomology algebra of the dg alge-
bra HomR(P

•, P•), which certainly respects the N × G-gradings of the projective
modules, E(R) is an N×G-graded algebra. Since R is Calabi-Yau and the isomor-
phism Ext

p
Re(R, Re) ∼= R(l) is also an isomorphism of G-graded vector spaces, one
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can check easily that E(R) is in fact an N × G-graded symmetric algebra. Then
E(R)#kG∗ must be a graded symmetric algebra. It follows that E(R#kG∗) is a
graded symmetric algebra. Therefore R#kG∗ is a Calabi-Yau algebra by Propo-
sition 3.3. Note that the global dimensions of R and R#kG∗ are the same. Thus
R#kG∗ is also a Calabi-Yau algebra of dimension p since the global dimension of
R#kG∗ coincides with the Calabi-Yau dimension.

The above corollary is also a direct consequence of [7, Theorem 17] since in this
case Ext

p
R(R, Re) is isomorphic to R(l) both as an R-R-bimodule and as a left kG∗-

modules. The method of [7] is meant to compute the Hochschild cohomology
of the smash product algebra by utilizing the spectral sequence obtained in [23].
However, when it comes to d-Koszul case we only need to compute the Yoneda
Ext-algebra of the smash product R#kG∗.

Example 3.5. Let R = k[x, y, z] be the polynomial algebra. With the natural grad-
ing, R is a N-graded algebra. It is well known that R is a Koszul Calabi-Yau
algebra of dimension 3. Let λ be a primitive nth root of unit, and G = {λi|i ∈ Z}
be the group generated by λ. Set Ri,g = 0 if g 6= λi and Ri,λi = Ri. Then R is
an N × G-graded algebra. By Theorem 3.2, R#kG∗ is a Koszul algebra. In fact,
R#kG∗ is a Galois covering [10, 20] of the polynomial algebra k[x, y, z]. Explicitly,
let Q be the quiver

s

x

y z
�-~

with relations ρ = {xy − yx, xz − zx, zy − yz}. Let Q′ be the following quiver:

s
1

sλ1

sλ2

s

λ3

sλ4

sλn−1
Z
Z
Z~

Z
Z
Z~

Z
Z
Z~
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�

�=
�

�
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�
�

�=Z
Z

Z}

Z
Z

Z}

Z
Z

Z}

�
�
�>

�
�
�>

�
�
�>

...
...
...

For each 0 ≤ i ≤ n − 1, the arrows leaving from the vertex λi are labeled as xi, yi

and zi respectively. The relations of the quiver Q′ is ρ′ = {xi+1yi − yi+1xi, xi+1zi −
zi+1xi, yi+1zi − zi+1yi|0 ≤ i ≤ n − 1}, where xn = x0, yn = y0 and zn = z0. Define
a map F : (Q′, ρ′) −→ (Q, ρ) of graphs with relations by sending all the vertices
to the unique vertex of Q and sending arrows xi to x, yi to y and zi to z for all i.
Then F is a regular covering in the sense of [10]. Let S = kQ′/(ρ′) be the quotient
algebra of the path algebra kQ′ by modulo the two-side ideal generated by the
relations ρ′. Then it is direct to check that R#kG∗ ∼= S as N-graded algebras.

In general, R#kG∗ is not a Calabi-Yau algebra. This is because the kG∗-action
on R is not compatible with the Calabi-Yau property of R. In fact, R is Calabi-Yau
of dimension 3 as an N × G-graded algebra if and only if λ is a third primitive
root of the unit. Now if G = {1, λ, λ2}, then, by Corollary 3.4, R#kG∗ is a Calabi-



Hopf algebra actions on DGA 109

Yau algebra of dimension 3. The associated quiver Q′ is as follows:

s
1

sλ1
sλ2

Z
Z
Z~

Z
Z
Z~

Z
Z
Z~�

�
�>

�
�
�>

�
�
�>

��
�

By [6, 22], R#kG∗ must be defined by a superpotential W ′ ∈ kQ′/[KQ′ , kQ′] so
that R#kG∗ ∼= kQ′/(∂aW ′|a ∈ Q′

1). In fact, the defining superpotential of k[x, y, z]
is W = xyz − yxz, and the defining superpotential of R#kG∗ is the “lifting” of W,
that is, W ′ = f1 + f2 + f3, where f1 = x2y1z0 − y2x1z0, f2 = z2x1y0 − x2z1y0, and
f3 = y2z1x0 − z2y1x0.

3.3 Koszul dg algebras and AS-Gorenstein dg algebras

The concept of Koszul dg algebra was introduced in [13]. It was shown that there
were some duality properties between a Koszul dg algebra and its Yoneda Ext-
algebra.

Definition 3.6. [13, 18] Let A = ⊕n≥0An be a dg algebra such that A0 is semisim-
ple and the differential vanishes on A0.

(i) A is called a Koszul dg algebra if Exti
A(A0, A0) = 0 for i 6= 0.

(ii) A is called a AS-Gorenstein dg algebra (AS stands for Artin-Schelter) if there
is an integer n such that RHomA(A0, A) ∼= A0[n] as right dg A-modules.

Proposition 3.7. Let A be a dg H-module algebra. Then A is a Koszul dg algebra if and
only if A#H is a Koszul dg algebra.

Proof. Since A0 is semisimple, A0#H is also semisimple. By Corollary 2.9,

Ext∗A#H(A0#H, A0#H) ∼= Ext∗A(A0, A0)#H

as graded algebras. Hence Exti
A#H(A0#H, A0#H) = 0 for i 6= 0 if and only if

Exti
A(A, A) = 0 for all i 6= 0. The proof then follows directly from Definition

3.6.

Proposition 3.8. Let A be a dg H-module algebra such that A0 = k. Then A is an
AS-Gorenstein dg algebra if and only if A#H is an AS-Gorenstein dg algebra.

Proof. By Theorem 2.8, RHomA#H(A0#H, A#H) ∼= RHomA(A0, A)#H. Moreover,
from the proof of Theorem 2.8, one sees that the isomorphism is compatible
with the right A#H-module structures. If A is AS-Gorenstein, then RHomA#H

(A0#H, A#H) ∼= A0#H[n]. Hence A#H is an AS-Gorenstein algebra. Conversely,
if A#H is AS-Gorenstein, then RHomA(A0, A)#H ∼= A0#H[n] ∼= H[n]. It fol-
lows that Exti

A(A0, A) = 0 for i 6= n, and Extn
A(A0, A) must be of dimension

1. By suitable truncations of the right dg A-module RHomA(A0, A), we get
RHomA(A0, A) ∼= k[n]. Therefore A is AS-Gorenstein.
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[4] R. Berger and R. Taillefer, Poincaré-Birkhoff-Witt deformations of Calabi-Yau al-
gebras, J. Noncommut. Geom. 1 (2007), 241–270.

[5] A.A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in repre-
sentation theory, J. Amer. Math. Soc. 9 (1996), 473–527.

[6] R. Bocklandt, Graded Calabi-Yau algebras of dimension 3, J. Pure Appl. algebra
212 (2008), 14–32.

[7] M. Farinati, Hochschild duality, localization, and smash products, J. Algebra 284
(2005), 415–434.

[8] Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Grad.
Texts Math. 205, Springer-Verlag, New York, 2001.

[9] V. Ginzburg, Calabi-Yau algebras, arxiv:math.AG/0612139.

[10] E.L. Green, Graphs with relations, coverings and group-graded algebras, Trans.
Amer. Math. Soc. 279 (1983), 297–310.

[11] E.L. Green, E.N. Marcos, R. Martı́nez-Villa and P. Zhang, D-Koszul algebras,
J. Pure Appl. Algebra 193 (2004), 141–162.

[12] J.-W. He and D.-M. Lu, Higher Koszul Algebras and A-infinity Algebras, J. Al-
gebra 293 (2005), 335–362.

[13] J.-W. He and Q.-S. Wu, Koszul differential graded algebras and BGG correspon-
dence, J. Algebra 320 (2008), 2934–2962.

[14] B. Keller, On differential graded categories, International Congress of Mathe-
maticians, II (2006), 151–190, Eur. Math. Soc., Zürich.
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