On natural representations of the symplectic group

R. J. Blok I. Cardinali A. Pasini

Abstract

Let V_{k} be the Weyl module of dimension $\binom{2 n}{k}-\binom{2 n}{k-2}$ for the group $G=\operatorname{Sp}(2 n, \mathbb{F})$ arising from the k-th fundamental weight of the Lie algebra of G. Thus, V_{k} affords the grassmann embedding of the k-th symplectic polar grassmannian of the building associated to G. When $\operatorname{char}(\mathbb{F})=p>0$ and n is sufficiently large compared with the difference $n-k$, the G-module V_{k} is reducible. In this paper we are mainly interested in the first appearance of reducibility for a given $h:=n-k$. It is known that, for given h and p, there exists an integer $n(h, p)$ such that V_{k} is reducible if and only if $n \geq n(h, p)$. Moreover, let $n \geq n(h, p)$ and R_{k} the largest proper non-trivial submodule of V_{k}. Then $\operatorname{dim}\left(R_{k}\right)=1$ if $n=n(h, p)$ while $\operatorname{dim}\left(R_{k}\right)>1$ if $n>n(h, p)$. In this paper we will show how this result can be obtained by an investigation of a certain chain of G-submodules of the exterior power $W_{k}:=\wedge^{k} V$, where $V=V(2 n, \mathbb{F})$.

1 Introduction

Let V be a $2 n$-dimensional vector space over a field \mathbb{F} and, for a given nondegenerate alternating form $\alpha(.,$.$) of V$, let $G \cong \operatorname{Sp}(2 n, \mathbb{F})$ be the symplectic group associated with it. Let Δ be the building associated to the group G. So, the elements of Δ of type $k=1,2, \ldots, n$ are the k-dimensional subspaces of V totally isotropic for the form α.

[^0]

For $1 \leq k \leq n$, let \mathcal{G}_{k} be the k-th grassmannian of $\operatorname{PG}(V)$, where the k-subspaces of V are taken as points. The lines of \mathcal{G}_{k} are the sets $l_{X, Y}=\{Z \mid X \subset Z \subset$ $Y, \operatorname{dim}(Z)=k\}$ for a $(k+1)$-subspace Y of V and a $(k-1)$-subspace X of Y. Put $W_{k}:=\wedge^{k} V$ and let $\iota_{k}: \mathcal{G}_{k} \mapsto \operatorname{PG}\left(W_{k}\right)$ be the natural embedding of \mathcal{G}_{k} in $\operatorname{PG}\left(W_{k}\right)$, sending a k-subspace $\left\langle v_{1}, \ldots, v_{k}\right\rangle$ of V to the 1 -dimensional subspace $\left\langle v_{1} \wedge \ldots \wedge v_{k}\right\rangle$ of W_{k}. Let Δ_{k} be the k-th grassmannian of Δ, elements of Δ of type k being taken as points of Δ_{k}. When $1<k<n$ the lines of Δ_{k} are the lines $l_{X, Y}$ of \mathcal{G}_{k} where X and Y are totally α-isotropic, while Δ_{1} and Δ_{n} are respectively the polar space and the dual polar space associated to Δ. In any case, Δ_{k} is a full subgeometry of \mathcal{G}_{k}. The embedding ι_{k} induces an embedding $\varepsilon_{k}: \Delta_{k} \mapsto \operatorname{PG}\left(V_{k}\right)$, where V_{k} is the subspace of W_{k} spanned by $\iota_{k}\left(\Delta_{k}\right)$. We call ε_{k} the grassmann embedding of Δ_{k}. When $\operatorname{char}(\mathbb{F}) \neq 2$ the embedding ε_{k} is universal (Blok [3]).

The group G acts on V_{k} via ε_{k}. In the language of Chevalley groups, V_{k} is the Weyl module obtained from the irreducible module for the complex Lie algebra of type C_{n} whose highest weight is the k-th fundamental dominant weight, by tensoring a minimal admissible lattice with the field \mathbb{F}. Since this process does not reduce the dimension, it follows from Weyl's dimension formula that $\operatorname{dim}\left(V_{k}\right)=$ $\binom{2 n}{k}-\binom{2 n}{k-2}$.

The G-module V_{k} is irreducible when $\operatorname{char}(\mathbb{F})=0$. On the other hand, when $\operatorname{char}(\mathbb{F})=p>0$ the module V_{k} can be reducible. Explicitly, V_{k} admits a unique maximal proper G-submodule R_{k} and the dimension $f_{k}:=\operatorname{dim}\left(V_{k} / R_{k}\right)$ can be computed with the help of the following recursive formula (Premet and Suprunenko [15]; also Adamovich [1] for the case of $\operatorname{char}(\mathbb{F})=2$; see also Brouwer [8]):

$$
\begin{equation*}
f_{k}=\binom{2 n}{k}-\binom{2 n}{k-2}-\sum_{j \in J_{p}(k)} f_{j} \tag{1}
\end{equation*}
$$

where $J_{p}(k):=\left\{j \mid 0 \leq j<k, k-j \equiv 0(\bmod 2), n-j+1 \geq_{p}(k-j) / 2\right\}$ and, for two integers $a \geq b \geq 0$, expressed as $a=a_{0}+a_{1} p+\cdots+a_{r} p^{r}$ and $b=b_{0}+b_{1} p+\ldots b_{s} p^{s}$ to the base p, we write $a \geq_{p} b$ and say that a contains b to the base p if $s \leq r$ and for every $i=1, \ldots, s$ either $b_{i}=a_{i}$ or $b_{i}=0$.

The following is a corollary of the proof of (1) by Premet and Suprunenko [15]. Choose a nonnegative integer h and for $n>h$ put $k=n-h$. Let $N(h, p)$ be the smallest integer $n>h$ such that p divides $\binom{1+\lfloor(n+h) / 2\rfloor}{ h+1}$. Then

Theorem 1.1. The G-module V_{k} is reducible if and only if $n \geq N(h, p)$. If $n=N(h, p)$ then $\operatorname{dim}\left(R_{k}\right)=1$. If $n>N(h, p)$ then $\operatorname{dim}\left(R_{k}\right)>1$.

In their investigation, Premet and Suprunenko (as well as Brouwer) focus on the structure of weight spaces of V_{k}. In doing this, they ultimately rely on the theory of Specht modules for symmetric groups. This approach is perfect in its own kind, but a geometry-oriented reader might want something else. The approach by Adamovich [1] is different, but even less geometric.

During a visit of the first author to the University of Siena in the summer of 2007, we laid down the project of developing a more geometric approach to this matter. We don't aim at a strikingly simple proof of (1). Rather, we believe there are still interesting facts that, concealed under the approach of [15], wait to be discovered. In a sense, our project is a pretext to enlight a few of them. This paper is a first contribution to our project. It is also a continuation of earlier papers as [11], [6], [7] and [9], which quite naturally fit with this project.

Throughout this paper we assume char $(\mathbb{F}) \neq 2$ (as Premet and Suprunenko do in [15]). We will say a few words on this restriction at the end of this introduction.

The following characterization of R_{k} is crucial in our investigation. Note first that the grassmann embedding ε_{k} of Δ_{k} is polarized, in the following sense: for every point X of Δ_{k}, the ε_{k}-image $\varepsilon_{k}(H(X))$ of the set $H(X)$ of points of Δ_{k} at nonmaximal distance from X spans a hyperplane $H(X)_{k}:=\left\langle\varepsilon_{k}(H(X))\right\rangle$ of $\operatorname{PG}\left(V_{k}\right)$. Then

$$
\begin{equation*}
R_{k}=\bigcap\left(H(X)_{k} \mid X \text { point of } \Delta_{k}\right) \tag{2}
\end{equation*}
$$

This is proved by Blok [4] for arbitrary Lie incidence geometries associated to Chevalley groups by considering a certain contravariant form β, whose radical is exactly R_{k}. (See also [7], where (2) is proved for any embeddable dual polar space, provided it is defined over a commutative division ring.) According to (2), the subspace R_{k} defines a quotient ε_{k} / R_{k} of ε_{k} and the embedding ε_{k} / R_{k} is the minimal homogeneous embedding as well as the minimal polarized embedding of Δ_{k}. Equivalently, every homogeneous embedding of Δ_{k} is polarized. Moreover, as we will see in Section 2, a non-degenerate bilinear form $\alpha_{k}(. .$.$) can be defined$ on W_{k} such that, for any two points X and Y of Δ_{k} and any non-zero vectors $x \in \varepsilon_{k}(X), y \in \varepsilon_{k}(Y)$, we have $\alpha_{k}(x, y)=0$ if and only if $X \in H(Y)$. By (2), R_{k} is precisely the radical of the restriction of α_{k} to $V_{k} \times V_{k}$. In other words, $R_{k}=V_{k} \cap$ $V_{k}^{\perp_{k}}$, where \perp_{k} stands for the orthogonality relation with respect to α_{k}. A relation certainly exists between α_{k} and the above mentioned form β but this point is not yet completely clear to us.

We call R_{k} the radical of ε_{k}. Our project amounts to investigate R_{k}. We shall firstly investigate the structure of the G-module W_{k} introducing what we call its basic series, namely a chain

$$
V_{k}=W_{k}^{(k)} \subset W_{k-2}^{(k)} \subset W_{k-4}^{(k)} \subset \ldots \subset W_{k-2\lfloor k / 2\rfloor}^{(k)}=W_{k}
$$

of G-invariant subspaces of W_{k} such that, for every integer i with $0 \leq i<k / 2-1$, the quotient $W_{k-2 i}^{(k)} / W_{k-2 i+2}^{(k)}$ affords the embedding $\varepsilon_{k-2 i}: \Delta_{k-2 i} \rightarrow \operatorname{PG}\left(V_{k-2 i}\right)$ (see Theorem 3.5). When k is odd the clause $i<k / 2-1$ is equivalent to $i<\lfloor k / 2\rfloor$. When k is even and $i=k / 2-1$ then $W_{2}^{(k)}$ is a hyperplane of $W_{0}^{(k)}=W_{k}$. In this case $W_{0}^{(k)} / W_{2}^{(k)}$ is 1-dimensional (a trivial module for G).

In Section 4 we prove that if k is odd then G acts fixed-point-freely on $\operatorname{PG}\left(W_{k}\right)$ while when k is even G admits exactly one fixed-point P on $\operatorname{PG}\left(W_{k}\right)$, which we call the pole of G on W_{k}. Actually, $P=\left(W_{2}^{(k)}\right)^{\perp_{k}}$. The pple P seems to be ultimately responsible for R_{k} being non-trivial.

Indeed, chosen a nonnegative integer h, let n range in the set of integers $n>h$ and put $k:=n-h$, as we have done before. Let $p=\operatorname{char}(\mathbb{F})$. If $p=0$ then $R_{k}=0$ for every k. In this case, when k is even, the pole P always sits outside $W_{2}^{(k)}$. In particular, it sits out of the first member $V_{k}=W_{k}^{(k)}$ of the basic series. Let $p>0$. Then, as we shall see in Section 5, there exists an even nonnegative integer $k(h, p)$, depending on h and p, such that $R_{k}=0$ if and only if $n<n(h, p):=$ $k(h, p)+h$. In fact, as long as $n<n(h, p)$ (and $k=n-h$ is even) P travels from one member of the basic series to another one, but keeping out of the deepest member $V_{k}=W_{k}^{(k)}$ of the series. As soon as $n=n(h, p)$ the pole P enters V_{k}. In this case $R_{k}=P$. If $n>n(h, p)$ then $\operatorname{dim}\left(R_{k}\right)>1$ and R_{k} contains possibly improper submodules generated by poles of subspaces of V_{k} generated by $\varepsilon_{k}{ }^{-}$ images of subgeometries of Δ_{k} corresponding to residues of certain elements of Δ. Our dream is to explain formula (1) in this perspective, but this goes far beyond what we can do at present, provided it can be done. In this paper, leaving that dream aside for the moment, we will mainly focus on $n(h, p)$.

In Section 5 (Theorem 5.7) we exploit our approach to prove that $n(h, p) \leq$ $N(h, p)$, where $N(h, p)$ is as in Theorem 1.1. We also give a very simple explicit expression for $N(h, p)$. Moreover, we prove that, if $h+1 \not \equiv 0(\bmod p)$, then $n(h, p)=N(h, p)$ (Theorem 5.8). However $n(h, p)=N(h, p)$ for any value of h, as we know by Theorem 1.1, no matter if p divides $h+1$ or not. Regretfully, we are presently unable to squeeze this equality out of our approach when $h+1 \equiv 0$ $(\bmod p)$.

We must mention that a different proof of Theorem 1.1 has also been obtained by De Bruyn [13]. The proof by De Bruyn is remarkable. It only exploits elementary linear algebra: no Lie algebras and almost no groups. However it goes on through rather complicated computations which, as we feel, do not help so much to catch the very substance of what is going on.

As we have said above, we assume char $(\mathbb{F}) \neq 2$. The following is the main reason for this restriction. In a few arguments of ours we will exploit the fact that the embedding ε_{k} is universal, but this can be false when $\operatorname{char}(\mathbb{F})=2$. Most likely, those arguments can be modified so that to work in the case of characteristic 2 as well, but we prefer to keep this task for a future work.

2 Preliminaries

2.1 Notation

Let $\mathbb{F}, n, V, \alpha(.,), G,. \Delta, \Delta_{k}, \mathcal{G}_{k}, \iota_{k}, \varepsilon_{k}, W_{k}$ and V_{k} be as in the introduction. As said in the introduction, we assume $\operatorname{char}(\mathbb{F}) \neq 2$. Also, $n \geq 2$.

A linear mapping $f: V \rightarrow V$ can be carried to W_{k} in two different ways. Given an ordered basis $\mathbb{E}=\left(e_{1}, \ldots, e_{2 n}\right)$ of V, which we may assume to be hyperbolic for the form α, consider the following basis of W_{k} :

$$
\wedge^{k} \mathbb{E}:=\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \ldots e_{i_{k}}: 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq 2 n\right\}
$$

We denote by $(f)_{k}$ and $[f]_{k}$ the linear mappings of W_{k} defined as follows on the vectors of $\wedge^{k} \mathbb{E}$:

$$
\begin{aligned}
& (f)_{k}: e_{i_{1}} \wedge \ldots \wedge e_{i_{k}} \mapsto f\left(e_{i_{1}}\right) \wedge \ldots \wedge f\left(e_{i_{k}}\right) \\
& {[f]_{k}:}
\end{aligned} e_{i_{1}} \wedge \ldots \wedge e_{i_{k}} \mapsto \sum_{r=1}^{k} e_{i_{1}} \wedge \ldots \wedge e_{i_{r-1}} \wedge f\left(e_{i_{r}}\right) \wedge e_{i_{r+1}} \wedge \ldots \wedge e_{i_{k}} .
$$

For every subgroup X of $G L(V)$, we denote by $(X)_{k}$ the image of X by the mapping $(.)_{k}$ sending $f \in X$ to $(f)_{k}$. Note that $(X)_{k}$ might be non-isomorphic to X. However, denoted by Z and Z_{k} the centers of $G L(V)$ and $G L\left(W_{k}\right)$ respectively, $(.)_{k}$ induces an isomorphism from $X /(X \cap Z)$ to $(X)_{k} /(X)_{k} \cap Z_{k}$. In other words, X and $(X)_{k}$ are projectively isomorphic. Let $\mathcal{L}(V)$ be the Lie algebra of all linear mappings of V. Then for every subalgebra X of $\mathcal{L}(V)$ the mapping $[\cdot]_{k}$ sending f to $[f]_{k}$ induces an isomorphism from X to a subalgebra $[X]_{k}$ of the Lie algebra $\mathcal{L}\left(W_{k}\right)$ of all linear transformations of W_{k}.

The image $(G)_{k}$ of $G=\operatorname{Sp}(2 n, \mathbb{F})$ by $(.)_{k}$ stabilizes the subspace V_{k} of W_{k}. Similarly, V_{k} is stabilized by the image $[L(G)]_{k}$ of the Lie algebra $L(G)$ of G. According to this, in the sequel we will freely regard $(.)_{k}$ and $[.]_{k}$ as mappings from G to $G L\left(V_{k}\right)$ and from $L(G)$ to the Lie algebra $\mathcal{L}\left(V_{k}\right)$ of linear mappings of V_{k}, whenever this point of view will be convenient.

When there will be no danger of confusion, for a subgroup X of G we will simply write X instead of $(X)_{k}$. In particular, if $(X)_{k}$ stabilizes a subspace K of W_{k} then we say that K is X-invariant.

2.2 Point-stabilizers and their unipotent radicals

In this subsection we recall a number of known facts on stabilizers of elements of Δ_{k} in $G=\operatorname{Sp}(2 n, \mathbb{F})$. Steinberg [17], Carter [12] and Tits [18, Chapter 13] are our main sources for this matter.

Given a point S of Δ_{k} let G_{S} be its stabilizer in G. Then $G_{S}=U_{S} L$ (Levidecomposition) where U_{S} (the unipotent radical of G_{S}) is the subgroup of G_{S} that stabilizes both S and S^{\perp} / S elementwise (where \perp stands for orthogonality with respect to α), while L (a Levi complement) is the stabilizer of S, S_{1} and S_{2}, where S_{1} is a complement of S in S^{\perp} and S_{2} is a complement of S^{\perp} in V contained in S_{1}^{\perp}, namely a complement of S in S_{1}^{\perp}. The alternating form α of V induces a non-degenerate alternating form on S_{1} while S_{2} is totally isotropic for α.

The product $U_{S} L=G_{S}$ is semidirect with $U_{S} \unlhd G_{S}$. The unipotent radical U_{S} acts regularly on the set of direct sums $S_{1} \oplus S_{2}$ as above (whence on the set of Levi complements). The Levi complement L splits as a direct product $L_{1} \times L_{2}$ where L_{1} acts trivially on S_{1} and induces $\mathrm{GL}(k, \mathbb{F})$ on S. The action of L_{1} on S_{2} is the dual of that on S. On the other hand, L_{2} acts trivially on $S \oplus S_{2}$ and induces $\operatorname{Sp}(2 n-2 k, \mathbb{F})$ on S_{1}. The quotients $L_{1} / Z\left(L_{1}\right) \cong \operatorname{PGL}(k, \mathbb{F})$ and $L_{2} / Z\left(L_{2}\right) \cong$ $\operatorname{PSp}(2 n-2 k, \mathbb{F})$ are the groups induced by G_{S} on the lower and upper residues of S and $U_{S} \cdot\left(Z\left(L_{1}\right) \times Z\left(L_{2}\right)\right)$ is the kernel of the action of G_{S} on $\operatorname{Res}_{\Delta}(S)$.

The unipotent radical U_{S} acts trivially on each of $S, S^{\perp} / S$ and V / S^{\perp}. Let \widehat{U}_{S} be the elementwise stabilizer of S^{\perp} in G. Clearly $\widehat{U}_{S} \unlhd U_{S}$. The quotient group U_{S} / \widehat{U}_{S} acts regularly on the set of complements of S in V while U_{S} acts regularly on the set of complements of S^{\perp} in V. The latters are just the points of Δ_{k} at maximal distance from S.

Both groups U_{S} / \widehat{U}_{S} and \widehat{U}_{S} are abelian. The quotient U_{S} / \widehat{U}_{S} is isomorphic to the additive group of $V(2 n-2 k, \mathbb{F})$ while \widehat{U}_{S} is isomorphic to the additive group of symmetric $(k \times k)$-matrices with entries in \mathbb{F}. Moreover, $Z\left(U_{S}\right)=\widehat{U}_{S}$.

Given a Borel subgroup B of G containing G_{S}, let R^{+}be the set of positive roots associated to B and $\left\{U_{\alpha}\right\}_{\alpha \in R^{+}}$the set of corresponding root subgroups of B. We recall that B is the stabilizer in G of a chamber C of Δ containing S and every root group U_{α} is a 1-parameter group $U_{\alpha}=\left\{x_{\alpha}(t)\right\}_{t \in \mathbb{F}}$ isomorphic to the additive group of \mathbb{F}. Chosen an apartment \mathcal{A} of Δ containing C, we may regard R^{+}as the set of roots of \mathcal{A} containing C. Let R_{S}^{+}be the set of roots of \mathcal{A} containing all chambers of \mathcal{A} that contain S. Then $\left|R_{S}^{+}\right|=2(n-k)+(k+1) k / 2$ and, for a root $\alpha \in R^{+}$, we have $U_{\alpha} \leq U_{S}$ if and only if $\alpha \in R_{S}^{+}$. We call the subgroups U_{α} for $\alpha \in R_{S}^{+}$the root subgroups of U_{S}. They generate U_{S}. We state this fact explicitly, for further reference:

Fact 2.1. Chosen an ordering $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)$ of R_{S}^{+}, where $N:=\left|R_{S}^{+}\right|$, every element $u \in U_{S}$ can be expressed as a product as follows for suitable scalars $t_{1}, t_{2}, \ldots, t_{N} \in \mathbb{F}$:

$$
u=x_{\alpha_{1}}\left(t_{1}\right) \cdot x_{\alpha_{2}}\left(t_{2}\right) \cdot \ldots \cdot x_{\alpha_{N}}\left(t_{N}\right)
$$

The ordering $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)$ can be chosen in such a way that $\left\{U_{\alpha_{i}}+\widehat{U}_{S}\right\}_{i=1}^{2(n-k)}$ is a minimal generating family of subgroups for the abelian group U_{S} / \widehat{U}_{S} while $\left\{U_{\alpha_{i}}\right\}_{i=2(n-k)+1}^{N}$ is a minimal generating family of subgroups for $\widehat{U}_{S}=Z\left(U_{S}\right)$.

We now turn to the actions of U_{S} on V_{k} and W_{k}. We will only consider their actions on V_{k}, but everything we will say holds for W_{k} as well. The symbols (. $)_{k}$ and $[.]_{k}$ are defined as in Subsection 2.1. We use the symbol I to denote both the identity mapping of V and the identity mapping of V_{k}. Let $L\left(U_{S}\right)$ be the Lie algebra of U_{S}. The mapping sending $u \in U_{S}$ to $u-I$ is a bijection from U_{S} to $L\left(U_{S}\right)$ and it sends the commutator $[u, v]:=u v u^{-1} v^{-1}$ of two elements u and v of U_{S} to the Lie bracket of $u-I$ and $v-I$ in $L\left(U_{S}\right)$:

$$
[u-I, v-I]:=(u-I)(v-I)-(v-I)(u-I)=u v-v u
$$

In particular, this mapping induces a bijection from the center \widehat{U}_{S} of U_{S} to the center of $L\left(U_{S}\right)$. The following is well known (see for instance Premet and Suprunenko [15, Lemma 1]):

Fact 2.2. For every root subgroup U_{α} of U_{S} and every $u \in U_{\alpha}$, the element $[u-I]_{k}$ is nilpotent of exponent ≤ 3 and $(u)_{k}=I+[u-I]_{k}+[u-I]_{k}^{2} / 2$. Hence $(u)_{k}-I$ is nilpotent of exponent ≤ 3.

2.3 Singular hyperplanes and the radical $R\left(\varepsilon_{k}\right)$ of ε_{k}

Let $\operatorname{diam}\left(\Delta_{k}\right)$ be the diameter of the collinearity graph of Δ_{k}. It is well known that $\operatorname{diam}\left(\Delta_{k}\right)=k+1$ if $k<n$ and $\operatorname{diam}\left(\Delta_{n}\right)=n$ (see Blok [3], for instance). Given a point S of Δ_{k}, let $H(S):=\left\{X \in \Delta_{k} \mid d(X, S)<\operatorname{diam}\left(\Delta_{k}\right)\right\}$ be the set of points of Δ_{k} at non-maximal distance from S in the collinearity graph of Δ_{k} and
$\overline{H(S)}:=\left\{X \in \Delta_{k} \mid d(X, S)=\operatorname{diam}\left(\Delta_{k}\right)\right\}$ the complement of $H(S)$ in the set of points of Δ_{k}. Note that

$$
\begin{aligned}
\frac{H(S)}{H(S)} & =\left\{X \in \Delta_{k} \mid \operatorname{dim}\left(S \cap X^{\perp}\right)>0\right\} \\
& \left\{X \in \Delta_{k} \mid \operatorname{dim}\left(S \cap X^{\perp}\right)=0\right\}
\end{aligned}
$$

The first claim of the following lemma is a special case of a far more general result of Blok and Brouwer [5]. The second claim is implicit in [2].

Lemma 2.3. $H(S)$ is a geometric hyperplane of Δ_{k} and $\overline{H(S)}$ spans Δ_{k}.
The hyperplane $H(S)$ is called the singular hyperplane of Δ_{k} with S as the deepest point. The next lemma is proved by Blok [4] in a far more general setting:

Lemma 2.4. For every point S of Δ_{k}, the image $\varepsilon_{k}(H(S))$ of $H(S)$ by ε_{k} spans a hyperplane $H(S)_{k}:=\left\langle\varepsilon_{k}(H(S))\right\rangle$ of V_{k}.

In short, ε_{k} is polarized, where we say that an embedding $\varepsilon: \Delta_{k} \rightarrow \operatorname{PG}(U)$ for a vector space U is polarized if, for every point S of $\Delta_{k}, \varepsilon(H(S))$ spans a hyperplane of U. Turning back to ε_{k}, put

$$
R\left(\varepsilon_{k}\right):=\bigcap\left(H(S)_{k} \mid S \text { point of } \Delta_{k}\right)
$$

We call $R\left(\varepsilon_{k}\right)$ the radical of ε_{k}. It is not so difficult to see that $R\left(\varepsilon_{k}\right)$ defines a quotient $\varepsilon_{k} / R\left(\varepsilon_{k}\right)$ of ε_{k} and that $\varepsilon_{k} / R\left(\varepsilon_{k}\right)$ is polarized. Moreover, the embedding ε_{k} is relatively universal (Blok [3]; recall that we assume char $(\mathbb{F}) \neq 2$). On the other hand, polar grassmannians admit the absolutely universal embedding (Kasikova and Shult [14]). Hence ε_{k} is absolutely universal, namely every embedding of Δ_{k} is a quotient of ε_{k}. This implies that every polarized embedding of Δ_{k} sits between ε_{k} and $\varepsilon_{k} / R\left(\varepsilon_{k}\right)$. In other words, $\varepsilon_{k} / R\left(\varepsilon_{k}\right)$ is the minimal polarized embedding of Δ_{k} (compare Cardinali, De Bruyn and Pasini [10], where this matter is settled for dual polar spaces). It is also clear that $R\left(\varepsilon_{k}\right)$ is G-invariant. The following is a special case of a more general result of Blok [4], valid for any Lie geometry associated to a Chevalley group (see also [7] for a similar theorem, valid for dual polar spaces).

Theorem 2.5. The radical $R\left(\varepsilon_{k}\right)$ of ε_{k} is the largest proper G-submodule of V_{k}.
In short, $R\left(\varepsilon_{k}\right)=R_{k}$ (notation as in the introduction). An embedding $\varepsilon: \Delta_{k} \rightarrow$ $\operatorname{PG}(W)$, for an \mathbb{F}-vector space W, is said to be G-homogeneous if every $g \in G$ lifts through ε to a linear mapping of W stabilizing the image $\varepsilon\left(\Delta_{k}\right)$ of Δ_{k}. The next corollary is a rephrasing of Theorem 2.5.

Corollary 2.6. Every G-homogeneous embedding of Δ_{k} is polarized.

2.4 The fundamental form α_{k}

With α and V as in the introduction, let $\mathbb{E}:=\left\{e_{1}, e_{2}, \ldots, e_{2 n}\right\}$ be a hyperbolic basis for the form α of V, where $\alpha\left(e_{i}, e_{j}\right)=\alpha\left(e_{i+n}, e_{j+n}\right)=0, \alpha\left(e_{i}, e_{j+n}\right)=\delta_{i, j}$
(Kronecker symbol) and $\alpha\left(e_{i+n}, e_{j}\right)=-\delta_{i, j}$ for $i, j=1,2, \ldots, n$. The form α is represented by the following matrix with respect to \mathbb{E}, where O_{n} and I_{n} are the null and identity matrix of order n respectively:

$$
M=\left[\begin{array}{cc}
O_{n} & I_{n} \\
-I_{n} & O_{n}
\end{array}\right]
$$

Given two totally isotropic k-subspaces A and B of V let X and Y be $2 n \times k$ matrices whose columns form bases of A and B respectively. By definition, A and B are at non-maximal distance in Δ_{k} precisely when $A^{\perp} \cap B \neq 0$. This happens if and only if the homogeneous linear system with matrix $X^{T} M Y$ has non-trivial solutions, namely $\operatorname{det}\left(X^{T} M Y\right)=0$. By expanding the determinant $\operatorname{det}\left(X^{T} \cdot M Y\right)$ according to the Cauchy-Binet formula we can rewrite the equation $\operatorname{det}\left(X^{T} M Y\right)=0$ as follows:

$$
\begin{equation*}
\sum_{J \in\binom{I}{k}} \operatorname{det}\left(X_{\mid J}\right) \cdot \operatorname{det}\left((M Y)_{\mid J}\right)=0 \tag{3}
\end{equation*}
$$

where $I:=\{1,2, \ldots, 2 n\},\binom{I}{k}$ stands for the family of k-subsets of I and, for $J \in\binom{I}{k}$, $X_{\mid J}$ is the submatrix of X formed by the j th rows with $j \in J$ while $(M Y)_{\mid J}$ is the submatrix of the j th rows of $M Y$ for $j \in J$. Put $X_{J}:=\operatorname{det}\left(X_{\mid J}\right)$ and $Y_{J}:=$ $\operatorname{det}\left(Y_{\mid J}\right)$. The scalars X_{J} for $J \in\binom{I}{k}$ are the coordinates of a non-zero vector of $\iota_{k}(A)=\left\langle\sum_{J} X_{J} e_{J}\right\rangle$ relatively to the basis $\left\{e_{J}\right\}_{J \in\binom{I}{k}}$ of W_{k}, where $e_{J}:=e_{j_{1}} \wedge \ldots \wedge e_{j_{k}}$ for $J=\left\{j_{1}, \ldots, j_{k}\right\}, j_{1}<j_{2}<\cdots<j_{k}$. Put $\theta(J):=|J \cap\{n+1, n+2, \ldots, 2 n\}|$. Then

$$
\begin{equation*}
\operatorname{det}\left((M Y)_{\mid J}\right)=(-1)^{\theta(J)} \cdot(-1)^{\theta(J)(k-1)} \operatorname{det}\left(Y_{\mid \rho(J)}\right) \tag{4}
\end{equation*}
$$

where $\rho(j)=j+n$ if $j \leq n$ and $\rho(j)=j-n$ if $j>n$. The factor $(-1)^{\theta(J)}$ is contributed by multiplying $\theta(J)$ rows of Y by (-1)-entries of M while the factor $(-1)^{\theta(J)(k-1)}$ takes care of the cyclic permutation to apply in order to put the rows of $M Y$ which are involved in $\operatorname{det}\left((M Y)_{\mid J}\right)$ in the same natural order they had in Y. With $(M Y)_{J}:=\operatorname{det}\left((M Y)_{\mid J}\right)$ and $Y_{\rho(J)}:=\operatorname{det}\left(Y_{\mid \rho(J)}\right)$, we can rewrite (3) as follows:

$$
\begin{equation*}
\sum_{J \in\binom{I}{k}}(-1)^{\theta(J) k} X_{J} \cdot Y_{\rho(J)}=0 \tag{5}
\end{equation*}
$$

where $\rho(j)=j+n$ if $j \leq n$ and $\rho(j)=j-n$ if $j>n$.
We have established (5) thinking of singular subspaces of V, but the bilinear form considered in (5) is defined on the whole of W_{k}. We shall denote this form by α_{k} and call it the fundamental form of ε_{k} in W_{k}.

Proposition 2.7. The fundamental form α_{k} is non-degenerate. If k is even then α_{k} is symmetric. If k is odd then α_{k} is alternating.
Proof. Suppose first that k is even. Then for any two vectors x and y of W_{k} with coordinates X_{J} and $Y_{J}\left(J \in\binom{I}{k}\right)$, we have

$$
\alpha_{k}(x, y)=\sum_{J \in\left(\begin{array}{l}
I
\end{array}\right)} X_{J} \cdot Y_{\rho(J)}
$$

We may assume to have ordered the basis vectors $e_{J}, J \in\binom{I}{k}$ in such a way that if $J \neq \rho(J)$ then J and $\rho(J)$ occur one immediately after the other in that ordering, with no other k-subset of I in between. With this ordering of the basis the matrix representing α_{k} is block-diagonal with blocks either of order 1 and equal to the scalar 1 or of order 2 and as follows:

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Clearly, α_{k} is non-degenerate and symmetric.
Let now k be odd. We have $J \neq \rho(J)$ for every k-subset J of I. Moreover, $\theta(J)+$ $\theta(\rho(J))=k$, which is odd. For any two vectors x and y of W_{k} with coordinates X_{J} and $Y_{J}\left(J \in\binom{I}{k}\right)$, we have

$$
\alpha_{k}(x, y)=\sum_{J \in\binom{I}{k}}(-1)^{\theta(J)} X_{J} \cdot Y_{\rho(J)}
$$

If we order the basis vectors e_{J} such that J and $\rho(J)$ appear one immediately after the order then the matrix representing α_{k} is block-diagonal with blocks as follows:

$$
\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] \text { or }\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

So, α_{k} is a non-degenerate alternating form.
Proposition 2.8. The group $(G)_{k}$ preserves the form α_{k}.
Proof. Let \perp_{k} be the orthogonality relation with respect to α_{k}. Then $(G)_{k}$ preserves \perp_{k} when restricted to pairs of vectors of W_{k} corresponding to k-spaces of V, namely points of \mathcal{G}_{k}. We shall firstly prove that $(G)_{k}$ preserves \perp_{k} over the whole of W_{k}. Equivalently, every element of $(G)_{k}$ preserves α_{k} modulo a scalar.

Let A be the matrix representing the form α_{k} as in equation (5) and, for $g \in G$, let M_{g} be the matrix representing $(g)_{k}$. Let $a \in W_{k} \backslash\{0\}$ with $\langle a\rangle \in \mathcal{G}_{k}$. By assumption $a^{T} A x=0$ if and only if $a^{T} M_{g}^{T} A M_{g} x=0$, for any $x \in W_{k} \backslash\{0\}$ with $\langle x\rangle \in \mathcal{G}_{k}$. Consider the following linear functionals $f_{1}^{(a)}: x \rightarrow a^{T} A x$ and $f_{2}^{(a)}: x \rightarrow$ $a^{T} M_{g}^{T} A M_{g} A x$. Clearly $\operatorname{ker}\left(f_{1}^{(a)}\right) \cap \mathcal{G}_{k}=\operatorname{ker}\left(f_{2}^{(a)}\right) \cap \mathcal{G}_{k}$. Since $\operatorname{ker}\left(f_{1}^{(a)}\right) \cap \mathcal{G}_{k}$ and $\operatorname{ker}\left(f_{2}^{(a)}\right) \cap \mathcal{G}_{k}$ are maximal subspaces of \mathcal{G}_{k} and \mathcal{G}_{k} spans $\operatorname{PG}\left(W_{k}\right)$, they span hyperplanes of W_{k}. Hence $\operatorname{ker}\left(f_{1}^{(a)}\right)=\operatorname{ker}\left(f_{2}^{(a)}\right)$, namely $f_{1}^{(a)}$ and $f_{2}^{(a)}$ are proportional. So, for all $a \in W_{k} \backslash\{0\}$ with $\langle a\rangle \in \mathcal{G}$ there exists a non-zero scalar $\lambda_{a, g}$ such that $f_{2}^{(a)}=\lambda_{a, g} f_{1}^{(a)}$. Clearly, $\lambda_{t a, g}=t \lambda_{a, g}$.

Let $\langle a\rangle$ and $\langle b\rangle$ be collinear points of \mathcal{G}_{k} and $c=t a+s b$ for $(s, t) \neq(0,0)$. As \mathcal{G}_{k} is a full subgeometry of $\operatorname{PG}\left(W_{k}\right),\langle c\rangle$ is a point of \mathcal{G}_{k}. Then $f_{2}^{(c)}=t f_{2}^{(a)}+s f_{2}^{(b)}=$ $t \lambda_{a, g} f_{1}^{(a)}+s \lambda_{b, g} f_{1}^{(b)}$. However, $f_{2}^{(c)}=\lambda_{t a+s b, g} f_{1}^{(c)}=\lambda_{t a+s b, g}\left(t f_{1}^{(a)}+s f_{1}^{(b)}\right)$. So,

$$
t \lambda_{a, g} f_{1}^{(a)}+s \lambda_{b, g} f_{1}^{(b)}=\lambda_{t a+s b, g} t f_{1}^{(a)}+\lambda_{t a+s b, g} f_{1}^{(b)}
$$

Suppose that there exists $h \in \mathbb{F} \backslash\{0\}$ such that $f_{1}^{(b)}=h f_{1}^{(a)}$. Then $b^{T} A x=h a^{T} A x$, hence $b^{T}-h a \in \operatorname{Rad}\left(\alpha_{k}\right)$. This is impossible since α_{k} is non-degenerate (Proposition 2.7). Hence $f_{1}^{(a)}$ and $f_{1}^{(b)}$ are non-proportional. Therefore $\lambda_{a, g}=\lambda_{t a+s b, g}=$ $\lambda_{b, g}$. Put $\lambda_{g}:=\lambda_{a, g}\left(=\lambda_{b, g}=\lambda_{t a+s b, g}\right)$. As \mathcal{G}_{k} is connected, $a^{T} M_{g}^{T} A M_{g} x=$ $\lambda_{g} a^{T} A x$ for all $x \in W_{k}$ and all $a \in W_{k} \backslash\{0\}$ such that $\langle a\rangle \in \mathcal{G}_{k}$. However $\left\langle\mathcal{G}_{k}\right\rangle=W_{k}$. Hence $M_{g}^{T} A M_{g}=\lambda_{g} A$, namely $(g)_{k}$ preserves α_{k} modulo a scalar λ_{g}.

If λ_{g} depended on the choice of $g \in G$, then G would admit a quotient isomorphic to a subgroup \mathbb{F}_{0}^{*} of the multiplicative group \mathbb{F}^{*} of \mathbb{F}. However $G / Z(G)$ is simple while $|Z(G)|=2$. Hence 1 and -1 are the only admissible values for λ_{g} and, if z is the non-trivial element of $Z(G)$ and $\lambda_{g}=-1$ for some $g \in G$ then $\lambda_{z}=-1$. This immediately rules out the case of k even since in this case $(z)_{k}$ is the identity mapping of W_{k}. However, even if k is odd, the effect of z on $\alpha_{k}(x, y)$ amounts to multiply the coordinates X_{J} and Y_{J} by -1 . This has no effect on the value $\alpha_{k}(x, y)$ itself. Hence $(G)_{k}$ preserves α_{k}.

While α_{k} is non-degenerate as a form of W_{k}, its restriction to V_{k} can be degenerate, with radical $V_{k}^{\perp} \cap V_{k}$, where now \perp stands for the orthogonality relation with respect to α_{k}, denoted by \perp_{k} in the proof of Proposition 2.8. (We have previously used the symbol \perp to denote orthogonality with respect to α, but this notational ambiguity is harmless, since α and α_{k} live in different environments.)

Proposition 2.9. $R\left(\varepsilon_{k}\right)=V_{k}^{\perp} \cap V_{k}$.
Proof. For two points X and Y of Δ_{k} we have $Y \in H(X)$ if and only if $\alpha_{k}\left(\varepsilon_{k}(X)\right.$, $\left.\varepsilon_{k}(Y)\right)=0$, namely $H(X)=\varepsilon_{k}(X)^{\perp}$. Hence $R\left(\varepsilon_{k}\right)=\cap\left(\varepsilon_{k}(X)^{\perp} \mid X\right.$ point of $\left.\Delta_{k}\right)$. The latter equals $V_{k}^{\perp} \cap V_{k}$, as $\varepsilon_{k}\left(\Delta_{k}\right)$ spans V_{k}.

Remark 2.10. When $k=1, \alpha_{k}=\alpha$. When $k=n$, a formula different from (5) was considered in [10], namely the following:

$$
\begin{equation*}
\sum_{J \in\binom{I}{n}}(-1)^{\zeta(J)} X_{J} Y_{I \backslash J}=0 \tag{6}
\end{equation*}
$$

where $\zeta(J)=n(n+1) / 2+\sum_{j \in J} j$. One can prove that (5) with $k=n$ and (6) are in fact equivalent on V_{n}, but they are not equivalent on the whole of W_{n}.

2.5 G-invariant equivalence relations

We finish this section with an elementary lemma, to be used several times in this paper. Let Θ be an equivalence relation on the set of points of Δ_{k}. We say that Θ is G-invariant if $(g(X), g(Y)) \in \Theta$ for every $g \in G$ and every pair $(X, Y) \in \Theta$.

Lemma 2.11. Let Θ be a G-invariant equivalence relation on the set of points of Δ_{k}. Then Θ is either the identity relation or trivial.

Proof. By way of contradiction, suppose that Θ is neither the identity nor trivial. Then it admits at least two classes, say C and C^{\prime}, and at least one of them, say C,
contains at least two elements. Let X and Y be distinct elements of C. As Θ is G-invariant, the stabilizer G_{X} of X in G also stabilizes C. Moreover, G contains at least one element g mapping X onto Y, since G is transitive on the set of points of Δ_{k}. Hence the setwise stabilizer G_{C} of C in G is larger than G_{X}. This is a contradiction, because G_{X} is a maximal subgroup of G.

3 The basic series of G in W_{k}

Throughout this section \perp stands for orthogonality with respect to α. For $0 \leq i \leq$ $\lfloor k / 2\rfloor$ (where $\lfloor k / 2\rfloor$ is the integral part of $k / 2$), we denote by $V_{k-2 i}^{(k)}$ the subspace of W_{k} spanned by the vectors $\iota_{k}(X)$ for a k-subspace X of V with $\operatorname{dim}\left(X \cap X^{\perp}\right) \geq$ $k-2 i$. In particular, $V_{k}^{(k)}=V_{k}$. Clearly, $V_{k-2 i}^{(k)}$ is G-invariant and $V_{k-2 i}^{(k)} \subseteq V_{k-2 j}^{(k)}$ for $0 \leq i \leq j \leq\lfloor k / 2\rfloor$.

Note that $k-2\lfloor k / 2\rfloor$ is equal to 0 or 1 according to whether k is even or odd. In any case, $V_{k-2\lfloor k / 2\rfloor}^{(k)}=W_{k}$. We put $V_{k+2}^{(k)}:=0$, by convention. The series of the G-submodules of W_{k} defined above will be called the basic series of G in W_{k} :

$$
0=V_{k+2}^{(k)} \subseteq V_{k}^{(k)} \subseteq V_{k-2}^{(k)} \subseteq \ldots \subseteq V_{k-2\lfloor k / 2\rfloor}^{(k)}=W_{k} .
$$

We denote by $\widetilde{V}_{k-2 i}^{(k)}$ the set of non-zero vectors $w \in W_{k}$ such that $\langle w\rangle=\iota_{k}(X)$ for a k-subspace X of V with $\operatorname{dim}\left(X \cap X^{\perp}\right)=k-2 i$. Clearly, $\widetilde{V}_{k-2 i}^{(k)} \subseteq V_{k-2 i}^{(k)} \backslash V_{k-2 i+2}^{(k)}$.

Lemma 3.1. $\left\langle\widetilde{V}_{k-2 i}^{(k)}\right\rangle=V_{k-2 i}^{(k)}$ for every $i=0,1, \ldots,\lfloor k / 2\rfloor$.
Proof. By induction on i. Let $i=0$. Then $\widetilde{V}_{k}^{(k)}$ is just the image of the set of points of Δ_{k} by ι_{k}. In this case the equality $\left\langle\widetilde{V}_{k-2 i}\right\rangle=V_{k-2 i}^{(k)}$ rephrases the definition of V_{k}.

Assume $i>0$. Let A be a k-dimensional subspace of V with $\operatorname{dim}\left(A \cap A^{\perp}\right)=$ $k-2 i+2$ and $\mathbb{E}=\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}$ a hyperbolic basis of V, with $\alpha\left(e_{i}, f_{j}\right)=\delta_{i, j}$ for $i, j=1,2, \ldots, n$. We may assume to have chosen \mathbb{E} in such a way that $A=\left\langle\mathbb{E}_{A}\right\rangle$ where $\mathbb{E}_{A}=\mathbb{E}_{1} \cup \mathbb{E}_{2} \cup\left\{e_{k-2 i+2}\right\}$,

$$
\begin{aligned}
& \mathbb{E}_{1}=\left\{e_{1}, e_{2}, \ldots, e_{k-2 i+1}\right\}, \\
& \mathbb{E}_{2}=\left\{e_{k-2 i+3}, f_{k-2 i+3}, e_{k-2 i+4}, f_{k-2 i+4}, \ldots, e_{k-i+1}, f_{k-i+1}\right\} .
\end{aligned}
$$

Put $\mathbb{E}_{B}=\mathbb{E}_{1} \cup \mathbb{E}_{2} \cup\left\{f_{k-2 i+1}\right\}, \mathbb{E}_{C}=\mathbb{E}_{1} \cup \mathbb{E}_{2} \cup\left\{e_{k-2 i+2}+f_{k-2 i+1}\right\}, B=\left\langle\mathbb{E}_{B}\right\rangle$ and $C=\left\langle\mathbb{E}_{C}\right\rangle$. Then $\operatorname{dim}\left(B \cap B^{\perp}\right)=\operatorname{dim}\left(C \cap C^{\perp}\right)=k-2 i$. Both $\wedge^{k} \mathbb{E}_{B}$ and $\wedge^{k} \mathbb{E}_{C}$ belong to $\widetilde{V}_{k-2 i}^{(k)}$. Moreover $\wedge^{k} \mathbb{E}_{A}=\wedge^{k} \mathbb{E}_{C}-\wedge^{k} \mathbb{E}_{B}$. Hence $\wedge^{k} \mathbb{E}_{A} \in\left\langle\widetilde{V}_{k-2 i}^{(k)}\right\rangle$. So far, we have proved that $\widetilde{V}_{k-2 i+2}^{(k)} \subseteq\left\langle\widetilde{V}_{k-2 i}^{(k)}\right\rangle$. However $\left\langle\widetilde{V}_{k-2 i+2}^{(k)}\right\rangle=V_{k-2 i+2}^{(k)}$ by the inductive hypothesis. Therefore $\left\langle\widetilde{V}_{k-2 i}^{(k)}\right\rangle \supseteq V_{k-2 i+2}^{(k)}$. The equality $\left\langle\widetilde{V}_{k-2 i}^{(k)}\right\rangle=V_{k-2 i}^{(k)}$ follows.

Let Z be a totally isotropic subspace of V of dimension $d=k-2 i, i>0$. Define the following subsets of \mathcal{G}_{k}

$$
\mathcal{G}_{k}(Z)=\left\{X \mid \operatorname{dim}(X)=k \text { and } Z \subseteq X^{\perp} \cap X\right\},
$$

$$
H_{k}(Z)=\left\{X \in \mathcal{G}_{k}(Z) \mid Z \subset X^{\perp} \cap X\right\}
$$

Lemma 3.2. The set $\mathcal{G}_{k}(Z)$ is a subspace of \mathcal{G}_{k} and it is isomorphic to the $2 i$-grassmann geometry of $\mathrm{PG}\left(Z^{\perp} / Z\right)$.

Proof. For every k-subspace X of V, we have $X^{\perp} \cap X \supseteq Z$ if and only if $Z \subseteq X \subseteq$ Z^{\perp}. The lemma immediately follows from this.

Note also that $\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle \subseteq V_{k-2 i^{\prime}}^{(k)}\left\langle\iota_{k}\left(H_{k}(Z)\right)\right\rangle \subseteq V_{k-2 i+2}^{(k)}$ and $\iota_{k}\left(\mathcal{G}_{k}(Z) \backslash\right.$ $\left.H_{k}(Z)\right) \subseteq \widetilde{V}_{k-2 i}^{(k)}$. (The inclusion $\iota_{k}\left(\mathcal{G}_{k}(Z) \backslash H_{k}(Z)\right) \subseteq \widetilde{V}_{k-2 i}^{(k)}$ is literally incorrect, since $\iota_{k}\left(\mathcal{G}_{k}(Z) \backslash H_{k}(Z)\right)$ is a set of 1-dimensional subspaces while $\widetilde{V}_{k-2 i}^{(k)}$ is a set of vectors, but we take this way of writing as a shortening for the correct formulation; little abuses like this will be freely committed henceforth.)

Lemma 3.3. The set $H_{k}(Z)$ is a geometric hyperplane of $\mathcal{G}_{k}(Z)$ and its complement $\mathcal{G}_{k}(Z) \backslash H_{k}(Z)$ is connected. Moreover, $\iota_{k}\left(H_{k}(Z)\right)$ spans a projective hyperplane of $\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle$.

Proof. Suppose $Z=0$, to begin with. Hence k is even. We firstly prove that $H_{k}=H_{k}(0)$ is a subspace of $\mathcal{G}_{k}=\mathcal{G}_{k}(0)$. Let X and Y be two distinct collinear points of H_{k}. Hence $\operatorname{dim}(X \cap Y)=k-1$. Put $R_{X}:=X \cap X^{\perp}$ and $R_{Y}:=Y \cap Y^{\perp}$. Note that $R_{X} \neq 0 \neq R_{Y}$, as $X, Y \in H_{k}$. Since X and Y have even dimension, R_{X} and R_{Y} have dimension at least 2 . Hence $R_{X} \cap Y \neq 0 \neq R_{Y} \cap X$. Let $r_{X} \in R_{X} \cap Y$ and $r_{Y} \in R_{Y} \cap X, r_{X} \neq 0 \neq r_{Y}$.

Suppose that $r_{X} \neq r_{Y}$. Take a point Z in the line of \mathcal{G}_{k} spanned by X and Y. Hence $Z=\langle X \cap Y, z\rangle$ for a vector $z \notin X \cap Y$. There exists at least one point $\langle r\rangle$ in the projective line $\left\langle r_{X}, r_{Y}\right\rangle$ orthogonal to z. Since $X \cap Y$ is orthogonal to both r_{X} and $r_{Y}, X \cap Y$ is also orthogonal to r. Therefore $r \in Z \cap Z^{\perp}$. Hence $Z \in H_{k}$. So, the line spanned by X and Y is contained in H_{k}.

Let $r_{X}=r_{Y}=r$, say. Let $Z:=\langle X \cap Y, z\rangle$ for a non-zero vector $z \in\langle x, y\rangle$ where $x \in X \backslash Y$ and $y \in Y \backslash X$. Since $r \perp x, y$ the vector r is orthogonal to every point of $\langle x, y\rangle$. In particular, $r \perp z$. Moreover $r \in Z \cap Z^{\perp}$ since r is also orthogonal to $X \cap Y$. As above, the line of \mathcal{G}_{k} spanned by X and Y is contained in H_{k}. We have proved that H_{k} is a subspace of \mathcal{G}_{k}.

Take now a line L of \mathcal{G}_{k} not contained in H_{k}. As H_{k} is a subspace of \mathcal{G}_{k}, at most one point of L belongs to H_{k}. Let X and Y be two distinct points of L not in H_{k}. Then $X \cap X^{\perp}=Y \cap Y^{\perp}=0$. Since $X \cap Y$ has odd dimension, there exists a non-zero vector $r \in(X \cap Y) \cap(X \cap Y)^{\perp}$. Take $x \in X \backslash Y, y \in Y \backslash X$ and let $z \in r^{\perp} \cap\langle x, y\rangle, z \neq 0$. Put $Z:=\langle X \cap Y, z\rangle$. Then $r \in Z \cap Z^{\perp}$. Hence $Z \in H_{k}$. We have proved that H_{k} is a hyperplane of \mathcal{G}_{k}.

By Shult [16], the hyperplane H_{k} arises from the embedding $\iota_{k}: \mathcal{G}_{k} \mapsto \operatorname{PG}\left(W_{k}\right)$ and the complement $\mathcal{G}_{k} \backslash H_{k}$ is simply connected (whence connected).

Finally, let $Z \neq 0$. Put $V_{Z}:=Z^{\perp} / Z$ and let $\mathcal{G}_{2 i, Z}$ be the $2 i$-grassmann geometry of $\operatorname{PG}\left(V_{Z}\right)$. By Lemma 3.2, $\mathcal{G}_{k}(Z) \cong \mathcal{G}_{2 i, Z}$. Moreover, the embedding $\iota_{k, Z}: \mathcal{G}_{k}(Z) \rightarrow\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle$ induced by ι_{k} on $\mathcal{G}_{k}(Z)$ is isomorphic to the natural embedding $\iota_{2 i}: \mathcal{G}_{k, Z} \rightarrow \mathrm{PG}\left(\wedge^{2 i} V_{Z}\right)$. So, we can replace Z by the null space of V_{Z} and k by $2 i$ and we obtain the conclusion by the first part of the proof.

For $0 \leq i \leq\lfloor k / 2\rfloor$ we define a mapping $f_{k-2 i}: \Delta_{k-2 i} \rightarrow \operatorname{PG}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)$ as follows: for every point Z of $\Delta_{k-2 i}$ we put

$$
\begin{aligned}
f_{k-2 i}(Z) & =\left(\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle+V_{k-2 i+2}^{(k)}\right) / V_{k-2 i+2}^{(k)}= \\
& =\iota_{k}(X)+V_{k-2 i+2}^{(k)} \text { for any } X \in \mathcal{G}_{k}(Z) \backslash H_{k}(Z) .
\end{aligned}
$$

The latter equality holds because $\iota_{k}\left(H_{k}(Z)\right) \subseteq V_{k-2 i+2}^{(k)}$ and $\left\langle\iota_{k}\left(H_{k}(Z)\right)\right\rangle$ is a hyperplane of $\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle$, by Lemma 3.3. The following lemma is obvious:

Lemma 3.4. $(g)_{k}\left(f_{k-2 i}(Z)\right)=f_{k-2 i}(g(Z))$ for every $g \in G$ and every point Z of $\Delta_{k-2 i}$.

Theorem 3.5. Let $i<k / 2$. Then the above defined mapping

$$
f_{k-2 i}: \Delta_{k-2 i} \rightarrow \operatorname{PG}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)
$$

is a projective embedding and it is isomorphic to the natural embedding $\varepsilon_{k-2 i}: \Delta_{k-2 i} \rightarrow$ $\operatorname{PG}\left(V_{k-2 i}\right)$. Moreover $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$ and $V_{k-2 i}$ are isomorphic as G-modules.
Proof. We split the proof in a number of steps.
(1) One of the following holds:
(1.a) $f_{k-2 i}(Z)$ is a point of $\operatorname{PG}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)$ for every point Z of $\Delta_{k-2 i}$;
(1.b) $V_{k-2 i+2}^{(k)}=V_{k-2 i}^{(k)}$.

Let Z be a point of $\Delta_{k-2 i}$. By Lemma 3.3, $\iota_{k}\left(H_{k}(Z)\right)$ spans a hyperplane of $\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle$. If $\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle \subset V_{k-2 i+2}^{(k)}$ then $\left(\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle+V_{k-2 i+2}^{(k)}\right) / V_{k-2 i+2}^{(k)}$ is the null space. Otherwise, $V_{k-2 i+2}^{(k)}$ is a hyperplane of $\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle+V_{k-2 i+2}^{(k)}$, hence $\left(\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle+V_{k-2 i+2}^{(k)}\right) / V_{k-2 i+2}^{(k)}$ is a point of $\operatorname{PG}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)$. If the latter case occurs for every point $Z \in \Delta_{k-2 i}$ then (1.a) holds. Suppose that $\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle \subset$ $V_{k-2 i+2}^{(k)}$ for at least one point $Z \in \Delta_{k-2 i}$. By the transitivity of G on the set of points of $\Delta_{k-2 i}$ and by Lemma 3.4 we obtain that $\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle \subseteq V_{k-2 i+2}^{(k)}$ for every point $Z \in \Delta_{k-2 i}$. However, the image $\iota_{k}\left(\Delta_{k-2 i}\right)$ of the point-set of $\Delta_{k-2 i}$ is just the set of 1-dimensional linear spaces contained in $\widetilde{V}_{k-2 i}^{(k)}$ and the latter spans $V_{k-2 i}^{(k)}$ by Lemma 3.1. Hence $V_{k-2 i}^{(k)}=V_{k-2 i+2}^{(k)}$ as in (1.b).
(2) Assume (1.a). Then one of the followings holds:
(2.a) $f_{k-2 i}$ is injective;
(2.b) $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$ is a point.

Suppose that $f_{k-2 i}$ is not injective. Since G permutes the fibers of $f_{k-2 i}$, Lemma 2.11 implies that $f_{k-2 i}(Z)=f_{k-2 i}\left(Z^{\prime}\right)$ for any two points $Z, Z^{\prime} \in \Delta_{k-2 i}$. Hence the image of $f_{k-2 i}$ is just a point, as in (2.b).
(3) If both (1.a) and (2.a) hold then $f_{k-2 i}$ is a projective embedding of $\Delta_{k-2 i}$ in $\operatorname{PG}\left(V_{k-2 i}^{(k)} /\right.$ $\left.V_{k-2 i+2}^{(k)}\right)$.

Assume (1.a) and (2.a). Let L be a line of $\Delta_{k-2 i}, L=\left\{Z \mid L_{1} \subset Z \subset L_{2}, \operatorname{dim}(Z)=\right.$ $k-2 i\}$ for two isotropic subspaces $L_{1} \subset L_{2}$ of V of dimensions $k-2 i-1$ and $k-2 i+1$ respectively. Take a $2 i$-dimensional non-singular space Y of V orthogonal to L_{2} and disjoint from L_{2}. (To see that such a subspace exists, consider a complement of L_{2} in L_{2}^{\perp}.) Put $\bar{Z}:=\langle Y, Z\rangle$ for $Z \in L, \bar{L}_{1}:=\left\langle Y, L_{1}\right\rangle$ and $\bar{L}_{2}:=\left\langle Y, L_{2}\right\rangle$. Then $\bar{L}:=\left\{X \mid \bar{L}_{1} \subset X \subset \bar{L}_{2}, \operatorname{dim}(X)=k\right\}$ is a line of \mathcal{G}_{k} and $\bar{Z} \in \bar{L}$ for every $\mathrm{Z} \in L$. For $\mathrm{Z} \in L$ we have $\overline{\mathrm{Z}} \cap \overline{\mathrm{Z}}^{\perp}=\mathrm{Z}$, whence $\overline{\mathrm{Z}} \in \mathcal{G}_{k}(\mathrm{Z}) \backslash H_{k}(Z)$. Therefore $f_{k-2 i}(Z)=\left(\left\langle\iota_{k}\left(\mathcal{G}_{k}(Z)\right)\right\rangle+V_{k-2 i+2}^{(k)}\right) / V_{k-2 i+2}^{(k)}=\iota_{k}(\bar{Z})+V_{k-2 i+2}^{(k)}$. Since, according to (2.a), $f_{k-2 i}$ is injective, the image of L by $f_{k-2 i}$ is the line of $\operatorname{PG}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)$ whose points are represented by the spaces $\iota(\bar{Z})$ for $Z \in L$. It remains to prove that $f_{k-2 i}\left(\Delta_{k-2 i}\right)$ spans $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$, but this immediately follows from Lemma 3.1.
(4) For every $i=0,1, \ldots,\lfloor k / 2\rfloor$, the mapping $f_{k-2 i}$ is a projective embedding of $\Delta_{k-2 i}$ with vector dimension

$$
\operatorname{dim}\left(f_{k-2 i}\right)=\operatorname{dim}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)=\binom{2 n}{k-2 i}-\binom{2 n}{k-2 i-2}
$$

Given $i \in\{0,1, \ldots,\lfloor k / 2\rfloor\}$, suppose that (1.a) and (2.a) hold. Then, by (3), $f_{k-2 i}$ is an embedding of $\Delta_{k-2 i}$. By Blok [3], $\operatorname{dim}\left(f_{k-2 i}\right) \leq\binom{ 2 n}{k-2 i}-\binom{2 n}{k-2 i-2}$, namely $\operatorname{dim}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right) \leq\binom{ 2 n}{k-2 i}-\binom{2 n}{k-2 i-2}$. The latter inequality trivially holds in cases (1.b) and (2.b). On the other hand,

$$
\begin{aligned}
\sum_{i=0}^{\lfloor k / 2\rfloor}\left[\binom{2 n}{k-2 i}\right. & \left.-\binom{2 n}{k-2 i-2}\right]=\binom{2 n}{k}=\operatorname{dim}\left(W_{k}\right)= \\
& =\sum_{i=0}^{\lfloor k / 2\rfloor} \operatorname{dim}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)
\end{aligned}
$$

This forces $\operatorname{dim}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)=\binom{2 n}{k-2 i}-\binom{2 n}{k-2 i-2}$ for every $i=0,1, \ldots,\lfloor k / 2\rfloor$.
(5) $f_{k-2 i}$ is isomorphic to the natural embedding $\varepsilon_{k-2 i}: \Delta_{k-2 i} \rightarrow \operatorname{PG}\left(V_{k-2 i}\right)$.

By Kasikova and Shult [14] (§§4.6-4.8) $\Delta_{k-2 i}$ admits the absolutely universal embedding which, by Blok [3], is the natural embedding $\varepsilon_{k-2 i}$ of dimension $\binom{2 n}{k-2 i}-$ $\binom{2 n}{k-2 i-2}$. Hence $f_{k-2 i} \cong \varepsilon_{k-2 i}$ and $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)} \cong V_{k-2 i}$.

When k is even Theorem 3.5 implies that

$$
\operatorname{dim}\left(V_{2}^{(k)}\right)=\sum_{i=0}^{k / 2-1}\binom{2 n}{k-2 i}-\binom{2 n}{k-2 i-2}=\binom{2 n}{k}-1
$$

So, $V_{0}^{(k)} / V_{2}^{(k)} \cong W_{0}$ is 1-dimensional and f_{0} affords the trivial representation of G. In other words,

Corollary 3.6. Let k be even. Then $V_{2}^{(k)}$ is a hyperplane of W_{k}.

Lemma 3.7. Let A be a G-invariant proper subspace of W_{k}. Then there exists an index $i \geq 0$ such that $V_{k-2 j}^{(k)} \subseteq A$ for $j<i$ and $\widetilde{V}_{k-2 r}^{(k)} \cap A=\varnothing$ for $r \geq i$.

Proof. Let i be the largest index j such that $V_{k-2 j+2}^{(k)} \subseteq A$. We must show that $\widetilde{V}_{k-2 r}^{(k)} \cap A=\varnothing$ for every $r \geq i$. Suppose the contrary. Then $A \supseteq\left\langle\widetilde{V}_{k-2 r}^{(k)}\right\rangle$ as G acts transitively on $\widetilde{V}_{k-2 r}$ and, by assumption, A is stabilized by G. However $\widetilde{V}_{k-2 r}^{(k)}$ spans $V_{k-2 r}^{(k)}$ by Lemma 3.1. Hence $A \supseteq V_{k-2 r}^{(k)}$, contrary to our choice of i.

Corollary 3.8. Let A be a G-invariant proper subspace of W_{k} and suppose that $V_{k-2 i}^{(k)} \nsubseteq$ $A+V_{k-2 i+2}^{(k)}$. Then the subspace $\left(V_{k-2 i+2}^{(k)}+A \cap V_{k-2 i}^{(k)}\right) / V_{k-2 i+2}^{(k)}$ of $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$ defines a homogeneous quotient of the embedding $f_{k-2 i}: \Delta_{k-2 i} \rightarrow \operatorname{PG}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)$.

Proof. By Lemmas 3.1 and 3.7 applied to $A^{\prime}=V_{k-2 i+2}^{(k)}+A \cap V_{k-2 i^{\prime}}^{(k)}$, either $A^{\prime} \supseteq$ $V_{k-2 i}^{(k)}$ or $A^{\prime} \cap \widetilde{V}_{k-2 i}^{(k)}=\varnothing$. The first case is excluded by assumption. So, the latter holds. We have $\left\{\langle w\rangle+V_{k-2 i+2}^{(k)} \mid w \in \widetilde{V}_{k-2 i}^{(k)}\right\}=f_{k-2 i}\left(\Delta_{k-2 i}\right)$. In order to prove that $A^{\prime} / V_{k-2 i+2}^{(k)}$ defines a (necessarily homogeneous) quotient of $f_{k-2 i}$ we only must prove that $\left\langle w_{1}, w_{2}\right\rangle \cap A^{\prime}=0$ for every choice of vectors $w_{1}, w_{2} \in \widetilde{V}_{k-2 i}^{(k)}$. Suppose the contrary and let $\left\langle w_{1}, w_{2}\right\rangle \cap A^{\prime} \neq 0$ for two given vectors $w_{1}, w_{2} \in \widetilde{V}_{k-2 i}^{(k)}$. The vectors w_{1} and w_{2} correspond to two totally isotropic $(k-2 i)$-dimensional subspaces X_{0} and Y_{0} of V and $f_{k-2 i}\left(X_{0}\right)+A^{\prime}=f_{k-2 i}\left(Y_{0}\right)+A^{\prime}$. By Lemma 2.11, $f_{k-2 i}(X)+A^{\prime}=f_{k-2 i}(Y)+A^{\prime}$ for any two points X and Y of $\Delta_{k-2 i}$. In particular, this also holds if X and Y are collinear in $\Delta_{k-2 i}$. On the other hand, $f_{k-2 i}$ maps lines of $\Delta_{k-2 i}$ onto lines of $\operatorname{PG}\left(V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}\right)$. Therefore $f_{k-2 i}(Z) \in A^{\prime}$ for a point Z of $\Delta_{k-2 i}$ belonging to the line spanned by X and Y. This contradicts the fact that $A^{\prime} \cap \widetilde{V}_{k-2 i}=\varnothing$.

4 The pole of G in W_{k}

Throughout this section \perp is the orthogonality relation associated to the fundamental form α_{k}, defined in Subsection 2.4. Suppose there exists a point P of $\operatorname{PG}\left(W_{k}\right)$ fixed by G. As G preserves α_{k}, G also stabilizes the hyperplane P^{\perp} of W_{k}. Let i be the largest index such that $P^{\perp} \supseteq V_{k-2 i+2}^{(k)}$ (compare Lemma 3.7). Then $\left(P^{\perp} \cap V_{k-2 i}^{(k)}\right) / V_{k-2 i+2}^{(k)}$ is a G-invariant hyperplane of $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$. However, if $i<k / 2$ then $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$ hosts the embedding $\varepsilon_{k-2 i}$ (by Theorem 3.5), hence it cannot admit any G-invariant hyperplane (compare Corollary 3.8). Therefore k is even and $i=k / 2$. In this case $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}=V_{0}^{(k)} / V_{2}^{(k)}$ is 1-dimensional and $P^{\perp}=V_{2}^{(k)}$, namely $P=\left(V_{2}^{(k)}\right)^{\perp}$. We have proved the following:

Theorem 4.1. If k is odd then G acts fixed-point freely on $\operatorname{PG}\left(W_{k}\right)$. If k is even then $P:=\left(V_{2}^{(k)}\right)^{\perp}$ is the only point of $\operatorname{PG}\left(W_{k}\right)$ fixed by G.

For the rest of this section k is assumed to be even. The unique fixed point P of G in $\operatorname{PG}\left(W_{k}\right)$ will be called the pole of G.

Let $\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}$ be a hyperbolic basis of V as in the proof of Lemma 3.1, namely a basis as in Section 2.4 but with $f_{i}:=e_{i+n}$. For $J=\left\{j_{1}, \ldots, j_{k / 2}\right\} \subseteq$ $I:=\{1,2, \ldots, n\}$ we put $e_{J}=e_{j_{1}} \wedge \ldots \wedge e_{j_{k / 2}}$ and $f_{J}=f_{j_{1}} \wedge \ldots \wedge f_{j_{k / 2}}$. Consider the following vector:

$$
v_{P}:=\sum_{1 \leq j_{1}<\cdots<j_{k / 2} \leq n} e_{j_{1}} \wedge \cdots \wedge e_{j_{k / 2}} \wedge f_{j_{1}} \wedge \cdots \wedge f_{j_{k / 2}}=\sum_{J \in\left(k_{k / 2}^{I}\right)} e_{J} \wedge f_{J}
$$

Lemma 4.2. $P=\left\langle v_{P}\right\rangle$.
Proof. We only must prove that G fixes v_{P}. Recall that $G=\left\langle U^{+}, U^{-}\right\rangle$where U^{+}and U^{-}are the unipotent radicals of two 'opposite' Borel subgroups B^{+}and B^{-}of G, stabilizing two opposite chambers of Δ. In its turn U^{+}is generated by root subgroups U_{α} with $\alpha \in R^{+}$(notation as in Subsection 2.2) while U^{-}is generated by the root subgroups $U_{-\alpha}$ for $\alpha \in R^{+}$. So, if Π^{+}is the basis of simple roots associated to the given set R^{+}of positive roots then $U^{+}=\left\langle U_{\alpha}\right\rangle_{\alpha \in \Pi^{+}}$and $U^{-}=\left\langle U_{-\alpha}\right\rangle_{\alpha \in \Pi^{+}}$. In order to prove that G fixes v_{P} we only need to prove that v_{P} is fixed by U_{α} and $U_{-\alpha}$ for every $\alpha \in \Pi^{+}$. Put $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}=\Pi^{+}$and let $x_{\alpha_{i}}(t)$ be the generic element of $U_{\alpha_{i}}$ (see Subsection 2.2). Then $x_{\alpha_{i}}(t)$, regarded as a linear transformation of V, is represented by a matrix as follows, where I_{n} and O_{n} are the identity and null matrices of order n and the symbol $E_{i, j}$ denotes the square matrix of order n with only null entries except for the (i, j)-entry, which is 1 :

$$
\left[\begin{array}{cc}
I_{n}+t E_{i, i+1} & O_{n} \\
O_{n} & I_{n}-t E_{i+1, i}
\end{array}\right], \quad\left[\begin{array}{cc}
I_{n} & t E_{n, n} \\
O_{n} & I_{n} \\
\left(\text { for } x_{\alpha_{i}}(t), i=1, \ldots, n-1\right)
\end{array}\right] .
$$

The element $x_{-\alpha_{i}}(t)$ of U^{-}is represented by the transpose $x_{\alpha_{i}}(t)^{T}$ of the matrix $x_{\alpha_{i}}(t)$. Having recalled this, it is straightforward to check that v_{p} is fixed by $\left(x_{\alpha_{i}}(t)\right)_{k}$ and $\left(x_{-\alpha_{i}}(t)\right)_{k}$ for every $i=1,2, \ldots, n$. Fact 2.2 can be profitably used here to speed up computations. We leave them for the reader.

We call v_{P} the polar vector of G. Clearly $V_{2}^{(k)}=v_{P}^{\perp}$, since $P=\left\langle v_{P}\right\rangle$ and $V_{2}^{(k)}=$ P^{\perp}. Recall that α_{k} is expressed by the left hand side of formula (3) of Subsection 2.4. Notice also that, if Y_{J} is the J-coordinate of v_{P} for $J \in\binom{I}{k}$, then $Y_{J}=1$ if $\rho(J)=J$ and $Y_{J}=0$ otherwise. (Here $I=\{1,2, \ldots, 2 n\}$ and ρ permutes j with $j+n$ for every $j=1,2, \ldots, n$, as in formula (3) of Subsection 2.4). It is now clear that $V_{2}^{(k)}$ is described by the following equation:

$$
\begin{equation*}
\sum_{J \in\left(\frac{I}{k}\right), p(J)=J} X_{J}=0 \tag{7}
\end{equation*}
$$

Theorem 4.3. We have $v_{P} \in V_{2}^{(k)}$ if and only if $\operatorname{char}(\mathbb{F})$ is positive and divides $\binom{n}{k / 2}$.
Proof. In view of the condition $\rho(J)=J$, the k-subsets $J \in\binom{I}{k}$ to consider in (7) are those of the form $J=J^{\prime} \cup \rho\left(J^{\prime}\right)$ for a $(k / 2)$-subset J^{\prime} of $I^{\prime}=\{1,2, \ldots, n\}$. Hence
they bijectively correspond to the $(k / 2)$-sets $J^{\prime} \in\binom{I^{\prime}}{k / 2}$. Therefore $v_{P} \in V_{2}^{(k)}$ if and only if $\sum_{J^{\prime} \in\left(\begin{array}{l}I^{\prime} / 2\end{array}\right)} 1=0$, namely $\binom{n}{k / 2}=0$. The latter holds if and only if char((\mathbb{F}) is positive and divides $\binom{n}{k / 2}$.

For the rest of this section we assume that $\operatorname{char}(\mathbb{F})=p>0$ and k is even. Suppose that p divides $\binom{n}{k / 2}$. Then $v_{P} \in V_{2}^{(k)}$ by Theorem 4.3. If we knew that $v_{P} \in V_{k}^{(k)}$ then, by Theorem 2.5 we could conclude that $R\left(\varepsilon_{k}\right) \neq 0$. However Theorem 4.3 does not give any information on where v_{P} is placed inside $V_{2}^{(k)}$. Suppose that $v_{P} \in V_{k-2 i}^{(k)} \backslash V_{k-2 i+2}^{(k)}$. By Theorem 3.5, $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$ and $V_{k-2 i}^{(k-2 i)}$ are isomorphic G-modules. Moreover G fixes the vector $v_{P}^{(k-2 i)}:=v_{P}+V_{k-2 i+2}^{(k)}$ of $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)} \cong V_{k-2 i}^{(k-2 i)}$, as it fixes v_{P}. Hence $v_{P}^{(k-2 i)}$ is the polar vector of G in $W_{k-2 i}$, and it belongs to $V_{k-2 i}^{(k-2 i)}$. Therefore p divides $\binom{n}{(k-2 i) / 2}$ by Theorem 4.3.

Suppose that for some $j=0,1, \ldots, k / 2-1$ the polar vector $v_{P}^{(k-2 j)}$ of G in $W_{k-2 j}$ belongs to $V_{k-2 j}^{(k-2 j)}$. Then we say that $v_{P}^{(k-2 j)}$, regarded as a vector of the quotient $V_{k-2 j}^{(k)} / V_{k-2 j+2}^{(k)}$, is a virtual polar vector of G in the basic series of G and we call $\left\langle v_{P}^{(k-2 j)}\right\rangle$ a virtual pole of G. So, if the pole P of G in W_{k} is contained in $V_{2}^{(k)}$ then it must appear among the virtual poles. However, it is possible that several virtual poles exist but none of them arises from the true pole. It is also possible that no virtual pole exists. Note also that, if a virtual pole appears in a section $V_{k-2 j}^{(k)} / V_{k-2 j+2}^{(k)}$, then p divides $\binom{n}{k / 2-j}$, but in general the converse does not hold. The next lemma immediately follows from the previous discussion.
Lemma 4.4. Suppose that p divides $\binom{n}{k / 2}$ but does not divide $\binom{n}{k / 2-i}$ for every $i=1,2, \ldots, k / 2-1$. Then $v_{P} \in V_{k}^{(k)}$.
Lemma 4.5. The basic series of G in W_{k} admits at least one virtual pole if and only if p divides $\binom{n}{k / 2-i}$ for some $i=0,1, \ldots, k / 2-1$.
Proof. In the previous discussion we have already remarked that the 'only if' part of the lemma holds. Let us prove the 'if' part. Suppose that p divides $\binom{n}{k / 2-i}$. Then $v_{P}^{(k-2 i)} \in V_{2}^{(k-2 i)}$. Hence $v_{P}^{(k-2 i)}$ appears among the virtual poles of the basic series of G in $W_{k-2 i}$. However every section of this series is isomorphic to a section of the basic series of G in W_{k}. Indeed

$$
V_{k-2 i-2 j}^{(k-2 i)} / V_{k-2 i-2 j+2}^{(k-2 i)} \cong V_{k-2 i-2 j}^{(k)} / V_{k-2 i-2 j+2}^{(k)} \cong V_{k-2 i-2 j}^{(k-2 i-2 j)}
$$

for every $j=0,1, \ldots, k / 2-i-1$. Therefore at least one virtual pole appears in the basic series of G in W_{k}.

The next corollary easily follows from the previous two lemmas.
Corollary 4.6. Suppose that p divides $\binom{n}{k / 2-i}$ for some $i=0,1, \ldots, k / 2-1$ and let i_{0} be the maximal value of i such that p divides $\binom{n}{k / 2-i}$. Then the section $V_{k-2 i_{0}}^{(k)} / V_{k-2 i_{0}+2}^{(k)}$ contributes a virtual pole.

In the next two propositions we state a few results that, in certain situations, can help to locate virtual poles and possibly the true pole among them.

Proposition 4.7. Suppose that a virtual pole $P^{(k-2 i)}$ appears in $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$ for an index $i \in\{1,2, \ldots, k / 2-1\}$. Then one of the following holds:
(1) p divides neither $\binom{n-k+2 i}{i}$ nor $\binom{k / 2}{k / 2-i}$ and the virtual pole $P^{(k-2 i)}$ arises from the true pole P of G;
(2) p divides $\left(\begin{array}{c}n-k+2 i\end{array}\right)$ but does not divide $\binom{k / 2}{k / 2-i}$. In this case the true pole of G is contained in $V_{k-2 i+2}^{(k)}$, whence it appears as a virtual pole in a section $V_{k-2 j}^{(k)} / V_{k-2 j+2}^{(k)}$ for some $j<i$.
(3) p divides both $\left(\begin{array}{c}n-k+2 i\end{array}\right)$ and $\binom{k / 2}{k / 2-i}$.

Proof. By assumption, $v_{P}^{(k-2 i)} \in V_{k-2 i}^{(k-2 i)}$, namely $v_{P}^{(k-2 i)}=\sum_{S \in \mathcal{S}} a_{S} v_{S}$ where \mathcal{S} is a suitable set of singular $(k-2 i)$-spaces of V, a_{S} is a scalar and $v_{S}=u_{1} \wedge \ldots \wedge u_{k-2 i}$ for a given basis $\left\{u_{1}, \ldots, u_{k-2 i}\right\}$ of S. We may also assume to have chosen \mathcal{S} in such a way that the vectors v_{S} are linearly independent in $V_{k-2 i}^{(k-2 i)}$. Now choose for every $S \in \mathcal{S}$ a $2 i$-subspace X_{S} such that $X_{S} \cap S=0$ and $\left(X_{S}+S\right)^{\perp} \cap\left(X_{S}+\right.$ $S)=S$ (here \perp stands for orthogonality with respect to α). Choose also a basis $\left\{v_{1}, \ldots, v_{2 i}\right\}$ of X_{S} and put $v_{X_{S}}=v_{1} \wedge \ldots \wedge v_{2 i}$. Note that the form α of V induces a non-degenerate form on X_{S}. Thus, we may always choose a hyperbolic basis as $\left\{v_{1}, \ldots, v_{2 i}\right\}$. Put

$$
\bar{v}_{P}^{(k-2 i)}:=\sum_{S \in \mathcal{S}} a_{S} v_{S} \wedge v_{X_{S}}+V_{k-2 i+2}^{(k)}
$$

Namely, $\bar{v}_{P}^{(k-2 i)}$ is the vector of $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$ corresponding to $v_{P}^{(k-2 i)}$. Note that $v_{S} \wedge v_{X_{S}}+V_{k-2 i+2}^{(k)}$ does not depend on the particular choice of X_{S} but for a scalar (see Theorem 3.5; recall that, however, a scalar is also involved in the choice of a basis of X_{S}). We are now going to choose the complements X_{S} (actually, several of them for every S) in a standard way. Consider the polar vector $v_{P}^{(2 i)}$ of G in $W_{2 i}$,

$$
v_{P}^{(2 i)}=\sum_{J \in\binom{I}{i}} e_{J} \wedge f_{J}
$$

Then $v_{P}^{(k-2 i)} \wedge v_{P}^{(2 i)}=\sum_{S \in \mathcal{S}} a_{S}\left(v_{S} \wedge v_{P}^{(2 i)}\right)$. We may assume $S=\left\langle e_{1}, \ldots, e_{k-2 i}\right\rangle$ and $v_{S}=e_{1} \wedge \ldots \wedge e_{k-2 i}$. (This amounts to change the given basis of V, which can be done safely since G fixes both $v_{P}^{(2 i)}$ and $v_{P}^{(k-2 i)}$.) So the only summands $e_{J} \wedge f_{J}$ of $v_{P}^{(2 i)}$ such that $v_{S} \wedge e_{J} \wedge f_{J} \neq 0$ are those where $J \subseteq\{k-2 i+1, \ldots, n\}$ (and $|J|=i$). Exactly $\left(\begin{array}{c}n-k+2 i\end{array}\right)$ choices are possible for such a set. We claim the following:
$(*) v_{S} \wedge e_{J} \wedge f_{J}-v_{S} \wedge e_{J^{\prime}} \wedge f_{J^{\prime}} \in V_{k-2 i+2}^{(k)}$ for any two i-subsets J and J^{\prime} of $\{k-2 i+1, \ldots, n\}$.

Suppose firstly that the symmetric difference of J and J^{\prime} has size 2 . Let $J=$ $\{k-2 i+1, k-2 i+3, \ldots, k-i+1\}$ and $J^{\prime}=\{k-2 i+2, k-2 i+3, \ldots, k-i+1\}$, to fix ideas. In this case $(*)$ immediately follows by observing that

$$
\begin{aligned}
& e_{k-2 i+1} \wedge f_{k-2 i+1}-e_{k-2 i+2} \wedge f_{k-2 i+2}= \\
& \quad=\left(e_{k-2 i+1}+e_{k-2 i+2}\right) \wedge\left(f_{k-2 i+1}-f_{k-2 i+2}\right)+ \\
& \quad+e_{k-2 i+1} \wedge f_{k-2 i+2}-e_{k-2 i+2} \wedge f_{k-2 i+1}
\end{aligned}
$$

Turning to the general case, we can always find a sequence $J_{0}, J_{1}, \ldots, J_{m}$ of i-subsets of $\{k-2 i+1, \ldots, n\}$ such that $J_{0}=J, J_{m}=J^{\prime}$ and the symmetric difference of J_{j-1} and J_{j} has size 2 for $j=1, \ldots, m$. Hence all differences $v_{S} \wedge e_{J_{j-1}} \wedge f_{J_{j-1}}-v_{S} \wedge e_{J_{j}} \wedge$ $f_{J_{j}}$ belong to $V_{k-2 i+2}^{(k)}$. The difference $v_{S} \wedge e_{J} \wedge f_{J}-v_{S} \wedge e_{J^{\prime}} \wedge f_{J^{\prime}}$ is the sum of these differences, hence it also belongs to $V_{k-2 i+2}^{(k)}$. Claim $(*)$ is proved.

In view of $(*)$ and since there are exactly $\binom{n-k+2 i}{i}$ possible choices for J, we obtain that $v_{S} \wedge v_{P}^{(2 i)}=\binom{n-k+2 i}{i} \cdot v_{S} \wedge e_{J} \wedge f_{J}$ for a given $J \subset\{k-2 i+1, \ldots, n\}$ with $|J|=i$. Therefore

$$
\begin{equation*}
v_{P}^{(k-2 i)} \wedge v_{P}^{(2 i)}+V_{k-2 i+2}^{(k)}=\binom{n-k+2 i}{i} \cdot \bar{v}_{P}^{(k-2 i)} . \tag{8}
\end{equation*}
$$

However,

$$
\begin{equation*}
v_{P}^{(k-2 i)} \wedge v_{P}^{(2 i)}=\binom{k / 2}{k / 2-i} v_{P}^{(k)} \tag{9}
\end{equation*}
$$

Suppose firstly that p divides $\binom{k / 2}{k / 2-i}$. Then the left side of (8) is the null vector of $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$. If p does not divide $\binom{n-k+2 i}{i}$ then we obtain $\bar{v}_{P}^{(k-2 i)}=0$, a contradiction to our hypotheses. Hence p divides $\binom{n-k+2 i}{i}$ and we have case (3) of the proposition.

Suppose now that p does not divide $\binom{k / 2}{k / 2-i}$. Then we can rewrite (8) as follows:

$$
\begin{equation*}
v_{P}^{(k)}+V_{k-2 i+2}^{(k)}=\frac{\binom{n-k+2 i}{i}}{\binom{k / 2}{k / 2-i}} \cdot \bar{v}_{P}^{(k-2 i)} . \tag{10}
\end{equation*}
$$

If p divides $\binom{n-k+2 i}{i}$ then (10) implies $v_{P}^{(k)} \in V_{k-2 i+2^{2}}^{(k)}$, which is the situation considered in case (2). Finally, let p do not divide $\binom{n-k+2 i}{i}$. Then (10) says that $v_{P}^{(k)}$ belongs to $V_{k-2 i}^{(k)} \backslash V_{k-2 i+2}^{(k)}$. We have case (1).

Corollary 4.8. Assume that there is an integer $0 \leq r \leq k / 2-1$ such that p divides $\binom{n}{k / 2-i}$ for some $i \geq r$ but does not divide $\binom{n-2 j}{k / 2-j}$ for any $j \geq r$. Then exactly one of the sections $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$ contains a virtual pole and that virtual pole is contributed by the real pole P of G. In particular, if p divides $\binom{n}{k / 2-i}$ for some i but it does not divide $\binom{n-2 j}{k / 2-j}$ for any j, then exactly one virtual pole appears in the basic series of G and it is contributed by the real pole of G.

Proof. Let i_{0} be the largest i for which p divides $\binom{n}{k / 2-i}$. By Corollary 4.6, a virtual pole $P^{\left(k-2 i_{0}\right)}$ appears in $V_{k-2 i_{0}}^{(k)} / V_{k-2 i_{0}+2}^{(k)}$. If $i_{0}=0$ then $P \subseteq V_{k}^{(k)}$ by Lemma 4.4 and P is also the unique virtual pole of G, since in this case p does not divide $\binom{n}{k / 2-i}$ for any $i>0=i_{0}$. On the other hand, let $i_{0}>0$ and let i be any index with $r \leq i \leq i_{0}$ for which a virtual pole $P^{(k-2 i)}$ appears in $V_{k-2 i}^{(k)} / V_{k-2 i+2}^{(k)}$. Since p does not divide $\binom{n-2 j}{k / 2-j}$ for any $j \geq r$, case (1) of Proposition 4.7 holds. Hence $P \in V_{k-2 i}^{(k)} \backslash V_{k-2 i+2}^{(k)}$. Consequently, i takes only one value, namely $i=i_{0}$.

5 First appearance of reducibility

The following is well known (e.g., see Premet and Suprunenko, Corollary at page 1317).

Lemma 5.1. A subspace S of W_{k} is G-invariant if and only if it is $L(G)$-invariant.
The next lemma is also well known. It is a variation of a celebrated theorem of Lie.

Lemma 5.2. Let S be G-invariant. Given a Borel subgroup B of G, let U be its unipotent radical. Then U stabilizes at least one maximal flag $0=S_{0} \subset S_{1} \subset S_{2} \subset \ldots \subset S_{d}=S$ of subspaces of S, where $d=\operatorname{dim}(S)$. Moreover, $\left[U, S_{i+1}\right] \subseteq S_{i}$ for every $i=0,1, \ldots, d$. The same holds if U is replaced by any of its subgroups, in particular by the unipotent radical of a parabolic subgroup containing B.

Let A be a 1 -dimensional subspace of V, namely a 1-element of Δ. We may assume that $A=\left\langle e_{1}\right\rangle$ for a given hyperbolic basis $\mathbb{E}=\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}$ of V (notation as in Section 4). We denote by U_{A} the unipotent radical of the stabilizer G_{A} of A in G and we put $W_{A}:=\left\langle e_{1} \wedge x: x \in \Lambda^{k-1} W_{e_{1}}\right\rangle$ where $W_{e_{1}}:=$ $\left\langle e_{2}, \ldots, e_{k}, f_{2}, \ldots, f_{k}\right\rangle$.

Lemma 5.3. The group U_{A} acts trivially on W_{A}.
Proof. Let us give \mathbb{E} the following ordering: $\left(e_{1}, e_{2}, \ldots, e_{n}, f_{2}, \ldots, f_{n}, f_{1}\right)$. The group U_{A} is generated by the root subgroups $X_{i}:=\left\{x_{i}(t)\right\}_{t \in \mathbb{F}}$ for $i=2, \ldots, n, Y_{i}:=$ $\left\{y_{i}(t)\right\}_{t \in \mathbb{F}}$ for $i=2, \ldots, n$ and $Z:=\{z(t)\}_{t \in \mathbb{F}}$, where the elements $x_{i}(t), y_{i}(t)$ and $z(t)$ are represented by matrices as follows with respect to the above ordering of \mathbb{E} :

$$
\begin{gathered}
{\left[\begin{array}{cc}
I_{n}+t E_{1, i} & O_{n} \\
O_{n} & I_{n}-t E_{i-1, n}
\end{array}\right] \text { for } x_{i}(t),\left[\begin{array}{cc}
I_{n} & t E_{1, i-1}+t E_{i, n} \\
O_{n} & I_{n}
\end{array}\right] \text { for } y_{i}(t)} \\
{\left[\begin{array}{cc}
I_{n} & t E_{1, n} \\
O_{n} & I_{n}
\end{array}\right] \text { for } z(t)}
\end{gathered}
$$

(Notation as in the proof of Lemma 4.2.) The reader may check that $x_{i}(t), y_{i}(t)$ and $z(t)$ fix all vectors of W_{A}. Exploit Fact 2.2 to speed up computations.

If n is even we denote by P the pole of G (defined as in Section 4). If n is odd we put $P=0$.

Lemma 5.4. The following are equivalent for a vector $v \in W_{k}$:
(1) $U_{A}(v)=v$;
(2) $U_{A}(\langle v\rangle)=\langle v\rangle$;
(3) $v \in W_{A}+P$.

Proof. Obviously (1) implies (2), while (3) implies (1) by Lemma 5.3. It remains to prove that (2) implies (3).

Let $\mathbb{E}=\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}$ be a hyperbolic basis as above. We turn back to the notation of Section 2.4, thus writing e_{i+n} for f_{i}. So, the ordering $\left(e_{1}, \ldots, e_{n}, f_{2}, \ldots, f_{n}\right.$, f_{1}) of \mathbb{E} considered in the proof of Lemma 5.3 is now written as ($e_{1}, \ldots, e_{n}, e_{n+2}, \ldots$, $\left.e_{2 n}, e_{n+1}\right)$. For $i=0,1,2$ let \mathcal{I}_{i} be the collection of all subsets of $\{2, \ldots, n$, $n+2, \ldots, 2 n\}$ of size $k-i$. With this notation, every vector $x \in W_{k}$ can be written as a sum $x=y_{x}+u_{x}+v_{x}+w_{x}$ where

$$
\begin{array}{ll}
y_{x}=e_{1} \wedge \sum_{J \in \mathcal{I}_{1}} y_{J} e_{J,} & u_{x}=e_{n+1} \wedge \sum_{J \in \mathcal{I}_{1}} \eta_{J} u_{J} e_{J}, \\
v_{x}=e_{1} \wedge e_{n+1} \wedge \sum_{J \in \mathcal{I}_{2}} \eta_{J} v_{J} e_{J}, & w_{x}=\sum_{J \in \mathcal{I}_{0}} w_{J} e_{J}
\end{array}
$$

for suitable scalars y_{J}, u_{J}, v_{J} and w_{J} and with $\eta_{J}:=(-1)^{|J \cap\{2,3, \ldots, n\}|}$. The factor η_{J} takes into account how many transpositions we must perform in order to move e_{n+1} to right in $e_{n+1} \wedge e_{J}$ so that to place it after all factors e_{j} with $j \in$ $J \cap\{2,3, \ldots, n\}$, consistently with the natural ordering $\left(e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 n}\right)$ of \mathbb{E}.

We must prove that, if $(u)_{k}(\langle x\rangle)=\langle x\rangle$ for every $(u)_{k} \in U_{A}$, then $x \in W_{A}+P$. Note that $y_{x} \in W_{A}+P$. Thus we may safely assume that $y_{x}=0$.

As remarked in the proof of Lemma 5.3, U_{A} is generated by root elements $x_{2}(t), \ldots, x_{n}(t), y_{2}(t), \ldots, y_{n}(t), z(t)$. In the proof of Lemma 5.3 we have also described matrices that represent those elements with respect to the ordering (e_{1}, $\left.e_{2}, \ldots, e_{n}, e_{n+2}, \ldots, e_{2 n}, e_{n+1}\right)$ of \mathbb{E}. We want to see how the vectors u_{x}, v_{x} and w_{x} should be chosen for $\langle x\rangle$ to be stabilized by each of $x_{i}(t), y_{i}(t)$ and $z(t)$. (Here and henceforth we take the liberty of writing $x_{i}(t), y_{i}(t)$ and $z(t)$ for short instead of $\left(x_{i}(t)\right)_{k},\left(y_{i}(t)\right)_{k}$ and $(z(t))_{k}$.)

Let us start with $z(t), t \neq 0$. By exploiting Fact 2.2 and the matrix given for $z(t)$ in the proof of Lemma 5.3, it is not difficult to see that $\langle x\rangle$ is stabilized by $z(t)$ if and only if $t e_{1} \wedge \sum_{J \in \mathcal{I}_{1}} \eta_{J} u_{J} e_{J}=0$. Therefore, if $z(t)$ stabilizes $\langle x\rangle$ and $t \neq 0$ then $u_{J}=0$ for every $J \in \mathcal{I}_{1}$. Hence $u_{x}=0$.

Next we consider $x_{2}(t), t \neq 0$. By exploiting Fact 2.2 and the matrix given for $x_{i}(t)$ in the proof of Lemma 5.3 we can see that $x_{2}(t)$ stabilizes $\langle x\rangle$ (recall that $u_{x}=0$) if and only if

$$
-t e_{1} \wedge e_{n+2} \wedge \sum_{n+2 \notin J \in \mathcal{I}_{2}} \eta_{J} v_{J} e_{J}+t e_{1} \wedge \sum_{2 \in J \in \mathcal{I}_{0}} w_{J} e_{J \backslash\{2\}}=0 .
$$

Therefore
Claim 1. For $J \in \mathcal{I}_{0}$ we have $w_{J}=0$ if $2 \in J$ but $n+2 \notin J$ while for $J \in \mathcal{I}_{2}$ we have $v_{J}=0$ if $2 \in J$ but $n+2 \notin J$.
On the other hand, if $\{2, n+2\} \subseteq J$ for a set $J \in \mathcal{I}_{0}$ then

$$
t v_{J \backslash\{2, n+2\}} \cdot e_{1} \wedge e_{n+2} \wedge \eta_{J \backslash\{2, n+2\}} e_{J \backslash\{2, n+2\}}=t w_{J} \cdot e_{1} \wedge e_{J \backslash\{2\}} .
$$

Note that $|(J \backslash\{2, n+2\}) \cap\{2,3, \ldots, n\}|$ is equal to the number of transpositions to perform in order to move e_{n+2} to the right in $e_{1} \wedge e_{n+2} \wedge e_{J \backslash\{2, n+2\}}$ so that to place it in its natural position. Hence,
Claim 2. If $\{2, n+2\} \subseteq J \in \mathcal{I}_{0}$ then $w_{J}=v_{J \backslash\{2, n+2\}}$.
Turning to $y_{2}(t)$ with $t \neq 0$ and recalling that $u_{x}=0$, one can see that $y_{2}(t)$ stabilizes $\langle x\rangle$ if and only if

$$
t e_{1} \wedge e_{n+2} \wedge \sum_{2 \notin J \in \mathcal{I}_{2}} \eta_{J} v_{J} e_{J}+t e_{1} \wedge \sum_{n+2 \in J \in \mathcal{I}_{0}}(-1)^{|J \cap\{2,3, \ldots, n\}|} w_{J} e_{J \backslash\{n+2\}}=0
$$

Therefore,
Claim 3. For $J \in \mathcal{I}_{0}$ we have $w_{J}=0$ if $2 \notin J$ but $n+2 \in J$ while for $J \in \mathcal{I}_{2}$ we have $v_{J}=0$ if $2 \notin J$ but $n+2 \in J$.

If $\{2, n+2\} \subseteq J \in \mathcal{I}_{0}$ then we get just the same conclusions as in Claim 2. Claims 1 and 3 can be fused as follows:
Claim 4. For $J \in \mathcal{I}_{0}$ we have $w_{J} \neq 0$ only if J contains either both of 2 and $n+2$ or none of them. Similarly, for $J \in \mathcal{I}_{2}$ we have $v_{J} \neq 0$ only if J contains either both of 2 and $n+2$ or none of them.

If we replace $x_{2}(t)$ and $y_{2}(t)$ by $x_{i}(t)$ and $y_{i}(t)$ for any choice of $i=3,4, \ldots, n$ we obtain claims similar to (2) and (4). Thus, for every $i=2,3, \ldots, n$ and $J \in \mathcal{I}_{2}$ we have $v_{J} \neq 0$ only if J contains either both i and $n+i$ or none of them. In other words, J is a union of $k / 2-1$ pairs $\{i, n+i\}$. (Clearly, this can happen only if k is even.) Similarly, for $J \in \mathcal{I}_{0}$ we have $w_{J} \neq 0$ only if J contains either both i and $n+i$ or none of them, namely J is a union of $k / 2$ pairs $\{i, n+i\}$. Moreover, if $\{i, i+n\} \subseteq J \in \mathcal{I}_{0}$ then $w_{J}=v_{J \backslash\{i, n+i\}}$.

Let $\overline{\mathcal{I}}_{2}$ and $\overline{\mathcal{I}}_{0}$ be the subfamilies of \mathcal{I}_{2} and \mathcal{I}_{0} formed by those sets that are unions of pairs $\{i, n+i\}$. By the above, $v_{x}=e_{1} \wedge e_{n+1} \wedge \sum_{J \in \bar{I}_{2}} \eta_{J} v_{J} e_{J}$ and $w_{x}=$ $\sum_{J \in \overline{\mathcal{I}}_{0}} w_{J} e_{J}$. Clearly $\overline{\mathcal{I}}_{2}=\overline{\mathcal{I}}_{0}=\varnothing$ when n is odd. So, if n is odd then $x=$ $u_{x}+v_{x}+w_{x}=0$. In this case we are done. Let n be even. We also know that if $J \in \overline{\mathcal{I}}_{0}$ with $\{i, n+i\} \subseteq J$ then $v_{J \backslash\{i, n+i\}}=w_{J}$. Suppose firstly that $n>2$. Then, given $J \in \mathcal{I}_{0}$ with $i, n+i, j, n+j \in J$, we have $v_{J \backslash\{i, n+i\}}=w_{J}=v_{J \backslash\{j, n+j\}}$. As the pairs $\{i, n+i\}$ and $\{j, n+j\}$ can be chosen arbitrarily, we eventually obtain that $v_{K}=v_{K^{\prime}}$ for any two sets $K, K^{\prime} \in \overline{\mathcal{I}}_{2}$. Put $\lambda:=v_{K}$. As $w_{J}=v_{J \backslash\{i, n+i\}}$ if $J \in \overline{\mathcal{I}}_{0}$ and $\{i, n+i\} \subseteq J$, we also obtain $w_{J}=\lambda$ for every $J \in \overline{\mathcal{I}}_{0}$. Therefore $x=$ $u_{x}+v_{x}+w_{x}=v_{x}+w_{x}=\lambda \sum_{K \in(k / 2)}^{\left.I^{\prime}\right)} e_{K} \wedge f_{K}$, where $I^{\prime}:=\{1,2, \ldots, n\}$. However $\sum_{K \in(k / 2)}^{\prime \prime} e_{K} \wedge f_{K}$ is just the polar vector v_{P} of G. So, $x=\lambda v_{P}$, namely $x \in P$.

The case of $n=2$ remains to examine. In this case $\overline{\mathcal{I}}_{2}=\varnothing$. It is straightforward to check that $x=\lambda v_{P}$ in this case too.

In view of the next theorem we need to modify our notation a little. We write $\Delta_{k, n}$ instead of Δ_{k}, to remind that $\Delta_{k, n}$ is built by subspaces of $V(2 n, \mathbb{F})$. Accordingly, we write $\varepsilon_{k, n}$ instead of $\varepsilon_{k}, W_{k, n}$ instead of $W_{k}, V_{k, n}$ instead of V_{k} and $V_{k-2 i}^{(k, n)}$ instead of $V_{k-2 i}^{(k)}$. However, in order to avoid a too heavy notation if not strictly
necessary, we keep the symbols P and v_{P} for the pole and the polar vector of G in $W_{k, n}$ when k is even (Theorem 4.1). We also keep the symbol Δ to denote the building associated to $\operatorname{Sp}(2 n, \mathbb{F})$, from which $\Delta_{k, n}$ arises.

We recall that, according to Theorem 2.5 , the radical $R\left(\varepsilon_{k, n}\right)$ of $\varepsilon_{k, n}$ is the largest G-invariant proper subspace of $W_{k, n}$.

Theorem 5.5. Suppose that $R\left(\varepsilon_{k, n}\right) \neq 0$ but $R\left(\varepsilon_{k-1, n-1}\right)=0$. Then:
(1) $R\left(\varepsilon_{k, n}\right)=P$;
(2) $\operatorname{dim}\left(R\left(\varepsilon_{k+r, n+r}\right)\right)>1$ for $r=1,2,3, \ldots$;
(3) $R\left(\varepsilon_{k-s, n-s}\right)=0$ for $1 \leq s<k$.

Proof. Let $R\left(\varepsilon_{k, n}\right) \neq 0=R\left(\varepsilon_{k-1, n-1}\right)$. By Lemma 5.2, given a 1-element A of Δ, the group U_{A} stabilizes a 1-dimensional subspace R_{1} of $R:=R\left(\varepsilon_{k, n}\right)$. We recall that $W_{A}=e_{1} \wedge W\left(e_{1}\right)=\left\{e_{1} \wedge x \mid x \in W_{e_{1}}\right\}$ where $W_{e_{1}}:=\wedge^{k-1} S\left(e_{1}\right)$, $S\left(e_{1}\right):=\left\langle e_{2}, \ldots, e_{n}, e_{n+2}, \ldots, e_{2 n}\right\rangle$. Moreover, U_{A} acts trivially on W_{A} (Lemma 5.3). Clearly $W_{A} \cong W_{k-1, n-1}$ as modules for $\bar{G}_{A}:=\left(G_{A} / U_{A}\right)^{\prime} \cong \operatorname{Sp}(2 n-2, \mathbb{F})$, where $\left(G_{A} / U_{A}\right)^{\prime}$ is the commutator subgroup of G_{A} / U_{A}. (Note that the group induced by G_{A} / U_{A} on W_{A} is slightly larger than $\left(G_{A} / U_{A}\right)^{\prime}$, since it also involves multiplications of e_{1} by scalars, but we have ruled them out by considering $\left(G_{A} / U_{A}\right)^{\prime}$ instead of G_{A} / U_{A}.) The isomorphism $W_{A} \cong W_{k-1, n-1}$ maps $V_{k, n} \cap W_{A}$ onto $V_{k-1, n-1}$ and $R_{1} \cap W_{A}$ onto a proper subspace of $V_{k-1, n-1}$ stabilized by \bar{G}_{A}. However $R\left(\varepsilon_{k-1, n-1}\right)=0$ by assumption. Hence $R_{1} \cap W_{A}=0$ by Theorem 2.5. Therefore $R_{1}=P$, by Lemma 5.4. It follows that n is even.

Assume that $P \subset R$. By Lemma 5.2, U_{A} stabilizes a 2-dimensional subspace R_{2} of R containing P. As above, $R_{2} \cap W_{A}=0$ since $R\left(\varepsilon_{k-1, n-1}\right)=0$ by assumption. Pick a vector $x \in R_{2} \backslash P$ and let v_{P} be the polar vector of G in $W_{k, n}$. So, $P=\left\langle v_{P}\right\rangle$. If $u \in U_{A}$ then $(u)_{k}(x)=x+\lambda_{u} v_{P}$ for a scalar λ_{u} because R_{2} is stabilized by U_{A}. As in the proof of Lemma 5.4, we write x as $x=y_{x}+u_{x}+v_{x}+w_{x}$ where

$$
\begin{array}{ll}
y_{x}=e_{1} \wedge \sum_{J \in \mathcal{I}_{1}} y_{J} e_{J}, & u_{x}=e_{n+1} \wedge \sum_{J \in \mathcal{I}_{1}} \eta_{J} u_{J} e_{J}, \\
v_{x}=e_{1} \wedge e_{n+1} \wedge \sum_{J \in \mathcal{I}_{2}} \eta_{J} v_{J} e_{J}, & w_{x}=\sum_{J \in \mathcal{I}_{0}} w_{J} e_{J}
\end{array}
$$

(notation as in the proof of Lemma 5.4) and we consider the effect of applying $z(t), x_{i}(t)$ and $y_{i}(t)$ to x. We firstly apply $z(t)$. We obtain $z(t)(x)=x+t e_{1} \wedge$ $\sum_{J \in \mathcal{I}_{1}} u_{J} e_{J}$. Hence

$$
\begin{equation*}
\lambda_{z(t)} v_{P}=t e_{1} \wedge \sum_{J \in \mathcal{I}_{1}} \eta_{J} u_{J} e_{J} \tag{11}
\end{equation*}
$$

However the vector at the right side of (11) belongs to W_{A} while $v_{P} \in P$ and $W_{A} \cap P=0$. Therefore $\lambda_{z(t)}=0$ and $u_{J}=0$ for every $J \in \mathcal{I}_{1}$. So $u_{x}=0$, as in the proof of Lemma 5.4. If we now apply $x_{2}(t)$, recalling that $u_{x}=0$ we obtain

$$
x_{2}(t)(x)=x-t e_{1} \wedge e_{n+2} \wedge \sum_{n+2 \notin J \in \mathcal{I}_{2}} \eta_{J} v_{J} e_{J}+t e_{1} \wedge \sum_{2 \in J \in \mathcal{I}_{0}} w_{J} e_{J \backslash\{2\}} .
$$

Hence

$$
\begin{equation*}
\lambda_{x_{2}(t)} v_{P}=-t e_{1} \wedge e_{n+2} \wedge \sum_{n+2 \notin J \in \mathcal{I}_{2}} \eta_{J} v_{J} e_{J}+t e_{1} \wedge \sum_{2 \in J \in \mathcal{I}_{0}} w_{J} e_{J \backslash\{2\}} . \tag{12}
\end{equation*}
$$

The factor e_{1} appears in each of the summands at the right side of (12) while e_{n+1} does not appear in any of them. On the other hand, $e_{1} \wedge e_{n+1}$ is involved in v_{P}. Hence both sides of (12) are null, namely $\lambda_{x_{2}(t)}=0$ and the coefficients v_{J} and w_{J} occurring in (12) satisfy certain conditions that ensure the right side of (12) to be null. However we will not exploit these latter conditions in the sequel. Finally, apply $y_{2}(t)$ and recall that $u_{x}=0$. We obtain

$$
y_{2}(t)(x)=x+t e_{1} \wedge e_{2} \wedge \sum_{2 \notin J \in \mathcal{I}_{2}} \eta_{J} v_{J} e_{J}+t e_{1} \wedge \sum_{n+2 \in J \in \mathcal{I}_{0}} \eta_{J} w_{J} e_{J \backslash\{n+2\}}
$$

Therefore

$$
\begin{equation*}
\lambda_{y_{2}(t)} v_{P}=t e_{1} \wedge e_{2} \wedge \sum_{2 \notin J \in \mathcal{I}_{2}} \eta_{J} v_{J} e_{J}+t e_{1} \wedge \sum_{n+2 \in J \in \mathcal{I}_{0}} \eta_{J} w_{J} e_{J \backslash\{n+2\}} \tag{13}
\end{equation*}
$$

Again, e_{1} occurs in each summand at the right side of (13) but e_{n+1} doesn't, while $e_{1} \wedge e_{n+1}$ occurs in v_{P}. Therefore both sides of (13) are null. Hence $\lambda_{y_{2}(t)}=0$.

Similarly, $\lambda_{x_{i}(t)}=\lambda_{y_{i}(t)}=0$ for every $i=3,4, \ldots, n$. It follows that U_{A} fixes x. Hence $x \in P$ by Theorem 4.1. This contradicts the choice of $x \in R_{2} \backslash P$ and the fact that $W_{A} \cap R_{2}=0$. Therefore $P=R$. Claim (1) is proved.

We now turn to claim (2). Given $r \geq 1$, put $\widehat{V}:=V(2 n+2 r, \mathbb{F}), \widehat{G}:=\operatorname{Sp}(2 n+$ $2 r, \mathbb{F})$ and let $\hat{\alpha}$ be the alternating form of \widehat{V} and $\widehat{\Delta}$ the building associated to \widehat{G}. So, $W_{k+r, n+r}=\wedge^{k+r} \widehat{V}$ and $\Delta_{k+r, n+r}$ is the $(k+r)$-grassmannian of $\widehat{\Delta}$.

Let $\widehat{\mathbb{E}}=\left\{e_{1}, \ldots, e_{2 n+2 r}\right\}$ be a hyperbolic basis of \widehat{V}, with indices chosen so that $\hat{\alpha}\left(e_{i}, e_{j}\right)=\hat{\alpha}\left(e_{i+n}, e_{j+n}\right)=0$ for $i, j \in\{1,2, \ldots, n+r\}, \hat{\alpha}\left(e_{i}, e_{j+n+r}\right)=\delta_{i, j}$ and $\hat{\alpha}\left(e_{i+n+r}, e_{j}\right)=-\delta_{i, j}$ for $i, j \in\{1,2, \ldots, n+r\}$, as usual. Turning back to the notation introduced at the beginning of this section, we put $f_{i}:=e_{i+n+r}$ for $i=1,2, \ldots, n+r$. Also $\hat{e}_{i}:=e_{i+n}$ and $\hat{f}_{i}:=f_{i+n}$ for $i=1,2, \ldots, r$. Given a totally isotropic r-subspace X of \widehat{V} and a basis $\left\{x_{1}, \ldots, x_{r}\right\}$ of X, let $v_{X}:=x_{1} \wedge \ldots \wedge x_{r}$ and $\widehat{W}_{X}:=v_{X} \wedge \widehat{W}(X)$ where $\widehat{W}(X):=\wedge^{k} S$ for a complement S of X in X^{\perp}. We warn that v_{X} is defined modulo a scalar, but this has no effect on the definition of \widehat{W}_{X}. Note also that $\widehat{W}(X)$ depends on the choice of S, but this choice has no effect on the wedge product $v_{X} \wedge \widehat{W}(X)$.

Let A and B be two totally isotropic r-subspaces of \widehat{V} such that $A^{\perp} \cap B=$ 0 , namely A and B have maximal distance in the r-grassmannian $\Delta_{r, n+r}$ of $\widehat{\Delta}$. We may assume to have chosen $\widehat{\mathbb{E}}$ so that $A=\left\langle\hat{e}_{1}, \ldots, \hat{e}_{r}\right\rangle$ and $B=\left\langle\hat{f}_{1}, \ldots, \hat{f}_{r}\right\rangle$. Accordingly, $v_{A}=\hat{e}_{1} \wedge \hat{e}_{2} \wedge \ldots \wedge \hat{e}_{r}, v_{B}=\hat{f}_{1} \wedge \hat{f}_{2} \wedge \ldots \wedge \hat{f}_{r}, \widehat{W}_{A}=v_{A} \wedge \widehat{W}(A)$ and $\widehat{W}_{B}=v_{B} \wedge \widehat{W}(B)$ where $\widehat{W}(A)=\widehat{W}(B)=\wedge^{k} S, S:=\left\langle e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\rangle$. Moreover, $\widehat{V}_{A}:=\widehat{W}_{A} \cap V_{k+r, n+r}=v_{A} \wedge V_{k, n}$, where we regard V as the same thing as the linear subspace $\left\langle e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\rangle$ of \widehat{V}, whence $V_{k, n}$ as a linear subspace of $\wedge^{k} \widehat{V}$.

Let \widehat{G}_{A} be the stabilizer of A in \widehat{G} and let \widehat{U}_{A} be the unipotent radical of \widehat{G}_{A}. The group \widehat{U}_{A} acts trivially on \widehat{W}_{A} (Lemma 5.3). Moreover $\widehat{W}_{A} \cong W_{k, n}$ as modules for $\left(\widehat{G}_{A} / \widehat{U}_{A}\right)^{\prime} \cong G(=\operatorname{Sp}(2 n, \mathbb{F}))$. By the first part of the proof, \widehat{V}_{A} contains a 1dimensional subspace $P_{A}=\left\langle v_{P_{A}}\right\rangle$ corresponding to the pole of G in its action on $W_{k, n}$. We may also assume that the vector $v_{P_{A}}$ chosen to generate P_{A} corresponds to the polar vector v_{P} of G. So,

$$
v_{P_{A}}=v_{A} \wedge \sum_{J \in\left(\begin{array}{l}
I / 2 \tag{14}
\end{array}\right)} e_{J} \wedge f_{J}
$$

where $I=\{1,2, \ldots, n\}$. Note that $v_{P_{A}} \in \widehat{V}_{A}$ because $v_{P} \in V_{k, n}$ by the first part of the proof. Let $\alpha_{k+r, n+r}$ be the fundamental form of $\varepsilon_{k+r, n+r}$ in $W_{k+r, n+r}$. By comparing (14) with (5) of Subsection 2.4 it is easy to see that $\alpha_{k+r, n+r}\left(v_{P_{A}}, x\right)=0$ for every vector $x \in \widehat{W}_{B}$. However $v_{P_{A}}$ only depends on the choice of A whereas B can be any totally isotropic r-subspace of \widehat{V} at maximal distance from A in $\Delta_{r, n+r}$. By the second claim of Lemma 2.3, these subspaces span $V_{r, k+n}$. Moreover, $V_{k+r, n+r}$ is the union of the subspaces \widehat{W}_{X} where X ranges in the family of totally isotropic r-subspaces of \widehat{V}. It follows that $v_{P_{A}} \in V_{k+r, n+r}^{\perp}$, where \perp denotes orthogonality with respect to $\alpha_{k+r, n+r}$. On the other hand $v_{P_{A}} \in \widehat{V}_{A} \subseteq V_{k+r, n+r}$. Hence $v_{P_{A}} \in R\left(\varepsilon_{k+r, n+r}\right)$. As any totally isotropic r-subspace can be chosen as A, $\operatorname{dim}\left(R\left(\varepsilon_{k+r, n+r}\right)\right)>1$, as claimed in (2).

Finally, $R\left(\varepsilon_{k-s, n-s}\right)=0$ for $1 \leq s<k$ because, if otherwise, by claim (2) with n and k replaced by $n-s$ and $k-s$ we obtain $R\left(\varepsilon_{k-1, n-1}\right) \neq 0$, contrary to our hypotheses.
Corollary 5.6. If $\operatorname{char}(\mathbb{F})=0$ then $R\left(\varepsilon_{k, n}\right)=0$, namely the G-module $V_{k, n}$ is irreducible for every choice of n and $1 \leq k \leq n$.

Let $\operatorname{char}(\mathbb{F})=p>0$ and assume that $R\left(\varepsilon_{k, n}\right) \neq 0$. Then p divides $\binom{n-i}{(k-i) / 2}$ for some $i<k$ with $k-i$ even.

Proof. Suppose that $V_{k, n}$ is reducible as a G-module. Then $R\left(\varepsilon_{k, n}\right) \neq 0$ by Theorem 2.5. Let i be the largest integer $(<k)$ for which $R\left(\varepsilon_{k-i, n-i}\right) \neq 0$. Then $R\left(\varepsilon_{k-i-1, n-i-1}\right)=0$. By Theorem 5.5, $R\left(\varepsilon_{k-i, n-i}\right)$ is the pole of G on $W_{k-i, n-i}$. By Theorem 4.3, $\operatorname{char}(\mathbb{F})=p>0, k-i$ is even and p divides $\binom{n-i}{(k-i) / 2}$. In particular, if $i=0$ then k is even and p divides $\binom{n}{k / 2}$.

For the rest of this section we assume $\operatorname{char}(\mathbb{F})=p>0$. Given a nonnegative integer h, we denote by $n(h, p)$ the smallest integer $n \geq h$ such that $R\left(\varepsilon_{n-h, n}\right) \neq 0$ if such an integer exists, otherwise $n(h, p):=\infty$ (but $n(h, p)<\infty$ in any case, as we will see in a few lines). Note that, in view of Theorem 5.5, if $n=n(h, p)<\infty$ and $k:=n-h$ then $R\left(\varepsilon_{k, n}\right)$ is 1-dimensional, whence k is even and $R\left(\varepsilon_{k, n}\right)=$ $\left(V_{2}^{(k, n)}\right)^{\perp}$.

In view of the next theorem we need one more definition. Let $h=\sum_{j=0}^{\infty} h_{j} p^{j}$ be the expansion of h to the base p. (Needless to say, only finitely many of the coefficients h_{j} are >0.) Let e the smallest j such that $h_{j}<p-1$. So,

$$
h=\left[(p-1) \cdot \sum_{j=0}^{e-1} p^{j}\right]+h_{e} p^{e}+h_{e+1} p^{e+1}+\ldots
$$

with $0 \leq h_{e}<p-1$. Note that $e=0$ is allowed. In this case $h_{0}<p-1$, namely $h+1 \not \equiv 0(\bmod p)$. With this convention, we define:

$$
\begin{equation*}
N(h, p)=2\left(p-1-h_{e}\right) p^{e}+h . \tag{15}
\end{equation*}
$$

Theorem 5.7. $n(h, p) \leq N(h, p)$.
Proof. Put $n:=N(h, p)$ and $k=N(h, p)-h$. We firstly prove the following:
(*) The prime p divides $\binom{n}{k / 2}$ but it does not divide $\binom{n}{k / 2-i}$, for any positive integer $i<k / 2$.

For a positive integer m, let $\operatorname{ord}_{p}(m)$ be the largest exponent f such that p^{f} divides m. It is well known that $\operatorname{ord}_{p}(m!)=\sum_{j \geq 1}\left\lfloor m / p^{j}\right\rfloor$, where $\left\lfloor m / p^{j}\right\rfloor$ is the integral part of m / p^{j} (see [15, page 1336] for instance). Therefore

$$
\begin{equation*}
\operatorname{ord}_{p}\left(\binom{m}{r}\right)=\sum_{j \geq 1}\left(\left\lfloor\frac{m}{p^{j}}\right\rfloor-\left\lfloor\frac{r}{p^{j}}\right\rfloor-\left\lfloor\frac{m-r}{p^{j}}\right\rfloor\right) . \tag{16}
\end{equation*}
$$

(Note that all summands of the right hand side of (16) are nonnegative.) By straightforward calculations, which we leave to reader, one can check that

$$
\left\lfloor\frac{n}{p^{e+1}}\right\rfloor-\left\lfloor\frac{k / 2}{p^{e+1}}\right\rfloor-\left\lfloor\frac{n-k / 2}{p^{e+1}}\right\rfloor=1
$$

while

$$
\left\lfloor\frac{n}{p^{j}}\right\rfloor-\left\lfloor\frac{k / 2-i}{p^{j}}\right\rfloor-\left\lfloor\frac{n-(k / 2-i)}{p^{j}}\right\rfloor=0
$$

for every j and every $i=1,2, \ldots, k / 2-1$. Claim $(*)$ follows from this with the help of (16).

By $(*)$ and Lemma 4.4, the pole of G in $W_{k, n}$ belongs to $V_{k, n}$. Hence $R\left(\varepsilon_{k, n}\right) \neq 0$. By Theorem 5.5, $n(h, p) \leq n$.

Theorem 5.8. Suppose that p does not divide $h+1$, namely $h=h_{0}+h_{1} p+h_{2} p^{2}+\ldots$ with $h_{0}<p-1$. Then $n(h, p)=N(h, p)$.

Proof. Put $n=n(p, h)$ and $k=n-h$, for short. Also, $h=h_{0}+\chi p$ where $\chi:=h_{1}+$ $h_{2} p+h_{3} p^{2}+\ldots$ We recall that the pole P of G belongs to $V_{k}^{(k, n)}$, whence k is even and p divides $\binom{n}{k / 2}$. By Theorem 5.7, $n=N(h, p)-2 \xi=2\left(p-h_{0}-1\right)+h-2 \xi$ for a nonnegative integer ξ. According to this, $k=2\left(p-h_{0}-1\right)-2 \xi$. Hence $\xi \leq p-h_{0}-2$ since $k / 2 \geq 1$. We want to prove that $\xi=0$. To a contradiction suppose that $\xi>0$. We shall firstly prove the following:

$$
\begin{equation*}
p \text { divides }\binom{n}{k / 2-1} \tag{17}
\end{equation*}
$$

We know that p divides

$$
\binom{n}{k / 2}=\frac{n-k / 2+1}{k / 2} \cdot\binom{n}{k / 2-1} .
$$

So, if p does not divide $\binom{n}{k / 2-1}$ then p divides $n-k / 2+1$ to a higher power than $k / 2$. However $n-k / 2+1=\left(p-1-h_{0}\right)+h-\xi+1=p+\chi p-\xi$, which is prime to p because $0<\xi \leq p-h_{0}-2<p$. We have reached a contradiction. Claim (17) is proved.

Let now r be the smallest even integer $i \geq 2$ such that p divides $\binom{n}{i / 2}$. By (17), $r<k$. By assumption, p divides $\binom{n}{r / 2}$ but it does not divide $\binom{n}{r / 2-1}$. We can repeat the argument used to prove (17), now obtaining that p divides $n-r / 2+1$ to a higher power than $r / 2$. In particular, p divides $n-r / 2+1$. We now have

$$
\begin{aligned}
n-r / 2+1 & =2\left(p-1-h_{0}\right)+h-2 \xi-r / 2+1 \\
& =2 p+\chi p-1-h_{0}-2 \xi-r / 2 .
\end{aligned}
$$

As p divides $n-r / 2+1$, we obtain $1+h_{0}+2 \xi+r / 2 \equiv 0(\bmod p)$. However $r / 2 \leq k / 2-1=\left(p-h_{0}-1\right)-\xi-1$ and $\xi \leq p-h_{0}-2$. Therefore $1+h_{0}+2 \xi+$ $r / 2<2 p$. It follows that $1+h_{0}+2 \xi+r / 2=p$, namely

$$
\begin{equation*}
r / 2=p-1-h_{0}-2 \xi \tag{18}
\end{equation*}
$$

Consequently,

$$
\left.\begin{array}{rl}
n-r & =2\left(p-1-h_{0}\right)+h-2 \xi-r=h+2 \xi, \tag{19}\\
(k-r) / 2 & =\xi \\
n-r-(k-r) / 2 & =h+\xi .
\end{array}\right\}
$$

Moreover $2 \xi \leq p-1$ because $2 \xi=p-1-h_{0}-r / 2$ by (18). By combining this inequality with (19) we see that

$$
\left\lfloor\frac{n-r}{p^{j}}\right\rfloor-\left\lfloor\frac{(k-r) / 2}{p^{j}}\right\rfloor-\left\lfloor\frac{n-r-(k-r) / 2}{p^{j}}\right\rfloor=0
$$

for every positive integer j. By (16),

$$
\begin{equation*}
p \text { does not divide }\binom{n-r}{(k-r) / 2} \tag{20}
\end{equation*}
$$

On the other hand, we have chosen r in such a way that p divides $\binom{n}{r / 2}$ but it does not divide $\binom{n}{r / 2-i}$ for any positive integer $i<r / 2$. Hence a virtual pole appears in $V_{r}^{(k, n)} / V_{r+2}^{(k, n)}$, by Corollary 4.6. By (20), we are in case (i) of Proposition 4.7: the polar vector v_{P} of G belongs to $V_{r}^{(k, n)} \backslash V_{r+2}^{(k, n)}$. This contradicts the hypothesis that $v_{P} \in V_{k}^{(k, n)}$.
Remark 5.9. It is not difficult to see that the number $N(h, p)$ defined in (15) is indeed the smallest $n \geq h$ such that $n-h$ is even and $(n-h) / 2 \leq_{p} n+1$. Equivalently, $N(h, p)$ is the smallest $n \geq h$ such that p divides $\binom{1+\lfloor(n+h) / 2\rfloor}{ h+1}$, which also is called $N(h, p)$ in Theorem 1.1. Hence Theorem 1.1 implies that $n(h, p)=N(h, p)$ for any choice of h, while our method has allowed us to prove this equality only when $h+1 \not \equiv 0(\bmod p)$. We believe it is possible to exploit our methods to prove that $n(h, p)=N(h, p)$ in any case, but at present we are not yet able to do that.
Remark 5.10. So far, we have regarded h as given, letting n and k to vary subject to the condition $n-k=h$. Conversely, assume to have chosen k and let n and h vary subject to the restriction $n-h=k$. Put

$$
f:=\operatorname{ord}_{p}(n-k+1), \quad v:=\frac{n+k-1}{p^{f}}-p \cdot\left\lfloor\frac{n+k-1}{p^{f+1}}\right\rfloor .
$$

By exploiting the equality $n(h, p)=N(h, p)$ one can see that $R\left(\varepsilon_{k, n}\right) \neq 0$ if and only if

$$
\begin{equation*}
\lfloor k / 2\rfloor \geq p^{f}, \quad p-1 \geq v \geq \max \left(1, p-\frac{k}{2 p^{f}}\right) \tag{21}
\end{equation*}
$$

Moreover, $\operatorname{dim}\left(R\left(\varepsilon_{k, n}\right)\right)=1$ if and only if k is even and $v=p-k /\left(2 p^{f}\right)$. The proof of the above claims is straightforward. We leave it for the reader.

References

[1] A. M. Adamovich. The submodule lattice of Weyl modules for symplectic groups with fundamental highest weights. Mosc. Univ. Math. Bull. 41 (1986), 6-9.
[2] R. J. Blok. Extensions of isomorphisms for affine dual polar spaces and strong parapolar spaces. Adv. Geom. 5 (2005), no. 4, 509-532.
[3] R. J. Blok. The generating rank of the symplectic Grassmannians: hyperbolic and isotropic geometry. European J. Combin. 28 (2007), no. 5, 1368-1394.
[4] R. J. Blok. Polarized embeddings of shadow spaces. Submitted.
[5] R. J. Blok and A. E. Brouwer. The geometry far from a residue. Groups and geometries. Siena, 1996. Trends in Mathematics, Birkhäuser, Basel, 1998, 2938.
[6] R. J. Blok, I. Cardinali, B. De Bruyn. On the nucleus of the Grassmann embedding of the symplectic dual polar space $\operatorname{DSp}(2 n, \mathbb{F}), \operatorname{char}(\mathbb{F})=2$. European J. Combin. 30 (2009), 468-472.
[7] R. J. Blok, I. Cardinali, B. De Bruyn, A. Pasini. Polarized and homogeneous embeddings of dual polar spaces. J. Alg. Combin. 30 (2009), 381-399.
[8] A. E. Brouwer. The composition factors of the Weyl modules with fundamental weights for the symplectic group. Preprint 1992, unpublished.
[9] I. Cardinali. On the grassmann-module of symplectic dual polar spaces of rank 4 in characteristic 3, to appear in Discr. Math.
[10] I. Cardinali, B. De Bruyn and A. Pasini. Minimal full polarized embeddings of dual polar spaces. J. Algebraic Combin. 25 (2007), 7-23.
[11] I. Cardinali and G. Lunardon. A geometric description of the spinembedding of symplectic dual polar spaces of rank 3. J. Combin. Theory Ser. A 115 (2008), no. 6, 1056-1064.
[12] R. W. Carter. Simple groups of Lie type, Pure and Applied Mathematics, 28. Wiley, London, 1972.
[13] B. De Bruyn. On the grassmann modules for $\operatorname{Sp}(2 n, \mathbb{K})$. Preprint, December 2007.
[14] A. Kasikova and E. E. Shult. Absolute embeddings of point-line geometries. J. Algebra 238 (2001), 265-291.
[15] A. A. Premet and I. D. Suprunenko. The Weyl modules and the irreducible representations of the symplectic group with the fundamental highest weights. Comm. Algebra 11 (1983), 1309-1342
[16] E. E. Shult. Geometric hyperplanes of embeddable Grassmannians. J. Algebra 145 (1992), no. 1, 55-82.
[17] R. Steinberg. Lectures on Chevalley groups. Yale Lecture Notes. Yale University, 1967.
[18] J. Tits. Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Mathematics, 386. Springer, Berlin, 1974.

Department of Mathematics and Statistics
Bowling Green State University
Bowling Green, OH 43403, U.S.A.
blokr@member.ams.org

Department of Information Engineering
University of Siena
Via Roma 56, 53100 Siena, Italy
cardinali3@unisi.it

Department of Mathematics
University of Siena, Pian dei Mantellini 44
53100 Siena, Italy
pasini@unisi.it

[^0]: Received by the editors July 2009.
 Communicated by H. Van Maldeghem.
 2000 Mathematics Subject Classification : 20C33, 20E24, 51B25, 51E24.
 Key words and phrases : symplectic grassmannians, Weyl modules for symplectic groups.

