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Abstract

Let Vk be the Weyl module of dimension (2n
k ) − ( 2n

k−2) for the group
G = Sp(2n, F) arising from the k-th fundamental weight of the Lie algebra
of G. Thus, Vk affords the grassmann embedding of the k-th symplectic polar
grassmannian of the building associated to G. When char(F) = p > 0 and
n is sufficiently large compared with the difference n − k, the G-module Vk

is reducible. In this paper we are mainly interested in the first appearance of
reducibility for a given h := n − k. It is known that, for given h and p, there
exists an integer n(h, p) such that Vk is reducible if and only if n ≥ n(h, p).
Moreover, let n ≥ n(h, p) and Rk the largest proper non-trivial submodule of
Vk. Then dim(Rk) = 1 if n = n(h, p) while dim(Rk) > 1 if n > n(h, p). In
this paper we will show how this result can be obtained by an investigation
of a certain chain of G-submodules of the exterior power Wk := ∧kV, where
V = V(2n, F).

1 Introduction

Let V be a 2n-dimensional vector space over a field F and, for a given non-
degenerate alternating form α(., .) of V, let G ∼= Sp(2n, F) be the symplectic group
associated with it. Let ∆ be the building associated to the group G. So, the ele-
ments of ∆ of type k = 1, 2, ..., n are the k-dimensional subspaces of V totally
isotropic for the form α.
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For 1 ≤ k ≤ n, let Gk be the k-th grassmannian of PG(V), where the k-subspaces
of V are taken as points. The lines of Gk are the sets lX,Y = {Z | X ⊂ Z ⊂
Y, dim(Z) = k} for a (k + 1)-subspace Y of V and a (k − 1)-subspace X of Y. Put
Wk := ∧kV and let ιk : Gk 7→ PG(Wk) be the natural embedding of Gk in PG(Wk),
sending a k-subspace 〈v1, ..., vk〉 of V to the 1-dimensional subspace 〈v1 ∧ ...∧ vk〉
of Wk. Let ∆k be the k-th grassmannian of ∆, elements of ∆ of type k being taken
as points of ∆k. When 1 < k < n the lines of ∆k are the lines lX,Y of Gk where
X and Y are totally α-isotropic, while ∆1 and ∆n are respectively the polar space
and the dual polar space associated to ∆. In any case, ∆k is a full subgeometry
of Gk. The embedding ιk induces an embedding εk : ∆k 7→ PG(Vk), where Vk is
the subspace of Wk spanned by ιk(∆k). We call εk the grassmann embedding of ∆k.
When char(F) 6= 2 the embedding εk is universal (Blok [3]).

The group G acts on Vk via εk. In the language of Chevalley groups, Vk is the
Weyl module obtained from the irreducible module for the complex Lie algebra
of type Cn whose highest weight is the k-th fundamental dominant weight, by
tensoring a minimal admissible lattice with the field F. Since this process does not
reduce the dimension, it follows from Weyl’s dimension formula that dim(Vk) =

(2n
k )− ( 2n

k−2).
The G-module Vk is irreducible when char(F) = 0. On the other hand, when

char(F) = p > 0 the module Vk can be reducible. Explicitly, Vk admits a unique
maximal proper G-submodule Rk and the dimension fk := dim(Vk/Rk) can be
computed with the help of the following recursive formula (Premet and Supru-
nenko [15]; also Adamovich [1] for the case of char(F) = 2; see also Brouwer
[8]):

fk =

(
2n

k

)
−

(
2n

k − 2

)
− ∑

j∈Jp(k)

f j, (1)

where Jp(k) := {j | 0 ≤ j < k, k − j ≡ 0 (mod 2), n − j + 1 ≥p (k − j)/2}
and, for two integers a ≥ b ≥ 0, expressed as a = a0 + a1p + · · · + ar pr and
b = b0 + b1p + . . . bs ps to the base p, we write a ≥p b and say that a contains b to
the base p if s ≤ r and for every i = 1, . . . , s either bi = ai or bi = 0.

The following is a corollary of the proof of (1) by Premet and Suprunenko [15].
Choose a nonnegative integer h and for n > h put k = n − h. Let N(h, p) be the

smallest integer n > h such that p divides (1+⌊(n+h)/2⌋
h+1 ). Then

Theorem 1.1. The G-module Vk is reducible if and only if n ≥ N(h, p). If n = N(h, p)
then dim(Rk) = 1. If n > N(h, p) then dim(Rk) > 1.

In their investigation, Premet and Suprunenko (as well as Brouwer) focus on
the structure of weight spaces of Vk. In doing this, they ultimately rely on the the-
ory of Specht modules for symmetric groups. This approach is perfect in its own
kind, but a geometry-oriented reader might want something else. The approach
by Adamovich [1] is different, but even less geometric.
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During a visit of the first author to the University of Siena in the summer
of 2007, we laid down the project of developing a more geometric approach to
this matter. We don’t aim at a strikingly simple proof of (1). Rather, we believe
there are still interesting facts that, concealed under the approach of [15], wait
to be discovered. In a sense, our project is a pretext to enlight a few of them.
This paper is a first contribution to our project. It is also a continuation of earlier
papers as [11], [6], [7] and [9], which quite naturally fit with this project.

Throughout this paper we assume char(F) 6= 2 (as Premet and Suprunenko
do in [15]). We will say a few words on this restriction at the end of this introduc-
tion.

The following characterization of Rk is crucial in our investigation. Note first
that the grassmann embedding εk of ∆k is polarized, in the following sense: for
every point X of ∆k, the εk-image εk(H(X)) of the set H(X) of points of ∆k at non-
maximal distance from X spans a hyperplane H(X)k := 〈εk(H(X))〉 of PG(Vk).
Then

Rk =
⋂
(H(X)k | X point of ∆k) (2)

This is proved by Blok [4] for arbitrary Lie incidence geometries associated to
Chevalley groups by considering a certain contravariant form β, whose radical
is exactly Rk. (See also [7], where (2) is proved for any embeddable dual polar
space, provided it is defined over a commutative division ring.) According to (2),
the subspace Rk defines a quotient εk/Rk of εk and the embedding εk/Rk is the
minimal homogeneous embedding as well as the minimal polarized embedding
of ∆k. Equivalently, every homogeneous embedding of ∆k is polarized. Moreover,
as we will see in Section 2, a non-degenerate bilinear form αk(., .) can be defined
on Wk such that, for any two points X and Y of ∆k and any non-zero vectors
x ∈ εk(X), y ∈ εk(Y), we have αk(x, y) = 0 if and only if X ∈ H(Y). By (2), Rk is
precisely the radical of the restriction of αk to Vk × Vk. In other words, Rk = Vk ∩

V
⊥k
k , where ⊥k stands for the orthogonality relation with respect to αk. A relation

certainly exists between αk and the above mentioned form β but this point is not
yet completely clear to us.

We call Rk the radical of εk. Our project amounts to investigate Rk. We shall
firstly investigate the structure of the G-module Wk introducing what we call its
basic series, namely a chain

Vk = W
(k)
k ⊂ W

(k)
k−2 ⊂ W

(k)
k−4 ⊂ ... ⊂ W

(k)
k−2⌊k/2⌋

= Wk

of G-invariant subspaces of Wk such that, for every integer i with 0 ≤ i < k/2− 1,

the quotient W
(k)
k−2i/W

(k)
k−2i+2 affords the embedding εk−2i : ∆k−2i → PG(Vk−2i)

(see Theorem 3.5). When k is odd the clause i < k/2− 1 is equivalent to i < ⌊k/2⌋.

When k is even and i = k/2 − 1 then W
(k)
2 is a hyperplane of W

(k)
0 = Wk. In this

case W
(k)
0 /W

(k)
2 is 1-dimensional (a trivial module for G).

In Section 4 we prove that if k is odd then G acts fixed-point-freely on PG(Wk)
while when k is even G admits exactly one fixed-point P on PG(Wk), which we

call the pole of G on Wk. Actually, P = (W
(k)
2 )⊥k . The pple P seems to be ultimately

responsible for Rk being non-trivial.
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Indeed, chosen a nonnegative integer h, let n range in the set of integers n > h
and put k := n − h, as we have done before. Let p = char(F). If p = 0 then
Rk = 0 for every k. In this case, when k is even, the pole P always sits outside

W
(k)
2 . In particular, it sits out of the first member Vk = W

(k)
k of the basic series. Let

p > 0. Then, as we shall see in Section 5, there exists an even nonnegative integer
k(h, p), depending on h and p, such that Rk = 0 if and only if n < n(h, p) :=
k(h, p) + h. In fact, as long as n < n(h, p) (and k = n − h is even) P travels from
one member of the basic series to another one, but keeping out of the deepest

member Vk = W
(k)
k of the series. As soon as n = n(h, p) the pole P enters Vk.

In this case Rk = P. If n > n(h, p) then dim(Rk) > 1 and Rk contains possibly
improper submodules generated by poles of subspaces of Vk generated by εk-
images of subgeometries of ∆k corresponding to residues of certain elements of ∆.
Our dream is to explain formula (1) in this perspective, but this goes far beyond
what we can do at present, provided it can be done. In this paper, leaving that
dream aside for the moment, we will mainly focus on n(h, p).

In Section 5 (Theorem 5.7) we exploit our approach to prove that n(h, p) ≤
N(h, p), where N(h, p) is as in Theorem 1.1. We also give a very simple explicit
expression for N(h, p). Moreover, we prove that, if h + 1 6≡ 0 (mod p), then
n(h, p) = N(h, p) (Theorem 5.8). However n(h, p) = N(h, p) for any value of h,
as we know by Theorem 1.1, no matter if p divides h + 1 or not. Regretfully, we
are presently unable to squeeze this equality out of our approach when h + 1 ≡ 0
(mod p).

We must mention that a different proof of Theorem 1.1 has also been obtained
by De Bruyn [13]. The proof by De Bruyn is remarkable. It only exploits elemen-
tary linear algebra: no Lie algebras and almost no groups. However it goes on
through rather complicated computations which, as we feel, do not help so much
to catch the very substance of what is going on.

As we have said above, we assume char(F) 6= 2. The following is the main
reason for this restriction. In a few arguments of ours we will exploit the fact
that the embedding εk is universal, but this can be false when char(F) = 2. Most
likely, those arguments can be modified so that to work in the case of character-
istic 2 as well, but we prefer to keep this task for a future work.

2 Preliminaries

2.1 Notation

Let F, n, V, α(., .), G, ∆, ∆k, Gk, ιk, εk, Wk and Vk be as in the introduction. As said
in the introduction, we assume char(F) 6= 2. Also, n ≥ 2.

A linear mapping f : V → V can be carried to Wk in two different ways. Given
an ordered basis E = (e1, ..., e2n) of V, which we may assume to be hyperbolic for
the form α, consider the following basis of Wk:

∧k
E := {ei1 ∧ ei2 ∧ ...eik

: 1 ≤ i1 < i2 < ... < ik ≤ 2n}.

We denote by ( f )k and [ f ]k the linear mappings of Wk defined as follows on the
vectors of ∧k

E:
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( f )k : ei1 ∧ ... ∧ eik
7→ f (ei1) ∧ ... ∧ f (eik

),

[ f ]k : ei1 ∧ ... ∧ eik
7→ ∑

k
r=1 ei1 ∧ ... ∧ eir−1

∧ f (eir ) ∧ eir+1
∧ ... ∧ eik

.

For every subgroup X of GL(V), we denote by (X)k the image of X by the map-
ping (.)k sending f ∈ X to ( f )k. Note that (X)k might be non-isomorphic to X.
However, denoted by Z and Zk the centers of GL(V) and GL(Wk) respectively,
(.)k induces an isomorphism from X/(X ∩ Z) to (X)k/(X)k ∩ Zk. In other words,
X and (X)k are projectively isomorphic. Let L(V) be the Lie algebra of all linear
mappings of V. Then for every subalgebra X of L(V) the mapping [.]k sending
f to [ f ]k induces an isomorphism from X to a subalgebra [X]k of the Lie algebra
L(Wk) of all linear transformations of Wk.

The image (G)k of G = Sp(2n, F) by (.)k stabilizes the subspace Vk of Wk.
Similarly, Vk is stabilized by the image [L(G)]k of the Lie algebra L(G) of G. Ac-
cording to this, in the sequel we will freely regard (.)k and [.]k as mappings from
G to GL(Vk) and from L(G) to the Lie algebra L(Vk) of linear mappings of Vk,
whenever this point of view will be convenient.

When there will be no danger of confusion, for a subgroup X of G we will
simply write X instead of (X)k . In particular, if (X)k stabilizes a subspace K of Wk

then we say that K is X-invariant.

2.2 Point-stabilizers and their unipotent radicals

In this subsection we recall a number of known facts on stabilizers of elements of
∆k in G = Sp(2n, F). Steinberg [17], Carter [12] and Tits [18, Chapter 13] are our
main sources for this matter.

Given a point S of ∆k let GS be its stabilizer in G. Then GS = USL (Levi-
decomposition) where US (the unipotent radical of GS) is the subgroup of GS that
stabilizes both S and S⊥/S elementwise (where ⊥ stands for orthogonality with
respect to α), while L (a Levi complement) is the stabilizer of S, S1 and S2, where
S1 is a complement of S in S⊥ and S2 is a complement of S⊥ in V contained in
S⊥

1 , namely a complement of S in S⊥
1 . The alternating form α of V induces a

non-degenerate alternating form on S1 while S2 is totally isotropic for α.

The product USL = GS is semidirect with US E GS. The unipotent radical US

acts regularly on the set of direct sums S1 ⊕ S2 as above (whence on the set of
Levi complements). The Levi complement L splits as a direct product L1 × L2

where L1 acts trivially on S1 and induces GL(k, F) on S. The action of L1 on S2 is
the dual of that on S. On the other hand, L2 acts trivially on S ⊕ S2 and induces
Sp(2n − 2k, F) on S1. The quotients L1/Z(L1) ∼= PGL(k, F) and L2/Z(L2) ∼=
PSp(2n − 2k, F) are the groups induced by GS on the lower and upper residues
of S and US · (Z(L1)× Z(L2)) is the kernel of the action of GS on Res∆(S).

The unipotent radical US acts trivially on each of S, S⊥/S and V/S⊥. Let ÛS

be the elementwise stabilizer of S⊥ in G. Clearly ÛS E US. The quotient group

US/ÛS acts regularly on the set of complements of S in V while US acts regularly
on the set of complements of S⊥ in V. The latters are just the points of ∆k at
maximal distance from S.
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Both groups US/ÛS and ÛS are abelian. The quotient US/ÛS is isomorphic to

the additive group of V(2n − 2k, F) while ÛS is isomorphic to the additive group

of symmetric (k × k)-matrices with entries in F. Moreover, Z(US) = ÛS.
Given a Borel subgroup B of G containing GS, let R+ be the set of positive

roots associated to B and {Uα}α∈R+ the set of corresponding root subgroups of
B. We recall that B is the stabilizer in G of a chamber C of ∆ containing S and
every root group Uα is a 1-parameter group Uα = {xα(t)}t∈F isomorphic to the
additive group of F. Chosen an apartment A of ∆ containing C, we may regard
R+ as the set of roots of A containing C. Let R+

S be the set of roots of A containing

all chambers of A that contain S. Then |R+
S | = 2(n − k) + (k + 1)k/2 and, for a

root α ∈ R+, we have Uα ≤ US if and only if α ∈ R+
S . We call the subgroups Uα

for α ∈ R+
S the root subgroups of US. They generate US. We state this fact explicitly,

for further reference:

Fact 2.1. Chosen an ordering (α1, α2, ..., αN) of R+
S , where N := |R+

S |, every element
u ∈ US can be expressed as a product as follows for suitable scalars t1, t2, ..., tN ∈ F:

u = xα1
(t1) · xα2(t2) · ... · xαN(tN).

The ordering (α1, α2, ..., αN) can be chosen in such a way that {Uαi
+ ÛS}

2(n−k)
i=1 is a min-

imal generating family of subgroups for the abelian group US/ÛS while {Uαi
}N

i=2(n−k)+1

is a minimal generating family of subgroups for ÛS = Z(US).

We now turn to the actions of US on Vk and Wk. We will only consider their
actions on Vk, but everything we will say holds for Wk as well. The symbols (.)k

and [.]k are defined as in Subsection 2.1. We use the symbol I to denote both
the identity mapping of V and the identity mapping of Vk. Let L(US) be the Lie
algebra of US. The mapping sending u ∈ US to u − I is a bijection from US to
L(US) and it sends the commutator [u, v] := uvu−1v−1 of two elements u and v
of US to the Lie bracket of u − I and v − I in L(US):

[u − I, v − I] := (u − I)(v − I)− (v − I)(u − I) = uv − vu.

In particular, this mapping induces a bijection from the center ÛS of US to the cen-
ter of L(US). The following is well known (see for instance Premet and Suprunen-
ko [15, Lemma 1]):

Fact 2.2. For every root subgroup Uα of US and every u ∈ Uα, the element [u − I]k is
nilpotent of exponent ≤ 3 and (u)k = I + [u − I]k + [u − I]2k/2. Hence (u)k − I is
nilpotent of exponent ≤ 3.

2.3 Singular hyperplanes and the radical R(εk) of εk

Let diam(∆k) be the diameter of the collinearity graph of ∆k. It is well known
that diam(∆k) = k + 1 if k < n and diam(∆n) = n (see Blok [3], for instance).
Given a point S of ∆k, let H(S) := {X ∈ ∆k | d(X, S) < diam(∆k)} be the set of
points of ∆k at non-maximal distance from S in the collinearity graph of ∆k and
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H(S) := {X ∈ ∆k | d(X, S) = diam(∆k)} the complement of H(S) in the set of
points of ∆k. Note that

H(S) = {X ∈ ∆k | dim(S ∩ X⊥) > 0},

H(S) = {X ∈ ∆k | dim(S ∩ X⊥) = 0}.

The first claim of the following lemma is a special case of a far more general result
of Blok and Brouwer [5]. The second claim is implicit in [2].

Lemma 2.3. H(S) is a geometric hyperplane of ∆k and H(S) spans ∆k.

The hyperplane H(S) is called the singular hyperplane of ∆k with S as the deepest
point. The next lemma is proved by Blok [4] in a far more general setting:

Lemma 2.4. For every point S of ∆k, the image εk(H(S)) of H(S) by εk spans a hyper-
plane H(S)k := 〈εk(H(S))〉 of Vk.

In short, εk is polarized, where we say that an embedding ε : ∆k → PG(U) for
a vector space U is polarized if, for every point S of ∆k, ε(H(S)) spans a hyperplane
of U. Turning back to εk, put

R(εk) :=
⋂
(H(S)k | S point of ∆k).

We call R(εk) the radical of εk. It is not so difficult to see that R(εk) defines a quo-
tient εk/R(εk) of εk and that εk/R(εk) is polarized. Moreover, the embedding εk

is relatively universal (Blok [3]; recall that we assume char(F) 6= 2). On the other
hand, polar grassmannians admit the absolutely universal embedding (Kasikova
and Shult [14]). Hence εk is absolutely universal, namely every embedding of ∆k

is a quotient of εk. This implies that every polarized embedding of ∆k sits between
εk and εk/R(εk). In other words, εk/R(εk) is the minimal polarized embedding
of ∆k (compare Cardinali, De Bruyn and Pasini [10], where this matter is settled
for dual polar spaces). It is also clear that R(εk) is G-invariant. The following
is a special case of a more general result of Blok [4], valid for any Lie geometry
associated to a Chevalley group (see also [7] for a similar theorem, valid for dual
polar spaces).

Theorem 2.5. The radical R(εk) of εk is the largest proper G-submodule of Vk.

In short, R(εk) = Rk (notation as in the introduction). An embedding ε : ∆k →
PG(W), for an F-vector space W, is said to be G-homogeneous if every g ∈ G lifts
through ε to a linear mapping of W stabilizing the image ε(∆k) of ∆k. The next
corollary is a rephrasing of Theorem 2.5.

Corollary 2.6. Every G-homogeneous embedding of ∆k is polarized.

2.4 The fundamental form αk

With α and V as in the introduction, let E := {e1, e2, ..., e2n} be a hyperbolic ba-
sis for the form α of V, where α(ei, ej) = α(ei+n, ej+n) = 0, α(ei, ej+n) = δi,j
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(Kronecker symbol) and α(ei+n, ej) = −δi,j for i, j = 1, 2, ..., n. The form α is rep-
resented by the following matrix with respect to E, where On and In are the null
and identity matrix of order n respectively:

M =

[
On In

−In On

]
.

Given two totally isotropic k-subspaces A and B of V let X and Y be 2n × k
matrices whose columns form bases of A and B respectively. By definition, A
and B are at non-maximal distance in ∆k precisely when A⊥ ∩ B 6= 0. This
happens if and only if the homogeneous linear system with matrix XT MY has
non-trivial solutions, namely det(XT MY) = 0. By expanding the determinant
det(XT · MY) according to the Cauchy-Binet formula we can rewrite the equa-
tion det(XT MY) = 0 as follows:

∑
J∈(I

k)

det(X|J) · det((MY)|J ) = 0 (3)

where I := {1, 2, ..., 2n}, ( I
k) stands for the family of k-subsets of I and, for J ∈ ( I

k),
X|J is the submatrix of X formed by the jth rows with j ∈ J while (MY)|J is

the submatrix of the jth rows of MY for j ∈ J. Put XJ := det(X|J) and YJ :=

det(Y|J). The scalars XJ for J ∈ ( I
k) are the coordinates of a non-zero vector of

ιk(A) = 〈∑ J XJeJ〉 relatively to the basis {eJ}J∈( I
k)

of Wk, where eJ := ej1 ∧ ... ∧ ejk

for J = {j1, ..., jk}, j1 < j2 < · · · < jk. Put θ(J) := |J ∩ {n + 1, n + 2, ..., 2n}|. Then

det((MY)|J ) = (−1)θ(J) · (−1)θ(J)(k−1)det(Y|ρ(J)) (4)

where ρ(j) = j + n if j ≤ n and ρ(j) = j − n if j > n. The factor (−1)θ(J) is
contributed by multiplying θ(J) rows of Y by (−1)-entries of M while the factor

(−1)θ(J)(k−1) takes care of the cyclic permutation to apply in order to put the rows
of MY which are involved in det((MY)|J ) in the same natural order they had in

Y. With (MY)J := det((MY)|J) and Yρ(J) := det(Y|ρ(J)), we can rewrite (3) as

follows:

∑
J∈( I

k)

(−1)θ(J)kXJ · Yρ(J) = 0 (5)

where ρ(j) = j + n if j ≤ n and ρ(j) = j − n if j > n.
We have established (5) thinking of singular subspaces of V, but the bilinear

form considered in (5) is defined on the whole of Wk. We shall denote this form
by αk and call it the fundamental form of εk in Wk.

Proposition 2.7. The fundamental form αk is non-degenerate. If k is even then αk is
symmetric. If k is odd then αk is alternating.

Proof. Suppose first that k is even. Then for any two vectors x and y of Wk with

coordinates XJ and YJ (J ∈ (I
k)), we have

αk(x, y) = ∑
J∈( I

k)

XJ · Yρ(J).
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We may assume to have ordered the basis vectors eJ, J ∈ ( I
k) in such a way that if

J 6= ρ(J) then J and ρ(J) occur one immediately after the other in that ordering,
with no other k-subset of I in between. With this ordering of the basis the matrix
representing αk is block-diagonal with blocks either of order 1 and equal to the
scalar 1 or of order 2 and as follows:

[
0 1
1 0

]
.

Clearly, αk is non-degenerate and symmetric.
Let now k be odd. We have J 6= ρ(J) for every k-subset J of I. Moreover, θ(J)+

θ(ρ(J)) = k, which is odd. For any two vectors x and y of Wk with coordinates XJ

and YJ (J ∈ (I
k)), we have

αk(x, y) = ∑
J∈(I

k)

(−1)θ(J)XJ · Yρ(J).

If we order the basis vectors eJ such that J and ρ(J) appear one immediately after
the order then the matrix representing αk is block-diagonal with blocks as follows:

[
0 1

−1 0

]
or

[
0 −1
1 0

]
.

So, αk is a non-degenerate alternating form.

Proposition 2.8. The group (G)k preserves the form αk.

Proof. Let ⊥k be the orthogonality relation with respect to αk. Then (G)k pre-
serves ⊥k when restricted to pairs of vectors of Wk corresponding to k-spaces of
V, namely points of Gk. We shall firstly prove that (G)k preserves ⊥k over the
whole of Wk. Equivalently, every element of (G)k preserves αk modulo a scalar.

Let A be the matrix representing the form αk as in equation (5) and, for g ∈ G,
let Mg be the matrix representing (g)k. Let a ∈ Wk \ {0} with 〈a〉 ∈ Gk. By as-

sumption aT Ax = 0 if and only if aT MT
g AMgx = 0, for any x ∈ Wk \ {0} with

〈x〉 ∈ Gk. Consider the following linear functionals f
(a)
1 : x → aT Ax and f

(a)
2 : x →

aT MT
g AMg Ax. Clearly ker( f

(a)
1 ) ∩ Gk = ker( f

(a)
2 ) ∩ Gk. Since ker( f

(a)
1 ) ∩ Gk and

ker( f
(a)
2 ) ∩ Gk are maximal subspaces of Gk and Gk spans PG(Wk), they span hy-

perplanes of Wk. Hence ker( f
(a)
1 ) = ker( f

(a)
2 ), namely f

(a)
1 and f

(a)
2 are propor-

tional. So, for all a ∈ Wk \ {0} with 〈a〉 ∈ G there exists a non-zero scalar λa,g

such that f
(a)
2 = λa,g f

(a)
1 . Clearly, λta,g = tλa,g.

Let 〈a〉 and 〈b〉 be collinear points of Gk and c = ta+ sb for (s, t) 6= (0, 0). As Gk

is a full subgeometry of PG(Wk), 〈c〉 is a point of Gk. Then f
(c)
2 = t f

(a)
2 + s f

(b)
2 =

tλa,g f
(a)
1 + sλb,g f

(b)
1 . However, f

(c)
2 = λta+sb,g f

(c)
1 = λta+sb,g(t f

(a)
1 + s f

(b)
1 ). So,

tλa,g f
(a)
1 + sλb,g f

(b)
1 = λta+sb,gt f

(a)
1 + λta+sb,gs f

(b)
1 .
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Suppose that there exists h ∈ F \ {0} such that f
(b)
1 = h f

(a)
1 . Then bT Ax = haT Ax,

hence bT − ha ∈ Rad(αk). This is impossible since αk is non-degenerate (Propo-

sition 2.7). Hence f
(a)
1 and f

(b)
1 are non-proportional. Therefore λa,g = λta+sb,g =

λb,g. Put λg := λa,g (= λb,g = λta+sb,g). As Gk is connected, aT MT
g AMgx =

λgaT Ax for all x ∈ Wk and all a ∈ Wk \ {0} such that 〈a〉 ∈ Gk. However

〈Gk〉 = Wk. Hence MT
g AMg = λgA, namely (g)k preserves αk modulo a scalar

λg.
If λg depended on the choice of g ∈ G, then G would admit a quotient iso-

morphic to a subgroup F
∗
0 of the multiplicative group F

∗ of F. However G/Z(G)
is simple while |Z(G)| = 2. Hence 1 and −1 are the only admissible values for
λg and, if z is the non-trivial element of Z(G) and λg = −1 for some g ∈ G then
λz = −1. This immediately rules out the case of k even since in this case (z)k is
the identity mapping of Wk. However, even if k is odd, the effect of z on αk(x, y)
amounts to multiply the coordinates XJ and YJ by −1. This has no effect on the
value αk(x, y) itself. Hence (G)k preserves αk.

While αk is non-degenerate as a form of Wk, its restriction to Vk can be degener-
ate, with radical V⊥

k ∩Vk, where now ⊥ stands for the orthogonality relation with
respect to αk, denoted by ⊥k in the proof of Proposition 2.8. (We have previously
used the symbol ⊥ to denote orthogonality with respect to α, but this notational
ambiguity is harmless, since α and αk live in different environments.)

Proposition 2.9. R(εk) = V⊥
k ∩ Vk.

Proof. For two points X and Y of ∆k we have Y ∈ H(X) if and only if αk(εk(X),
εk(Y)) = 0, namely H(X) = εk(X)⊥ . Hence R(εk) = ∩(εk(X)⊥ | X point of ∆k).
The latter equals V⊥

k ∩ Vk, as εk(∆k) spans Vk.

Remark 2.10. When k = 1, αk = α. When k = n, a formula different from (5) was
considered in [10], namely the following:

∑
J∈( I

n)

(−1)ζ(J)XJYI\J = 0 (6)

where ζ(J) = n(n + 1)/2 + ∑j∈J j. One can prove that (5) with k = n and (6) are
in fact equivalent on Vn, but they are not equivalent on the whole of Wn.

2.5 G-invariant equivalence relations

We finish this section with an elementary lemma, to be used several times in this
paper. Let Θ be an equivalence relation on the set of points of ∆k. We say that Θ

is G-invariant if (g(X), g(Y)) ∈ Θ for every g ∈ G and every pair (X, Y) ∈ Θ.

Lemma 2.11. Let Θ be a G-invariant equivalence relation on the set of points of ∆k.
Then Θ is either the identity relation or trivial.

Proof. By way of contradiction, suppose that Θ is neither the identity nor trivial.
Then it admits at least two classes, say C and C′, and at least one of them, say C,



On natural representations of the symplectic group 11

contains at least two elements. Let X and Y be distinct elements of C. As Θ is
G-invariant, the stabilizer GX of X in G also stabilizes C. Moreover, G contains at
least one element g mapping X onto Y, since G is transitive on the set of points
of ∆k. Hence the setwise stabilizer GC of C in G is larger than GX. This is a
contradiction, because GX is a maximal subgroup of G.

3 The basic series of G in Wk

Throughout this section ⊥ stands for orthogonality with respect to α. For 0 ≤ i ≤

⌊k/2⌋ (where ⌊k/2⌋ is the integral part of k/2), we denote by V
(k)
k−2i the subspace

of Wk spanned by the vectors ιk(X) for a k-subspace X of V with dim(X ∩ X⊥) ≥

k − 2i. In particular, V
(k)
k = Vk. Clearly, V

(k)
k−2i is G-invariant and V

(k)
k−2i ⊆ V

(k)
k−2j for

0 ≤ i ≤ j ≤ ⌊k/2⌋.
Note that k − 2⌊k/2⌋ is equal to 0 or 1 according to whether k is even or odd.

In any case, V
(k)
k−2⌊k/2⌋

= Wk. We put V
(k)
k+2 := 0, by convention. The series of the

G-submodules of Wk defined above will be called the basic series of G in Wk:

0 = V
(k)
k+2 ⊆ V

(k)
k ⊆ V

(k)
k−2 ⊆ ... ⊆ V

(k)
k−2⌊k/2⌋

= Wk.

We denote by Ṽ
(k)
k−2i the set of non-zero vectors w ∈ Wk such that 〈w〉 = ιk(X) for

a k-subspace X of V with dim(X ∩ X⊥) = k − 2i. Clearly, Ṽ
(k)
k−2i ⊆ V

(k)
k−2i \ V

(k)
k−2i+2.

Lemma 3.1. 〈Ṽ
(k)
k−2i〉 = V

(k)
k−2i for every i = 0, 1, ..., ⌊k/2⌋.

Proof. By induction on i. Let i = 0. Then Ṽ
(k)
k is just the image of the set of points

of ∆k by ιk. In this case the equality 〈Ṽk−2i〉 = V
(k)
k−2i rephrases the definition of Vk.

Assume i > 0. Let A be a k-dimensional subspace of V with dim(A ∩ A⊥) =
k − 2i + 2 and E = {e1, ..., en, f1, ..., fn} a hyperbolic basis of V, with α(ei, f j) = δi,j

for i, j = 1, 2, ..., n. We may assume to have chosen E in such a way that A = 〈EA〉
where EA = E1 ∪ E2 ∪ {ek−2i+2},

E1 = {e1, e2, ..., ek−2i+1},
E2 = {ek−2i+3, fk−2i+3, ek−2i+4, fk−2i+4, ..., ek−i+1, fk−i+1}.

Put EB = E1 ∪E2 ∪{ fk−2i+1}, EC = E1 ∪E2 ∪{ek−2i+2 + fk−2i+1}, B = 〈EB〉 and
C = 〈EC〉. Then dim(B ∩ B⊥) = dim(C ∩ C⊥) = k − 2i. Both ∧k

EB and ∧k
EC

belong to Ṽ
(k)
k−2i. Moreover ∧k

EA = ∧k
EC − ∧k

EB. Hence ∧k
EA ∈ 〈Ṽ

(k)
k−2i〉. So

far, we have proved that Ṽ
(k)
k−2i+2 ⊆ 〈Ṽ

(k)
k−2i〉. However 〈Ṽ

(k)
k−2i+2〉 = V

(k)
k−2i+2 by the

inductive hypothesis. Therefore 〈Ṽ
(k)
k−2i〉 ⊇ V

(k)
k−2i+2. The equality 〈Ṽ

(k)
k−2i〉 = V

(k)
k−2i

follows.

Let Z be a totally isotropic subspace of V of dimension d = k − 2i, i > 0.
Define the following subsets of Gk

Gk(Z) = {X | dim(X) = k and Z ⊆ X⊥ ∩ X},
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Hk(Z) = {X ∈ Gk(Z) | Z ⊂ X⊥ ∩ X}.

Lemma 3.2. The set Gk(Z) is a subspace of Gk and it is isomorphic to the 2i-grassmann
geometry of PG(Z⊥/Z).

Proof. For every k-subspace X of V, we have X⊥ ∩ X ⊇ Z if and only if Z ⊆ X ⊆
Z⊥. The lemma immediately follows from this.

Note also that 〈ιk(Gk(Z))〉 ⊆ V
(k)
k−2i, 〈ιk(Hk(Z))〉 ⊆ V

(k)
k−2i+2 and ιk(Gk(Z) \

Hk(Z)) ⊆ Ṽ
(k)
k−2i. (The inclusion ιk(Gk(Z) \ Hk(Z)) ⊆ Ṽ

(k)
k−2i is literally incorrect,

since ιk(Gk(Z) \ Hk(Z)) is a set of 1-dimensional subspaces while Ṽ
(k)
k−2i is a set of

vectors, but we take this way of writing as a shortening for the correct formula-
tion; little abuses like this will be freely committed henceforth.)

Lemma 3.3. The set Hk(Z) is a geometric hyperplane of Gk(Z) and its complement
Gk(Z) \ Hk(Z) is connected. Moreover, ιk(Hk(Z)) spans a projective hyperplane of
〈ιk(Gk(Z))〉.

Proof. Suppose Z = 0, to begin with. Hence k is even. We firstly prove that
Hk = Hk(0) is a subspace of Gk = Gk(0). Let X and Y be two distinct collinear
points of Hk. Hence dim(X ∩ Y) = k − 1. Put RX := X ∩ X⊥ and RY := Y ∩ Y⊥.
Note that RX 6= 0 6= RY, as X, Y ∈ Hk. Since X and Y have even dimension, RX

and RY have dimension at least 2. Hence RX ∩ Y 6= 0 6= RY ∩ X. Let rX ∈ RX ∩ Y
and rY ∈ RY ∩ X, rX 6= 0 6= rY.

Suppose that rX 6= rY. Take a point Z in the line of Gk spanned by X and Y.
Hence Z = 〈X ∩ Y, z〉 for a vector z 6∈ X ∩ Y. There exists at least one point 〈r〉 in
the projective line 〈rX , rY〉 orthogonal to z. Since X ∩ Y is orthogonal to both rX

and rY, X ∩ Y is also orthogonal to r. Therefore r ∈ Z ∩ Z⊥. Hence Z ∈ Hk. So,
the line spanned by X and Y is contained in Hk.

Let rX = rY = r, say. Let Z := 〈X ∩Y, z〉 for a non-zero vector z ∈ 〈x, y〉 where
x ∈ X \ Y and y ∈ Y \ X. Since r ⊥ x, y the vector r is orthogonal to every point
of 〈x, y〉. In particular, r ⊥ z. Moreover r ∈ Z ∩ Z⊥ since r is also orthogonal to
X ∩ Y. As above, the line of Gk spanned by X and Y is contained in Hk. We have
proved that Hk is a subspace of Gk.

Take now a line L of Gk not contained in Hk. As Hk is a subspace of Gk, at
most one point of L belongs to Hk. Let X and Y be two distinct points of L not
in Hk. Then X ∩ X⊥ = Y ∩ Y⊥ = 0. Since X ∩ Y has odd dimension, there exists
a non-zero vector r ∈ (X ∩ Y) ∩ (X ∩ Y)⊥. Take x ∈ X \ Y, y ∈ Y \ X and let
z ∈ r⊥ ∩ 〈x, y〉, z 6= 0. Put Z := 〈X ∩ Y, z〉. Then r ∈ Z ∩ Z⊥. Hence Z ∈ Hk. We
have proved that Hk is a hyperplane of Gk.

By Shult [16], the hyperplane Hk arises from the embedding ιk : Gk 7→ PG(Wk)
and the complement Gk \ Hk is simply connected (whence connected).

Finally, let Z 6= 0. Put VZ := Z⊥/Z and let G2i,Z be the 2i-grassmann ge-
ometry of PG(VZ). By Lemma 3.2, Gk(Z) ∼= G2i,Z. Moreover, the embedding
ιk,Z : Gk(Z) → 〈ιk(Gk(Z))〉 induced by ιk on Gk(Z) is isomorphic to the natural

embedding ι2i : Gk,Z → PG(∧2iVZ). So, we can replace Z by the null space of VZ

and k by 2i and we obtain the conclusion by the first part of the proof.
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For 0 ≤ i ≤ ⌊k/2⌋ we define a mapping fk−2i : ∆k−2i → PG(V
(k)
k−2i/V

(k)
k−2i+2) as

follows: for every point Z of ∆k−2i we put

fk−2i(Z) = (〈ιk(Gk(Z))〉 + V
(k)
k−2i+2)/V

(k)
k−2i+2 =

= ιk(X) + V
(k)
k−2i+2 for any X ∈ Gk(Z) \ Hk(Z).

The latter equality holds because ιk(Hk(Z)) ⊆ V
(k)
k−2i+2 and 〈ιk(Hk(Z))〉 is a hy-

perplane of 〈ιk(Gk(Z))〉, by Lemma 3.3. The following lemma is obvious:

Lemma 3.4. (g)k( fk−2i(Z)) = fk−2i(g(Z)) for every g ∈ G and every point Z of
∆k−2i.

Theorem 3.5. Let i < k/2. Then the above defined mapping

fk−2i : ∆k−2i → PG(V
(k)
k−2i/V

(k)
k−2i+2)

is a projective embedding and it is isomorphic to the natural embedding εk−2i : ∆k−2i →

PG(Vk−2i). Moreover V
(k)
k−2i/V

(k)
k−2i+2 and Vk−2i are isomorphic as G-modules.

Proof. We split the proof in a number of steps.

(1) One of the following holds:

(1.a) fk−2i(Z) is a point of PG(V
(k)
k−2i/V

(k)
k−2i+2) for every point Z of ∆k−2i;

(1.b) V
(k)
k−2i+2 = V

(k)
k−2i.

Let Z be a point of ∆k−2i. By Lemma 3.3, ιk(Hk(Z)) spans a hyperplane of

〈ιk(Gk(Z))〉. If 〈ιk(Gk(Z))〉 ⊂ V
(k)
k−2i+2 then (〈ιk(Gk(Z))〉 + V

(k)
k−2i+2)/V

(k)
k−2i+2 is the

null space. Otherwise, V
(k)
k−2i+2 is a hyperplane of 〈ιk(Gk(Z))〉 + V

(k)
k−2i+2, hence

(〈ιk(Gk(Z))〉+V
(k)
k−2i+2)/V

(k)
k−2i+2 is a point of PG(V

(k)
k−2i/V

(k)
k−2i+2). If the latter case

occurs for every point Z ∈ ∆k−2i then (1.a) holds. Suppose that 〈ιk(Gk(Z))〉 ⊂

V
(k)
k−2i+2 for at least one point Z ∈ ∆k−2i. By the transitivity of G on the set of

points of ∆k−2i and by Lemma 3.4 we obtain that 〈ιk(Gk(Z))〉 ⊆ V
(k)
k−2i+2 for every

point Z ∈ ∆k−2i. However, the image ιk(∆k−2i) of the point-set of ∆k−2i is just the

set of 1-dimensional linear spaces contained in Ṽ
(k)
k−2i and the latter spans V

(k)
k−2i by

Lemma 3.1. Hence V
(k)
k−2i = V

(k)
k−2i+2 as in (1.b).

(2) Assume (1.a). Then one of the followings holds:
(2.a) fk−2i is injective;

(2.b) V
(k)
k−2i/V

(k)
k−2i+2 is a point.

Suppose that fk−2i is not injective. Since G permutes the fibers of fk−2i, Lemma
2.11 implies that fk−2i(Z) = fk−2i(Z

′) for any two points Z, Z′ ∈ ∆k−2i. Hence
the image of fk−2i is just a point, as in (2.b).

(3) If both (1.a) and (2.a) hold then fk−2i is a projective embedding of ∆k−2i in PG(V
(k)
k−2i/

V
(k)
k−2i+2).
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Assume (1.a) and (2.a). Let L be a line of ∆k−2i, L = {Z | L1 ⊂ Z ⊂ L2, dim(Z) =
k − 2i} for two isotropic subspaces L1 ⊂ L2 of V of dimensions k − 2i − 1 and
k − 2i + 1 respectively. Take a 2i-dimensional non-singular space Y of V orthogo-
nal to L2 and disjoint from L2. (To see that such a subspace exists, consider a com-
plement of L2 in L⊥

2 .) Put Z := 〈Y, Z〉 for Z ∈ L, L1 := 〈Y, L1〉 and L2 := 〈Y, L2〉.
Then L := {X | L1 ⊂ X ⊂ L2, dim(X) = k} is a line of Gk and Z ∈ L for every

Z ∈ L. For Z ∈ L we have Z ∩ Z
⊥
= Z, whence Z ∈ Gk(Z) \ Hk(Z). Therefore

fk−2i(Z) = (〈ιk(Gk(Z))〉 + V
(k)
k−2i+2)/V

(k)
k−2i+2 = ιk(Z) + V

(k)
k−2i+2. Since, according

to (2.a), fk−2i is injective, the image of L by fk−2i is the line of PG(V
(k)
k−2i/V

(k)
k−2i+2)

whose points are represented by the spaces ι(Z) for Z ∈ L. It remains to prove

that fk−2i(∆k−2i) spans V
(k)
k−2i/V

(k)
k−2i+2, but this immediately follows from Lemma

3.1.

(4) For every i = 0, 1, ..., ⌊k/2⌋, the mapping fk−2i is a projective embedding of ∆k−2i

with vector dimension

dim( fk−2i) = dim(V
(k)
k−2i/V

(k)
k−2i+2) =

(
2n

k − 2i

)
−

(
2n

k − 2i − 2

)
.

Given i ∈ {0, 1, ..., ⌊k/2⌋}, suppose that (1.a) and (2.a) hold. Then, by (3), fk−2i

is an embedding of ∆k−2i. By Blok [3], dim( fk−2i) ≤ ( 2n
k−2i) − ( 2n

k−2i−2), namely

dim(V
(k)
k−2i/V

(k)
k−2i+2) ≤ ( 2n

k−2i) − ( 2n
k−2i−2). The latter inequality trivially holds in

cases (1.b) and (2.b). On the other hand,

⌊k/2⌋

∑
i=0

[(
2n

k − 2i

)
−

(
2n

k − 2i − 2

)]
=

(
2n

k

)
= dim(Wk) =

=
⌊k/2⌋

∑
i=0

dim(V
(k)
k−2i/V

(k)
k−2i+2).

This forces dim(V
(k)
k−2i/V

(k)
k−2i+2) = ( 2n

k−2i)− ( 2n
k−2i−2) for every i = 0, 1, ..., ⌊k/2⌋.

(5) fk−2i is isomorphic to the natural embedding εk−2i : ∆k−2i → PG(Vk−2i).

By Kasikova and Shult [14] (§§4.6–4.8) ∆k−2i admits the absolutely universal em-

bedding which, by Blok [3], is the natural embedding εk−2i of dimension ( 2n
k−2i)−

( 2n
k−2i−2). Hence fk−2i

∼= εk−2i and V
(k)
k−2i/V

(k)
k−2i+2

∼= Vk−2i.

When k is even Theorem 3.5 implies that

dim(V
(k)
2 ) =

k/2−1

∑
i=0

(
2n

k − 2i

)
−

(
2n

k − 2i − 2

)
=

(
2n

k

)
− 1.

So, V
(k)
0 /V

(k)
2

∼= W0 is 1-dimensional and f0 affords the trivial representation of
G. In other words,

Corollary 3.6. Let k be even. Then V
(k)
2 is a hyperplane of Wk.
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Lemma 3.7. Let A be a G-invariant proper subspace of Wk. Then there exists an index

i ≥ 0 such that V
(k)
k−2j ⊆ A for j < i and Ṽ

(k)
k−2r ∩ A = ∅ for r ≥ i.

Proof. Let i be the largest index j such that V
(k)
k−2j+2 ⊆ A. We must show that

Ṽ
(k)
k−2r ∩ A = ∅ for every r ≥ i. Suppose the contrary. Then A ⊇ 〈Ṽ

(k)
k−2r〉 as G acts

transitively on Ṽk−2r and, by assumption, A is stabilized by G. However Ṽ
(k)
k−2r

spans V
(k)
k−2r by Lemma 3.1. Hence A ⊇ V

(k)
k−2r, contrary to our choice of i.

Corollary 3.8. Let A be a G-invariant proper subspace of Wk and suppose that V
(k)
k−2i 6⊆

A + V
(k)
k−2i+2. Then the subspace (V

(k)
k−2i+2 + A ∩ V

(k)
k−2i)/V

(k)
k−2i+2 of V

(k)
k−2i/V

(k)
k−2i+2

defines a homogeneous quotient of the embedding fk−2i : ∆k−2i → PG(V
(k)
k−2i/V

(k)
k−2i+2).

Proof. By Lemmas 3.1 and 3.7 applied to A′ = V
(k)
k−2i+2 + A ∩ V

(k)
k−2i, either A′ ⊇

V
(k)
k−2i or A′ ∩ Ṽ

(k)
k−2i = ∅. The first case is excluded by assumption. So, the latter

holds. We have {〈w〉+V
(k)
k−2i+2 | w ∈ Ṽ

(k)
k−2i} = fk−2i(∆k−2i). In order to prove that

A′/V
(k)
k−2i+2 defines a (necessarily homogeneous) quotient of fk−2i we only must

prove that 〈w1, w2〉 ∩ A′ = 0 for every choice of vectors w1, w2 ∈ Ṽ
(k)
k−2i. Suppose

the contrary and let 〈w1, w2〉 ∩ A′ 6= 0 for two given vectors w1, w2 ∈ Ṽ
(k)
k−2i.

The vectors w1 and w2 correspond to two totally isotropic (k − 2i)-dimensional
subspaces X0 and Y0 of V and fk−2i(X0) + A′ = fk−2i(Y0) + A′. By Lemma 2.11,
fk−2i(X) + A′ = fk−2i(Y) + A′ for any two points X and Y of ∆k−2i. In particular,
this also holds if X and Y are collinear in ∆k−2i. On the other hand, fk−2i maps

lines of ∆k−2i onto lines of PG(V
(k)
k−2i/V

(k)
k−2i+2). Therefore fk−2i(Z) ∈ A′ for a point

Z of ∆k−2i belonging to the line spanned by X and Y. This contradicts the fact that

A′ ∩ Ṽk−2i = ∅.

4 The pole of G in Wk

Throughout this section ⊥ is the orthogonality relation associated to the fun-
damental form αk, defined in Subsection 2.4. Suppose there exists a point P of
PG(Wk) fixed by G. As G preserves αk, G also stabilizes the hyperplane P⊥ of Wk.

Let i be the largest index such that P⊥ ⊇ V
(k)
k−2i+2 (compare Lemma 3.7). Then

(P⊥ ∩ V
(k)
k−2i)/V

(k)
k−2i+2 is a G-invariant hyperplane of V

(k)
k−2i/V

(k)
k−2i+2. However, if

i < k/2 then V
(k)
k−2i/V

(k)
k−2i+2 hosts the embedding εk−2i (by Theorem 3.5), hence it

cannot admit any G-invariant hyperplane (compare Corollary 3.8). Therefore k is

even and i = k/2. In this case V
(k)
k−2i/V

(k)
k−2i+2 = V

(k)
0 /V

(k)
2 is 1-dimensional and

P⊥ = V
(k)
2 , namely P = (V

(k)
2 )⊥. We have proved the following:

Theorem 4.1. If k is odd then G acts fixed-point freely on PG(Wk). If k is even then

P := (V
(k)
2 )⊥ is the only point of PG(Wk) fixed by G.
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For the rest of this section k is assumed to be even. The unique fixed point P
of G in PG(Wk) will be called the pole of G.

Let {e1, ..., en, f1, ..., fn} be a hyperbolic basis of V as in the proof of Lemma
3.1, namely a basis as in Section 2.4 but with fi := ei+n. For J = {j1, ..., jk/2} ⊆
I := {1, 2, ..., n} we put eJ = ej1 ∧ ... ∧ ejk/2

and f J = f j1 ∧ ... ∧ f jk/2
. Consider the

following vector:

vP := ∑
1≤j1<···<jk/2≤n

ej1 ∧ · · · ∧ ejk/2
∧ f j1 ∧ · · · ∧ f jk/2

= ∑
J∈( I

k/2)

eJ ∧ f J

Lemma 4.2. P = 〈vP〉.

Proof. We only must prove that G fixes vP. Recall that G = 〈U+, U−〉 where
U+ and U− are the unipotent radicals of two ‘opposite’ Borel subgroups B+ and
B− of G, stabilizing two opposite chambers of ∆. In its turn U+ is generated
by root subgroups Uα with α ∈ R+ (notation as in Subsection 2.2) while U− is
generated by the root subgroups U−α for α ∈ R+. So, if Π+ is the basis of simple
roots associated to the given set R+ of positive roots then U+ = 〈Uα〉α∈Π+ and
U− = 〈U−α〉α∈Π+ . In order to prove that G fixes vP we only need to prove that
vP is fixed by Uα and U−α for every α ∈ Π+. Put {α1, α2, ..., αn} = Π+ and let
xαi

(t) be the generic element of Uαi
(see Subsection 2.2). Then xαi

(t), regarded as
a linear transformation of V, is represented by a matrix as follows, where In and
On are the identity and null matrices of order n and the symbol Ei,j denotes the
square matrix of order n with only null entries except for the (i, j)-entry, which
is 1: [

In + tEi,i+1 On

On In − tEi+1,i

]
,

[
In tEn,n

On In

]
.

(for xαi
(t), i = 1, ..., n − 1) (for xαn(t))

The element x−αi
(t) of U− is represented by the transpose xαi

(t)T of the matrix
xαi

(t). Having recalled this, it is straightforward to check that vp is fixed by
(xαi

(t))k and (x−αi
(t))k for every i = 1, 2, ..., n. Fact 2.2 can be profitably used

here to speed up computations. We leave them for the reader.

We call vP the polar vector of G. Clearly V
(k)
2 = v⊥P , since P = 〈vP〉 and V

(k)
2 =

P⊥. Recall that αk is expressed by the left hand side of formula (3) of Subsection

2.4. Notice also that, if YJ is the J-coordinate of vP for J ∈ ( I
k), then YJ = 1 if

ρ(J) = J and YJ = 0 otherwise. (Here I = {1, 2, ..., 2n} and ρ permutes j with
j + n for every j = 1, 2, ..., n, as in formula (3) of Subsection 2.4). It is now clear

that V
(k)
2 is described by the following equation:

∑
J∈(I

k),ρ(J)=J

XJ = 0. (7)

Theorem 4.3. We have vP ∈ V
(k)
2 if and only if char(F) is positive and divides ( n

k/2).

Proof. In view of the condition ρ(J) = J, the k-subsets J ∈ ( I
k) to consider in (7)

are those of the form J = J′ ∪ ρ(J′) for a (k/2)-subset J′ of I ′ = {1, 2, ..., n}. Hence
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they bijectively correspond to the (k/2)-sets J′ ∈ ( I ′

k/2). Therefore vP ∈ V
(k)
2 if and

only if ∑
J′∈( I′

k/2)
1 = 0, namely ( n

k/2) = 0. The latter holds if and only if char(F) is

positive and divides ( n
k/2).

For the rest of this section we assume that char(F) = p > 0 and k is even.

Suppose that p divides ( n
k/2). Then vP ∈ V

(k)
2 by Theorem 4.3. If we knew that

vP ∈ V
(k)
k then, by Theorem 2.5 we could conclude that R(εk) 6= 0. However

Theorem 4.3 does not give any information on where vP is placed inside V
(k)
2 .

Suppose that vP ∈ V
(k)
k−2i \ V

(k)
k−2i+2. By Theorem 3.5, V

(k)
k−2i/V

(k)
k−2i+2 and V

(k−2i)
k−2i are

isomorphic G-modules. Moreover G fixes the vector v
(k−2i)
P := vP + V

(k)
k−2i+2 of

V
(k)
k−2i/V

(k)
k−2i+2

∼= V
(k−2i)
k−2i , as it fixes vP. Hence v

(k−2i)
P is the polar vector of G in

Wk−2i, and it belongs to V
(k−2i)
k−2i . Therefore p divides ( n

(k−2i)/2) by Theorem 4.3.

Suppose that for some j = 0, 1, ..., k/2− 1 the polar vector v
(k−2j)
P of G in Wk−2j

belongs to V
(k−2j)
k−2j . Then we say that v

(k−2j)
P , regarded as a vector of the quotient

V
(k)
k−2j/V

(k)
k−2j+2, is a virtual polar vector of G in the basic series of G and we call

〈v
(k−2j)
P 〉 a virtual pole of G. So, if the pole P of G in Wk is contained in V

(k)
2 then

it must appear among the virtual poles. However, it is possible that several vir-
tual poles exist but none of them arises from the true pole. It is also possible
that no virtual pole exists. Note also that, if a virtual pole appears in a section

V
(k)
k−2j/V

(k)
k−2j+2, then p divides ( n

k/2−j), but in general the converse does not hold.

The next lemma immediately follows from the previous discussion.

Lemma 4.4. Suppose that p divides ( n
k/2) but does not divide ( n

k/2−i) for every

i = 1, 2, ..., k/2 − 1. Then vP ∈ V
(k)
k .

Lemma 4.5. The basic series of G in Wk admits at least one virtual pole if and only if p
divides ( n

k/2−i) for some i = 0, 1, ..., k/2 − 1.

Proof. In the previous discussion we have already remarked that the ‘only if’ part
of the lemma holds. Let us prove the ‘if’ part. Suppose that p divides ( n

k/2−i).

Then v
(k−2i)
P ∈ V

(k−2i)
2 . Hence v

(k−2i)
P appears among the virtual poles of the

basic series of G in Wk−2i. However every section of this series is isomorphic to a
section of the basic series of G in Wk. Indeed

V
(k−2i)
k−2i−2j/V

(k−2i)
k−2i−2j+2

∼= V
(k)
k−2i−2j/V

(k)
k−2i−2j+2

∼= V
(k−2i−2j)
k−2i−2j

for every j = 0, 1, ..., k/2− i − 1. Therefore at least one virtual pole appears in the
basic series of G in Wk.

The next corollary easily follows from the previous two lemmas.

Corollary 4.6. Suppose that p divides ( n
k/2−i) for some i = 0, 1, ..., k/2 − 1 and let i0

be the maximal value of i such that p divides ( n
k/2−i). Then the section V

(k)
k−2i0

/V
(k)
k−2i0+2

contributes a virtual pole.
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In the next two propositions we state a few results that, in certain situations,
can help to locate virtual poles and possibly the true pole among them.

Proposition 4.7. Suppose that a virtual pole P(k−2i) appears in V
(k)
k−2i/V

(k)
k−2i+2 for an

index i ∈ {1, 2, ..., k/2 − 1}. Then one of the following holds:

(1) p divides neither (n−k+2i
i ) nor ( k/2

k/2−i) and the virtual pole P(k−2i) arises from the
true pole P of G;

(2) p divides (n−k+2i
i ) but does not divide ( k/2

k/2−i). In this case the true pole of G is con-

tained in V
(k)
k−2i+2, whence it appears as a virtual pole in a section V

(k)
k−2j/V

(k)
k−2j+2

for some j < i.

(3) p divides both (n−k+2i
i ) and ( k/2

k/2−i).

Proof. By assumption, v
(k−2i)
P ∈ V

(k−2i)
k−2i , namely v

(k−2i)
P = ∑S∈S aSvS where S is a

suitable set of singular (k − 2i)-spaces of V, aS is a scalar and vS = u1 ∧ ...∧ uk−2i

for a given basis {u1, ..., uk−2i} of S. We may also assume to have chosen S in

such a way that the vectors vS are linearly independent in V
(k−2i)
k−2i . Now choose

for every S ∈ S a 2i-subspace XS such that XS ∩ S = 0 and (XS + S)⊥ ∩ (XS +
S) = S (here ⊥ stands for orthogonality with respect to α). Choose also a basis
{v1, ..., v2i} of XS and put vXS

= v1 ∧ ... ∧ v2i. Note that the form α of V induces a
non-degenerate form on XS. Thus, we may always choose a hyperbolic basis as
{v1, ..., v2i}. Put

v
(k−2i)
P := ∑

S∈S

aSvS ∧ vXS
+ V

(k)
k−2i+2.

Namely, v
(k−2i)
P is the vector of V

(k)
k−2i/V

(k)
k−2i+2 corresponding to v

(k−2i)
P . Note that

vS ∧ vXS
+ V

(k)
k−2i+2 does not depend on the particular choice of XS but for a scalar

(see Theorem 3.5; recall that, however, a scalar is also involved in the choice of a
basis of XS). We are now going to choose the complements XS (actually, several

of them for every S) in a standard way. Consider the polar vector v
(2i)
P of G in W2i,

v
(2i)
P = ∑

J∈(I
i)

eJ ∧ f J .

Then v
(k−2i)
P ∧ v

(2i)
P = ∑S∈S aS(vS ∧ v

(2i)
P ). We may assume S = 〈e1, ..., ek−2i〉 and

vS = e1 ∧ ... ∧ ek−2i. (This amounts to change the given basis of V, which can be

done safely since G fixes both v
(2i)
P and v

(k−2i)
P .) So the only summands eJ ∧ f J of

v
(2i)
P such that vS ∧ eJ ∧ f J 6= 0 are those where J ⊆ {k − 2i + 1, ..., n} (and |J| = i).

Exactly (n−k+2i
i ) choices are possible for such a set. We claim the following:

(∗) vS ∧ eJ ∧ f J − vS ∧ eJ′ ∧ f J′ ∈ V
(k)
k−2i+2 for any two i-subsets J and J′ of

{k − 2i + 1, ..., n}.
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Suppose firstly that the symmetric difference of J and J′ has size 2. Let J =
{k − 2i + 1, k − 2i + 3, ..., k − i + 1} and J′ = {k − 2i + 2, k − 2i + 3, ..., k − i + 1},
to fix ideas. In this case (∗) immediately follows by observing that

ek−2i+1 ∧ fk−2i+1 − ek−2i+2 ∧ fk−2i+2 =
= (ek−2i+1 + ek−2i+2) ∧ ( fk−2i+1 − fk−2i+2)+
+ ek−2i+1 ∧ fk−2i+2 − ek−2i+2 ∧ fk−2i+1.

Turning to the general case, we can always find a sequence J0, J1, ..., Jm of i-subsets
of {k − 2i + 1, ..., n} such that J0 = J, Jm = J′ and the symmetric difference of Jj−1

and Jj has size 2 for j = 1, ..., m. Hence all differences vS ∧ eJj−1
∧ f Jj−1

− vS ∧ eJj
∧

f Jj
belong to V

(k)
k−2i+2. The difference vS ∧ eJ ∧ f J − vS ∧ eJ′ ∧ f J′ is the sum of these

differences, hence it also belongs to V
(k)
k−2i+2. Claim (∗) is proved.

In view of (∗) and since there are exactly (n−k+2i
i ) possible choices for J, we

obtain that vS ∧ v
(2i)
P = (n−k+2i

i ) · vS ∧ eJ ∧ f J for a given J ⊂ {k − 2i + 1, ..., n}
with |J| = i. Therefore

v
(k−2i)
P ∧ v

(2i)
P + V

(k)
k−2i+2 =

(
n − k + 2i

i

)
· v

(k−2i)
P . (8)

However,

v
(k−2i)
P ∧ v

(2i)
P =

(
k/2

k/2 − i

)
v
(k)
P . (9)

Suppose firstly that p divides ( k/2
k/2−i). Then the left side of (8) is the null vector

of V
(k)
k−2i/V

(k)
k−2i+2. If p does not divide (n−k+2i

i ) then we obtain v
(k−2i)
P = 0, a

contradiction to our hypotheses. Hence p divides (n−k+2i
i ) and we have case (3)

of the proposition.

Suppose now that p does not divide ( k/2
k/2−i). Then we can rewrite (8) as fol-

lows:

v
(k)
P + V

(k)
k−2i+2 =

(n−k+2i
i )

( k/2
k/2−i)

· v
(k−2i)
P . (10)

If p divides (n−k+2i
i ) then (10) implies v

(k)
P ∈ V

(k)
k−2i+2, which is the situation con-

sidered in case (2). Finally, let p do not divide (n−k+2i
i ). Then (10) says that v

(k)
P

belongs to V
(k)
k−2i \ V

(k)
k−2i+2. We have case (1).

Corollary 4.8. Assume that there is an integer 0 ≤ r ≤ k/2 − 1 such that p divides

( n
k/2−i) for some i ≥ r but does not divide ( n−2j

k/2−j) for any j ≥ r. Then exactly one of

the sections V
(k)
k−2i/V

(k)
k−2i+2 contains a virtual pole and that virtual pole is contributed by

the real pole P of G. In particular, if p divides ( n
k/2−i) for some i but it does not divide

( n−2j
k/2−j) for any j, then exactly one virtual pole appears in the basic series of G and it is

contributed by the real pole of G.
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Proof. Let i0 be the largest i for which p divides ( n
k/2−i). By Corollary 4.6, a virtual

pole P(k−2i0) appears in V
(k)
k−2i0

/V
(k)
k−2i0+2. If i0 = 0 then P ⊆ V

(k)
k by Lemma 4.4

and P is also the unique virtual pole of G, since in this case p does not divide
( n

k/2−i) for any i > 0 = i0. On the other hand, let i0 > 0 and let i be any index

with r ≤ i ≤ i0 for which a virtual pole P(k−2i) appears in V
(k)
k−2i/V

(k)
k−2i+2. Since

p does not divide ( n−2j
k/2−j) for any j ≥ r, case (1) of Proposition 4.7 holds. Hence

P ∈ V
(k)
k−2i \ V

(k)
k−2i+2. Consequently, i takes only one value, namely i = i0.

5 First appearance of reducibility

The following is well known (e.g., see Premet and Suprunenko, Corollary at page
1317).

Lemma 5.1. A subspace S of Wk is G-invariant if and only if it is L(G)-invariant.

The next lemma is also well known. It is a variation of a celebrated theorem
of Lie.

Lemma 5.2. Let S be G-invariant. Given a Borel subgroup B of G, let U be its unipotent
radical. Then U stabilizes at least one maximal flag 0 = S0 ⊂ S1 ⊂ S2 ⊂ ... ⊂ Sd = S
of subspaces of S, where d = dim(S). Moreover, [U, Si+1] ⊆ Si for every i = 0, 1, ..., d.
The same holds if U is replaced by any of its subgroups, in particular by the unipotent
radical of a parabolic subgroup containing B.

Let A be a 1-dimensional subspace of V, namely a 1-element of ∆. We may
assume that A = 〈e1〉 for a given hyperbolic basis E = {e1, ..., en, f1, ..., fn} of V
(notation as in Section 4). We denote by UA the unipotent radical of the stabi-

lizer GA of A in G and we put WA := 〈e1 ∧ x : x ∈
∧k−1 We1

〉 where We1
:=

〈e2, ..., ek, f2, ..., fk〉.

Lemma 5.3. The group UA acts trivially on WA.

Proof. Let us give E the following ordering: (e1, e2, ..., en, f2, ..., fn, f1). The group
UA is generated by the root subgroups Xi := {xi(t)}t∈F for i = 2, ..., n, Yi :=
{yi(t)}t∈F for i = 2, ..., n and Z := {z(t)}t∈F , where the elements xi(t), yi(t) and
z(t) are represented by matrices as follows with respect to the above ordering of
E:

[
In + tE1,i On

On In − tEi−1,n

]
for xi(t),

[
In tE1,i−1 + tEi,n

On In

]
for yi(t),

[
In tE1,n

On In

]
for z(t).

(Notation as in the proof of Lemma 4.2.) The reader may check that xi(t), yi(t)
and z(t) fix all vectors of WA. Exploit Fact 2.2 to speed up computations.

If n is even we denote by P the pole of G (defined as in Section 4). If n is odd
we put P = 0.
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Lemma 5.4. The following are equivalent for a vector v ∈ Wk:
(1) UA(v) = v;
(2) UA(〈v〉) = 〈v〉;
(3) v ∈ WA + P.

Proof. Obviously (1) implies (2), while (3) implies (1) by Lemma 5.3. It remains to
prove that (2) implies (3).

Let E = {e1, ..., en, f1, ..., fn} be a hyperbolic basis as above. We turn back to the
notation of Section 2.4, thus writing ei+n for fi. So, the ordering (e1, ..., en, f2, ..., fn,
f1) of E considered in the proof of Lemma 5.3 is now written as (e1, ..., en, en+2, ...,
e2n, en+1). For i = 0, 1, 2 let Ii be the collection of all subsets of {2, ..., n,
n + 2, ..., 2n} of size k − i. With this notation, every vector x ∈ Wk can be written
as a sum x = yx + ux + vx + wx where

yx = e1 ∧ ∑J∈I1
yJeJ , ux = en+1 ∧ ∑J∈I1

ηJuJeJ ,
vx = e1 ∧ en+1 ∧ ∑J∈I2

ηJvJeJ , wx = ∑J∈I0
wJeJ

for suitable scalars yJ , uJ , vJ and wJ and with ηJ := (−1)|J∩{2,3,...,n}|. The fac-
tor ηJ takes into account how many transpositions we must perform in order
to move en+1 to right in en+1 ∧ eJ so that to place it after all factors ej with j ∈
J ∩ {2, 3, ..., n}, consistently with the natural ordering (e1, ..., en, en+1, ..., e2n) of E.

We must prove that, if (u)k(〈x〉) = 〈x〉 for every (u)k ∈ UA, then x ∈ WA + P.
Note that yx ∈ WA + P. Thus we may safely assume that yx = 0.

As remarked in the proof of Lemma 5.3, UA is generated by root elements
x2(t), ..., xn(t), y2(t), ..., yn(t), z(t). In the proof of Lemma 5.3 we have also de-
scribed matrices that represent those elements with respect to the ordering (e1,
e2, ..., en, en+2, ..., e2n, en+1) of E. We want to see how the vectors ux , vx and wx

should be chosen for 〈x〉 to be stabilized by each of xi(t), yi(t) and z(t). (Here
and henceforth we take the liberty of writing xi(t), yi(t) and z(t) for short instead
of (xi(t))k , (yi(t))k and (z(t))k .)

Let us start with z(t), t 6= 0. By exploiting Fact 2.2 and the matrix given for
z(t) in the proof of Lemma 5.3, it is not difficult to see that 〈x〉 is stabilized by
z(t) if and only if te1 ∧ ∑J∈I1

ηJuJeJ = 0. Therefore, if z(t) stabilizes 〈x〉 and t 6= 0
then uJ = 0 for every J ∈ I1. Hence ux = 0.

Next we consider x2(t), t 6= 0. By exploiting Fact 2.2 and the matrix given
for xi(t) in the proof of Lemma 5.3 we can see that x2(t) stabilizes 〈x〉 (recall that
ux = 0) if and only if

−te1 ∧ en+2 ∧ ∑
n+2 6∈J∈I2

ηJvJeJ + te1 ∧ ∑
2∈J∈I0

wJeJ\{2} = 0.

Therefore

Claim 1. For J ∈ I0 we have wJ = 0 if 2 ∈ J but n + 2 6∈ J while for J ∈ I2 we
have vJ = 0 if 2 ∈ J but n + 2 6∈ J.

On the other hand, if {2, n + 2} ⊆ J for a set J ∈ I0 then

tvJ\{2,n+2} · e1 ∧ en+2 ∧ ηJ\{2,n+2}eJ\{2,n+2} = twJ · e1 ∧ eJ\{2}.
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Note that |(J \ {2, n + 2}) ∩ {2, 3, ..., n}| is equal to the number of transpositions
to perform in order to move en+2 to the right in e1 ∧ en+2 ∧ eJ\{2,n+2} so that to
place it in its natural position. Hence,

Claim 2. If {2, n + 2} ⊆ J ∈ I0 then wJ = vJ\{2,n+2}.

Turning to y2(t) with t 6= 0 and recalling that ux = 0, one can see that y2(t)
stabilizes 〈x〉 if and only if

te1 ∧ en+2 ∧ ∑
2 6∈J∈I2

ηJvJeJ + te1 ∧ ∑
n+2∈J∈I0

(−1)|J∩{2,3,...,n}|wJeJ\{n+2} = 0.

Therefore,

Claim 3. For J ∈ I0 we have wJ = 0 if 2 6∈ J but n + 2 ∈ J while for J ∈ I2 we
have vJ = 0 if 2 6∈ J but n + 2 ∈ J.

If {2, n + 2} ⊆ J ∈ I0 then we get just the same conclusions as in Claim 2.
Claims 1 and 3 can be fused as follows:

Claim 4. For J ∈ I0 we have wJ 6= 0 only if J contains either both of 2 and n + 2
or none of them. Similarly, for J ∈ I2 we have vJ 6= 0 only if J contains either
both of 2 and n + 2 or none of them.

If we replace x2(t) and y2(t) by xi(t) and yi(t) for any choice of i = 3, 4, ..., n
we obtain claims similar to (2) and (4). Thus, for every i = 2, 3, ..., n and J ∈ I2

we have vJ 6= 0 only if J contains either both i and n + i or none of them. In other
words, J is a union of k/2 − 1 pairs {i, n + i}. (Clearly, this can happen only if k
is even.) Similarly, for J ∈ I0 we have wJ 6= 0 only if J contains either both i and
n + i or none of them, namely J is a union of k/2 pairs {i, n + i}. Moreover, if
{i, i + n} ⊆ J ∈ I0 then wJ = vJ\{i,n+i}.

Let I2 and I0 be the subfamilies of I2 and I0 formed by those sets that are
unions of pairs {i, n + i}. By the above, vx = e1 ∧ en+1 ∧ ∑J∈I2

ηJvJeJ and wx =

∑J∈I0
wJeJ. Clearly I2 = I0 = ∅ when n is odd. So, if n is odd then x =

ux + vx + wx = 0. In this case we are done. Let n be even. We also know that if
J ∈ I0 with {i, n + i} ⊆ J then vJ\{i,n+i} = wJ. Suppose firstly that n > 2. Then,
given J ∈ I0 with i, n + i, j, n + j ∈ J, we have vJ\{i,n+i} = wJ = vJ\{j,n+j}. As

the pairs {i, n + i} and {j, n + j} can be chosen arbitrarily, we eventually obtain
that vK = vK′ for any two sets K, K′ ∈ I2. Put λ := vK. As wJ = vJ\{i,n+i} if

J ∈ I0 and {i, n + i} ⊆ J, we also obtain wJ = λ for every J ∈ I0. Therefore x =
ux + vx + wx = vx + wx = λ ∑

K∈( I′

k/2)
eK ∧ fK, where I ′ := {1, 2, ..., n}. However

∑
K∈( I′

k/2)
eK ∧ fK is just the polar vector vP of G. So, x = λvP, namely x ∈ P.

The case of n = 2 remains to examine. In this case I2 = ∅. It is straightfor-
ward to check that x = λvP in this case too.

In view of the next theorem we need to modify our notation a little. We write
∆k,n instead of ∆k, to remind that ∆k,n is built by subspaces of V(2n, F). Accord-

ingly, we write εk,n instead of εk, Wk,n instead of Wk, Vk,n instead of Vk and V
(k,n)
k−2i

instead of V
(k)
k−2i. However, in order to avoid a too heavy notation if not strictly
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necessary, we keep the symbols P and vP for the pole and the polar vector of G
in Wk,n when k is even (Theorem 4.1). We also keep the symbol ∆ to denote the
building associated to Sp(2n, F), from which ∆k,n arises.

We recall that, according to Theorem 2.5, the radical R(εk,n) of εk,n is the largest
G-invariant proper subspace of Wk,n.

Theorem 5.5. Suppose that R(εk,n) 6= 0 but R(εk−1,n−1) = 0. Then:
(1) R(εk,n) = P;
(2) dim(R(εk+r,n+r)) > 1 for r = 1, 2, 3, ...;
(3) R(εk−s,n−s) = 0 for 1 ≤ s < k.

Proof. Let R(εk,n) 6= 0 = R(εk−1,n−1). By Lemma 5.2, given a 1-element A of
∆, the group UA stabilizes a 1-dimensional subspace R1 of R := R(εk,n). We

recall that WA = e1 ∧ W(e1) = {e1 ∧ x | x ∈ We1
} where We1

:= ∧k−1S(e1),
S(e1) := 〈e2, ..., en, en+2, ..., e2n〉. Moreover, UA acts trivially on WA (Lemma 5.3).
Clearly WA

∼= Wk−1,n−1 as modules for GA := (GA/UA)
′ ∼= Sp(2n − 2, F), where

(GA/UA)
′ is the commutator subgroup of GA/UA. (Note that the group induced

by GA/UA on WA is slightly larger than (GA/UA)
′, since it also involves multi-

plications of e1 by scalars, but we have ruled them out by considering (GA/UA)
′

instead of GA/UA.) The isomorphism WA
∼= Wk−1,n−1 maps Vk,n ∩ WA onto

Vk−1,n−1 and R1 ∩WA onto a proper subspace of Vk−1,n−1 stabilized by GA. How-
ever R(εk−1,n−1) = 0 by assumption. Hence R1 ∩WA = 0 by Theorem 2.5. There-
fore R1 = P, by Lemma 5.4. It follows that n is even.

Assume that P ⊂ R. By Lemma 5.2, UA stabilizes a 2-dimensional subspace R2

of R containing P. As above, R2 ∩ WA = 0 since R(εk−1,n−1) = 0 by assumption.
Pick a vector x ∈ R2 \ P and let vP be the polar vector of G in Wk,n. So, P = 〈vP〉.
If u ∈ UA then (u)k(x) = x + λuvP for a scalar λu because R2 is stabilized by UA.
As in the proof of Lemma 5.4, we write x as x = yx + ux + vx + wx where

yx = e1 ∧ ∑J∈I1
yJeJ , ux = en+1 ∧ ∑J∈I1

ηJuJeJ ,
vx = e1 ∧ en+1 ∧ ∑J∈I2

ηJvJeJ , wx = ∑J∈I0
wJeJ

(notation as in the proof of Lemma 5.4) and we consider the effect of applying
z(t), xi(t) and yi(t) to x. We firstly apply z(t). We obtain z(t)(x) = x + te1 ∧
∑J∈I1

uJeJ . Hence

λz(t)vP = te1 ∧ ∑
J∈I1

ηJuJeJ. (11)

However the vector at the right side of (11) belongs to WA while vP ∈ P and
WA ∩ P = 0. Therefore λz(t) = 0 and uJ = 0 for every J ∈ I1. So ux = 0, as in the

proof of Lemma 5.4. If we now apply x2(t), recalling that ux = 0 we obtain

x2(t)(x) = x − te1 ∧ en+2 ∧ ∑
n+2 6∈J∈I2

ηJvJeJ + te1 ∧ ∑
2∈J∈I0

wJeJ\{2}.

Hence

λx2(t)vP = −te1 ∧ en+2 ∧ ∑
n+2 6∈J∈I2

ηJvJeJ + te1 ∧ ∑
2∈J∈I0

wJeJ\{2}. (12)
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The factor e1 appears in each of the summands at the right side of (12) while en+1

does not appear in any of them. On the other hand, e1 ∧ en+1 is involved in vP.
Hence both sides of (12) are null, namely λx2(t)

= 0 and the coefficients vJ and wJ

occurring in (12) satisfy certain conditions that ensure the right side of (12) to be
null. However we will not exploit these latter conditions in the sequel. Finally,
apply y2(t) and recall that ux = 0. We obtain

y2(t)(x) = x + te1 ∧ e2 ∧ ∑
2 6∈J∈I2

ηJvJeJ + te1 ∧ ∑
n+2∈J∈I0

ηJwJeJ\{n+2}.

Therefore

λy2(t)vP = te1 ∧ e2 ∧ ∑
2 6∈J∈I2

ηJvJeJ + te1 ∧ ∑
n+2∈J∈I0

ηJwJeJ\{n+2}. (13)

Again, e1 occurs in each summand at the right side of (13) but en+1 doesn’t, while
e1 ∧ en+1 occurs in vP. Therefore both sides of (13) are null. Hence λy2(t) = 0.

Similarly, λxi(t)
= λyi(t)

= 0 for every i = 3, 4, ..., n. It follows that UA fixes x.

Hence x ∈ P by Theorem 4.1. This contradicts the choice of x ∈ R2 \ P and the
fact that WA ∩ R2 = 0. Therefore P = R. Claim (1) is proved.

We now turn to claim (2). Given r ≥ 1, put V̂ := V(2n + 2r, F), Ĝ := Sp(2n +

2r, F) and let α̂ be the alternating form of V̂ and ∆̂ the building associated to Ĝ.

So, Wk+r,n+r = ∧k+rV̂ and ∆k+r,n+r is the (k + r)-grassmannian of ∆̂.

Let Ê = {e1, ..., e2n+2r} be a hyperbolic basis of V̂, with indices chosen so
that α̂(ei, ej) = α̂(ei+n, ej+n) = 0 for i, j ∈ {1, 2, ..., n + r}, α̂(ei, ej+n+r) = δi,j

and α̂(ei+n+r, ej) = −δi,j for i, j ∈ {1, 2, ..., n + r}, as usual. Turning back to
the notation introduced at the beginning of this section, we put fi := ei+n+r for

i = 1, 2, ..., n + r. Also êi := ei+n and f̂i := fi+n for i = 1, 2, ..., r. Given a totally

isotropic r-subspace X of V̂ and a basis {x1, ..., xr} of X, let vX := x1 ∧ ... ∧ xr and

ŴX := vX ∧ Ŵ(X) where Ŵ(X) := ∧kS for a complement S of X in X⊥. We warn

that vX is defined modulo a scalar, but this has no effect on the definition of ŴX .
Note also that Ŵ(X) depends on the choice of S, but this choice has no effect on

the wedge product vX ∧ Ŵ(X).

Let A and B be two totally isotropic r-subspaces of V̂ such that A⊥ ∩ B =

0, namely A and B have maximal distance in the r-grassmannian ∆r,n+r of ∆̂.

We may assume to have chosen Ê so that A = 〈ê1, ..., êr〉 and B = 〈 f̂1, ..., f̂r〉.

Accordingly, vA = ê1 ∧ ê2 ∧ ... ∧ êr, vB = f̂1 ∧ f̂2 ∧ ... ∧ f̂r, ŴA = vA ∧ Ŵ(A)

and ŴB = vB ∧ Ŵ(B) where Ŵ(A) = Ŵ(B) = ∧kS, S := 〈e1, ..., en, f1, ..., fn〉.

Moreover, V̂A := ŴA ∩Vk+r,n+r = vA ∧Vk,n, where we regard V as the same thing

as the linear subspace 〈e1, ..., en, f1, ..., fn〉 of V̂, whence Vk,n as a linear subspace

of ∧kV̂.
Let ĜA be the stabilizer of A in Ĝ and let ÛA be the unipotent radical of ĜA.

The group ÛA acts trivially on ŴA (Lemma 5.3). Moreover ŴA
∼= Wk,n as modules

for (ĜA/ÛA)
′ ∼= G (= Sp(2n, F)). By the first part of the proof, V̂A contains a 1-

dimensional subspace PA = 〈vPA
〉 corresponding to the pole of G in its action on

Wk,n. We may also assume that the vector vPA
chosen to generate PA corresponds

to the polar vector vP of G. So,
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vPA
= vA ∧ ∑

J∈( I
k/2)

eJ ∧ f J (14)

where I = {1, 2, ..., n}. Note that vPA
∈ V̂A because vP ∈ Vk,n by the first part

of the proof. Let αk+r,n+r be the fundamental form of εk+r,n+r in Wk+r,n+r. By
comparing (14) with (5) of Subsection 2.4 it is easy to see that αk+r,n+r(vPA

, x) = 0

for every vector x ∈ ŴB. However vPA
only depends on the choice of A whereas

B can be any totally isotropic r-subspace of V̂ at maximal distance from A in
∆r,n+r. By the second claim of Lemma 2.3, these subspaces span Vr,k+n. More-

over, Vk+r,n+r is the union of the subspaces ŴX where X ranges in the family of

totally isotropic r-subspaces of V̂. It follows that vPA
∈ V⊥

k+r,n+r, where ⊥ denotes

orthogonality with respect to αk+r,n+r. On the other hand vPA
∈ V̂A ⊆ Vk+r,n+r.

Hence vPA
∈ R(εk+r,n+r). As any totally isotropic r-subspace can be chosen as A,

dim(R(εk+r,n+r)) > 1, as claimed in (2).
Finally, R(εk−s,n−s) = 0 for 1 ≤ s < k because, if otherwise, by claim (2) with

n and k replaced by n − s and k − s we obtain R(εk−1,n−1) 6= 0, contrary to our
hypotheses.

Corollary 5.6. If char(F) = 0 then R(εk,n) = 0, namely the G-module Vk,n is irre-
ducible for every choice of n and 1 ≤ k ≤ n.

Let char(F) = p > 0 and assume that R(εk,n) 6= 0. Then p divides ( n−i
(k−i)/2) for

some i < k with k − i even.

Proof. Suppose that Vk,n is reducible as a G-module. Then R(εk,n) 6= 0 by The-
orem 2.5. Let i be the largest integer (< k) for which R(εk−i,n−i) 6= 0. Then
R(εk−i−1,n−i−1) = 0. By Theorem 5.5, R(εk−i,n−i) is the pole of G on Wk−i,n−i. By

Theorem 4.3, char(F) = p > 0, k − i is even and p divides ( n−i
(k−i)/2). In particular,

if i = 0 then k is even and p divides ( n
k/2).

For the rest of this section we assume char(F) = p > 0. Given a nonnegative
integer h, we denote by n(h, p) the smallest integer n ≥ h such that R(εn−h,n) 6= 0
if such an integer exists, otherwise n(h, p) := ∞ (but n(h, p) < ∞ in any case, as
we will see in a few lines). Note that, in view of Theorem 5.5, if n = n(h, p) < ∞

and k := n − h then R(εk,n) is 1-dimensional, whence k is even and R(εk,n) =

(V
(k,n)
2 )⊥.

In view of the next theorem we need one more definition. Let h = ∑
∞
j=0 hj p

j

be the expansion of h to the base p. (Needless to say, only finitely many of the
coefficients hj are > 0.) Let e the smallest j such that hj < p − 1. So,

h = [(p − 1) ·
e−1

∑
j=0

pj] + he pe + he+1pe+1 + ...

with 0 ≤ he < p − 1. Note that e = 0 is allowed. In this case h0 < p − 1, namely
h + 1 6≡ 0 (mod p). With this convention, we define:

N(h, p) = 2(p − 1 − he)pe + h. (15)
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Theorem 5.7. n(h, p) ≤ N(h, p).

Proof. Put n := N(h, p) and k = N(h, p) − h. We firstly prove the following:

(∗) The prime p divides ( n
k/2) but it does not divide ( n

k/2−i), for any positive integer
i < k/2.

For a positive integer m, let ordp(m) be the largest exponent f such that p f

divides m. It is well known that ordp(m!) = ∑j≥1⌊m/pj⌋, where ⌊m/pj⌋ is the

integral part of m/pj (see [15, page 1336] for instance). Therefore

ordp(

(
m

r

)
) = ∑

j≥1

(
⌊

m

pj
⌋ − ⌊

r

pj
⌋ − ⌊

m − r

pj
⌋

)
. (16)

(Note that all summands of the right hand side of (16) are nonnegative.) By
straightforward calculations, which we leave to reader, one can check that

⌊
n

pe+1
⌋ − ⌊

k/2

pe+1
⌋ − ⌊

n − k/2

pe+1
⌋ = 1

while

⌊
n

pj
⌋ − ⌊

k/2 − i

pj
⌋ − ⌊

n − (k/2 − i)

pj
⌋ = 0

for every j and every i = 1, 2, ..., k/2 − 1. Claim (∗) follows from this with the
help of (16).

By (∗) and Lemma 4.4, the pole of G in Wk,n belongs to Vk,n. Hence R(εk,n) 6= 0.
By Theorem 5.5, n(h, p) ≤ n.

Theorem 5.8. Suppose that p does not divide h + 1, namely h = h0 + h1p + h2p2 + ...
with h0 < p − 1. Then n(h, p) = N(h, p).

Proof. Put n = n(p, h) and k = n− h, for short. Also, h = h0 + χp where χ := h1 +

h2 p + h3p2 + ... We recall that the pole P of G belongs to V
(k,n)
k , whence k is even

and p divides ( n
k/2). By Theorem 5.7, n = N(h, p) − 2ξ = 2(p − h0 − 1) + h − 2ξ

for a nonnegative integer ξ. According to this, k = 2(p − h0 − 1) − 2ξ. Hence
ξ ≤ p − h0 − 2 since k/2 ≥ 1. We want to prove that ξ = 0. To a contradiction
suppose that ξ > 0. We shall firstly prove the following:

p divides

(
n

k/2 − 1

)
. (17)

We know that p divides

(
n

k/2

)
=

n − k/2 + 1

k/2
·

(
n

k/2 − 1

)
.

So, if p does not divide ( n
k/2−1) then p divides n − k/2 + 1 to a higher power than

k/2. However n − k/2 + 1 = (p − 1 − h0) + h − ξ + 1 = p + χp − ξ, which is
prime to p because 0 < ξ ≤ p − h0 − 2 < p. We have reached a contradiction.
Claim (17) is proved.
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Let now r be the smallest even integer i ≥ 2 such that p divides ( n
i/2). By (17),

r < k. By assumption, p divides ( n
r/2) but it does not divide ( n

r/2−1). We can repeat
the argument used to prove (17), now obtaining that p divides n − r/2 + 1 to a
higher power than r/2. In particular, p divides n − r/2 + 1. We now have

n − r/2 + 1 = 2(p − 1 − h0) + h − 2ξ − r/2 + 1
= 2p + χp − 1 − h0 − 2ξ − r/2.

As p divides n − r/2 + 1, we obtain 1 + h0 + 2ξ + r/2 ≡ 0 (mod p). However
r/2 ≤ k/2 − 1 = (p − h0 − 1)− ξ − 1 and ξ ≤ p − h0 − 2. Therefore 1+ h0 + 2ξ +
r/2 < 2p. It follows that 1 + h0 + 2ξ + r/2 = p, namely

r/2 = p − 1 − h0 − 2ξ. (18)

Consequently,

n − r = 2(p − 1 − h0) + h − 2ξ − r = h + 2ξ,
(k − r)/2 = ξ,

n − r − (k − r)/2 = h + ξ.



 (19)

Moreover 2ξ ≤ p − 1 because 2ξ = p − 1 − h0 − r/2 by (18). By combining this
inequality with (19) we see that

⌊
n − r

pj
⌋ − ⌊

(k − r)/2

pj
⌋ − ⌊

n − r − (k − r)/2

pj
⌋ = 0

for every positive integer j. By (16),

p does not divide

(
n − r

(k − r)/2

)
. (20)

On the other hand, we have chosen r in such a way that p divides ( n
r/2) but it does

not divide ( n
r/2−i) for any positive integer i < r/2. Hence a virtual pole appears

in V
(k,n)
r /V

(k,n)
r+2 , by Corollary 4.6. By (20), we are in case (i) of Proposition 4.7: the

polar vector vP of G belongs to V
(k,n)
r \V

(k,n)
r+2 . This contradicts the hypothesis that

vP ∈ V
(k,n)
k .

Remark 5.9. It is not difficult to see that the number N(h, p) defined in (15) is in-
deed the smallest n ≥ h such that n − h is even and (n − h)/2 ≤p n + 1. Equiva-

lently, N(h, p) is the smallest n ≥ h such that p divides (1+⌊(n+h)/2⌋
h+1 ), which also is

called N(h, p) in Theorem 1.1. Hence Theorem 1.1 implies that n(h, p) = N(h, p)
for any choice of h, while our method has allowed us to prove this equality only
when h+ 1 6≡ 0 (mod p). We believe it is possible to exploit our methods to prove
that n(h, p) = N(h, p) in any case, but at present we are not yet able to do that.

Remark 5.10. So far, we have regarded h as given, letting n and k to vary subject
to the condition n − k = h. Conversely, assume to have chosen k and let n and h
vary subject to the restriction n − h = k. Put

f := ordp(n − k + 1), ν :=
n + k − 1

p f
− p · ⌊

n + k − 1

p f+1
⌋.
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By exploiting the equality n(h, p) = N(h, p) one can see that R(εk,n) 6= 0 if and
only if

⌊k/2⌋ ≥ p f , p − 1 ≥ ν ≥ max(1, p −
k

2p f
). (21)

Moreover, dim(R(εk,n)) = 1 if and only if k is even and ν = p − k/(2p f ). The
proof of the above claims is straightforward. We leave it for the reader.
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