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Abstract

In this paper we classify the centers, the cyclicity of its Hopf bifurcation
and the isochronicity of the polynomial differential systems in R2 of degree
d ≥ 7 odd that in complex notation z = x + iy can be written as

ż = (λ + i)z + (zz)
d−7

2 (Az6z + Bz4z3 + Cz2z5 + Dz7),

where λ ∈ R, and A, B, C, D ∈ C.

1 Introduction and statement of the main results

Probably the two main problems in the qualitative theory of real planar poly-
nomial differential systems are the determination of limit cycles and the center–
focus problem; i.e. to distinguish when a singular point is either a focus or a
center. The notion of center goes back to Poincaré in [16]. He defined it for a vec-
tor field on the real plane; i.e. a singular point surrounded by a neighborhood
filled with periodic orbits with the unique exception of the singular point. This
paper deals with the center–focus problem for a class of polynomial differential
systems of degree d ≥ 7 odd. Note that there are few results on families of centers
of polynomial differential systems of arbitrary degree.

The classification of centers for the polynomial differential systems started
with the quadratic ones with the works of Dulac [6], Kapteyn [10, 11], Bautin
[2], Żoła̧dek [18], ... see Schlomiuk [17] for an update on the quadratic centers.
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There are many partial results for the centers of polynomial differential systems
of degree larger than 2 but, for instance, we are very far from obtaining a complete
classification of the centers for the polynomial differential systems of degree 3.

In this paper we consider the polynomial differential systems in the real (x, y)–
plane that have a singular point at the origin with eigenvalues λ ± i and that can
be written as

ż = (λ + i)z + (zz)
d−7

2 (Az6z + Bz4z3 + Cz2z5 + Dz7), (1)

where z = x + iy, d ≥ 7 is odd, λ ∈ R, and A, B, C, D ∈ C. The vector field associ-
ated to this system has linear part (λ + i)z and by a homogeneous polynomial of
degree d formed by four monomials. For such systems we want to determine the
conditions that ensure that the origin of (1) is a center. Of course these systems for
d = 7 coincides with a class of seventh degree polynomial differential systems.

A similar study has been made for the systems of the form

ż = (λ + i)z + (zz)
d−3

2 (Az3 + Bz2z + Czz2 + Dz3),

with d ≥ 3 an arbitrary odd integer, see [13]. The tools used in [13] and in this
paper are essentially the same, but the computations for determining the centers,
their cyclicity and their isochronicity are different and difficult. Moreover, clearly
the families of centers obtained in both families are distinct and new.

The resolution of this problem implies the effective computation of the Lia-
punov constants. We write

A = a1 + ia2, B = b1 + ib2, C = c1 + ic2, D = d1 + id2.

Indeed writing (1) in polar coordinates, i.e, doing the change of variables r2 = zz
and θ = arctan(Imz/Rez), system (1) becomes

dr

dθ
=

λr + F(θ) rd

1 + G(θ) rd−1
, (2)

where

F(θ) = (a1 + c1) cos 4θ − (a2 − c2) sin 4θ + b1 + d1 cos 8θ + d2 sin 8θ,

G(θ) = (a2 + c2) cos 4θ + (a1 − c1) sin 4θ + b2 + d2 cos 8θ − d1 sin 8θ.
(3)

Since the denominator of (2) is positive if r is sufficiently small, system (1) has
a center at the origin if and only if system (2) has a center at the origin of the plane
(r, θ).

The transformation (r, θ) 7→ (ρ, θ) defined by

ρ =
rd−1

1 + G(θ) rd−1
(4)

is a diffeomorphism from the region θ̇ > 0 into its image. As far as we know the
first in using this transformation was Cherkas in [4]. If we write equation (2) in
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the variable ρ, we obtain the following Abel differential equation

dρ

dθ
= (d − 1)G(θ)[λG(θ) − F(θ)]ρ3+

[(d − 1)(F(θ) − 2λG(θ)) − G′(θ)]ρ2 + (d − 1)λρ
= U(θ)ρ3 + V(θ)ρ2 + (d − 1)λρ.

(5)

These kind of differential equations appeared in the studies of Abel on the theory
of elliptic functions. For more details on Abel differential equations, see [9], [3] or
[8].

The solution ρ(θ, γ) of (5) satisfying that ρ(0, γ) = γ can be expanded in a
convergent power series of γ ≥ 0 sufficiently small. Thus

ρ(θ, γ) = ρ1(θ)γ + ρ2(θ)γ
2 + ρ3(θ)γ

3 + . . . (6)

with ρ1(θ) = 1 and ρk(0) = 0 for k ≥ 2. Let P : [0, γ0] → R be the Poincaré map
defined by P(γ) = ρ(2π, γ) and for a convenient γ0 > 0. Then, the values of
ρk(2π) for k ≥ 2 controle the behavior of the Poincaré map in a neighborhood of
ρ = 0. Therefore system (1) has a center at the origin if and only if ρ1(2π) = 1 and
ρk(2π) = 0 for every k ≥ 2. Assuming that ρ2(2π) = · · · = ρm−1(2π) = 0 we say
that vm = ρm(2π) is the m-th Liapunov or Liapunov–Abel constant of system (1).

The problem of computing the Liapunov constants for determining a center
goes back from the very beginning of the qualitative theory of differential equa-
tions, see for instance [16] and [12]. In the case of polynomial differential systems
each of the Liapunov constants is a polynomial in the coefficients of the system.
The set of coefficients for which all the Liapunov constants vanish is called the
center variety of the family of polynomial differential systems. By the Hilbert Ba-
sis Theorem the center variety is an algebraic set. Then a natural question arises:
How to characterize the center variety of a given family of polynomial differen-
tial systems? That is, find necessary and sufficient conditions such that a given
system of the family has a center at the origin.

In general it is very difficult to distinguish between the centers and the foci,
because it requires a good knowledge, not only of the common zeros of the Lia-
punov constants, but also of the finitely generated ideal that they generate in the
ring of polynomials taking as variables the coefficients of the polynomial differen-
tial system. Furthermore, in general the calculation of the Liapunov constants is
not easy, and the computational complexity of finding their common zeros grows
very quickly. A number of algorithms have been developed to compute them
automatically up to a certain order (see for instance [5, 14, 15] and the references
therein). We also want to mention that even if we are able to obtain the Liapunov
constants it is in general extremely difficult to decompose the resulting variety
into irreducible components.

In this paper we also want to study the maximum number of limit cycles bi-
furcating from the origin of the class of polynomial differential systems (1). This
has been studied for many classes of polynomial differential systems and this in-
formation allows to obtain estimates on the number of limit cycles of the system.
More concretely if we denote by Ed the class of all polynomial differential sys-
tems of degree d ≥ 7 odd of the form (1) we say that the origin of any system



862 J. Llibre – C. Valls

ż = w(z, z̄) with w ∈ Ed has cyclicity k with respect to Ed if any perturbation in
Ed of this system has k or fewer limit cycles in a small neighborhood of the origin
and k is the maximal number with this property.

Now we wan to characterize which of the centers of system (1) with d ≥ 7
odd are isochronous. In that case, let z = 0 be a center (that is, we assume that
we are under the hypotheses that guarantee that z = 0 is a center) and let V be a
neighborhood of z = 0 covered with periodic orbits surrounding z = 0. We can
define a function, the period function of z = 0 by associating to every point z of
V the minimal period of the periodic orbits passing through z. The center z = 0
of system (1) is isochronous if the period of all integral curves in V \ {z = 0} is
constant.

The study of isochronous centers started with Huygens where he studied the
cycloidal pendulum. This pendulum has isochronous oscillations (see for in-
stance [7]).

If we take the equation of θ′ and we apply the change of variables given in (4)
we obtain

T =
∫ 2π

0

1

1 + G(θ)rd−1
dθ =

∫ 2π

0
(1 − G(θ)ρ) dθ = 2π −

∫ 2π

0
G(θ)ρ dθ,

where ρ(θ) = ∑j≥1 ρj(θ)γ
j is given in (6) and ρj(θ) are the functions such that

ρj(2π) are the Lyapunov–Abel constants. Then system (1) has an isochronous
center at the origin if it is a center and satisfies

∫ 2π

0
G(θ)̺(θ) dθ = ∑

j≥1

(

∫ 2π

0
G(θ)ρj(θ) dθ

)

γj = 0,

that is, if
T = 2π − ∑

j≥1

Tjγ
j = 2π,

with

Tj(γ) =
∫ 2π

0
G(θ)ρj(θ) dθ = 0, for j ≥ 1. (7)

The constants Tj will be called the period Abel constants or simply the period con-
tants.

In general it is very difficult to study the isochronous centers, because to do it
requires first the knowledge of the conditions to be a center, and second a good
knowledge, not only of the common zeros of the period Abel constants, but also
of the finite generated ideal that they generate in the ring of polynomials taking
as variables the coefficients of the polynomial differential system. Furthermore,
in general the calculation of the period Abel constants is not easy, and the com-
putational complexity of finding their common zeros grows very quickly.

The main results in this paper are Theorem 1 where we classify the centers of
the polynomial differential systems (1) determining the conditions on the param-
eters λ, A, B, C and D in order that the origin of the polynomial differential sys-
tem (1) of degree d ≥ 7 odd be a center; Theorem 5 where we provide the cyclicity
of its Hopf bifurcation, and Theorem 6 where we classify the isochronous centers.

The first main result in this paper is the following.
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Theorem 1. System (1) with d ≥ 7 odd has a center at the origin if and only if one of
the following conditions

(c.1) λ = b1 = 3A + C = 0 (Hamiltonian case),

(c.2) λ = b1 = Im(AC) = Re(A2D) = Re(C
2
D) = 0 (reversible case),

holds

For proving Theorem 1 we shall prove the next results.

Proposition 2. If one of the conditions (c.1) or (c.2) holds, then system (1) has a center
at the origin.

Set

Kd(C, D) = 512(d − 1)2|C|2 + (d4 − 24d3 + 66d2 + 1728d − 9963)|D|2, (8)

Proposition 3. The Liapunov constants of system (1), with d ≥ 7 odd, are

V1 = e2π(d−1)λ,
V2 = b1,
V3 = −Im(AC),

V4 = −Re
(

(3A + C̄)D((d − 9)A + (d + 7)C̄)
)

,

V5 = −Im
(

(3A + C̄)DB(A − C̄)
)

,

V6 = Re
(

(3A + C)D(Au1 + C̄u2)
)

,

V7 = 0,

V8 = Re
(

(3A + C)DA|D|4
)

,

with
{

u1 = 4|A|2 − 3|D|2, u2 = 0, if d = 9,

u1 = −Kd(C, D), u2 = −u1, if d ≥ 7 odd and d 6= 9.

We remark that Vk ≡ ρk(2π) (mod. {λ, V2, . . . , Vk−1}) for k = 1, . . . , 8 and also mod-
ulo a positive constant.

Proposition 4. For d ≥ 15 odd, V1 = 1 and V2 = V3 = V4 = V5 = V6 = 0 imply that
either (c.1) or (c.2) holds. Moreover, for d ∈ {7, 9, 11, 13}, V1 = 1, V2 = V3 = V4 =
V5 = V6 = V7 = V8 = 0 imply that either (c.1) or (c.2) holds.

The eigenvalues at the singular point located at the origin of system (1) are
λ ± i. Therefore the origin is either a weak focus or a center if λ = 0, see for
instance [1, 15], otherwise it is a strong focus.

From Proposition 3 it follows that system (1), with d ≥ 7 odd, has by definition

(a) a strong focus at the origin if λ 6= 0, stable if V1 < 0, otherwise unstable;

(b) a weak focus of first order at the origin if λ = 0 and V2 6= 0, stable if V2 < 0,
otherwise unstable;
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(c) a weak focus of second order at the origin if λ = V2 = 0 and V3 6= 0, stable if
V3 < 0, otherwise unstable;

(d) a weak focus of third order at the origin if λ = V2 = V3 = 0 and V4 6= 0, stable
if V4 < 0, otherwise unstable;

(e) a weak focus of fourth order at the origin if λ = V2 = V3 = V4 = 0 and V5 6= 0,
stable if V5 < 0, otherwise unstable;

(f) a weak focus of fifth order at the origin if λ = V2 = V3 = V4 = V5 = 0 and
V6 6= 0, stable if V6 < 0, otherwise unstable;

(g) a center at the origin if and only if λ = V2 = V3 = V4 = V5 = V6 = 0 and
d ≥ 15 odd;

(g) a weak focus of sixth order at the origin if λ = V2 = V3 = V4 = V5 = V6 = 0
and V8 6= 0 for d ∈ {7, 9, 11, 13}, stable if V8 < 0, otherwise unstable; and

(h) a center at the origin if and only if λ = V2 = V3 = V4 = V5 = V6 = V8 = 0
and d ∈ {7, 9, 11, 13}.

We classify the cyclicity of the Hopf bifurcation of the centers obtained in The-
orem 1.

Theorem 5. The cyclicity of the equilibrium point z = 0 of system (1) with respect to
Ed is less or equal five for d ≥ 41 odd, and less or equal six for d ∈ {7, 9, . . . , 39}. More
precisely the cyclicity is

(a) 0 for λ 6= 0;

(b) 1 for λ = 0 and b1 6= 0;

(c) 2 for λ = b1 = 0 6= 0 and Im(AC) 6= 0;

(d) 3 for λ = b1 = Im(AC) = 0 and (d − 9)A + (d + 7)C 6= 0;

(e) 4 for λ = b1 = Im(AC) = (d − 9)A + (d + 7)C = 0 and b2 6= 0;

(f) 5 for any odd with d ≥ 15, when λ = B = Im(AC) = (d− 9)A+ (d+ 7)C = 0;

(g) 5 for d = 9, λ = B = Im(AC) = (d − 9)A + (d + 7)C = 0 and 4|A|2 6= 3|d|2;

(h) 5 for d ∈ {7, 11, 13}, λ = B = Im(AC) = (d − 9)A + (d + 7)C = 0 and
Kd(C, D) 6= 0 (see (8));

(i) 6 for d = 9, λ = B = Im(AC) = (d − 9)A + (d + 7)C = 4|A|2 − 3|D|2 = 0
and D 6= 0;

(j) 6 for d ∈ {7, 11, 13}, λ = B = Im(AC) = (d − 9)A + (d + 7)C = Kd(C, D) =
0, and D 6= 0.

The problem now is to determine which of the centers described in Theorem
1 are isochronous. This is the last main statement in the paper.
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Theorem 6. System (1) with d ≥ 7 odd has an isochronous center at the origin if and
only if one of the following two conditions holds.

(d.1) λ = B = D = 0 and C = A.

(d.2) λ = B = D = 0 and C = (5 − d)A/(3 + d).

For proving Theorem 6 we will show the next propositions.

Proposition 7. If either conditions (d.1) or (d.2) holds, then system (1) has an isochronous
center at the origin.

Proposition 8. If system (1) has an isochronous center at the origin, then either condi-
tions (d.1) or (d.2) holds.

The paper has been organized as follows. Propositions 2, 3 and 4, and The-
orem 5 are proved in Sections 2, 3, 4 and 5 respectively. Finally the proof of
Propositions 7 and 8 are given in Sections 6 and 7, respectively.

2 Proof of Proposition 2

We separate the proof of the proposition into different lemmas.

Lemma 9. If condition (c.1) holds, then system (1) has a center at the origin.

Proof. Under conditions (c.1) if we rescale system (1) by |z|d−7 it becomes

ż = iz|z|7−d + Az6 z̄ + iImBz4z̄3 − 3Āz2z̄5 + Dz̄7 = i
∂H

∂z̄
,

where for d ≥ 7 odd we have

H =
2

9 − d
|z|9−d − i

A

2
z6z̄2 + i

Ā

2
z2z̄6 +

ImB

4
z4z̄4 − i

8
(Dz̄8 − D̄z8) for d 6= 9

and

H = log |z|2 − i
A

2
z6z̄2 + i

Ā

2
z2z̄6 +

ImB

4
z4z̄4 − i

8
(Dz̄8 − D̄z8) for d = 9.

Note that the integral exp(H) for d = 9 and H for d ≥ 7 odd with d 6= 9, are real
and well defined at the origin. Therefore the origin is a center.

We recall that systems (1) are reversible with respect to a straight line through
the origin if they are invariant under the change of variables w = eiγz, τ = −t for
some γ real. For systems (1) we have the following result.

Lemma 10. System (1) is reversible if and only if A = −Ae4iγ, C = −Ce−4iγ, D =
−De−8iγ and B = −B for some γ ∈ R. Furthermore, in this situation the origin of
system (1) is a center.

Proof. The proof follows directly from its definition. For more details see [5].
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Lemma 11. If condition (c.2) holds, then system (1) has a center at the origin.

Proof. We will see that if condition (c.2) is satisfied then (1) is a reversible system
and thus the proof of this case will follow from Proposition 10. We consider that
condition (c.2) in Theorem 3 holds and rewrite it as

B = −B̄,
Ā

A
=

C

C̄
,

(

Ā

A

)2

=
D

D̄
,

(

C̄

C

)2

=
D̄

D
. (9)

Now let θ1, θ2 and θ3 such that eiθ1 = −Ā/A, eiθ2 = −C̄/C and eiθ3 = −D̄/D.
Then by (9) we obtain

θ1 = −θ2(mod.2π) and 2θ2 = θ3(mod.2π). (10)

Now, take γ = −θ1/4. Using (10) we have

e4iγ = e−iθ1 = −A

Ā
, e−4iγ = eiθ1 = e−iθ2 = −C

C̄
,

and

e−8iγ = e2iθ1 = e−2iθ2 = e−iθ3 = −D

D̄
,

which clearly implies that system (1) under condition (c.2) is reversible and thus
has a center at the origin.

3 Proof of Proposition 3

Solving ρ1(θ)
′ = (d− 1)λρ1(θ) and evaluating at θ = 2π we obtain v1 = ρ1(2π) =

e2π(d−1)λ. Then V1 = e2π(d−1)λ. In what follows we take λ = 0.

Substituting (6) into (5) we get that the functions ρk(θ) must satisfy

ρ′2 = Vρ2
1,

ρ′3 = Uρ3
1 + 2Vρ1ρ2,

ρ′4 = 3Uρ2
1ρ2 + V(ρ2

2 + 2ρ1ρ3),
ρ′5 = 3U(ρ1ρ2

2 + ρ2
1ρ3) + 2V(ρ2ρ3 + ρ1ρ4),

ρ′6 = U(ρ3
2 + 6ρ1ρ2ρ3 + 3ρ2

1ρ4) + V(ρ2
3 + 2ρ2ρ4 + 2ρ1ρ5),

ρ′7 = 3U(ρ2
2ρ3 + ρ1ρ2

3 + 2ρ1ρ2ρ4 + ρ2
1ρ5) + 2V(ρ3ρ4 + ρ2ρ5 + ρ1ρ6),

ρ′8 = 3U(ρ2ρ2
3 + ρ2

2ρ4 + 2ρ1ρ3ρ4 + 2ρ1ρ2ρ5 + ρ2
1ρ6)

+ V(ρ2
4 + 2ρ3ρ5 + 2ρ2ρ6 + 2ρ1ρ7),

where we have omitted that all the functions depend on θ. Note that all these
differential equations can be solved recursively doing a integral between 0 and θ,
and recalling that ρk(0) = 0 for k ≥ 2. We have done all the computations of this
paper with the help of the algebraic manipulator mathematica. These computa-
tions are not difficult but are long and tedious.

Solving the equation ρ′2 = Vρ2
1 we get that ρ2(2π) = 2π(d − 1)b1. Then V2 =

b1. From now on we take b1 = 0.
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Now we compute the solution ρ3(θ) of ρ′3 = Uρ3
1 + 2Vρ1ρ2, and we get that

ρ3(2π) = 2π(1 − d) Im(AC). Then V3 = −Im(AC).

Computing the solution ρ4(θ) from the differential equation for ρ4(θ), we get
ρ4(θ) and in particular we obtain the expression of v4 = ρ4(2π) given in the
statement of Proposition 3 modulo ρ2(2π) = ρ3(2π) = 0 and a positive constant.
More precisely we can check that if we multiply v4 by 16/(π(d − 1)) then

v4 = V4 − 4V3(d + 3)d2.

Solving the differential equation for ρk(θ) we get ρk(θ) and in particular we
obtain from the expression of vk = ρk(2π) modulo ρ2(2π) = ρ3(2π) = . . . =
ρk−1(2π) = 0 and modulo a positive constant for k = 5, 6, 7, 8. In these two cases
proceeding in the same way as we did for V4, we get V5, V6, V7 and V8 as stated in
the proposition. This completes the proof.

4 Proof of Proposition 4

From the fact that V1 = 1 we get that λ = 0. Furthermore to make V3 = 0 we
will consider two different cases: C = 0 and C 6= 0. In this last case we have that
A = µC̄, with µ ∈ R.

Case 1: C = 0. In that case

V4 = −3(d − 9)Re(A2D).

In view of the factors of V4 and since d ≥ 7 odd, we need to consider two different
cases.

Case 1.1: Re(A2D) = 0. In this case we are under the hypotheses of condition
(c.2).

Case 1.2: Re(A2D) 6= 0 and d = 9. In this case, since b1 = 0, we have

V5 = −3Im(A2BD) = −3b2Re(A2D).

To have V5 = 0 we must impose b2 = 0, that is, B = 0. Then

V6 = 3(4|A|2 − 3|D|2)Re(A2D).

In order to have V5 = 0 we must impose 4|A|2 = 3|D|2. Then V7 = 0 and

V8 = 3|D|4Re(A2D).

Since Re(A2D) 6= 0 (and thus in particular D 6= 0) we have that V8 6= 0 and this
case we do not have any center.

Case 2: A = µB̄, µ ∈ R. In this case

V4 = −(3µ + 1)((d − 9)µ + (d + 7))Re(C̄2D).

In view of the factors in V3 we need to consider three different cases.
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Case 2.1: µ = −1/3. In this case we are under the hypotheses of condition
(c.1).

Case 2.2: Re(C
2
D) = 0. In this case we are under the hypotheses of condition

(c.2).

Case 2.3: µ = −(d + 7)/(d − 9), Re(C
2
D) 6= 0 and d 6= 9. In this case, since

b1 = 0, we have

V5 = −4(d − 1)(d + 15)

(d − 9)2
b2Re(C̄2D).

Then, since d ≥ 11 odd, V5 = 0 if and only if b2 = 0, that is B = 0. Computing V6

we obtain

V6 = −2
d − 1

d − 9
Kd(C, D)Re(C̄2D),

with Kd(C, D) introduced in (8). Then V6 = 0 if and only if d4 − 24d3 + 66d2 +
1728d − 9963 < 0 (see (8)). We note that if d ≥ 15 odd, this is not possible and
consequently it has not a center.

If d ∈ {7, 11, 13} odd, then we impose Kd(C, D) = 0 (see (8)). We have

V8 = −2(d − 1)

d − 9
|D|4Re(C

2
D).

Then V8 = 0 if and only if D = 0, a contradiction with the fact that Re(C̄2D) 6=
0, and thus V8 6= 0. So we do not have a center. This completes the proof of
Proposition 4.

5 Proof of Theorem 5

Due to the relation between the Liapunov constants and the coefficients of the
Poincaré map near the origin of system (1) (see the introduction and the refer-
ences quoted there) in order to prove Theorem 5 it is well known that if we can
choose d ≥ 15 odd with the six focal values satisfying |V1| << |V2| << |V3| <<

|V4| << |V5| << |V6| and VkVk−1 < 0, for k = 2, . . . , 6, then the ciclicity is five.
Moreover if for d ∈ {7, 9, 11, 13} we can choose the seven focal values satisfying
|V1| << |V2| << |V3| << |V4| << |V5| << |V6| << |V8| and VkVk−1 < 0, for
k = 2, . . . , 6 and V8V6 < 0, then the ciclicity is six. From the expressions of the Li-
apunov constants given in Proposition 3 and also using Proposition 4, it follows
easily that the previous inequalities hold and consequently Theorem 5 is proved.
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6 Proof of Proposition 7

From Section 1 in order to prove Proposition 7 it is enough to show that

∫ 2π

0

dθ

θ′
= 2π (11)

where θ′ is (1) in polar coordinates under conditions (d.1), or (d.2). Furthermore,
since in assumptions (d.1), or (d.2) we can assume that A 6= 0 (otherwise we will
obtain the linear center), we can make the change of variables

w = ξz where ξ =
A(d+3)/(8(d−1))

A
(d−5)/(8(d−1))

, (12)

and system (1) with hypotheses (d.1) and after the change of variables (12) be-
comes

w′ = iw + (ww̄)(d−7)/2(w6w̄ + w2w5), (13)

while system (1) with hypotheses (d.2) and after the change of variables (12) be-
comes

w′ = iw + (ww̄)(d−7)/2

(

w6w̄ +
d + 3

5 − d
w2w5

)

. (14)

From the introduction it follows that in order to prove Proposition 7 it is enough
to show that

∫ 2π

0

dθ

θ′
= 2π (15)

where θ′ = 1 + G(θ)rd−1 (see (3)) under conditions (d.1), or (d.2) and after the
change of variables (12).

The proof of Proposition 7 will come straightforward from the following two
auxiliary lemmas.

Lemma 12. System (13) has an isochronous center at the origin.

Proof. We rewrite (13) in polar coordinates we obtain

r′ = 2rd cos(2θ) and θ′ = 1.

Then
∫ 2π

0

dt

θ′
=
∫ 2π

0
dt = 2π.

Lemma 13. System (14) has a isochronous center at the origin.

Proof. We rewrite (14) in polar coordinates and we obtain

r′ =
8

d + 3
rd cos(4θ) and θ′ = 1 +

2(d − 1)

d + 3
rd−1 sin(4θ). (16)

Therefore

dr

dθ
=

8rd cos(4θ)

d + 3 + 2(d − 1)rd−1 sin(4θ)
with r(0) = r0.
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Then integrating it and since r(θ) ≥ 0 for any θ we get that

r(θ) =

(−2(d − 1) sin(4θ) +
√

(d + 3)2r2−2d
0 + 4(d − 1)2 sin2(4θ)

d + 3

)1/(1−d)

.

(17)
Note that

√

(d + 3)2r2−2d
0 + 4(d − 1)2 sin2(4θ) ≥ |2(d − 1) sin(4θ)|.

Thus r(θ), given in (17), is positive. Therefore introducing (17) into (16) we have
that

∫ 2π

0

dθ

θ′
=
∫ 2π

0

(

1 − 2(d − 1) sin(4θ)
√

(d + 3)2r2−2d
0 + 4(d − 1)2 sin2(4θ)

)

dθ = 2π, (18)

because the function 2(d − 1) sin(4θ)/
√

4(d − 1)2 sin2(4θ) + (d + 3)2r2−2d
0 is odd

in θ.

7 Proof of Proposition 8

We note that since u1(θ) = 1, then from (7) and (3) we have

T1 = 2πb2.

Therefore in order to have T1 = 0 we must impose b2 = 0. Moreover, since either
(c.1) or (c.2) holds, we also have b1 = 0. From now on we will impose B = 0.

Now we compute T2, using u2(θ) computed in Proposition 3, (7) and (3), and
we get

T2 =
π

8

(

2(d − 5)|A|2 − 2(d + 3)|C|2 − (d + 7)|D|2 + 16Re(AC)
)

.

We distinguish two different cases.

Case 1: A = 0. In this case T2 becomes

T2 = −π

8

(

2(d + 3)|C|2 + (d + 7)|D|2).

In order that T2 = 0 we must impose C = D = 0. Then A = B = C = D = 0,
which is not possible, otherwise we get the linear center.

Case 2: A 6= 0. In this case since from V3 = 0 we have that Im(AC) = 0, we
get that C = µA with µ ∈ R. We will consider two different subcases.

Subcase 2.1: µ = −3. In this case C = −3A and we are under the hypotheses
(c.1). Then T2 becomes

T2 = −π(d + 7)

8

(

|D|2 + 16|A|2).
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In order that T2 = 0 we must impose A = D = 0. Then A = B = C = D = 0,
which is not possible as above.

Subcase 2.2: µ ∈ R \ {−3}. In this case C = µA and we are in hypotheses (c.2).
Doing the change of variables given in (12) we can rewrite system (1) as

w′ = iw + (ww)(d−7)/2[w6w + µw2w5 + D̃w7], D̃ =
DA1/2

A
3/2

. (19)

Since we are in hypotheses (c.2) we have Re(A2D) = 0. In view of (19) we have

d̃1 = Re(D̃) = Re

(

DA1/2

A
3/2

)

=
1

A3/2A
3/2

Re(DA2) = 0.

Computing the period constants of (19) and taking into account that D̃ = d̃2i we
get

T2 = 2(d − 5) + 16µ − 2(d + 3)(d + 7)µ2d̃2
2,

T3 = d̃2

(

124 + 49d̃2
2 − 190µ + 70µ2 + d2(4µ2 + 2µ − 2 + d̃2

2)

+ 2d(19µ2 − 18µ − 5 + 7d̃2
2)
)

.

Here the constants T2 and T3 have been computed modulo a nonzero real con-
stant.

Computing the common zeros of T2 and T3 we obtain the following subcases.

Subcase 2.2.1: µ = 1 and d̃2 = 0. In that case C = A and D = 0. Therefore we
obtain the conditions (d.1).

Subcase 2.2.2: µ = (5 − d)/(3 + d) and d̃2 = 0. In that case C = (5 − d)A/
(3 + d) and D = 0. Therefore we obtain the conditions (d.2).

Subcase 2.2.3: µ = (9 − d)/(7 + d) and d̃2 = ±4
√

2(d − 1)/(d + 7)3/2. We
compute T4 using u4(θ) given in Proposition 3, (7) and (3). We obtain

T4 = − (d − 1)5(7d − 15)π

6(d + 7)5
6= 0.

Therefore this case does not provide any isochronous center.

Subcase 2.2.4: µ = 3/(2 + d) and d̃2 = ±
√

2(d − 1)/(d + 2)(d + 7)1/2. We
compute T4 using u4(θ) given in Proposition 3, (7) and (3). We obtain

T4 = − (d − 1)4(d + 1)2(d − 5)(3d − 11)π

512(d + 2)4(d + 7)
6= 0.

Therefore this case does not provide any isochronous center and the proof of the
proposition is completed.
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the Liapunov and period constants, Rocky Mountain J. Math. 27 (1997), 471–501.
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