Inverse problem for symmetric P-symmetric matrices with a submatrix constraint *

Jiao-fen Li Xi-yan Hu Lei Zhang

Abstract

For a fixed generalized reflection matrix P, i.e., $P^{T}=P, P^{2}=I$, and $P \neq \pm I$, then a matrix A is called a symmetric P-symmetric matrix if $A=$ A^{T} and $(P A)^{T}=P A$. This paper is mainly concerned with finding the least squares symmetric P-symmetric solutions to the matrix inverse problem $A X=B$ with a submatrix constraint, where X and B are given matrices of suitable size. By applying the generalized singular value decomposition and the canonical correlation decomposition, an analytical expression of the least squares solutions is derived basing on the Projection Theorem in Hilbert inner products spaces. Moreover, in the corresponding solution set, the analytical expression of the unique minimum-norm solution is described in detail.

1 Introduction

Let $R^{n \times m}, O R^{n \times n}, S R^{n \times n}, A S R^{n \times n}$ denote the set of all $n \times m$ real matrices, the set of all $n \times n$ orthogonal matrices, the set of all $n \times n$ real symmetric matrices, the set of all $n \times n$ real anti-symmetric matrices, respectively; The symbols, A^{+} and $\|A\|$ denote the Moore-Penrose generalized inverse, the Frobenius norm respectively. For two matrices $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in R^{n \times m}, A * B=\left(a_{i j} b_{i j}\right) \in R^{n \times m}$

[^0]denotes their Hadamard product, $\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)$ represents their inner product, where $\operatorname{tr}($.$) denotes the trace of the corresponding matrix. Then we can easily$ see that $R^{n \times m}$ is a Hilbert inner product space equipped with the Frobnius norm of matrices, which is induced from the inner product $\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)$.

Matrix inverse problem: given three sets of real $n \times n$ matrices S, real n-vectors $x_{1}, \ldots x_{m}$, and n-vectors $b_{1}, \cdots b_{m}, m \leq n$, find a real $n \times n$ matrix $A \in \mathscr{L}$ such that

$$
A x_{i}=b_{i}, \quad i=1,2, \ldots m .
$$

Let $X=\left(x_{1}, x_{2}, \ldots x_{m}\right), B=\left(b_{1}, b_{2}, \ldots b_{m}\right)$, then the above relation can be written as

$$
A X=B
$$

If $B=X \Lambda, \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \ldots \lambda_{m}\right)$, where $\lambda_{1}, \lambda_{1}, \ldots \lambda_{m}$ are numbers, then the above problem is called the inverse eigenvalue problem.

The prototype of those problems initially arose in the design of Hopfield neural networks [9,10]. It is applied in various areas, such as the discrete analogue of inverse Sturm-Liouville problem [7], vibration design [22], and structural design [8].

For decades, many authors have been devoted to the study of matrix inverse problem associated with several kinds of different sets \mathscr{L}, and we refer to $[11,14,15,20]$. However, we should point out that the matrices X and B occurring in practice are usually obtained from experiment and they may not satisfy the solvability condition. Therefore, we need further study the least-squares solutions for the problem above which is associated with several kinds of different sets \mathscr{L}, for instance, general matrices, symmetric matrices, symmetric nonnegative definite matrices and so on.

Let $P \in R^{n \times n}$ be a fixed generalized reflection matrix, i.e., $P^{T}=P, P^{2}=I$, and $P \neq \pm I$, then a matrix A is called a symmetric P-symmetric matrix if $A=$ A^{T} and $(P A)^{T}=P A$, or symmetric P-skew symmetric matrix if $A=A^{T}$ and $(P A)^{T}=-P A$. The set of all symmetric P-(skew)symmetric matrices is denoted by $S R_{P}^{n \times n}\left(S A R_{P}^{n \times n}\right)$. In particular, if J is the flip matrix with ones on the secondary diagonal and zeros elsewhere, then a symmetric J-symmetric matrix is bi-symmetric, i.e., $a_{i j}=a_{j i}=a_{n-i+1, n-j+1}, 1 \leq i, j \leq n$, while a symmetric J-skew symmetric matrix is symmetric and skew-antisymmetric, i.e., $a_{i j}=$ $a_{j i}=-a_{n-i+1, n-j+1}, 1 \leq i, j \leq n$. Bi-symmetric matrices, such as symmetric Toeplitz matrices and autocovariance matrices, have practical application in information theory, linear system theory and numerical analysis. If $P=I_{n}$, then $S R_{P}^{n \times n}$ is a symmetric matrix set and $S A R_{P}^{n \times n}$ is trivial due to the fact that $S R^{n \times n} \cap A S R^{n \times n}=0$.

The symmetric P-symmetric matrices were initially considered by Zhou, Hu and Zhang, associated with matrix equations and inverse eigenvalue problems, see[25, 26]. Peng [18] has investigated the symmetric P-symmetric solution to the matrix equation

$$
A^{T} X A=B
$$

which arose in an inverse problem of structural modification or the dynamic behavior of a structure. However the inverse problem for symmetric P-symmetric
matrices with a submatrix constraint has not been discussed. The inverse problem with a submatrix constraint comes from a practical subsystem expansion problem. Researchers have great interest in studying a variety of inverse problem under submatrices constraint in recent years. For example, Deift and Nanda [4] discussed an inverse eigenvalue problem of a tridiagonal matrix under a submatrix constraint; Peng and Hu [16] considered an inverse eigenpair problem of a Jacobi matrix under a leading principal submatrix constraint; Peng and Hu [17] studied a inverse problem of bi-symmetric matrices with a leading principal submatrix constraint, for more we refer the reader to $[6,12,24]$. To our knowledge, there is no result about the least-squares solutions of matrix inverse problem for symmetric P-symmetric matrices with a submatrix constraint. In this paper, we will mainly discuss this problem.

Throughout, we always assume that P is a fixed generalized reflection matrix. The problem studied in this paper can be described as follows

Problem I. Given matrices $X, B \in R^{n \times m}$ and $A_{0} \in S R^{q \times q}$. Let

$$
\Gamma=\left\{A \in S R_{P}^{n \times n} \mid\|A X-B\|=\min \right\},
$$

find $\tilde{A} \in \Gamma$ such that

$$
\left\|\tilde{A}([1: q])-A_{0}\right\|=\min _{A \in \Gamma}\left\|A([1: q])-A_{0}\right\|
$$

$A([1: q])$ is the principal submatrix of A lying in the first q rows and columns.
Problem II. Let S_{E} be the solution set of Problem I. Find $\hat{A} \in S_{E}$ such that

$$
\begin{equation*}
\|\hat{A}\|=\min _{\bar{A} \in S_{E}}\|\bar{A}\| \tag{1.1}
\end{equation*}
$$

We remark that when $q=0$, Problem I is reduced to the inverse problem for symmetric P-symmetric matrices discussed by [5] and [25]. When $q=n, A_{0}$ is the best approximation of the matrix $\tilde{A} \in \Gamma$. In this paper, we consider the general case when $0<q<n$. Problem II is in fact to find the minimum-norm solution of the solution set of Problem I.

The paper is organized as follows. After introducing some necessary concepts of two matrix-factorization techniques in Section 2 and some useful preliminary results in Section 3, we will derive an analytical expression for the solution of Problem I in section 4. The expressions for the unique solution of Problem II is obtained in Section 5. At last, in Section 6, we use some brief conclusions to end the paper.

2 Two matrix-factorization techniques

As a preliminary, we briefly state the concepts of generalized singular value decomposition (GSVD) and canonical correlation decomposition (CCD), which are essential tools for deriving the solution of Problem I.

Let $N_{1} \in R^{q \times\left(r-r_{1}\right)}, N_{2} \in R^{q \times\left(s-r_{2}\right)}$, then the GSVD of the matrix pair $\left(N_{1}, N_{2}\right)$ is given by

$$
\begin{equation*}
N_{1}^{T}=Q_{1} \Omega_{1} M, \quad N_{2}^{T}=Q_{2} \Omega_{2} M \tag{2.1}
\end{equation*}
$$

where $M \in R^{q \times q}$ is a non-singular matrix, $Q_{1} \in O R^{\left(r-r_{1}\right) \times\left(r-r_{1}\right)}, Q_{2} \in O R^{\left(s-r_{2}\right) \times\left(s-r_{2}\right)}$, and

where $m_{1}=r-r_{1}-f-g, m_{2}=s-r_{2}-t+f$, with the diagonal matrices S_{1} and S_{2} being given by

$$
S_{1}=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \cdots \mu_{g}\right)>0 \text { and } S_{2}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots \lambda_{g}\right)>0 .
$$

Here

$$
t=\operatorname{rank}\left[N_{1}, N_{2}\right], f=t-\operatorname{rank}\left(N_{2}\right), g=\operatorname{rank}\left(N_{1}\right)+\operatorname{rank}\left(N_{2}\right)-t
$$

O, O_{1}, O_{2} are zero matrices of suitable sizes.
We further partition the non-singular matrix M as

$$
\begin{equation*}
M^{-1}=\left(M_{1}, M_{2}, M_{3}, M_{4}\right) \tag{2.2}
\end{equation*}
$$

where $M_{1} \in R^{q \times f}, M_{2} \in R^{q \times g}, M_{3} \in R^{q \times(t-f-g)}, M_{4} \in R^{q \times(q-t)}$.
The CCD of the matrix pair $\left(N_{1}, N_{2}\right)$ is given by

$$
\begin{equation*}
N_{1}=H\left(\mathrm{Y}_{1}, 0\right) E_{1}^{-1} \quad N_{2}=H\left(\mathrm{Y}_{2}, 0\right) E_{2}^{-1} \tag{2.3}
\end{equation*}
$$

where $E_{1} \in R^{\left(r-r_{1}\right) \times\left(r-r_{1}\right)}, E_{2} \in R^{\left(s-r_{2}\right) \times\left(s-r_{2}\right)}$ are non-singular matrices, $H \in O R^{q \times q}$, and

$$
\mathrm{Y}_{1}=\left(\begin{array}{ccc}
I_{r_{0}} & 0 & 0 \\
0 & S_{N} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & C_{N} & 0 \\
0 & 0 & I_{t_{0}}
\end{array}\right), \quad \mathrm{Y}_{2}=\binom{I_{h}}{0}
$$

are block matrices, with the diagonal matrices S_{N} and C_{N} given by

$$
S_{N}=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots \alpha_{s_{0}}\right)>0, \text { and } C_{N}=\operatorname{diag}\left(\beta_{1}, \beta_{2}, \cdots \beta_{s_{0}}\right)>0
$$

Here
$h=\operatorname{rank}\left(N_{2}\right), r_{0}=\operatorname{rank}\left(N_{1}\right)+\operatorname{rank}\left(N_{2}\right)-\operatorname{rank}\left[N_{1}, N_{2}\right], s_{0}=\operatorname{rank}\left(N_{1}^{T} N_{2}\right)-r_{0}$.
We further partition the orthogonal matrix H as

$$
\begin{equation*}
H=\left(H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right) \tag{2.4}
\end{equation*}
$$

where $H_{1} \in R^{n \times r_{0}}, H_{2} \in R^{n \times s_{0}}, H_{3} \in R^{n \times\left(h-r_{0}-s_{0}\right)}, H_{4} \in R^{n \times\left(q-h-r_{0}-s_{0}\right)}$, $H_{5} \in R^{n \times s_{0}}, H_{6} \in R^{n \times t_{0}}$.

3 Preliminary results

Let r and s be respectively the dimensions of the eigenspaces of P associated with the eigenvalues $\lambda=1$ and $\lambda=-1$; thus $r, s>1$ and $r+s=n$. Since a generalized reflection matrix is diagonalizable and $P \neq \pm I$. Let

$$
P_{1}=\left[p_{1}, \ldots, p_{r}\right] \in R^{n \times r} \text { and } P_{2}=\left[q_{1}, \ldots, q_{s}\right] \in R^{n \times s},
$$

where p_{1}, \ldots, p_{r} and q_{1}, \ldots, q_{s} are orthonormal bases for the eigenspaces. P_{1} and P_{2} can be found by applying the Gram-Schmidt process to the columns of $I+P$ and $I-P$, respectively.

The following lemma characterizes the class of symmetric P-symmetric matrices, which are the special case of [[14], Theorem 1].
Lemma 1. $A \in R^{n \times n}$ is symmetric P-symmetric if and only if

$$
A=\left[\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right]\left[\begin{array}{rr}
A_{1} & 0 \tag{3.1}\\
0 & A_{2}
\end{array}\right]\left[\begin{array}{l}
P_{1}^{T} \\
P_{2}^{T}
\end{array}\right],
$$

where

$$
\begin{equation*}
A_{1}=P_{1}^{T} A P_{1} \in S R^{r \times r} \text { and } A_{2}=P_{2}^{T} A P_{2} \in S R^{s \times s} \tag{3.2}
\end{equation*}
$$

The following lemma from [21] is a directly use for our mainly results.
Lemma 2. (Projection Theorem) Let \mathbb{X} be a finite dimensional inner product space, \mathbb{M} be a subspace of \mathbb{X}, and \mathbb{M}^{\perp} be the orthogonal complement subspace of \mathbb{M}. For a given $x \in \mathbb{X}$, there always exists an $m_{0} \in \mathbb{M}$ such that $\left\|x-m_{0}\right\| \leq\|x-m\|, \forall m \in \mathbb{M}$, where $\|$.$\| is the norm associated with the inner product defined in \mathbb{X}$. Moreover, $m_{0} \in \mathbb{M}$ is the unique minimization vector in \mathbb{M} if and only if $\left(x-m_{0}\right) \perp \mathbb{M}$ i.e, $\left(x-m_{0}\right) \in$ \mathbb{M}^{\perp}.

To derive the solutions of Problem I, we need to characterize the elements in the set Γ. In order to do that, let the SVDs of $P_{1}^{T} X, P_{2}^{T} X$ be, respectively,

$$
P_{1}^{T} X=U_{1}\left(\begin{array}{cc}
\Sigma_{1} & 0 \tag{3.3}\\
0 & 0
\end{array}\right) V_{1}^{T}, \quad P_{2}^{T} X=U_{2}\left(\begin{array}{cc}
\Sigma_{2} & 0 \\
0 & 0
\end{array}\right) V_{2}^{T}
$$

where $U_{1}=\left(U_{11}, U_{12}\right) \in O R^{r \times r}$ and $V_{1}=\left(V_{11}, V_{12}\right) \in O R^{m \times m}, U_{2}=\left(U_{21}, U_{22}\right)$ $\in O R^{s \times s}$ and $V_{2}=\left(V_{21}, V_{22}\right) \in O R^{m \times m} ; \Sigma_{1}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2} \ldots \sigma_{r_{1}}\right)$, and $\Sigma_{2}=\operatorname{diag}\left(\gamma_{1}, \gamma_{2} \ldots \gamma_{r_{2}}\right)$ are diagonal matrices with positive diagonal entries; $U_{11} \in R^{r \times r_{1}}, V_{11} \in R^{m \times r_{1}}, U_{21} \in R^{s \times r_{2}}, U_{11} \in R^{m \times r_{2}}$, here $r_{i}=\operatorname{rank}\left(P_{i}^{T} X\right)$ ($\mathrm{i}=1,2$).

From [5] and [25], we know that the matrices A in the set Γ have the following expression

$$
A=\left[\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right]\left(\begin{array}{cc}
A_{11}^{(0)}+U_{12} G_{1} U_{12}^{T} & 0 \tag{3.4}\\
0 & A_{22}^{(0)}+U_{22} G_{2} U_{22}^{T}
\end{array}\right)\left[\begin{array}{l}
P_{1}^{T} \\
P_{2}^{T}
\end{array}\right],
$$

where

$$
A_{11}^{(0)}=U_{1}\left(\begin{array}{cc}
\Psi_{1} *\left(U_{11}^{T} P_{1}^{T} B V_{11} \Sigma_{1}+\Sigma_{1} V_{11}^{T} B^{T} P_{1} U_{11}\right) & \Sigma_{1}^{-1} V_{11}^{T} B^{T} P_{1} U_{12} \tag{3.5}\\
U_{12}^{T} P_{1}^{T} B V_{11} \Sigma_{1}^{-1} & 0
\end{array}\right) U_{1}^{T},
$$

$$
A_{22}^{(0)}=U_{2}\left(\begin{array}{cc}
\Psi_{2} *\left(U_{21}^{T} P_{2}^{T} B V_{21} \Sigma_{2}+\Sigma_{2} V_{21}^{T} B^{T} P_{2} U_{21}\right) & \Sigma_{2}^{-1} V_{21}^{T} B^{T} P_{2} U_{22} \tag{3.6}\\
U_{22}^{T} P_{2}^{T} B V_{21} \Sigma_{2}^{-1} & 0
\end{array}\right) U_{2}^{T}
$$

with

$$
\begin{array}{ll}
\Psi_{1}=\left(\psi_{i j}^{(1)}\right) \in R^{r_{1} \times r_{1}}, \psi_{i j}^{(1)}=\frac{1}{\sigma_{i}^{2}+\sigma_{j}^{2}}, & 1 \leq i, j \leq r_{1} \\
\Psi_{2}=\left(\psi_{i j}^{(2)}\right) \in R^{r_{2} \times r_{2}}, \psi_{i j}^{(2)}=\frac{1}{\gamma_{i}^{2}+\gamma_{j}^{2}}, & 1 \leq i, j \leq r_{2}
\end{array}
$$

and $G_{1} \in S R^{\left(r-r_{1}\right) \times\left(r-r_{1}\right)}$ and $G_{2} \in S R^{\left(s-r_{2}\right) \times\left(s-r_{2}\right)}$ are arbitrary symmetric matrices.

4 General expression of the solutions to Problem I

In this section, we derive an analytical expression for the solution of Problem I. Obviously, solving Problem I is equivalent to find $A \in \Gamma$ such that $A([1: q])$ is the best approximation leading principal submatrix of A_{0}, i.e., find $A \in \Gamma$ such that

$$
\begin{equation*}
\left\|\left(I_{q}, 0\right) A\left(I_{q}, 0\right)^{T}-A_{0}\right\|=\min \tag{4.1}
\end{equation*}
$$

where $\left(I_{q}, 0\right) \in R^{q \times n}$. We further partition

$$
\begin{equation*}
\left(I_{q}, 0\right)\left[P_{1}, P_{2}\right]=\left(D_{1}, D_{2}\right), \quad D_{1} \in R^{q \times r}, \quad D_{2} \in R^{q \times s} . \tag{4.2}
\end{equation*}
$$

Then for $A \in \Gamma$, we have

$$
\begin{aligned}
& \left\|\left(I_{q}, 0\right) A\left(I_{q}, 0\right)^{T}-A_{0}\right\| \\
& =\left\|\left(I_{q}, 0\right)\left[P_{1}, P_{2}\right]\left(\begin{array}{cc}
A_{11}^{(0)}+U_{12} G_{1} U_{12}^{T} & 0 \\
0 & A_{22}^{(0)}+U_{22} G_{2} U_{22}^{T}
\end{array}\right)\left[\begin{array}{c}
P_{1}^{T} \\
P_{2}^{T}
\end{array}\right]\left(I_{q}, 0\right)^{T}-A_{0}\right\| \\
& =\left\|\left(D_{1}, D_{2}\right)\left(\begin{array}{cc}
A_{11}^{(0)}+U_{12} G_{1} U_{12}^{T} & 0 \\
0 & A_{22}^{(0)}+U_{22} G_{2} U_{22}^{T}
\end{array}\right)\binom{D_{1}^{T}}{D_{2}^{T}}-A_{0}\right\| \\
& =\left\|D_{1} U_{12} G_{1} U_{12}^{T} D_{1}^{T}+D_{2} U_{22} G_{2} U_{22}^{T} D_{2}^{T}-\left(A_{0}-D_{1} A_{11}^{(0)} D_{1}^{T}-D_{2} A_{22}^{(0)} D_{2}^{T}\right)\right\| .
\end{aligned}
$$

Denote

$$
\begin{equation*}
D_{1} U_{12}=N_{1}, \quad D_{2} U_{22}=N_{2}, \quad A_{0}-D_{1} A_{11}^{(0)} D_{1}^{T}-D_{2} A_{22}^{(0)} D_{2}^{T}=W \tag{4.3}
\end{equation*}
$$

Then $\left\|\left(I_{q}, 0\right) A\left(I_{q}, 0\right)^{T}-A_{0}\right\|=\min _{A \in \Gamma}$ is equivalent to find the least squares symmetric solution $\left(G_{1}, G_{2}\right)$ with respect to the inconsistent matrix equation

$$
\begin{equation*}
N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}=W \tag{4.4}
\end{equation*}
$$

Therefore, the remainder of this section is devoted the solution of the following equivalent least squares problem:

Problem A: Given matrix $N_{1} \in R^{q \times\left(r-r_{1}\right)}, N_{2} \in R^{q \times\left(s-r_{2}\right)}$ and $W \in R^{q \times q}$, find $\widetilde{G}_{1}, \widetilde{G}_{2}$ such that

$$
\left\|N_{1} \widetilde{G}_{1} N_{1}^{T}+N_{2} \widetilde{G}_{2} N_{2}^{T}-W\right\|=\min _{\substack{\left.G_{1} \in R^{\left(r-r_{1}\right) \times\left(r-r_{1}\right)} \\ G_{2} \in S R^{k-r_{2}}\right) \times\left(k-r_{2}\right)}}\left\|N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}-W\right\| .
$$

Actually Problem A has been investigated by [23], and the explicit solutions was obtained by using the canonical correlation decomposition(CCD). However the optimal approximation solution to a given matrix pair $\left(G_{1}^{*}, G_{2}^{*}\right)$ cannot be obtained in the corresponding solution set, and the difficulty is due to that the invariance of the Frobenius norm only holds for orthogonal matrices, but does not hold non-singular matrices that appear in CCD used in [23]. For the purpose of overcoming the above mentioned difficulty, another expression of the general solution of Problem A is derived by adopting a new approach, which is not only favorable for finding the optimal approximation solution to a given matrix pair $\left(G_{1}^{*}, G_{2}^{*}\right)$ in the solution set of Problem A, but it is also useful for finding the minimum-norm solution in the S_{E}. Our approach is based upon the Projection Theorem in Hilbert products spaces, as well as GSVD and CCD of matrix pairs, and can be essentially divided into three parts:
part 1: Find a least squares solution $\left(\widetilde{G}_{1}^{(0)}, \widetilde{G}_{2}^{(0)}\right)$ of Problem A by using CCD.
part 2: By utilizing the solution $\left(\widetilde{G}_{1}^{(0)}, \widetilde{G}_{2}^{(0)}\right)$ and the Projection Theorem in Hilbert spaces, we transform Problem A to a problem of finding the symmetric solutions of a consistent matrix equation.
part 3: Find the symmetric solutions of this consistent matrix equation by using GSVD.

Next, we first transform the least-squares problem with respect to the matrix equation (4.4) to the problem of finding the symmetric solution of a consistent matrix equation by applying the Projection Theorem. This technique is precisely described in the following theorem.
Theorem 1. Given matrices $N_{1} \in R^{q \times\left(r-r_{1}\right)}$ and $N_{2} \in R^{q \times\left(s-r_{2}\right)}$ and $W \in S R^{q \times q}$, let $\left(\widetilde{G}_{1}^{(0)}, \widetilde{G}_{2}^{(0)}\right)$ be one of the solutions of Problem A, and define

$$
\begin{equation*}
W_{0}=N_{1} \widetilde{G}_{1}^{(0)} N_{1}^{T}+N_{2} \widetilde{G}_{2}^{(0)} N_{2}^{T} \tag{4.5}
\end{equation*}
$$

Then the matrix equation

$$
\begin{equation*}
N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}=W_{0} \tag{4.6}
\end{equation*}
$$

is consistent over the symmetric matrices, and its symmetric solution set is the same as the least square symmetric solution set of inconsistent matrix equation (4.4).
Proof. : Let

$$
\begin{equation*}
\mathcal{S}=\left\{Z \mid Z=N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}, G_{1} \in S R^{\left(r-r_{1}\right) \times\left(r-r_{1}\right)}, G_{2} \in S R^{\left(s-r_{2}\right) \times\left(s-r_{2}\right)}\right\} \tag{4.7}
\end{equation*}
$$

then \mathcal{S} is obviously a linear subspace of $S R^{q \times q}$. Because $\left(\widetilde{G}_{1}^{(0)}, \widetilde{G}_{2}^{(0)}\right)$ is a least squares solution of the inconsistent matrix equation (4.4), from (4.5) we see that $W_{0} \in \mathcal{S}$ and

$$
\begin{aligned}
\left\|W_{0}-W\right\| & =\left\|N_{1} \widetilde{G}_{1}^{(0)} N_{1}^{T}+N_{2} \widetilde{G}_{2}^{(0)} N_{2}^{T}-W\right\| \\
& =\min _{G_{1}, G_{2}}\left\|N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}-W\right\| \\
& =\min _{Z \in \mathcal{S}}\|Z-W\| .
\end{aligned}
$$

Now, from Lemma 2 (Projection Theorem), we have

$$
\left(W_{0}-W\right) \perp \mathcal{S}, \quad\left(W_{0}-W\right) \in \mathcal{S}^{\perp}
$$

For $G_{1} \in S R^{\left(r-r_{1}\right) \times\left(r-r_{1}\right)}, G_{2} \in S R^{\left(s-r_{2}\right) \times\left(s-r_{2}\right)}$, we know that

$$
\left(N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}-W_{0}\right) \in \mathcal{S}
$$

it follows that

$$
\begin{aligned}
\left\|N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}-W\right\|^{2} & =\left\|\left(N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}-W_{0}\right)+\left(W_{0}-W\right)\right\|^{2} \\
& =\left\|N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}-W_{0}\right\|^{2}+\left\|W_{0}-W\right\|^{2}
\end{aligned}
$$

which implies that the conclusion of this theorem holds.
Form Theorem 4.1, we can easily see that Problem A is equivalent to the problem of finding the symmetric solutions of the consistent matrix equation (4.6), and the key is to find W_{0}. The crux of finding W_{0} is to derive a least square solution of the matrix equation (4.4). In order to do that, we denote

$$
\begin{equation*}
H^{T} W H=\left(W_{i j}\right)_{6 \times 6}, \quad W_{i j}=H_{i}^{T} W H_{j}, \quad i, j=1,2, \cdots 6 \tag{4.8}
\end{equation*}
$$

where the matrices $H_{i}(i=1,2 \cdots 6)$ are given by (2.4), and W is given by (4.3). Based on the CCD of the matrix pair $\left(N_{1}, N_{2}\right)$, the following lemma gives such a matrix W_{0}.
Lemma 3. The matrix W_{0}, which corresponds to a least squares solution $\left(\widetilde{G}_{1}^{0}, \widetilde{G}_{2}^{0}\right)$ of the matrix equation (4.4) and satisfies (4.5), is given by

$$
W_{0}=H\left(\begin{array}{cccccc}
W_{11} & W_{12} & W_{13} & 0 & W_{15} & W_{16} \tag{4.9}\\
W_{12}^{T} & W_{22} & W_{23} & 0 & S_{N} \bar{Y}_{22} C_{N} & S_{N} \bar{Y}_{23} \\
W_{13}^{T} & W_{23}^{T} & W_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
W_{15}^{T} & C_{N} \bar{Y}_{22} S_{N} & 0 & 0 & C_{N} \bar{Y}_{22} C_{N} & C_{N} \bar{Y}_{23} \\
W_{16}^{T} & \bar{Y}_{23} S_{N} & 0 & 0 & \bar{Y}_{23}^{T} C_{N} & W_{66}
\end{array}\right) H^{T},
$$

where

$$
\begin{equation*}
\bar{Y}_{22}=\Phi *\left(S_{N} W_{25} C_{N}+C_{N} W_{25} S_{N}+C_{N} W_{55} C_{N}\right), \quad \bar{Y}_{23}=S_{N} W_{26}+C_{N} W_{56} \tag{4.10}
\end{equation*}
$$

with

$$
\Phi=\left(\phi_{i j} \in R^{s_{0} \times s_{0}}\right), \quad \phi_{i j}=\frac{1}{1-\alpha_{i}^{2} \alpha_{j}^{2}}, i, j=1,2, \ldots, s_{0} .
$$

Proof. : From Theorem 3.1 in [23] we know that the least squares solution of the matrix equation (4.4) can be given by using the CCD of matrix pair $\left(N_{1}, N_{2}\right)$, and have the following form:

$$
\begin{align*}
& \widetilde{G}_{1}=E_{1}\left(\begin{array}{cccc}
W_{11}-Z_{11} & W_{15} S_{N}^{-1} & W_{16} & Y_{14} \\
S_{N}^{-1} W_{15}^{T} & \bar{Y}_{22} & \bar{Y}_{23} & Y_{24} \\
W_{16}^{T} & \bar{Y}_{23}^{T} & W_{66} & Y_{34} \\
Y_{14}^{T} & Y_{24}^{T} & Y_{34}^{T} & Y_{44}
\end{array}\right) E_{1}^{T}, \tag{4.11}\\
& Z_{11} \\
& \widetilde{G}_{2}=E_{2}\left(\begin{array}{cccc}
\\
W_{12}^{T}-W_{15} C_{N} S_{N}^{-1} C_{N} W_{15}^{T} & W_{13} & Z_{14} \\
W_{22}^{T}-S_{N} \bar{Y}_{22} S_{N} & W_{23} & Z_{24} \\
Z_{14}^{T} & W_{23}^{T} & W_{33} & Z_{34} \\
Z_{14}^{T} & Z_{24}^{T} & Z_{34}^{T} & Z_{44}
\end{array}\right) E_{2}^{T},
\end{align*}
$$

where $\bar{Y}_{22} \in R^{s_{0} \times s_{0}}$ and $\bar{Y}_{23} \in R^{s_{0} \times t_{0}}$ are defined by (4.10); $Y_{44} \in R^{f_{1} \times f_{1}}$, $Z_{11} \in R^{r_{0} \times r_{0}}$, and $Z_{44} \in R^{f_{2} \times f_{2}}$ are arbitrary symmetric matrices; and $Y_{14} \in R^{r_{0} \times f_{1}}, Y_{24} \in R^{s_{0} \times f_{1}}, Y_{34} \in R^{t_{0} \times f_{1}}$ and $Z_{14}^{r_{0} \times f_{2}}, Z_{24}^{s_{0} \times f_{2}}, Z_{34}^{\left(h-r_{0}-s_{0}\right) \times f_{2}}$ are arbitrary matrices, where $f_{1}=r-r_{1}-r_{0}-s_{0}-t_{0}, f_{2}=k-r_{2}-h$.

By inserting the matrices N_{1} and N_{2} in (2.3) and the matrices \widetilde{G}_{1} and \widetilde{G}_{2} in (4.11) into Eq.(4.5), we can immediately get (4.9) by straightforward computations.

Remark 1. Evidently, (4.9) shows that the matrix W_{0} given in Lemma 3 is unique and only dependent on the matrices N_{1}, N_{2} and W, but is independent on the least squares solution ($\widetilde{G}_{1}^{0}, \widetilde{G}_{2}^{0}$) of matrix equation (4.4). The characteristics is in accordance with the Projection Theorem in the Hilbert space. In fact W_{0} is the orthogonal projection of W onto subspace \mathcal{S} defined by (4.7).

From Theorem 1 and Lemma 3, we know that the least squares symmetric solution set the matrix equation (4.4) is the same as the symmetric solution set of the consistent matrix equation (4.6), with the matrix W_{0} being given by (4.9), and from [3], the solution of (4.6) can be obtained by using the GSVD of the matrix pair $\left(N_{1}, N_{2}\right)$. So we have the following conclusion.

Theorem 2. Let matrices N_{1}, N_{2} and W be given in Problem A. Denote

$$
\begin{equation*}
M^{-T} W_{0} M^{-1}=\left(\widehat{W}_{i j}\right)_{4 \times 4}, \text { with } \widehat{W}_{i j}=M_{i}^{T} W_{0} M_{j}, \quad i, j=1,2,3,4 \tag{4.12}
\end{equation*}
$$

where $M_{i}(i, j=1,2,3,4)$ are given by (2.2) and W_{0} is given by (4.9). Then the expressions of the solutions ($\widetilde{G}_{1}, \widetilde{G}_{2}$) of Problem A are as follows:

$$
\begin{align*}
& \widetilde{G}_{1}=Q_{1}\left(\begin{array}{ccc}
\widehat{W}_{11} & \widehat{W}_{12} S_{1}^{-1} & Y_{13} \\
S_{1}^{-1} \widehat{W}_{12}^{T} & S_{1}^{-1}\left(\widehat{W}_{22}-S_{2} Z_{22} S_{2}\right) S_{1}^{-1} & Y_{23} \\
Y_{13}^{T} & Y_{23}^{T} & Y_{33}
\end{array}\right) Q_{1}^{T} \\
& \widetilde{G}_{2}=Q_{2}\left(\begin{array}{ccc}
Z_{11} & Z_{12} & Z_{13} \\
Z_{12}^{T} & Z_{22} & S_{2}^{-1} \widehat{W}_{23} \\
Z_{13}^{T} & \widehat{W}_{23}^{T} S_{2}^{-1} & \widehat{W}_{33}
\end{array}\right) Q_{2}^{T}, \tag{4.13}
\end{align*}
$$

where $Y_{33}^{m_{1} \times m_{1}}, Z_{11}^{m_{2} \times m_{2}}, Z_{22}^{g \times g}$ are arbitrary symmetric matrices, $Y_{13}^{f \times m_{1}}, Y_{23}^{g \times m_{1}}, Z_{12}^{m_{2} \times g}$, $Z_{13}^{m_{2} \times(t-f-g)}$ are arbitrary matrices.

So, we know that the solution ($\left.\widetilde{G}_{1}, \widetilde{G}_{2}\right)$ of Problem A can be expressed by (4.13). From the discussion above, after substituting $\left(\widetilde{G}_{1}, \widetilde{G}_{2}\right)$ in (4.13) into (3.4), we can derive the following conclusion:

Theorem 3. Given matrices $X, B \in R^{n \times m}$ and $A_{0} \in S R^{q \times q}$. The solution set S_{E} of Problem I can be expressed as

$$
S_{E}=\left\{\tilde{A} \left\lvert\, \tilde{A}=\left[P_{1}, P_{2}\right]\left(\begin{array}{cc}
A_{11}^{(0)}+U_{12} \widetilde{G}_{1} U_{12}^{T} & 0 \tag{4.14}\\
0 & A_{22}^{(0)}+U_{22} \widetilde{G}_{2} U_{22}^{T}
\end{array}\right)\left[\begin{array}{l}
P_{1}^{T} \\
P_{2}^{T}
\end{array}\right]\right.\right\}
$$

where \widetilde{G}_{1} and \widetilde{G}_{2} are given by (4.13).

The solvability conditions of the matrix equation $A X=B$ over symmetric P-symmetric matrices with a submatrix constraint, that is, the set

$$
S_{A}=\left\{A \mid A \in S R_{P}^{n}, A X=B, A([1: q])=A_{0}\right\}
$$

is non-empty, from Theorem 1 and Theorem 2, we can obtain the equivalent solvability conditions, which are described as follows.

Corollary 4.1. Given $X, B \in R^{n \times m}$ and $A_{0} \in S R^{q \times q}$. The set S_{A} is non-empty if and only if
(a) $X^{T} P_{i} P_{i}^{T} B=B^{T} P_{i} P_{i}^{T} X, \quad P_{i}^{T} B\left(P_{i}^{T} X\right)^{+} P_{i}^{T} X=P_{i}^{T} B, i=1,2$,
(b) $\left(W_{14}^{T}, W_{24}^{T}, W_{34}^{T}\right)=0,\left(W_{44}, W_{45}, W_{46}\right)=0,\left(W_{35}, W_{36}\right)=0$,
(c) $S_{N} \bar{Y}_{22} C_{N}=W_{25}, C_{N} \bar{Y}_{22} C_{N}=W_{55}$
where the matrix blocks $W_{i j}(i, j=1,2, \ldots, 6)$ are determined by (4.12). When the conditions above all hold, the set S_{A} is the same as S_{E} in (4.14).

Proof. : Evidently, the set S_{A} is non-empty if and only if there exists a matrix $A \in S R_{P}^{n}$ such that

$$
\|A X-B\|=0, \quad\left\|A([1: q])-A_{0}\right\|=0
$$

From Lemma 1 , we know $\|A X-B\|=0$ is equivalent to

$$
\left\|A_{1} P_{1}^{T} X-P_{1}^{T} B\right\|=0,\left\|A_{2} P_{2}^{T} X-P_{2}^{T} B\right\|=0
$$

and from [19], the above equalities are hold if and only if

$$
X^{T} P_{i} P_{i}^{T} B=B^{T} P_{i} P_{i}^{T} X, \quad P_{i}^{T} B\left(P_{i}^{T} X\right)^{+} P_{i}^{T} X=P_{i}^{T} B, \quad i=1,2 .
$$

From Theorem 1, we have

$$
\begin{aligned}
\left\|A([1: q])-A_{0}\right\|^{2} & =\left\|N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}-W\right\|^{2} \\
& =\left\|\left(N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}-W_{0}\right)+\left(W_{0}-W\right)\right\|^{2} \\
& =\left\|N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}-W_{0}\right\|^{2}+\left\|W_{0}-W\right\|^{2} .
\end{aligned}
$$

Since the matrix equation $N_{1} G_{1} N_{1}^{T}+N_{2} G_{2} N_{2}^{T}=W_{0}$ is consistent over symmetric matrix space, then $\left\|A([1: q])-A_{0}\right\|=0$ if and only if

$$
W_{0}=W .
$$

From (4.8) and (4.9), we know that $W_{0}=W$ if and only if

$$
\left(W_{14}^{T}, W_{24}^{T}, W_{34}^{T}\right)=0,\left(W_{44}, W_{45}, W_{46}\right)=0,\left(W_{35}, W_{36}\right)=0
$$

and

$$
S_{N} \bar{Y}_{22} C_{N}=W_{25}, \quad C_{N} \bar{Y}_{22} C_{N}=W_{55}, \quad S_{N} \bar{Y}_{23}=W_{26}, C_{N} \bar{Y}_{23}=W_{56} .
$$

Furthermore, for all $W_{26}, W_{56} \in R^{s_{0} \times t_{0}}$, it is easy to know that $S_{N} \bar{Y}_{23}=W_{26}$ and $C_{N} \bar{Y}_{23}=W_{56}$ from $\bar{Y}_{23}=S_{N} W_{26}+C_{N} W_{56}$. Therefore, from the discussions above, the set S_{A} is non-empty if and only if (4.15) holds and S_{A} can be expressed by (4.14).

5 The solution of Problem II

It is easy to verify that the solution set S_{E} is nonempty and is a closed convex subset of the Hilbert space $R^{n \times n}$. From the best approximation Theorem [1] that there exists a unique matrix $\hat{A} \in S_{E}$ satisfying (1.1). From Theorem 3, we can obtain the analytical expression of the solution \hat{A} of Problem II.

Theorem 4. Given matrices $X, B \in R^{n \times m}, A_{0} \in S R^{q \times q}$, then the solution \hat{A} of problem II can be expressed as

$$
\hat{A}=\left[P_{1}, P_{2}\right]\left(\begin{array}{cc}
A_{11}^{(0)}+U_{12} \hat{G}_{1} U_{12}^{T} & 0 \tag{5.1}\\
0 & A_{22}^{(0)}+U_{22} \hat{G}_{2} U_{22}^{T}
\end{array}\right)\left[\begin{array}{c}
P_{1}^{T} \\
P_{2}^{T}
\end{array}\right]
$$

where

$$
\begin{gathered}
\hat{G}_{1}=Q_{1}\left(\begin{array}{ccc}
\widehat{W}_{11} & \widehat{W}_{12} S_{1}^{-1} & 0 \\
S_{1}^{-1} \widehat{W}_{12}^{T} & S_{1}^{-1}\left(\widehat{W}_{22}-S_{2} \breve{Z}_{22} S_{2}\right) S_{1}^{-1} & 0 \\
0 & 0 & 0
\end{array}\right) Q_{1}^{T} \\
\hat{G}_{2}=Q_{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & Z_{22} & S_{2}^{-1} \widehat{W}_{23} \\
0 & \widehat{W}_{23}^{T} S_{2}^{-1} & \widehat{W}_{33}
\end{array}\right) Q_{2}^{T} .
\end{gathered}
$$

with

$$
\begin{equation*}
\breve{Z_{22}}=K *\left(S_{2} \widehat{W}_{22} S_{2}\right) \tag{5.2}
\end{equation*}
$$

and

$$
K=\left(\kappa_{i j}\right) \in R^{g \times g}, \quad \kappa_{i j}=\frac{1}{\mu_{i}^{2} \mu_{j}^{2}+\lambda_{i}^{2} \lambda_{j}^{2}}, i, j=1,2, \ldots, g
$$

Proof. : From Theorem 3, we know that the solution set S_{E} of Problem I is given by (4.14). For all $\tilde{A} \in S_{E}$, if follows from (4.14) and (4.13) that

$$
\begin{aligned}
\|\tilde{A}\|^{2}= & \left\|\left[\begin{array}{c}
P_{1}^{T} \\
P_{2}^{T}
\end{array}\right] \tilde{A}\left[P_{1}, P_{2}\right]\right\|^{2}=\left\|\left(\begin{array}{cc}
A_{11}^{(0)}+U_{12} \widetilde{G}_{1} U_{12}^{T} & 0 \\
0 & A_{22}^{(0)}+U_{22} \widetilde{G}_{2} U_{22}^{T}
\end{array}\right)\right\|^{2} \\
= & \left\|A_{11}^{(0)}+U_{1}\left(\begin{array}{cc}
0 & 0 \\
0 & \widetilde{G}_{1}
\end{array}\right) U_{1}^{T}\right\|^{2}+\left\|A_{22}^{(0)}+U_{2}\left(\begin{array}{cc}
0 & 0 \\
0 & \widetilde{G}_{2}
\end{array}\right) U_{2}^{T}\right\|^{2} \\
= & \left\|A_{11}^{(0)}\right\|^{2}+\left\|\widetilde{G}_{1}\right\|^{2}+\left\|A_{22}^{(0)}\right\|^{2}+\left\|\widetilde{G}_{2}\right\|^{2} \\
= & \left\|A_{11}^{(0)}\right\|^{2}+\left\|Q_{1}^{T} \widetilde{G}_{1} Q_{1}\right\|^{2}+\left\|A_{22}^{(0)}\right\|^{2}+\left\|Q_{2}^{T} \widetilde{G}_{2} Q_{2}\right\|^{2} \\
= & \left\|\left(\begin{array}{ccc}
\widehat{W}_{11} & \widehat{W}_{12} S_{1}^{-1} & Y_{13} \\
S_{1}^{-1} \widehat{W}_{12}^{T} & S_{1}^{-1}\left(\widehat{W}_{22}-S_{2} Z_{22} S_{2}\right) S_{1}^{-1} & Y_{23} \\
Y_{13}^{T} & Y_{23}^{T} & Y_{33}
\end{array}\right)\right\|^{2} \\
& +\left\|\left(\begin{array}{ccc}
Z_{11} & Z_{12} & Z_{13} \\
Z_{12}^{T} & Z_{22} & S_{2}^{-1} \widehat{W}_{23} \\
Z_{13}^{T} & \widehat{W}_{23}^{T} S_{2}^{-1} & \widehat{W}_{33}
\end{array}\right)\right\|^{2}+\left\|A_{11}^{(0)}\right\|^{2}+\left\|A_{22}^{(0)}\right\|^{2}
\end{aligned}
$$

Thus, $\|\hat{A}\|^{2}=\min _{\tilde{A} \in S_{E}}\|\tilde{A}\|^{2}$ if and only if

$$
\begin{equation*}
Y_{i 3}=0, \quad Z_{1 i}=0, \quad i=1,2,3 \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(Z_{22}\right)=\left\|S_{1}^{-1}\left(\widehat{W}_{22}-S_{2} Z_{22} S_{2}\right) S_{1}^{-1}\right\|^{2}+\left\|Z_{22}\right\|^{2}=\min , \forall Z_{22} \in S R^{g \times g} \tag{5.4}
\end{equation*}
$$

Let $Z_{22}=\left[z_{i j}\right] \in S R^{g \times g}, \widehat{W}_{22}=\left[w_{i j}\right] \in S R^{g \times g}$. Form (5.4) we have

$$
\begin{aligned}
& f\left(Z_{22}\right)=\sum_{i=j=1}^{n}\left(z_{i i}^{2}+\left(\frac{1}{\mu_{i}} w_{i i} \frac{1}{\mu_{i}}-\frac{\lambda_{i}}{\mu_{i}} z_{i i} \frac{\lambda_{i}}{\mu_{i}}\right)^{2}\right)+ \\
& 2 \sum_{1 \leq i<j \leq n}\left[z_{i j}^{2}+\left(\frac{1}{\mu_{i}} w_{i j} \frac{1}{\mu_{j}}-\frac{\lambda_{i}}{\mu_{i}} z_{i j} \frac{\lambda_{j}}{\mu_{j}}\right)^{2}\right]
\end{aligned}
$$

Clearly, $f\left(Z_{22}\right)$ is a differentiable function of $\frac{1}{2} g(g-1)$ variables $z_{i j}(1 \leq i<j \leq$ $n)$. According to the necessary condition of function which is minimizing at a point, function $f\left(Z_{22}\right)$ attains the smallest value at

$$
\begin{equation*}
z_{i j}=\frac{\lambda_{i} \lambda_{j} w_{i j}}{\mu_{i}^{2} \mu_{j}^{2}+\lambda_{i}^{2} \lambda_{j}^{2}} \tag{5.5}
\end{equation*}
$$

Let $K=\left[\frac{1}{\mu_{i}^{2} \mu_{j}^{2}+\lambda_{i}^{2} \lambda_{j}^{2}}\right] \in R^{g \times g}$, then the solution $\breve{Z_{22}}$ of (5.4) can be expressed by (5.2). Now , after substituting (5.2) and (5.3) into (4.14) we immediately get (5.1).

6 Conclusion

In this paper, we have considered the least squares symmetric P-symmetric solutions to the matrix inverse problem $A X=B$ with a submatrix constraint. First we have introduced some preliminary results, then we have converted this least squares problem to a equivalent least squares problem, i.e., Problem A. trickily. Then by applying the generalized singular value decomposition and the canonical correlation decomposition and basing on the projection theorem, we have obtained an analytical expression for the solutions of corresponding problem, we have also derived the necessary and sufficient conditions under which the corresponding inverse problem is consistent. Moreover, we have given the analytical expression of the unique minimum-norm solution of the solution set S_{E}.

References

[1] J.P.Aubin, Applied Functional Analysis, John Wiley, New York, 1979.
[2] A. Cantoni, P. Butler, Properties of the eigenvectors of persymmetric matrices with applications to communication theory, IEEE Trans. Commun. 24 (1976) 804-809.
[3] X.W. Chang, J.S. Wang, The symmetric solutions of the matrix equations $A X+Y A=C, A X A^{T}+B Y B^{T}=C$, and $\left(A^{T} X A, B^{T} X B\right)=(C, D)$ Linear Algebra Appl. 179 (1993) 171-189.
[4] P. Deift, T. Nanda, On the determination of a tridiagonal matrix from its spectrum and a submatrix, Linear Algebra Appl. 60 (1984) 43-55.
[5] H. Dai, Least-squares solutions of inverse problems for symmetric orthogonal symmetric matrices. Math. Numer. Sin. 25 (2003) 59-66, (in Chinese).
[6] L.S. Gong, X.Y. Hu, L. Zhang, The expansion problem of anti-symmetric matrix under a linear constraint and the optimal approximation, J. Comput. Appl. Math. 197 (2006) 44-52.
[7] O. Hald, On discrete and numerical Sturm-Liouville problems, Ph.D. Dissertation, New York University, New York, 1972.
[8] K.T. Joseph, Inverse eigenvalue problem in structural design, AIAA J. 10 (1992) 2890-2896.
[9] N. Li, K.-W.E. Chu, Designing the Hopfield neural network via pole assignment, Int. J. Syst. Sci. 25 (1994) 669-681.
[10] N. Li, A matrix inverse eigenvalue problem and its application, Linear Algebra Appl. 266 (1997) 143-152.
[11] S.J. Li, Some inverse problem of matrices. Journal of China of Science and Technology. 14 (1984) 195-204.
[12] A.P. Liao, Y. Lei, Least-squares solutions of matrix inverse problem for bisymmetric matrices with a submatrix constraint, Numer Linear Algebra Appl. 14 (2007) 425-444.
[13] Y. Lei, A.P. Liao, L. Zhang, Minimization problem for symmetric orthogonal anti-symmetric matrices. J. Comput. Math. 25 (2007) 211-220.
[14] W.F. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl. 389 (2004) 23-31.
[15] W.F. Trench, Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 380 (2004) 199-211.
[16] Z.Y. Peng, X.Y. Hu, Constructing Jacobi matrix with prescribed ordered defective eigenpairs and a principal submatrix, J. Comput. Appl. Math. 175 (2005) 321-333.
[17] Z.Y. Peng, X.Y. Hu, L. Zhang, The inverse problem of bisymmetric matrices with a submatrix constraint, Numer. Linear Algebra Appl. 11 (2004) 59-73.
[18] Y.X. Peng, X.Y. Hu, L. Zhang, The symmetric and orth-symmetric solutions of linear matrix equation $A X^{T} X=B$ and its optimal approximation, Numer. Math. J. Chinese Uni. 25 (2003), 372-377(in chinese).
[19] J.G. Sun, Two kinds of inverse eigenvalue problems for real symmetric matrices, Math. Numer. Sin. 10: 3 (1988) 282-290.
[20] L . Wu , The re-positive definite solutions to the matrix inverse problem AX = B, Linear Algebra Appl. 174 (1992) 145-151.
[21] R.S. Wang, Function Analysis and Optimization Theory, Beijing University of Aeronautics and Astronautics Press, Beijing, 2003 (in Chinese).
[22] C. Xin, Theoretical Method and Its Applications of Designing of Structural Dynamics in Machine, The Machamical Industry (Chinese) Press, 1997, pp. 165202.
[23] G.P. Xu, M.S. Wei, D.S. Zheng, On solution of matrix equation $A X B+$ CYD $=$ F, Linear Algebra Appl. 279 (1998) 93-193.
[24] Y.X. Yuan, H. Dai, The nearness problems for symmetric matrix with a submatrix constraint, J. Comput. Appl. Math. 213 (2008) 224-231.
[25] F.Z. Zhou, X.Y. Hu, L. Zhang, The solvability conditions for the inverse problems of symmetric-ortho-symmetric matrices, Appl. Math. Comput. 154 (2004) 153-166.
[26] F.Z. Zhou, X.Y. Hu, L.Zhang, The inverse eigenvalue problems of symmetric-ortho-symmetric matrices on the linear mainfold, Math. Numer. Sin. 25 (2003) 14-22, (in Chinese).
J.-f. Li (Corresponding Author):

School of Mathematics and Computational Science,
Guilin University of Electronic Technology, Yaoshan Campus
Guilin 541004, Peoples Republic of China
E-Mail: lixiaogui1290@163.com
X.-y. Hu, L. Zhang : College of Mathematics and Econometrics, Hunan University,
Changsha, Hunan 410082, Peoples Republic of China

[^0]: *Research supported by National Natural Science Foundation of China (10571047 and 10861005), and Provincial Natural Science Foundation of Guangxi (0991238).

 Received by the editors November 2008 - In revised form in May 2009.
 Communicated by A. Bultheel.
 2000 Mathematics Subject Classification : 15A57; 15A24.
 Key words and phrases : Inverse problem; symmetric P-symmetric matrix; least squares solutions; generalized singular value decomposition; canonical correlation decomposition.

