Uncountably Generated Algebras of Everywhere Surjective Functions

Richard M. Aron^{*} José A. Conejero[†] Alfredo Peris[‡] Juan B. Seoane-Sepúlveda[§]

Abstract

We show that there exists an uncountably generated algebra every nonzero element of which is an everywhere surjective function on \mathbb{C} , that is, a function $f : \mathbb{C} \to \mathbb{C}$ such that, for every non void open set $U \subset \mathbb{C}$, $f(U) = \mathbb{C}$.

1 Preliminaries and Main Result

This note contributes to the search for what are often large algebraic structures (infinite dimensional spaces, infinitely generated algebras, among others) of functions on \mathbb{R} or \mathbb{C} having certain *pathological* properties. The search for large algebraic structures of functions with pathological properties has lately attracted the attention of many authors.

Let us recall that a set *M* of functions satisfying some special property is called *lineable* if $M \cup \{0\}$ contains an infinite dimensional vector space and *spaceable* if $M \cup \{0\}$ contains a closed infinite dimensional vector space. More specifically,

Received by the editors September 2008.

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 571–575

^{*}Partially supported by MEC and FEDER, Project MTM2005-08210.

[†]Partially supported by MEC and FEDER, Project MTM2007-64222, GVA, Project GVA/2010/091, and UPV, Project PAID-06-09-2932.

[‡]Partially supported by MEC and FEDER, Project MTM2007-64222 and by Generalitat Velenciana, Project PROMETEO/2008/101.

[§]Partially supported by MEC and FEDER, Project MTM2009-07848.

Communicated by F. Bastin.

²⁰⁰⁰ Mathematics Subject Classification : Primary 46E25; Secondary 15A03.

Key words and phrases : Lineability, spaceability, algebrability, everywhere surjective functions.

we will say that *M* is μ -*lineable* if $M \cup \{0\}$ contains a vector space of dimension μ , where μ is a cardinal number. Similarly, we can also define the notion of *algebra*-*bility* [5]. Here we will consider a slightly simplified definition:

Definition 1.1. Let \mathcal{L} be an algebra. A set $A \subset \mathcal{L}$ is said to be β -algebrable if there exists an algebra \mathcal{B} so that $\mathcal{B} \subset A \cup \{0\}$ and $card(Z) = \beta$, where β is a cardinal number and Zis a minimal system of generators of \mathcal{B} . Here, by $Z = \{z_{\alpha} : \alpha \in \Lambda\}$ is a minimal system of generators of \mathcal{B} , we mean that $\mathcal{B} = \mathcal{A}(Z)$ is the algebra generated by Z, and for every $\alpha_0 \in \Lambda$, $z_{\alpha_0} \notin \mathcal{A}(Z \setminus \{z_{\alpha_0}\})$. We also say that A is algebrable if A is β -algebrable for β infinite.

Remark 1.2. Observe that, if Z is a minimal infinite system of generators of \mathcal{B} , then $\mathcal{A}(Z') \neq \mathcal{B}$ for any $Z' \subset \mathcal{B}$ such that card(Z') < card(Z). The result is not true for finite systems of generators: Take $X = \mathbb{C}^2$ with coordinate-wise multiplication. X is a Banach algebra with unit (1,1). The set $\{(1,0), (0,1)\}$ is a minimal system of generators of X. However, X is also single generated by u = (1,i): Consider $P : X \to X$, $P(s,t) = (s^2, t^2)$. Note that P(u) = (1, -1) and so we get

$$\frac{1}{1+i}(u - P(u)) = (0,1) \in X.$$

Similarly, we also have $(1,0) \in X$ *.*

This terminology of *lineability* and *spaceability* was first introduced by Enflo and Gurariy in [8] (see also [3]) while the term *algebrability* did not appear until recently in [5]. Lebesgue [9, 15] was the first to give an example of a function f: $\mathbb{R} \to \mathbb{R}$ such that for every non-trivial interval *I*, $f(I) = \mathbb{R}$. Let S denote the set of *everywhere surjective functions on* \mathbb{C} *,* that is, functions $f : \mathbb{C} \to \mathbb{C}$ with the property that for every open set $U \subset \mathbb{C}$, $f(U) = \mathbb{C}$. Such functions can be found in a similar way as the example of Lebesgue in \mathbb{R} . It was shown in [3] that S is 2^{*c*}-lineable, where *c* denotes the continuum. Usually, obtaining algebrability is more complex than obtaining lineability. Several results in this direction have been achieved lately. In [10] the authors proved the *c*-algebrability of the set of C^{∞} functions with constant Taylor expansion on \mathbb{R} . Several different directions in this topic have also been considered by Bayart and Quarta in [7]. They proved, among other things, that the set of continuous nowhere differentiable functions is algebrable. Besides, in [12] Bandyopadhyay and Godefroy studied the algebraic structure of the set of norm attaining functionals on a Banach space. The interested reader can refer to [1, 2, 4, 5, 6, 11, 13, 14] for further results in this topic. Our present contribution to this area is an improvement of a result appearing in [5], where the authors showed that there exists an infinitely (and countably) generated algebra every non-zero element of which is an everywhere surjective function on C. Here, we take that result to a next step:

Theorem 1.3. S contains an uncountably generated algebra A. That is, there is an algebra $A \subset S \cup \{0\}$ such that the subalgebra generated by any countable set $A \subset A$ is strictly contained in A. In other words, S is *c*-algebrable.

Proof. Let $(Q_j)_{i=1}^{\infty}$ be a countable basis of open sets of \mathbb{C} , of the form

$$Q_j := \{ z = x + iy : a_j < x < b_j \text{ and } c_j < y < d_j \},\$$

for some $a_j, b_j, c_j, d_j \in \mathbb{R}$, for every $j \in \mathbb{N}$. Inductively, we select copies of the Cantor set $C_j \subset]a_j, b_j[$, such that $C_{j+1} \cap (\cup_{k=1}^j C_k) = \emptyset$, $j \in \mathbb{N}$. Then, for every $j \in \mathbb{N}$ we can choose $h_j :]c_j, d_j[\to \mathbb{C}$ and $\phi_j : \mathcal{C} \to C_j$ bijections, where $\mathcal{C} \subset [0, 1]$ is the ternary Cantor set. For each $\alpha \in \mathcal{C}$, let us define $f_\alpha : \mathbb{C} \to \mathbb{C}$ by

$$f_{\alpha}(z) := \begin{cases} h_j(\Im(z)) & \text{if } \Re(z) = \phi_j(\alpha) \text{ and } \Im(z) \in]c_j, d_j[\text{ for some } j, \\ 1 & \text{ otherwise,} \end{cases}$$

where $\Re(z)$ and $\Im(z)$ denote, respectively, the real part and the imaginary part of *z*. Clearly, all these functions are everywhere surjective. We fix $\alpha_0 \in \mathbb{C}$ and consider the algebra \mathcal{A} generated by the family $\{f_{\alpha_0}f_{\alpha} : \alpha_0 \neq \alpha \in \mathcal{C}\}$. If $f \in$ $\mathcal{A} \setminus \{0\}$, we write $f = p(f_{\alpha_0}f_{\alpha_1}, \ldots, f_{\alpha_0}f_{\alpha_n})$ for some $n \in \mathbb{N}$ and $p \in \mathbb{C}[z_1, \ldots, z_n]$ with p(0) = 0. In order to prove that $f \in S$, let us define $q(z) := p(z, \ldots, z)$. Thus two cases can occur:

Case 1: q(z) is non-constant.

In this case, given any $z \in \mathbb{C}$, we find $\tilde{z} \in \mathbb{C}$ so that $q(\tilde{z}) = z$. For any nonempty and open set $U \subset \mathbb{C}$, we select $j \in \mathbb{N}$ with $Q_j \subset U$. If we fix $t \in]c_j, d_j[$ satisfying $h_j(t) = \tilde{z}$, then for $z' := \phi_j(\alpha_0) + it \in U$, we have $f_{\alpha_0}(z') = \tilde{z}$ and $f_{\alpha}(z') = 1$ if $\alpha \neq \alpha_0$. Therefore

$$f(z') = p(f_{\alpha_0}f_{\alpha_1},\ldots,f_{\alpha_0}f_{\alpha_n})(z') = p(\tilde{z},\ldots,\tilde{z}) = q(\tilde{z}) = z.$$

Case 2: q(z) is constant.

This necessarily implies q = 0. For each k = 1, ..., n, we can decompose p as $z_k p_k + q_k$, where $p_k \in \mathbb{C}[z_1, ..., z_n]$, and q_k is a (n - 1)-variable polynomial depending on z_j , $j \neq k$. If we fix all variables in p and p_k as 1, except the k-th variable, equal to z, we obtain polynomials $r_k(z)$ and $s_k(z)$, respectively. Easily, $r_k(z)$ is constant if and only if $s_k(z) = 0$. If for some k the corresponding $r_k(z)$ is non-constant, we proceed as in case 1, with $r_k(z)$ and α_k , to get that, given arbitrary $z \in \mathbb{C}$ and $U \subset \mathbb{C}$ open, there are $\tilde{z} \in \mathbb{C}$ and $z' \in U$ with $r_k(\tilde{z}) = z$ and $f_{\alpha_k}(z') = \tilde{z}$. Therefore $f(z') = r_k(\tilde{z}) = z$ and $f \in S$. If this is not the case, then $s_k(z) = 0$, k = 1, ..., n. We will show that this yields a contradiction. Indeed, given any $z \in \mathbb{C}$, we either have $f_{\alpha_k}(z) = 1$, k = 1, ..., n, which implies $f(z) = q(f_{\alpha_0}(z)) = 0$, or there is some j so that $z' := f_{\alpha_j}(z) \neq 1$. Thus $f_{\alpha_k}(z) = 1$ for $k \neq j$ and

$$f(z) = r_j(z') = z's_j(z') + q_j(1, \dots, 1) = q_j(1, \dots, 1) = s_j(1) + q_j(1, \dots, 1) = r_j(1) = q(1) = 0.$$

That is, f = 0, which is a contradiction.

Therefore we have shown that $\mathcal{A} \subset \mathcal{S} \cup \{0\}$. To see that \mathcal{A} is uncountably generated, we just have to show that $f_{\alpha_0}f_{\alpha} \neq p(f_{\alpha_0}f_{\alpha_1}, \ldots, f_{\alpha_0}f_{\alpha_n})$ for any $n \in \mathbb{N}$, $p \in \mathbb{C}[z_1, \ldots, z_n]$ if $\alpha \neq \alpha_k, k = 0, \ldots, n$. Proceeding by contradiction, let $z \in \mathbb{C}$ be such that $f_{\alpha}(z) \notin \{1, q(1)\}$. Then $\Re(z) = \phi_j(\alpha)$ for some $j \in \mathbb{N}$. This implies $\Re(z) \neq \phi_j(\alpha_i), i = 0, \ldots, n, j \in \mathbb{N}$, which gives $f_{\alpha_i}(z) = 1, i = 0, \ldots, n$. That is, $f_{\alpha}(z) \neq p(1, \ldots, 1) = p(f_{\alpha_0}f_{\alpha_1}, \ldots, f_{\alpha_0}f_{\alpha_n})(z)$.

References

- R. M. Aron, J. A. Conejero, A. Peris, and J. B. Seoane-Sepúlveda. Powers of hypercyclic functions for some classical hypercyclic operators. *Integr. Equat. Oper. Theory*, 58(4):591–596, 2007.
- [2] R. M. Aron, D. García, and M. Maestre. Linearity in non-linear problems. *RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.*, 95(1):7–12, 2001.
- [3] R. M. Aron, V. I. Gurariy, and J. B. Seoane-Sepúlveda. Lineability and spaceability of sets of functions on R. Proc. Amer. Math. Soc., 133(3):795–803 (electronic), 2005.
- [4] R. M. Aron, D. Pérez-García, and J. B. Seoane-Sepúlveda. Algebrability of the set of non-convergent Fourier series. *Studia Math.*, 175(1):83–90, 2006.
- [5] R. M. Aron and J. B. Seoane-Sepúlveda. Algebrability of the set of everywhere surjective functions on C. *Bull. Belg. Math. Soc. Simon Stevin*, 14:25-31, 2007.
- [6] F. Bayart. Linearity of sets of strange functions. *Michigan Math. J.* 53:291–303, 2007.
- [7] F. Bayart and L. Quarta. Algebras in sets of queer functions. *Isr. J. Math.* 158:285–296, 2007.
- [8] P. Enflo and V. I. Gurariy. On lineability and spaceability of sets in function spaces. Unpublished notes.
- [9] B. R. Gelbaum and J. M. H. Olmsted. *Counterexamples in analysis*. Dover Publications Inc., Mineola, NY, 2003. Corrected reprint of the second (1965) edition.
- [10] F. J. García-Pacheco, N. Palmberg, and J. B. Seoane-Sepúlveda. Lineability and algebrability of pathological phenomena in analysis. *J. Math. Anal. Appl.*, 326(2):929–939, 2007.
- [11] F. J. García-Pacheco, M. Martín, and J. B. Seoane-Sepúlveda. Lineability, spaceability, and algebrability of certain subsets of function spaces. *Taiwanese J. Math.*, 13 (2009), no 4, 1257–1369.
- [12] P. Bandyopadhyay and G. Godefroy. Linear structures in the set of normattaining functionals on a Banach space. J. Convex Anal., 13(3-4): 489–497, 2006.

- [13] V. I. Gurariy and L. Quarta. On lineability of sets of continuous functions. *J. Math. Anal. Appl.*, 294(1):62–72, 2004.
- [14] S. Hencl. Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions. *Proc. Amer. Math. Soc.*, 128(12):3505–3511, 2000.
- [15] H. Lebesgue. Leçons sur l'intégration et la recherche de fonctions primitives, volume 136 of 8°. Gauthier-Villars. VII, Paris, 1904.

Department of Mathematical Sciences, Kent State University, Kent, Ohio, 44242, USA. Email: aron@math.kent.edu

IUMPA, Departamento de matemática Aplicada, Universidad Politécnica de Valencia, E-46022 Valencia, Spain. Emails: aconejero@mat.upv.es and aperis@mat.upv.es

Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de las Ciencias 3, E-28040 Madrid, Spain. Email: jseoane@mat.ucm.es