Uncountably Generated Algebras of Everywhere Surjective Functions

Richard M. Aron ${ }^{*}$ José A. Conejero ${ }^{\dagger}$ Alfredo Peris ${ }^{\ddagger}$ Juan B. Seoane-Sepúlveda ${ }^{\S}$

Abstract

We show that there exists an uncountably generated algebra every nonzero element of which is an everywhere surjective function on C , that is, a function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that, for every non void open set $U \subset \mathbb{C}, f(U)=\mathbb{C}$.

1 Preliminaries and Main Result

This note contributes to the search for what are often large algebraic structures (infinite dimensional spaces, infinitely generated algebras, among others) of functions on \mathbb{R} or \mathbb{C} having certain pathological properties. The search for large algebraic structures of functions with pathological properties has lately attracted the attention of many authors.

Let us recall that a set M of functions satisfying some special property is called lineable if $M \cup\{0\}$ contains an infinite dimensional vector space and spaceable if $M \cup\{0\}$ contains a closed infinite dimensional vector space. More specifically,

[^0]we will say that M is μ-lineable if $M \cup\{0\}$ contains a vector space of dimension μ, where μ is a cardinal number. Similarly, we can also define the notion of algebrability [5]. Here we will consider a slightly simplified definition:

Definition 1.1. Let \mathcal{L} be an algebra. A set $A \subset \mathcal{L}$ is said to be β-algebrable if there exists an algebra \mathcal{B} so that $\mathcal{B} \subset A \cup\{0\}$ and $\operatorname{card}(Z)=\beta$, where β is a cardinal number and Z is a minimal system of generators of \mathcal{B}. Here, by $Z=\left\{z_{\alpha}: \alpha \in \Lambda\right\}$ is a minimal system of generators of \mathcal{B}, we mean that $\mathcal{B}=\mathcal{A}(Z)$ is the algebra generated by Z, and for every $\alpha_{0} \in \Lambda, z_{\alpha_{0}} \notin \mathcal{A}\left(Z \backslash\left\{z_{\alpha_{0}}\right\}\right)$. We also say that A is algebrable if A is β-algebrable for β infinite.

Remark 1.2. Observe that, if Z is a minimal infinite system of generators of \mathcal{B}, then $\mathcal{A}\left(Z^{\prime}\right) \neq \mathcal{B}$ for any $Z^{\prime} \subset \mathcal{B}$ such that card $\left(Z^{\prime}\right)<\operatorname{card}(Z)$. The result is not true for finite systems of generators: Take $X=\mathbb{C}^{2}$ with coordinate-wise multiplication. X is a Banach algebra with unit $(1,1)$. The set $\{(1,0),(0,1)\}$ is a minimal system of generators of X. However, X is also single generated by $u=(1, i)$: Consider $P: X \rightarrow X, P(s, t)=$ $\left(s^{2}, t^{2}\right)$. Note that $P(u)=(1,-1)$ and so we get

$$
\frac{1}{1+i}(u-P(u))=(0,1) \in X .
$$

Similarly, we also have $(1,0) \in X$.
This terminology of lineability and spaceability was first introduced by Enflo and Gurariy in [8] (see also [3]) while the term algebrability did not appear until recently in [5]. Lebesgue [9,15] was the first to give an example of a function f : $\mathbb{R} \rightarrow \mathbb{R}$ such that for every non-trivial interval $I, f(I)=\mathbb{R}$. Let \mathcal{S} denote the set of everywhere surjective functions on \mathbb{C}, that is, functions $f: \mathbb{C} \rightarrow \mathbb{C}$ with the property that for every open set $U \subset \mathbb{C}, f(U)=\mathbb{C}$. Such functions can be found in a similar way as the example of Lebesgue in \mathbb{R}. It was shown in [3] that \mathcal{S} is 2^{c}-lineable, where c denotes the continuum. Usually, obtaining algebrability is more complex than obtaining lineability. Several results in this direction have been achieved lately. In [10] the authors proved the c-algebrability of the set of C^{∞} functions with constant Taylor expansion on \mathbb{R}. Several different directions in this topic have also been considered by Bayart and Quarta in [7]. They proved, among other things, that the set of continuous nowhere differentiable functions is algebrable. Besides, in [12] Bandyopadhyay and Godefroy studied the algebraic structure of the set of norm attaining functionals on a Banach space. The interested reader can refer to $[1,2,4,5,6,11,13,14]$ for further results in this topic. Our present contribution to this area is an improvement of a result appearing in [5], where the authors showed that there exists an infinitely (and countably) generated algebra every non-zero element of which is an everywhere surjective function on C. Here, we take that result to a next step:

Theorem 1.3. \mathcal{S} contains an uncountably generated algebra \mathcal{A}. That is, there is an algebra $\mathcal{A} \subset \mathcal{S} \cup\{0\}$ such that the subalgebra generated by any countable set $A \subset \mathcal{A}$ is strictly contained in \mathcal{A}. In other words, \mathcal{S} is c-algebrable.

Proof. Let $\left(Q_{j}\right)_{j=1}^{\infty}$ be a countable basis of open sets of \mathbb{C}, of the form

$$
Q_{j}:=\left\{z=x+i y: a_{j}<x<b_{j} \text { and } c_{j}<y<d_{j}\right\}
$$

for some $a_{j}, b_{j}, c_{j}, d_{j} \in \mathbb{R}$, for every $j \in \mathbb{N}$. Inductively, we select copies of the Cantor set $\left.C_{j} \subset\right] a_{j}, b_{j}\left[\right.$, such that $C_{j+1} \cap\left(\cup_{k=1}^{j} C_{k}\right)=\varnothing, j \in \mathbb{N}$. Then, for every $j \in \mathbb{N}$ we can choose $\left.h_{j}:\right] c_{j}, d_{j}\left[\rightarrow \mathbb{C}\right.$ and $\phi_{j}: \mathcal{C} \rightarrow C_{j}$ bijections, where $\mathcal{C} \subset[0,1]$ is the ternary Cantor set. For each $\alpha \in \mathcal{C}$, let us define $f_{\alpha}: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
f_{\alpha}(z):=\left\{\begin{array}{cl}
h_{j}(\Im(z)) & \text { if } \left.\Re(z)=\phi_{j}(\alpha) \text { and } \Im(z) \in\right] c_{j}, d_{j}[\text { for some } j, \\
1 & \text { otherwise },
\end{array}\right.
$$

where $\Re(z)$ and $\Im(z)$ denote, respectively, the real part and the imaginary part of z. Clearly, all these functions are everywhere surjective. We fix $\alpha_{0} \in \mathbb{C}$ and consider the algebra \mathcal{A} generated by the family $\left\{f_{\alpha_{0}} f_{\alpha}: \alpha_{0} \neq \alpha \in \mathcal{C}\right\}$. If $f \in$ $\mathcal{A} \backslash\{0\}$, we write $f=p\left(f_{\alpha_{0}} f_{\alpha_{1}}, \ldots, f_{\alpha_{0}} f_{\alpha_{n}}\right)$ for some $n \in \mathbb{N}$ and $p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ with $p(0)=0$. In order to prove that $f \in \mathcal{S}$, let us define $q(z):=p(z, \ldots, z)$. Thus two cases can occur:

Case 1: $q(z)$ is non-constant.
In this case, given any $z \in \mathbb{C}$, we find $\tilde{z} \in \mathbb{C}$ so that $q(\tilde{z})=z$. For any nonempty and open set $U \subset \mathbb{C}$, we select $j \in \mathbb{N}$ with $Q_{j} \subset U$. If we fix $\left.t \in\right] c_{j}, d_{j}[$ satisfying $h_{j}(t)=\tilde{z}$, then for $z^{\prime}:=\phi_{j}\left(\alpha_{0}\right)+i t \in U$, we have $f_{\alpha_{0}}\left(z^{\prime}\right)=\tilde{z}$ and $f_{\alpha}\left(z^{\prime}\right)=1$ if $\alpha \neq \alpha_{0}$. Therefore

$$
f\left(z^{\prime}\right)=p\left(f_{\alpha_{0}} f_{\alpha_{1}}, \ldots, f_{\alpha_{0}} f_{\alpha_{n}}\right)\left(z^{\prime}\right)=p(\tilde{z}, \ldots, \tilde{z})=q(\tilde{z})=z .
$$

Case 2: $q(z)$ is constant.
This necessarily implies $q=0$. For each $k=1, \ldots, n$, we can decompose p as $z_{k} p_{k}+q_{k}$, where $p_{k} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$, and q_{k} is a $(n-1)$-variable polynomial depending on $z_{j}, j \neq k$. If we fix all variables in p and p_{k} as 1 , except the k-th variable, equal to z, we obtain polynomials $r_{k}(z)$ and $s_{k}(z)$, respectively. Easily, $r_{k}(z)$ is constant if and only if $s_{k}(z)=0$. If for some k the corresponding $r_{k}(z)$ is non-constant, we proceed as in case 1 , with $r_{k}(z)$ and α_{k}, to get that, given arbitrary $z \in \mathbb{C}$ and $U \subset \mathbb{C}$ open, there are $\tilde{z} \in \mathbb{C}$ and $z^{\prime} \in U$ with $r_{k}(\tilde{z})=z$ and $f_{\alpha_{k}}\left(z^{\prime}\right)=\tilde{z}$. Therefore $f\left(z^{\prime}\right)=r_{k}(\tilde{z})=z$ and $f \in \mathcal{S}$. If this is not the case, then $s_{k}(z)=0, k=1, \ldots, n$. We will show that this yields a contradiction. Indeed, given any $z \in \mathbb{C}$, we either have $f_{\alpha_{k}}(z)=1, k=1, \ldots, n$, which implies $f(z)=q\left(f_{\alpha_{0}}(z)\right)=0$, or there is some j so that $z^{\prime}:=f_{\alpha_{j}}(z) \neq 1$. Thus $f_{\alpha_{k}}(z)=1$ for $k \neq j$ and

$$
\begin{aligned}
f(z) & =r_{j}\left(z^{\prime}\right)=z^{\prime} s_{j}\left(z^{\prime}\right)+q_{j}(1, \ldots, 1)=q_{j}(1, \ldots, 1) \\
& =s_{j}(1)+q_{j}(1, \ldots, 1)=r_{j}(1)=q(1)=0 .
\end{aligned}
$$

That is, $f=0$, which is a contradiction.

Therefore we have shown that $\mathcal{A} \subset \mathcal{S} \cup\{0\}$. To see that \mathcal{A} is uncountably generated, we just have to show that $f_{\alpha_{0}} f_{\alpha} \neq p\left(f_{\alpha_{0}} f_{\alpha_{1}}, \ldots, f_{\alpha_{0}} f_{\alpha_{n}}\right)$ for any $n \in$ $\mathbb{N}, p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ if $\alpha \neq \alpha_{k}, k=0, \ldots, n$. Proceeding by contradiction, let $z \in \mathbb{C}$ be such that $f_{\alpha}(z) \notin\{1, q(1)\}$. Then $\Re(z)=\phi_{j}(\alpha)$ for some $j \in \mathbb{N}$. This implies $\Re(z) \neq \phi_{j}\left(\alpha_{i}\right), i=0, \ldots, n, j \in \mathbb{N}$, which gives $f_{\alpha_{i}}(z)=1, i=0, \ldots, n$. That is, $f_{\alpha}(z) \neq p(1, \ldots, 1)=p\left(f_{\alpha_{0}} f_{\alpha_{1}}, \ldots, f_{\alpha_{0}} f_{\alpha_{n}}\right)(z)$.

References

[1] R. M. Aron, J. A. Conejero, A. Peris, and J. B. Seoane-Sepúlveda. Powers of hypercyclic functions for some classical hypercyclic operators. Integr. Equat. Oper. Theory, 58(4):591-596, 2007.
[2] R. M. Aron, D. García, and M. Maestre. Linearity in non-linear problems. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 95(1):7-12, 2001.
[3] R. M. Aron, V. I. Gurariy, and J. B. Seoane-Sepúlveda. Lineability and spaceability of sets of functions on \mathbb{R}. Proc. Amer. Math. Soc., 133(3):795-803 (electronic), 2005.
[4] R. M. Aron, D. Pérez-García, and J. B. Seoane-Sepúlveda. Algebrability of the set of non-convergent Fourier series. Studia Math., 175(1):83-90, 2006.
[5] R. M. Aron and J. B. Seoane-Sepúlveda. Algebrability of the set of everywhere surjective functions on C. Bull. Belg. Math. Soc. Simon Stevin, 14:25-31, 2007.
[6] F. Bayart. Linearity of sets of strange functions. Michigan Math. J. 53:291-303, 2007.
[7] F. Bayart and L. Quarta. Algebras in sets of queer functions. Isr. J. Math. 158:285-296, 2007.
[8] P. Enflo and V. I. Gurariy. On lineability and spaceability of sets in function spaces. Unpublished notes.
[9] B. R. Gelbaum and J. M. H. Olmsted. Counterexamples in analysis. Dover Publications Inc., Mineola, NY, 2003. Corrected reprint of the second (1965) edition.
[10] F. J. García-Pacheco, N. Palmberg, and J. B. Seoane-Sepúlveda. Lineability and algebrability of pathological phenomena in analysis. J. Math. Anal. Appl., 326(2):929-939, 2007.
[11] F. J. García-Pacheco, M. Martín, and J. B. Seoane-Sepúlveda. Lineability, spaceability, and algebrability of certain subsets of function spaces. Taiwanese J. Math., 13 (2009), no 4, 1257-1369.
[12] P. Bandyopadhyay and G. Godefroy. Linear structures in the set of normattaining functionals on a Banach space. J. Convex Anal., 13(3-4): 489-497, 2006.
[13] V. I. Gurariy and L. Quarta. On lineability of sets of continuous functions. J. Math. Anal. Appl., 294(1):62-72, 2004.
[14] S. Hencl. Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions. Proc. Amer. Math. Soc., 128(12):3505-3511, 2000.
[15] H. Lebesgue. Leçons sur l'intégration et la recherche de fonctions primitives, volume 136 of 8°. Gauthier-Villars. VII, Paris, 1904.

Department of Mathematical Sciences, Kent State University, Kent, Ohio, 44242, USA.
Email: aron@math.kent.edu

IUMPA,
Departamento de matemática Aplicada, Universidad Politécnica de Valencia,
E-46022 Valencia, Spain.
Emails: aconejero@mat.upv.es and aperis@mat.upv.es

Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de las Ciencias 3, E-28040 Madrid, Spain.
Email: jseoane@mat.ucm.es

[^0]: *Partially supported by MEC and FEDER, Project MTM2005-08210.
 ${ }^{\dagger}$ Partially supported by MEC and FEDER, Project MTM2007-64222, GVA, Project GVA/2010/091, and UPV, Project PAID-06-09-2932.
 \ddagger Partially supported by MEC and FEDER, Project MTM2007-64222 and by Generalitat Velenciana, Project PROMETEO/2008/101.
 §Partially supported by MEC and FEDER, Project MTM2009-07848.
 Received by the editors September 2008.
 Communicated by F. Bastin.
 2000 Mathematics Subject Classification : Primary 46E25; Secondary 15A03.
 Key words and phrases : Lineability, spaceability, algebrability, everywhere surjective functions.

