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Abstract

This paper is devoted to present a numerical methods for a model of
incompressible and miscible flow in porous media. We analyze a numeri-
cal scheme combining a mixed finite element method (MFE) and finite vol-
ume scheme (FV) for solving a coupled system includes an elliptic equation
(pressure and velocity) and a linear convection-diffusion equation (concen-
tration). The (FV) scheme considered is ”vertex centered” type semi implicit.
We show that this scheme is L∞, BV stable under a CFL condition and sat-
isfies a discrete maximum principle. We prove also the convergence of the
approximate solution obtained by the combined scheme (MFE)-(FV) to the
solution of the coupled system. Finally the numerical results are presented
for two spaces dimensions problem in a homogenous isotropic medium.

1 Introduction

Fluid flow and contaminant transport in porous media play an important place
in the oil recovery and in the environmental problems. It is expensive to monitor
the pollutant through a physical observation. Thus the numerical simulations are
an indispensable tools for studying such problems.
The fluid flow and solute transport through porous media are modelled by a
coupled system of partial differential equations. The model under consideration
includes the Darcy flow equation coupled to a convection-diffusion equation.
The Darcy flow equation is an elliptic equation coupling a conservation equation
with Darcy’s law which described saturated flow. The several numerical methods
have been proposed for the discretization of this equation. The most popular are
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the mixed finite element methods (MFE). The reasons for their popularity are that
they provide the local mass conservation property and they produce a accurate
approximation of the two variables pressure and velocity (see [13], [17], [39], [11]
and the references therein).
The (MFE) method does not have an explicit flux expression, which is a favorable
property when extensions to multiphase flow. For this reason many methods
have been developed. The multipoint flux approximation (MPFA) method is a
control volume method which provides a local explicit flux and it is locally mass
conservative (see [1], [2], [16], [42] and the references therein).
The equivalence between the (MPFA) method and the mixed finite element
method for quadrilateral grids was established in [31] using a specific numeri-
cal quadrature.
For a nonlinear parabolic equation, two versions (a semi discrete and full discrete
schemes) of a mixed finite element method have been analyzed and developed
for the degenerate and non degenerate cases in [10] with a superconvergence re-
sults for the nondegenerate case.
The extension of the Darcy equation in unsaturated flow gives Richards’ equa-
tion, a nonlinear degenerate parabolic equation (see [25]). Several papers are
considering numerical schemes for Richards’ equation. A finite element and
finite difference schemes are developed in [9] for a root-soil systems. An Euler
implicit-mixed finite element scheme is analyzed in [36, 37] and a multipoint flux
approximation method (MPFA) is considered in [30].
For the convection-diffusion equation, the finite volume (FV) methods are well
suited for the discretization of this type equation that result of conservation laws.
The advantages of these methods are locally conservative, can be applicable on
arbitrary geometries (structured or unstructured meshes) and produce the solu-
tions satisfying the maximum principle which guarantees that the mathematical
model produces physically meaningful solutions. There is an extensive literature
on this subject (see for example [7], [29], [33], [32], [19] and the references therein).
A large variety of methods have been proposed for the discretization of the con-
vection-diffusion equations. We mention [8] for a combined finite volume-finite
element method, [22] for a combined finite volume-mixed hybrid finite elements
methods and [26, 40] for a discontinuous Galerkin method. Moreover, an Euler
implicit-mixed finite element scheme is analyzed for a sub-surface fluid flow in
[38].
The (FV) methods for elliptic, parabolic and hyperbolic problems have been stud-
ied and analyzed in [19].
A three families of vertex centered finite volumes schemes (explicit, implicit and
semi-implicit) for immiscible two-phase flow were developed and analyzed in
[3, 4, 5]. These authors have showed that the approximation obtained by the
semi-implicit finite volume scheme is better.
The aim of this paper is to investigate a numerical scheme for a coupled system
which includes an elliptic equation (pressure-velocity) and a linear convection-
diffusion equation (concentration) for an incompressible miscible flow in porous
media. A mixed finite element (MFE) method is employed to approximate the
flow equation combined with a finite volume (FV) method for the transport equa-
tion on unstructured grids. The discretization scheme used in this study is based
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on a vertex-centered finite volume.
The paper is organized as follows. In section 2 we define the mathematical model
describing the flow and the transport in porous media. In section 3 we give some
notations for the time and space discretizations. In section 4 we present the mixed
finite element method and the finite volume scheme. The finite volume scheme
considered is ”vertex centered” type semi-implicit: explicit for the convection and
implicit for the diffusion. In section 5 we prove that the (FV) scheme is L∞, BV
stable under a CFL condition and satisfies a discrete maximum principle. Section
6 is devoted to show the convergence of the approximate solution of the com-
bined scheme to weak solution of the coupled problem. In section 7 we present
the results of a selected numerical test. Numerical simulations are given for a 2D
miscible flow problem in a homogenous isotropic medium.

2 Mathematical problem

Let Ω be a bounded open subset with a smooth boundary ∂Ω = Γ, J =]0, T[
(T > 0) a time interval and Q = Ω×]0, T[. We consider the system of equations
describing the flow of miscible incompressible fluid through a porous media. We
will neglect the effect of gravity. This system is then the following:
Velocity-pressure equation:







−→q = −K∇p in Q,
div−→q = 0 in Q,
(−→q .−→n )|Γ1 ∪ Γ4 = 0, p|Γ2 = p0, p|Γ3 = p1 on ]0, T[.

(2.1)

Concentration equation:















0 ≤ c(x, t) ≤ 1 in Q,

Φ(x) ∂c
∂t − div(D∇c − c−→q ) = 0 in Q,

c|Γ1 = 0, (D∇c.−→n )|Γ2 ∪ Γ4 = 0, c|Γ3 = 1 on ]0, T[,
c(x, 0) = c0 in Ω.

(2.2)

Where p is the pressure and −→q is the Darcy velocity of the fluid, Φ and K are the
porosity and the absolute permeability tensor of the porous media and c is the
concentration.
The diffusion-dispersion tensor D is given by:

D(x,−→q ) = de I + |−→q |[αlE(
−→q ) + αt(I − E(−→q ))],

with E(−→q ) =
qiqj

|−→q |2
, |−→q | is the Euclidian norm of −→q , de is the effective diffusion

coefficient, αl and αt are the magnitudes of longitudinal and transverse disper-
sion respectively.
The boundary Γ splits up into four parts such that Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, p0 is a
given pressure at Γ2, p1 is a given pressure at Γ3 and c0 is the initial condition.
For the problem (2.1)-(2.2) the following hypotheses are made on data:
(H1) Ω is a bounded open polygonal subset of Rd (d ≤ 3), with a smooth bound-
ary Γ.
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(H2) Φ ∈ L∞(Ω) such that 0 < Φ− < Φ(x) < Φ+ a.e. in Ω.
(H3) K is a bounded, symmetric and uniformly positive definite tensor

(i.e. ∃ k−, k+ ∈ R∗
+ such that 0 < k−|

−→
ξ |2 ≤ K

−→
ξ .

−→
ξ ≤ k+|

−→
ξ |2 < ∞, ∀

−→
ξ ∈ Rd).

(H4) D is a bounded, symmetric and uniformly positive definite tensor

(i.e. ∃ d−, d+ ∈ R∗
+ such that 0 < d−|

−→
ξ |2 ≤ D

−→
ξ .

−→
ξ ≤ d+|

−→
ξ |2 < ∞,

∀
−→
ξ ∈ R

d).
(H5) c0 ∈ L∞(Ω) such that 0 ≤ c0 ≤ 1 a.e. in Ω.
(H6)

−→q ∈ (L∞(Q))d .
(H7) p0 ∈ L∞[J, H1/2(Γ2)], p1 ∈ L∞[J, H1/2(Γ3)].
Now, we introduce a weak formulation of the coupled problem (2.1)-(2.2).
First let the spaces X0, M and W be defined as:

X0 = {−→s ∈ H(div, Ω),−→s .−→n = 0 on Γ1 ∪ Γ4}, M = L2(Ω)

where
H(div, Ω) = {−→s ∈ (L2(Ω))d , div−→s ∈ L2(Ω)}

and
W = {ϕ ∈ C1(]0, T[, C2(Ω)); ϕ(., T) = 0 and ϕ = 0 on Γ2}.

Definition 2.1. Under the assumptions (H1)− (H7), the weak formulation of the cou-
pled problem (2.1)-(2.2) can be written as follows:
Find (−→q , p, c) : J 7→ X0 × M × W such that:

∫

Ω
K−1−→q .−→s dΩ −

∫

Ω
pdiv−→s dΩ = −

∫

Γ2

p0
−→s .−→n ds −

∫

Γ3

p1
−→s .−→n ds ∀−→s ∈ X0

∫

Ω
vdiv−→q dΩ = 0 ∀v ∈ M

(2.3)
∫ T

0

∫

Ω

(

Φc
∂ϕ

∂t
+ [c−→q − D∇c].∇ϕ

)

dxdt +
∫

Ω
c0ϕ(x, 0)dx

−
∫ T

0

∫

Γ3

(−→q .−→n )ϕdsdt = 0 ∀ϕ ∈ W.

(2.4)

For the existence and uniqueness of the weak solution of the coupled system
(2.1)-(2.2) we refer to [15] and the references therein.

3 Notations and discretizations

In this section we will describe the time and space discretizations.
For the time discretization, we split up the time interval J =]0, T[ such that
0 = t0 < ... < tn < .... < tN = T. We define the time step by ∆tn = tn − tn−1 and
∆t = max1≤n≤N∆tn.
Furthermore, we define the following notations for the space discretization:
• Λh := (Ki)i=1,...,Ne an admissible triangulation such that Ω = ∪K∈(Λh)

K.

• {xj, j ∈ I} : the set of vertices of all K with I is an index set and Nv is the number
of vertices in (Λh)h>0.
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• |K| : the area of K.
• Mj : the vertex centered control volume associated with each vertex xj, j ∈ I
(see Figure 1) and |Mj| : the measure of Mj.

• Σh := (Mi)i=1,...,Ns
the dual mesh such that Ω = ∪Mi∈Σh

Mi.

• −→n jl : the outward unit normal to l ∈ Mj.
• ξh : the set of the all edges [resp. faces] in 2D [resp. 3D] of Λh.

• h = min{(|l|)
1

d−1 ; l ∈ Mj, Mj ∈ Σh}.

• H = max{(|L|)
1

d−1 ; L ∈ ∂K, K ∈ Λh}.
• δjl = δ(xj, xl) is the euclidian distance between xj and xl.

• Φj =
1

|Mj|

∫

Mj
Φ(x)dx.

• c0
j =

1
|Mj|

∫

Mj
c0(x)dx.

• cn
j (resp cn

l ) is an approximation of c(xj, tn) assumed constant in |Mj| (resp

c(xl , tn) assumed constant on l ∈ Mj).
We also need of the following hypotheses on the regularity of the mesh:
(H8) For (d=2) the triangulation is weakly acute (no triangle with an angle greater
than π/2).
(H9) hd ≤ |K| ≤ Hd, ∀ K ∈ (Λh)h>0.
(H10) γH ≤ |Mj|

1/d ≤ βh, ∀j ∈ I, where β and γ are constants independent of
h.

x

x

l
l

M

K
L

x

l

l
j

j

xj

Figure 1: A vertex centered control volume in R2 and in R3.

4 Definition of the scheme

In this section the numerical scheme is presented. The Mixed finite element
method is employed for approximated the pressure-velocity equation and the
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finite volume scheme is used for discretized the concentration equation.

4.1 Mixed Finite Element method

The pressure-velocity equation and the concentration are coupled via the velocity
term, an accurate approximation to the Darcy velocity −→q is essential in order to
have an accurate approximation of the concentration c. For this reason the mixed
finite element method provides a good approximation of the velocity field.

For fixed t ∈ J, the mixed finite element scheme is defined as:



























Find (−→q , p) ∈ X0 × M such that:
∫

Ω
K−1−→q .−→s dΩ −

∫

Ω
pdiv−→s dΩ = −

∫

Γ2

p0
−→s .−→n ds −

∫

Γ3

p1
−→s .−→n ds

∀−→s ∈ X0,
∫

Ω
vdiv−→q dΩ = 0 ∀v ∈ M.

(4.1)

Theorem 4.1. Under the assumptions (H1)− (H2), the problem (4.1) admits a unique
weak solution (p,−→q ).

Proof. (see [13] and [41]).

Now, we define the following finite dimensional subspaces of X0 and M:

Xh
0 = {−→s h ∈ H(div, Ω),−→s h.−→n = 0 on Γ1 ∪ Γ4, −→s h|K ∈ RT0(K); ∀K ∈ Λh}

and
Mh = {vh ∈ L2(Ω), vh|K = Constant, ∀K ∈ (Λh)h>0}.

where RT0(K) is the lowest order Raviart-Thomas space defined as follows (see
[13] and [41]):

RT0(K) = (P0(K))
d ⊕ P0(K)x

= {−→r + βx; −→r ∈ R
d, β ∈ R},

with x = (x1, ...., xd)
t and Pk denotes the space of polynomials of degree ≤ k.

The discrete mixed finite element approximation of the problem (4.1) is given by:



























Find (−→q h, ph) ∈ Xh
0 × Mh such that:

∫

Ω
K−1−→q .−→s dΩ −

∫

Ω
phdiv−→s hdΩ = −

∫

Γ2

p0
−→s h.−→n ds −

∫

Γ3

p1
−→s h.−→n ds

∀−→s h ∈ Xh
0 ,

∫

Ω
vhdiv−→q hdΩ = 0 ∀vh ∈ Mh.

(4.2)

Theorem 4.2. Under the assumptions (H1)− (H2), the problem (4.2) admits a unique
solution ( see [13]).
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4.2 The finite volume scheme

In this section, we describe the finite volume method used for the approximation
of the transport equation. The (FV) scheme considered here is ”vertex centered”
type semi-implicit. We use a Godunov scheme (because this scheme is consistent
and conservative) to approach the convection term (see [28]) and a P1 finite ele-
ment approximation for the diffusion term. This approximation leads to a robust
scheme which satisfy a discrete maximum principle.
Integrating (2.2) over the set Mj × [tn, tn+1], we obtain:

Φj|Mj|(c
n+1
j − cn

j ) = − ∑
l∈∂Mj

∫ tn+1

tn

∫

l
c−→q .−→n jldldt + ∑

l∈∂Mj\Γ

∫ tn+1

tn

∫

l
D∇c.−→n jldldt.

(4.3)
Using an explicit approximation of the convection term and an implicit approxi-
mation of the diffusion term, we obtain

Φj|Mj|(c
n+1
j − cn

j ) = ∆tn ∑
l∈∂Mj

∫

l
cn(−−→q n

l .−→n jl)dl +∆tn ∑
l∈∂Mj\Γ

∫

l
D(∇cn+1).−→n jldl.

(4.4)
This scheme can be written in the following form:

Φj(c
n+1
j − cn

j )|Mj| =− ∆tn ∑
l∈∂Mj

cn
jl(
−→q n

l .−→n jl)|l|

+ ∆tn ∑
K∩Mj 6=0

∑
l∈∂Mj\Γ

DK(∇cn+1)K.−→n jl|l|,
(4.5)

with DK = D|K and cn
jl = cn

j if −→q n
l .−→n jl ≥ 0 and cn

jl = cn
l otherwise.

The convection term is approximated by an upwind Godunov scheme and the
diffusion term is approximated in the following way.
For K ∩ Mj 6= ∅, we have

∑
l∈∂Mj∩K\Γ

DK(∇cn+1)K.−→n jl|l| = ∑
l∈∂Mj∩K\Γ

DK(∇cn+1)K.−→n jl|l|

= (∇cn+1)K.DK ∑
l∈∂Mj∩K\Γ

−→n jl|l|

= (∇cn+1)K.DK ∑
l∈∂K∩Mj

−→n K,l|l|

=
(∇cn+1)K

2
.DK

−→n K,L|L|,

where L ∈ ∂K such that L ∩ Mj = ∅.
Let the standard P1 finite element basis functions satisfying NMi

(xMj
) = δij.

For K ∩ Mj 6= ∅, we have

∇NMj,K = ∇NMj
|K = −

|L|

2|K|
−→n K,L.
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A P1 approximation for (∇cn+1)K leads to:

(∇cn+1)K = ∑
l∈∂Ml∩K 6=∅

cn+1
Ml

∇NMl ,K

= ∑
l∈∂Ml∩K 6=∅

(cn+1
Ml

− cn+1
Mj

)∇NMl ,K

= ∑
l∈∂Mj∩K\Γ

(cn+1
Ml

− cn+1
Mj

)∇NMl ,K.

Then

∑
l∈∂Mj∩K

DK(∇cn+1)K.−→n jl|l| =
(∇cn+1)K

2
.DK

−→n K,L|L|

= ∑
l∈∂Mj∩K

(cn+1
Ml

− cn+1
Mj

)
Dn

jl

δjl
|l|,

where

Dn
jl = −

|K|

|l|
δjl∇NMl ,K.DK∇NMj,K. (4.6)

Hence the semi-implicit finite volume scheme for the equation (2.2) is given by:

cn+1
j −

∆tn

|Mj|Φj
∑

l∈∂Mj\Γ

(cn+1
l − cn+1

j )
Dn

jl

δjl
|l|

= cn
j +

∆tn

Φj|Mj|
∑

l∈∂Mj

cn
l (−

−→q n
l .−→n jl)

+|l| −
∆tn

|Mj|Φj
∑

l∈∂Mj\Γ

cn
j (−

−→q n
l .−→n jl)

−|l|]

(4.7)

with (−−→q .−→n jl)
+ and (−−→q .−→n jl)

− denote the positive and negative parts of

(−−→q .−→n jl) (i.e (−−→q .−→n jl)
+ = max((−−→q .−→n jl), 0) and (−−→q .−→n jl)

− =

−min((−−→q .−→n jl), 0).)

From the velocity-pressure equation, we have div−→q = 0 i.e.

∑
l∈∂Mj\Γ

(−→q n
l .−→n jl)|l| = ∑

l∈∂Mj\Γ

[

(−−→q n
l .−→n jl)

+|l| − (−−→q n
l .−→n jl)

−|l|
]

= 0.

This leads to

∑
l∈∂Mj

[

cn
l (−

−→q n
l .−→n jl)

+|l| − cn
j (−

−→q n
l .−→n jl)

−|l|
]

= ∑
l∈∂Mj

(cn
l − cn

j )(−
−→q n

l .−→n jl)
+|l|.

(4.8)
Finally, the scheme (4.7) becomes

cn+1
j −

∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

(cn+1
l − cn+1

j )
Dn

jl

δjl
|l| =

cn
j +

∆tn

Φj|Mj|
∑

l∈∂Mj

(cn
l − cn

j )(−
−→q n

l .−→n jl)
+|l|, (4.9)
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with cn
l = 1 if l ∈ ∂Ml ∩ Γ3.

The scheme (4.9) can be written in the following matrix form:

AnCn+1 = S
n, (4.10)

with Cn+1 = (cn+1
j )1≤j≤Nv

, Sn = (Sn
j )1≤j≤Nv

and An is a band matrix with:

An
jj = 1 +

∆tn

|Φj|Mj|
∑

l∈∂Mj\Γ

Dn
jl

δjl
|l|,

An
jl = −

∆tn

Φj|Mj|
∑

l∈∂Mj∩∂Ml

Dn
jl

δjl
|l| f or j 6= l

and

Sn
j = cn

j (1 −
∆tn

Φj|Mj|
∑

l∈∂Mj

(−−→q n
l .−→n jl)

+|l|) +
∆tn

Φj|Mj|
∑

l∈∂Mj

cn
l (−

−→q n
l .−→n jl)

+|l|.

Property 4.3. Under the assumptions (H1)-(H10), the coefficients Dn
jl satisfying the

following inequality:
0 < D− ≤ Dn

jl ≤ D+
< ∞.

Proof. (Cf. [3] Property 4.4 and Property 4.5).

This property is important for the analysis of the finite volume scheme and
depends only on the triangulation of the domain and the matrix D.

Remark 4.4. Under the assumptions (H1)-(H10) and the Property 4.1 An is a monotone
matrix (i.e. An

jj > 0, An
jl ≤ 0 ∀j 6= l and (An)−1 is a positive matrix).

5 L∞ stability and BV estimates

In this section we state the properties and the estimations which are satisfied by
the finite volume scheme.

5.1 L∞ Stability

Let the CFL condition be defined as:

CFL =
∆t

h
Cq ≤ 1, where Cq = max

n,j
∑

l∈∂Mj

h|l|

Φj|Mj|
(−−→q n

l .−→n jl)
+. (5.1)

Definition 5.1. The approximate solution (cn
j ) is L∞ stable on Ω, if:

‖cn
j ‖∞ = sup

j

|cn
j | ≤ C, f or n = 1, ..., N,

C is a constant independent of h and ∆t.
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Proposition 5.2. Under the assumptions (H1)-(H10) and CFL condition, the approxi-
mate solution (cn

j ) defined by (4.9) satisfies a discrete maximum principle:

0 ≤ cn
j ≤ 1, ∀0 ≤ n ≤ N and j ∈ I. (5.2)

Furthermore, there is a function c∗ in L∞(Q) with 0 ≤ c∗(x, t) ≤ 1 in Q, such that

ch ⇀ c∗ in L∞(Q) weak∗ ,

where ch(x, t) is defined by:

ch(x, t) = cn
j f or x ∈ Mj and t ∈ [tn, tn+1[.

Proof. We prove the discrete maximum principle (5.2) by induction. From the
assumption (H6), we have 0 ≤ c0

j ≤ 1. Let us suppose that 0 ≤ cn
j ≤ 1 ∀n and j ∈

I.
It follows from (4.9) that Cn+1 = (An)−1Sn. Using the CFL condition (5.1), we get
for Mj ∈ Σh and 0 ≤ n ≤ N :

(1 −
∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

(−−→q n
l .−→n jl)

+|l|) ≥ 0,

thus Sn
j ≥ 0, ∀j ∈ I and since (An)−1 is a positive matrix, we conclude that cn+1

j ≥

0, ∀j ∈ I.
On the other hand the scheme (4.9) can be rewritten as:

cn+1
j (1 +

∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

Dn
jl

δjl
|l|)−

∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

cn+1
l

Dn
jl

δjl
|l|

= cn
j (1 +

∆tn

Φj|Mj|
∑

l∈∂Mj

(−−→q n
l .−→n jl)

+|l|) +
∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

cn
l (−

−→q n
l .−→n jl)

+|l|.

Therefore we have

(1 − cn+1
j )(1 +

∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

Dn
jl

δjl
|l|)−

∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

(1 − cn+1
l )

Dn
jl

δjl
|l|

(1 − cn
j )(1 +

∆tn

Φj|Mj|
∑

l∈∂Mj

(−−→q n
l .−→n jl)

+|l|)+

∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

(1 − cn
l )(−

−→q n
l .−→n jl)

+|l|.

This relation can be written in the following matrix form:

An(I − Cn) = S
∗,n,
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where I = (1, ..., 1)t and S
∗,n = (S∗,n

j )1≤j≤Ns
,

S∗,n
j =(1 − cn

j )(1 −
∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

(−−→q n
l .−→n jl)

+|l|)

+ Φj|Mj| ∑
l∈∂Mj\Γ

(1 − cn
l )(−

−→q n
l .−→n jl)

+|l|).

Then S∗,n
j ≥ 0, ∀j ∈ I and since (An)−1 is a positive matrix, we deduce that

cn+1
j ≤ 1, ∀ n, j. This concludes the proof of (5.2).

Moreover using (5.2), we have 0 ≤ ch = cn
j ≤ 1 then (ch)h>0 is a bounded se-

quence, thus we can extract a subsequence which will still be denoted by ch, such
that ch converges to c∗ for the weak star topology of L∞(Q). This completes the
proof of Proposition (5.2).

We will now give some estimations which are used to obtain the strong con-
vergence of the approximate solution ch in L2(Q).

5.2 BV weak estimates

Lemma 5.3. Under the assumptions (H1)-(H10) and the CFL condition with (CFL ≤
1 − ε), we have the following estimates for the scheme (4.9):

N

∑
n=0

∆tn ∑
l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l| ≤

C0

ε
, (5.3)

N

∑
n=0

∆tn ∑
l∈∂Mj

(cn+1
l − cn+1

j )2Dn
jl|l| ≤ C1h, (5.4)

where ε is a small parameter, C0 and C1 are constants independent of h and ∆t.

Proof. The equation (4.9) can be written in the following form:

cn+1
j = wn

j +
∆tn

Φj|Mj|
∑

l∈∂Mj\Γ

(cn+1
l − cn+1

j )
Dn

jl

δjl
|l|, (5.5)

with

wn
j = cn

j +
∆tn

Φj|Mj|
∑

l∈∂Mj

(cn
l − cn

j )(−
−→q n

l .−→n jl)
+|l|. (5.6)

Using the Cauchy-Schwartz inequality, we obtain

(cn
j − wn

j )
2 ≤

(
∆tn

Φj|Mj|
)(

∆tn

Φj|Mj|
∑

l∈∂Mj

(−−→q n
l .−→n +

jl )|l|)( ∑
l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|).
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The CFL condition with (CFL ≤ 1 − ε) implies

(cn
j − wn

j )
2 ≤

(1 − ε)∆tn

Φj|Mj|



 ∑
l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|



 . (5.7)

On the other hand, using the following equality:

1

2
(a − b)2 =

1

2
(b2 − a2) + a(a − b) ∀a, b ∈ R

we obtain

∆tn

2 ∑
j∈I

∑
l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|

=
∆tn

2 ∑
j∈I

∑
l∈∂Mj

((cn
l )

2(−−→q n
l .−→n jl)

+|l| − (cn
j )

2(−−→q n
l .−→n jl)

+|l|)

+ ∆tn ∑
l∈∂Mj

cn
j (c

n
l − cn

j )(−
−→q n

l .−→n jl)
+|l|

=
∆tn

2 ∑
j∈I

∑
l∈∂Mj\Γ

((cn
l )

2(−−→q n
l .−→n jl)

+|l| − (cn
j )

2(−−→q n
l .−→n jl)

+|l|)

+
∆tn

2 ∑
j∈I

‖−→q ‖∞|∂Mj ∩ Γ3|+ ∆tn ∑
l∈∂Mj

cn
j (c

n
l − cn

j )(−
−→q n

l .−→n jl)
+|l|.

(5.8)

where ‖−→q ‖∞ = ‖−→q ‖L∞(Γ3×]0,T[).
We have

∑
j∈I

∑
l∈∂Mj\Γ

[(cn
l )

2(−−→q n
l .−→n jl)

+|l| − (cn
j )

2(−−→q n
l .−→n jl)

+|l|]

= ∑
j∈I

(cn
j )

2[ ∑
l∈∂Mj\Γ

−→q n
l .−→n jl|l|] = 0.

Then the equation (5.8) becomes

∆tn

2 ∑
j∈I

∑
l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|

=
∆tn

2
‖−→q ‖L∞(Γ3×]0,T[) ∑

j∈I

|∂Mj ∩ Γ3|+ ∆tn ∑
l∈∂Mj

cn
j (c

n
l − cn

j )(−
−→q n

l .−→n jl)
+|l|.

(5.9)

Using equation (5.6) to replace the last term of equation (5.9), we get

∆tn

2 ∑
j∈I

∑
l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|

=
∆tn

2
‖−→q ‖L∞(Γ3×]0,T[) ∑

j∈I

|∂Mj ∩ Γ3|+ ∑
l∈∂Mj

Φj|Mj|c
n
j (c

n
j − wn

j ).

(5.10)
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Moreover, we have

∑
j∈I

Φj|Mj|

2
((wn

j )
2 − (cn

j )
2) = ∑

j∈I

Φj|Mj|(c
n
j (w

n
j − cn

j )) + ∑
j∈I

Φj|Mj|

2
(cn

j − wn
j )

2.

Using (5.7) and (5.10) we get

∑
j∈I

Φj|Mj|

2
((wn

j )
2 − (cn

j )
2)

≤ ∑
j∈I

Φj|Mj|c
n
j (w

n
j − cn

j ) +
(1 − ε)∆tn

2 ∑
l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|

≤ ∑
j∈I

Φj|Mj|c
n
j (w

n
j − cn

j ) +
∆tn

2
‖−→q ‖L∞(Γ3×]0,T[)|∑

j∈I

|∂Mj ∩ Γ3|

+ ∑
j∈I

Φj|Mj|c
n
j (c

n
j − wn

j )−
ε∆tn

2
( ∑

l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|),

Therefore, we deduce that

ε∆tn

2
(cn

l − cn
j )

2(−−→q n
l .−→n jl)

+|l|) ≤

∑
j∈I

Φj|Mj|

2
((cn

j )
2 − (wn

j )
2) +

∆tn

2
‖−→q ‖L∞(Γ3×]0,T[)|Γ3|.

Similarly, we have

cn+1
j (cn+1

j − wn
j ) = ∑

l∈∂Mj

∆tn

Φj|Mj|
cn+1

j (cn+1
l − cn+1

j )
Dn

jl

δjl
|l|,

This gives

∑
j∈I

Φj|Mj|

2
((cn+1

j )2 − (wn
j )

2)

= ∑
j∈I

Φj|Mj|(c
n+1
j (wn

j − cn+1
j ))− ∑

j∈I

Φj|Mj|

2 ∑
j∈I

(cn+1
j − wn

j )
2

≤ ∑
l∈∂Mj

∆tn

Φj|Mj|
cn+1

j (cn+1
l − cn+1

j )
Dn

jl

δjl
|l|.

In fact that

∆tn ∑
l∈ξh

(cn+1
l − cn+1

j )2
Dn

jl

δjl
|l|

= ∆tn ∑
l∈ξh

(cn+1
l − cn+1

j )cn+1
l

Dn
jl

δjl
|l|+ ∆tn ∑

l∈ξh

(cn+1
j − cn+1

l )cn+1
j

Dn
jl

δjl
|l|

= ∑
j∈I

∑
l∈∂Mj

∆tn

Φj|Mj|
cn+1

j (cn+1
j − cn+1

l )
Dn

jl

δjl
|l|.
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It follows that

∆tn ∑
l∈ξh

(cn+1
l − cn+1

j )2
Dn

jl

δjl
|l| ≤ ∑

j∈I

Φj|Mj|

2
((wn

j )
2 − (cn+1

j )2).

Summing over n=0,....,N, we obtain:

N

∑
n=0

ε∆tn

2 ∑
l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|+

N

∑
n=0

∆tn ∑
l∈ξh

(cn+1
l − cn+1

j )2
Dn

jl

δjl
|l|

≤
N

∑
n=0

∑
j∈I

Φj

|Mj|

2
((cn

j )
2 − (cn+1

j )2) +
N

∑
n=0

∆tn

2
‖−→q ‖L∞(Γ3×]0,T[)||Γ3|

≤
Φj|Ω|

2
‖c0‖2

L∞(Ω) +
T

2
‖−→q ‖L∞(Γ3×]0,T[)||Γ3|.

Consequently, we have the following estimates:

N

∑
n=0

ε∆tn

2 ∑
l∈∂Mj

(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|+

N

∑
n=0

∆tn ∑
l∈ξh

(cn+1
l − cn+1

j )2
Dn

jl

δjl
|l| ≤ C0

(5.11)
and

N

∑
n=0

∑
l∈∂Mj

∆tn(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l| ≤

C0

ε

Where

C0 =
Φj|Ω|

2
‖c0‖2

L∞(Ω) +
T

2
‖−→q ‖L∞(Γ3×]0,T[)||Γ3|.

Finally, using the inequality δjl ≤ H ≤
β
γ h, we conclude that

N

∑
n=0

∑
l∈∂Mj

∆tn(cn+1
l − cn+1

j )2Dn
jl|l| ≤ C1h.

Where

C1 = (Tq0|Γ3|+ Φ|Ω|‖c0‖2
L∞(Ω))

β

2γ
.

This completes the proof of Lemma (5.3).

Lemma 5.4. Under the assumptions (H1)-(H10) and the CFL condition, we have the
following estimates:

N

∑
n=0

∑
l∈ξh

∆tn|cn
l − cn

j |(−
−→q n

l .−→n jl)
+ ≤ C2h

−1
2 , (5.12)

and
N

∑
n=0

∑
l∈ξh

∆tn|cn
l − cn

j |D
n
jl|l| ≤ C3 (5.13)

where C2 and C3 are constants independent of h and ∆t.
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Proof. Using the Cauchy-Schwartz inequality, we obtain:

N

∑
n=0

∑
l∈ξh

∆tn|cn
l − cn

j |(−
−→q n

l .−→n jl)
+|l| ≤(

N

∑
n=0

∑
l∈ξh

∆tn(cn
l − cn

j )
2(−−→q n

l .−→n jl)
+|l|)1/2

× (
N

∑
n=0

∑
l∈ξh

∆tn(−−→q n
l .−→n jl)

+|l|)1/2.

The estimate (5.3) of Lemma (5.3) leads to:

N

∑
n=0

∑
l∈ξh

∆tn(|cn
l − cn

j |(−
−→q n

l .−→n jl)
+|l| ≤

√

C0(‖
−→q ‖(L∞(Q))d T)

1
2

(

1

2 ∑
j∈I

|∂Mj|

) 1
2

≤
√

C0(‖
−→q ‖(L∞(Q))d T)

1
2

(

1

2h ∑
j∈I

|Mj|

) 1
2

≤
√

C0(‖
−→q ‖(L∞(Q))d T)

1
2

(

|Ω|

2

)
1
2

h
−1
2 .

Hence
N

∑
n=0

∑
l∈∂Mj

∆tn(|cn
l − cn

j |(−
−→q n

l .−→n jl)
+|l| ≤ C2h

−1
2 .

Similarly, we get

N

∑
n=0

∑
l∈ξh

∆tn|cn
l − cn

j |D
n
jl|l| ≤ (

N

∑
n=0

∑
l∈ξh

∆tn(cn
l − cn

j )
2Dn

jl|l|)
1
2 (

N

∑
n=0

∑
l∈ξh

∆tnDn
jl|l|)

1
2 .

The estimate (5.4) of Lemma (5.3) and the Property (4.3) imply

N

∑
n=0

∑
l∈∂Mj

∆tn|cn
l − cn

j |D
n
jl|l| ≤

(

C0
β

γ
h

)
1
2

(D+T)
1
2

(

1

2 ∑
j∈I

|∂Mj|

)
1
2

≤

(

C0
β

2γ
h

)
1
2

(D+T)
1
2

(

1

2h ∑
j∈I

|Mj|

) 1
2

≤

(

C0
β

2γ

)
1
2

(D+T)
1
2

(

1

2
|Ω|

)
1
2

.

Finally, we get
N

∑
n=0

∑
l∈∂Mj

∆tn|cn
l − cn

j |D
n
jl|l| ≤ C3.

This completes the proof of Lemma (5.4).
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Theorem 5.5. Under the assumptions (H1)-(H10) and the CFL condition, we have the
following BV estimates:

N

∑
n=0

∆tn ∑
j∈I

|Mj|(c
n+1
j − cn

j )
2 ≤ C4∆t. (5.14)

and
N

∑
n=0

∆tn ∑
l∈∂Mj

|l|(cn
l − cn

j )
2 ≤ C5h (5.15)

where the constants C4 and C5 are independent of h and ∆t.

Proof. Multiplying (4.9) with (cn+1
j − cn

j ), we obtain:

∑
j∈I

Φj|Mj|(c
n+1
j − cn

j )
2 = ∆tn ∑

j∈I
∑

l∈∂Mj

(cn+1
j − cn

j )(c
n
l − cn

j )(−
−→q n

l .−→n jl)
+|l|

+ ∆tn ∑
j∈I

∑
l∈∂Mj

(cn+1
j − cn

j )(c
n+1
l − cn+1

j )
Dn

jl

δjl
|l|

= An+1 − An + Bn+1 − Bn,

where

As = ∆tn ∑
j∈I

∑
l∈∂Mj

cs
j(c

n
l − cn

j )(−
−→q n

l .−→n jl)
+|l|, s = n or n + 1,

Bs = ∆tn ∑
j∈I

∑
l∈∂Mj\Γ

cs
j(c

n+1
l − cn+1

j )
Dn

jl

δjl
|l|, s = n or n + 1.

We have then

N

∑
n=0

|As| = ∑
n

∣

∣

∣

∣

∣

∣

∆tn ∑
j∈I

∑
l∈∂Mj∩Γ3

cs
j(c

n
l − cn

j )(−
−→q n

l .−→n jl)
+|l|

∣

∣

∣

∣

∣

∣

+
N

∑
n=0

∣

∣

∣

∣

∣

∆tn ∑
l∈ξh

cs
j(c

n
l − cn

j )(−
−→q n

l .−→n jl)
+|l|

∣

∣

∣

∣

∣

+
N

∑
n=0

∣

∣

∣

∣

∣

∆tn ∑
l∈ξh

cs
l (c

n
j − cn

l )(−
−→q n

l .−→n l j)
+|l|

∣

∣

∣

∣

∣

≤ T‖−→q ‖∞|Γ3|+
N

∑
n=0

∑
l∈ξh

∆tn

2
((cn

l − cn
j )

2 + (cs
j )

2)(−−→q n
l .−→n jl)

+|l|

+
N

∑
n=0

∑
l∈ξh

∆tn

2
((cn

l − cn
j )

2 + (cs
j )

2)(−−→q n
l .−→n jl)

+|l|

where
‖−→q ‖∞ = ‖−→q ‖L∞(Γ3×]0,T[).
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From the estimate (5.3) of Lemma (5.3) and the CFL condition, we deduce that

N

∑
n=0

|As| ≤ T|−→q ‖∞|Γ3|+
C0

ε
+ ‖−→q ‖∞(N + 1)

(

|Ω|

2Cq

)

.

In the same way, we have

N

∑
n=0

|Bs| =
N

∑
n=0

∣

∣

∣

∣

∣

∆tn ∑
l∈ξh

(cs
j − cs

l )(c
n+1
l − cn+1

j )
Dn

jl

δjl
|l|

∣

∣

∣

∣

∣

≤
N

∑
n=0

∑
l∈ξh

∆tn

2
((cn+1

l − cn+1
j )2 + (cs

j − cs
j)

2)
Dn

jl

δjl
|l|.

The estimate (5.11) yields
N

∑
n=0

|Bs| ≤ C0.

Hence

N

∑
n=0

∑
j∈I

∆tnΦj|Mj|(c
n+1
j − cn

j )
2

≤
N

∑
n=0

|As|+
N

∑
n=0

|Bs|

≤ ‖−→q ‖∞ +
C0

ε
+ ( ‖−→q ‖(L∞(Q))d)(N + 1)

(

|Ω|

2Cq

)

+ C0.

Using the assumption (H2) we find

N

∑
n=0

∑
j∈I

∆tn|Mj|(c
n+1
j − cn

j )
2 ≤ C4∆t,

where

C4 =

[

T‖−→q ‖∞ + C0
ε + ( ‖−→q ‖(L∞(Q))d)(N + 1)

(

|Ω|
2Cq

)

+ C0

]

Φ−
.

From the estimate (5.4) of Lemma (5.3) and the Property (4.3) we conclude that

N

∑
n=0

∑
l∈ξh

∆tn|cn
l − cn

j |D
−|l| ≤ C1h,

This gives
N

∑
n=0

∑
l∈ξh

∆tn|cn
l − cn

j |l| ≤ C5h,

Where

C5 =
C1

D−
.

This completes the proof of Theorem (5.5).
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6 Convergence results

In this section we prove the convergence of the solution of the combined scheme
(MFE)-(FV) to the coupled problem using the discrete maximum principle and
the estimates obtained in the preceding section.

6.1 Convergence of the mixed finite element scheme

We give a convergence result for the mixed finite element scheme.

Theorem 6.1. Let (−→q , p) be the solution of the problem (4.1) and (−→q h, ph) ∈ Xh
0 × Mh

be the solution of the problem (4.2). If −→q ∈ (H1(Ω))2, p ∈ H1(Ω) and div−→q ∈
H1(Ω) for any fixed time t ∈ J, then there exists constant C independent of h and ∆t
such that:

‖−→q −−→q h‖H(div,Ω) + ‖p − ph‖L2(Ω) ≤ Ch(‖−→q ‖H1(Ω) + ‖p‖H1(Ω)).

Furthermore, the mixed finite element is convergent:

−→q h −→ −→q strongly in H(div, Ω)

and

ph −→ p strongly in L2(Ω).

Proof. (Cf. [41]).

This theorem gives also the first order convergence for the pressure and the
velocity.

6.2 Convergence of the FV scheme of the transport equation

In this section we prove strong convergence of the approximate solution ch to c∗

in L2(Q), using L∞ stability (Proposition (5.2)), BV estimates (Theorem 5.5) and
the Kolmogorov relative compactness theorem.

Theorem 6.2. Under the assumptions (H1)-(H10) and the CFL condition the approxi-
mate solution ch given by the scheme (4.9) converge strongly to c∗ in L2(Q) as h and ∆t
go 0.

Proof. It follows from the proposition (5.2) and BV estimates (theorem 5.5) that ch

verifies the assumptions of the Kolmogorov theorem (see [12]) then ch is relatively
compact in L2(Q) (see for more details [19] and [21]). This implies the existence
of a subsequence again denoted ch such that

ch −→ c∗ strongly in L2(Q).

This completes the proof of Theorem (6.2).
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6.3 Convergence of the combined scheme

Now we prove the convergence of the approximate solutions to a weak solution
of the coupled system (2.1)-(2.2).

Theorem 6.3. Under the assumptions (H1)-(H10), the approximate solution of the com-
bined scheme (MFE)-(FV) (ph,−→q h, ch) converges to (p,−→q , c) the solution of the coupled
problem as h and ∆t go 0.

Proof. Let ϕ ∈ C1(Ω × [0, T]) with compact support contained in Ω × [0, T]. Mul-
tiplying equation (4.9) by ϕ(xj, tn) ∈ V and summing over n and j, we obtain

N

∑
n=0

∑
j∈I

Φj|Mj|(c
n+1
j − cn

j )ϕ(xj, tn)

=
N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj

(cn
l − cn

j )ϕ(xj, tn)(−
−→q n

l .−→n jl)
+|l|

+
N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj

(cn+1
l − cn+1

j )ϕ(xj, tn)
Dn

jl

δjl
|l|.

(6.1)

We have

N

∑
n=0

∑
j∈I

Φj|Mj|(c
n+1
j − cn

j )ϕ(xj, tn)

=−
N

∑
n=1

∑
j∈I

Φj|Mj|c
n
j ∆tn ϕ(xj, tn)− ϕ(xj, tn−1)

∆tn
− ∑

j∈I

Φjc
0
j ϕ(xj, 0).

Hence, as h and ∆t → 0 we find

∑
j∈I

Φj|Mj|(c
n+1
j − cn

j )ϕ(xj, tn) →−
∫ T

0

∫

Ω
Φjc(x, t)ϕ(x, t)dxdt

−
∫

Ω
Φc(x, 0)ϕ(x, 0)dxdt.

On the other hand, we have

N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj

(cn
l − cn

j )ϕ(xj, tn)(−
−→q n

l .−→n jl)
+|l|

=−
N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj

cn
jl
−→q n

l .−→n jl ϕ(xj, tn)|l|,

with cn
jl = cn

j if −→q n
l .−→n jl ≥ 0 and cn

jl = cn
l otherwise.

Since

∑
l∈∂Mj\Γ

ϕ(xj, tn)c
n
j
−→q n

l .−→n jl|l| = 0.
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Therefore, we get

N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj

cn
jl
−→q n

l .−→n jl ϕ(xj, tn)|l|

=
N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj∩Γ3

ϕ(xl , tn)c
n
l (
−→q n

l .−→n jl)|l|

+
N

∑
n=0

∆tn ∑
l∈ξh

ϕ(xj, tn)(c
n
jl − cn

j )
−→q n

l .−→n jl|l|

=
N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj∩Γ3

ϕ(xl , tn)c
n
l (
−→q n

l .−→n jl)|l|

+
N

∑
n=0

∑
l

∆tn(cn
jl − cn

j )(ϕ(xj, tn)− ϕ(xl , tn))
−→q n

l .−→n jl|l|

−
N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj

ϕ(xl , tn)c
n
j
−→q n

l .−→n jl|l|.

The estimate (5.12) of lemma (5.4) yields

|
N

∑
n=0

∑
l∈∂Mj

∆tn(cn
jl − cn

j )
−→q n

l .−→n jl)||l| ≤ Ch−1/2.

Furthermore, we have

|ϕ(xj, tn)− ϕ(xl, tn)| ≤ M‖xj − xl‖ ≤ Mδjl ≤ M
β

γ
h,

where M = ‖∇ϕ‖∞. This implies, as h and ∆t go to 0

N

∑
n=0

∑
l∈∂Mj

∆tn|(ϕ(xj, tn)− ϕ(xl , tn))(c
n
jl − cn

j )|
−→q n

l .−→n jl||l| ≤ Ch1/2 → 0.

Consequently, we obtain

N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj

ϕ(xl , tn)c
n
j
−→q n

l .−→n jl|l| =
N

∑
n=0

∑
j∈I

∆tncn
j ∑

l∈∂Mj

∫

l
ϕ(x, tn)

−→q n
l .−→n jlds

=
N

∑
n=0

∑
j∈I

∆tn
∫

Mj

cn
j div(−→q n

l ϕ(x, tn))dx

=
N

∑
n=0

∑
j∈I

∆tn
∫

Mj

cn
j
−→q n.∇ϕ(x, tn)dx.

Hence, as h and ∆t go to 0, we have

N

∑
n=0

∑
j∈I

∆tn ∑
l∈∂Mj

(cn
l − cn

j )ϕ(xj, tn)(−−→q n
l .−→n jl)

+|l|

→
∫ T

0

∫

Γ3

(−→q .−→n )ϕdsdt −
∫

Q
c∗(x, t)−→q .∇ϕ(x, t)dxdt.
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Now the last term of (6.1) is rearranged in the following form:

−
N

∑
n=0

∑
j∈I

∆tncn+1
j ∑

l∈∂Mj\Γ

(ϕ(xl , tn)− ϕ(xj, tn))
Dn

jl

δjl
|l|

= −
N

∑
n=0

∑
j∈I

∆tncn+1
j ∑

Mj∩K 6=0
∑

l∈∂Mj∩K\Γ

(Dn
K∇ϕn

K.−→n jl|l|)

= −
N

∑
n=0

∑
j∈I

∆tncn+1
j ∑

l∈∂Mj\Γ

Dn
l ∇ϕn

l .−→n jl|l|.

=
N

∑
n=0

∑
j∈I

∆tncn+1
j ∑

l∈∂Mj∩Γ

(Dn
l ∇ϕn

l .−→n jl|l|)

−
N

∑
n=0

∑
j∈I

∆tncn+1
j ∑

l∈∂Mj

(Dn
l ∇ϕn

l .−→n jl|l|)

As h and ∆t go to 0, it follows that

N

∑
n=0

∑
j∈I

∆tncn+1
j ∑

l∈∂Mj∩Γ

(Dn
l ∇ϕn

l .−→n jl|l|)−
N

∑
n=0

∑
j∈I

∆tncn+1
j ∑

l∈∂Mj

(Dn
l ∇ϕn

l .−→n jl|l|)

→
∫ T

0

∫

Γ
c∗(η, t)D∇ϕ.−→n dsdt −

∫

Q
c∗(x, t)div(D∇ϕ(x, t))dxdt

=
∫

Q
D∇c∗(x, t).∇ϕdxdt.

Finally, passing to the limit in (6.1), we obtain

∫ T

0

∫

Ω
[Φc∗

∂ϕ

∂t
+(c∗

−→
q∗ − D∇c∗).∇ϕ]dxdt +

∫

Ω
Φc(x, 0)ϕ(x, 0)dxdt

−
∫ T

0

∫

Γ3

(−→q .−→n )ϕ(x, t)dsdt = 0,

then (−→q , p, c∗) is a weak solution of the variational problem (2.3)-(2.4) which ad-
mits a unique solution (−→q ,p,c). Hence ch converge to c, −→q h converge to −→q and ph

converge to p as h and ∆t go to 0. This completes the proof of Theorem (6.3).

7 Numerical simulations

In this section, we present some numerical results in 2D based on the combined
(MFE)-(FV) method presented in this paper.
In the test presented, we consider a homogenous isotropic medium Ω =]0, 1[×]0, 1[.
The contaminant are situated at the top of medium Ω, i.e. on the boundary
Γ3 =]0, 1[×{1} and as boundary conditions we impose a pressure p0 = 0.2(1 −
cos(0.5 × π x2)) on the right Γ2 = {1}×]0, 1[, a constant pressure p1 = 0.2 on
Γ3 and no-flow boundary at the bottom Γ1 =]0, 1[×{0} and on the left Γ4 =
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{0}×]0, 1[. Furthermore the following numerical values are chosen: Φ = 0.2,
K = 1m/s, de = 0.05, αl = 0, αt = 0 and c0 = 0.
The contours pressure and the velocity are illustrated in Figure 2 and Figure 3
for to get an idea of fluid flow through a homogenous isotropic medium. The
concentration contours are presented in Figure 4. This Figure shows that the pol-
lutant moves from the top to the bottom.
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Figure 2: Contours pressure.
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Figure 3: Velocity

8 Conclusion

In this paper, we study a numerical scheme combining a mixed finite element
method (MFE) and finite volume scheme (FV) for the discretization of a system
includes an elliptic pressure-velocity equation coupled to a linear convection-
diffusion equation.
Numerical simulations in a homogenous isotropic medium were presented.
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Figure 4: Concentration contours.
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