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Abstract

It is well known that the functor Ω : Sp → Loc does not preserve meets
of subspaces. More generally, the meet of a family of spatial sublocales of a
locale is in general not spatial. In this paper, we will give a characterization
for those topological spaces for which the functor Ω preserves meets of sub-
spaces. As a corollary, we give some characterizations for the meet of some
spatial sublocales of a locale to be spatial.

1 Introduction and preliminaries

Recall that a frame A is a complete lattice satisfying the infinite distributive law
a ∧

∨
S =

∨
{a ∧ s|s ∈ S} for all a ∈ A and S ⊆ A. Let A, B be frames, f :

A → B is a frame morphism if f preserves arbitrary joins and finite meets. We
write Frm for the category of frames and frame morphisms and Loc for its dual
category whose objects are extensionally the same thing, whose morphisms go in
the opposite direction, and write O(X) for the corresponding frame of a locale X.

A sublocale of a locale X is defined to be a regular subobject of X in Loc,
i.e., the locale corresponding to a regular quotient of O(X). We write Sub(X)
for the lattice of sublocales of X. We say a sublocale is dense if its closure is
the whole of X. Every locale has a smallest dense sublocale Xb, defined by setting
O(Xb) = (O(X))¬¬ , where (O(X))¬¬ denotes the frame of all ¬¬-fixed elements
of O(X). For more details of locales please refer to [1], [2], [3].

We know the functor Ω : Sp → Loc from the category of topological spaces
to the category of locales has a right adjoint Pt : Loc → Sp, the spectrum func-
tor. Hence Ω preserves colimits. But in general Ω does not preserve limits, so
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the question that under what conditions the functor Ω preserves some type of
limits is very interesting. Many authors have investigated the question. For the
preservation of products see J.R. Isbell [4], for the preservation of directed inverse
limits see He and Liu [5] and He and Plewe [6]. In categorical sense, the intersec-
tion of sublocales (subspaces) can be considered as a special limit. In this paper
we investigate the question of preservation of meets of subspaces. For a general
background on category theory, we refer to [7], [8].

Let A be a locale. A map j : A → A is called a nucleus if it satisfies (1) :
j(a ∧ b) = j(a) ∧ j(b), (2) : a ≤ j(a), (3) : j(j(a)) ≤ j(a) for all a, b ∈ A. The
partially ordered set N(A) of all nuclei under pointwise partial order is dual to
the poset Sub(A) of all sublocales of A under inclusion order.

We begin with some lemmas, the first of which presents an explicit description
of the sublocale induced by a subspace inclusion.

Lemma 1.1. Let X be a topological space and Y  X a subspace of X. Then the nucleus j
induced by the subspace inclusion satisfies j(U) = int(U ∪ (X \Y)) for any U ∈ Ω(X).

Proof. Let i : Y →֒ X be the inclusion map, then i−1 = i∗ : Ω(X) → Ω(Y), so
j(U) = i∗i∗(U) = i∗(U ∩ Y)
= ∪{W ∈ Ω(X)|i∗(W) ⊆ U ∩ Y} = ∪{W ∈ Ω(X)|W ∩ Y ⊆ U ∩ Y}
= ∪{W ∈ Ω(X)|W ∩ Y ⊆ U} = int(U ∪ (X \ Y)) = int(U ∪ Yc).

The following two examples show that the functor Ω does not preserve the
intersection of subspaces in general.

Example 1.1. Let X = {1, 2, 3}, Ω(X) = {∅, X, {1, 2}}, Y1 = {1}, Y2 = {2}. Then
Ω(Y1) ∼= Ω(Y2) is the two-element frame, but Y1 ∩ Y2 = ∅. Thus Ω(Y1) ∩ Ω(Y2) 6=
Ω(Y1 ∩ Y2).

Example 1.2. Let X = R equipped with the usual topology and Y1 = Q, Y2 = Qc.
Then the induced sublocales Ω(Y1) = {U ∈ Ω(X)|U = int(U ∪Yc

1 )}, Ω(Y2) = {U ∈
Ω(X)|U = int(U ∪Yc

2)}. Since all the prime elements of Ω(X) have the form X − {x}
for some x ∈ X, so Ω(Y1) ∩ Ω(Y2) has no prime element. Thus Ω(Y1) ∩ Ω(Y2) 6=
Ω(Y1 ∩ Y2).

2 Conditions for Ω preserving intersections of subspaces

Let X be a space and Y1, Y2 ⊆ X be two subspaces. It is clear that Ω(Y1 ∩ Y2) ⊆
Ω(Y1)∩Ω(Y2). So, by Lemma 1.1, the question that the functor Ω preserves finite
intersections of subspaces can be considered to give conditions for a topological
space X for which

U = int(U ∪ A) and U = int(U ∪ B) imply U = int(U ∪ A ∪ B) (∗)

holds for every open set U and any two subspaces A, B of X.

Example 2.1. Let X = {1, 2, 3}, Ω(X) = {∅, X, {1, 2}, {2}, {2, 3}}. Then for any
U ∈ Ω(X), and A, B ⊆ X, U = int(U ∪ A), U = int(U ∪ B) ⇒ U = int(U ∪ A ∪
B).
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This example shows that a space satisfying the condition (*) is in general not
trivial.

Lemma 2.1. Let X be a topological space. Then every open set of X is regular open if and
only if every open set is closed.

Lemma 2.2. Let X be a topological space. If U is an open set and A ⊆ X \ cl(U), then
int(U ∪ A) = U ∪ int(A).

Lemma 2.3. Let X be a topological space and U an open set of X. If int(cl(U)) \U 6= ∅,
write T = int(cl(U)) \ U. For every A ⊆ T, U = int(U ∪ A) if and only if T \ A is
dense in T.

Proof.
(⇐): Suppose U 6= int(U ∪ A). Clearly, int(U ∪ A) \ U 6= ∅, so there exists

x ∈ int(U ∪ A), x 6∈ U, so x ∈ A. Since int(U ∪ A) ∩ T ⊆ (U ∪ A) ∩ T = A, then
int(U ∪ A) ∩ T = int(U ∪ A) ∩ A. Thus int(U ∪ A) ∩ A is a non-empty open set
in the subspace T. So T \ A cannot be dense in T.

(⇒): Suppose T \ A is not dense in T when T equipped with the subspace
topology, then there exists a non-empty open set O ∈ Ω(T), O ⊆ A. Hence
there exists an open set G ∈ Ω(X), such that O = G ∩ T. Let G1 = G \ (X \
(int(cl(U)))), then G1 is open, G1 ∩ T = O and G1 ⊆ int(cl(U)). Furthermore
G1 ⊆ U ∪ G1 = U ∪ O, hence U ∪ O is open. Then U ⊂ U ∪ O = int(U ∪ O) ⊆
int(U ∪ A). This implies U 6= int(U ∪ A).

Lemma 2.4. Let X be a topological space. Then the following conditions are equivalent:
(1) U = int(U ∪ A) = int(U ∪ B) ⇒ U = int(U ∪ A ∪ B) for every U ∈ Ω(X)

and A, B ⊆ X.
(2) The intersection of two dense subspaces of X is dense in X, and for each open set

V, either V is regular open or every intersection of two dense subspaces of int(cl(V)) \V
is dense in int(cl(V)) \ V.

Proof.
(⇒): Suppose there exist two dense sets F, G with F ∩ G not dense. Clearly,

int(X \ F) = X \ cl(F) = ∅ and similarly int(X \ G) = ∅,
thus
int((X \ F) ∪ (X \ G)) = int(X \ (F ∩ G)) = X \ cl(F ∩ G) 6= ∅, since F ∩ G is

not dense.
Let U = ∅, A = X \ F and B = X \ G, then
U = ∅ = int(U ∪ A), U = ∅ = int(U ∪ B), and U = ∅ 6= int(U ∪ A ∪ B),
which leads to a contradiction.
Suppose there exists an open set V which is not regular open, then int(cl(V)) \

V 6= ∅. Let A, B be dense in T = int(cl(V)) \ V, then V = int(V ∪ (T \ A)), V =
int(V ∪ (T \ B)) by Lemma 2.3. Hence, by the hypothesis (1), V = int(V ∪ ((T \
A) ∪ (T \ B))) = int(V ∪ (T \ (A ∩ B))), thus A ∩ B is dense in T by Lemma 2.3.

(⇐): Suppose int(U ∪ A ∪ B) \U 6= ∅, then there exists a point x ∈ A∪ B and
an open set O such that x ∈ O ⊆ U ∪ A ∪ B and x /∈ U. We have the following
two cases:
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case 1: x ∈ (A ∪ B) \ int(cl(U))
If O ∩ (X \ cl(U)) 6= ∅. Since U = int(U ∪ A), then int(A \ U) = ∅, we

have X \ (A \ U) is dense. Similarly we have X \ (B \ U) is dense. Thus (X \
(A \ U)) ∩ (X \ (B \ U)) = X \ ((A ∪ B) \ U) is dense. But since O ∩ (X \ cl(U))
is a non-empty open set and satisfies O ∩ (X \ cl(U)) ⊆ (A ∪ B) \ U, we have a
contradiction.

If O ⊆ cl(U), then clearly, O ⊆ int(cl(U)), we prove it in case 2.
case 2: x ∈ int(cl(U)) \ U. Let T = int(cl(U)) \ U. Since U = int(U ∪

A) = int(U ∪ (A ∩ T)), then T \ (A ∩ T) is dense in T by Lemma 2.3. Similarly,
T \ (B∩ T) is dense in T. Thus (T \ (A∩ T))∩ (T \ (B∩ T)) = T \ ((A∪ B)∩ T) is
dense. But O ∩ T is a non-empty open set in the subspace T and satisfies O ∩ T ⊆
(A ∪ B) ∩ T, which leads to a contradiction.

By the above argument we know that U = int(U ∪ A ∪ B), which completes
the proof.

It should be noted that the first condition in statement (2) is equivalent to
saying that (1) holds for U = ∅, and the second condition in (2) is equivalent to
(1) holding for U 6= ∅.

Corollary 2.1. Let X be a topological space. If X satisfies
(1) the intersection of two dense sets is dense and
(2) every open set is closed,
then U = int(U ∪ A) = int(U ∪ B) ⇒ U = int(U ∪ A ∪ B) for every U ∈ Ω(X)

and A, B ⊆ X.

Proof. By Lemma 2.1 and Lemma 2.4, it is obvious.

The following example shows that a space satisfying the conditions of Corol-
lary 2.1 can be non-trivial.

Example 2.2. Let R be the set of real numbers and B = {(a, b) ∩ Q|a, b ∈ Qc} ∪
{{x}|x ∈ Qc}. Then B generates a topology τ on R. It is straightforward to prove that
the space (R, τ) satisfies the conditions of Corollary 2.1.

Now we can get our main result.

Theorem 2.1. Let X be a topological space. Then Ω(Y1 ∩Y2) ∼= Ω(Y1)∩Ω(Y2) for any
two subspaces Y1, Y2 of X if and only if X satisfies the equivalent conditions of Lemma
2.4. Therefore if X satisfies the equivalent conditions of Lemma 2.4, then Ω(Y1)∩ Ω(Y2)
is spatial for any two subspaces Y1, Y2 of X.

Proof.
(⇒): Suppose Ω(Y1)∩ Ω(Y2) ∼= Ω(Y1 ∩Y2) is satisfied for any two subspaces

Y1, Y2 of X, then U = int(U ∪ Yc
1), U = int(U ∪ Yc

2 ) ⇒ U = int(U ∪ Yc
1 ∪ Yc

2) is
satisfied for every U ∈ Ω(X) and any two subspaces Y1, Y2 of X.

(⇐): Let U ∈ Ω(Y1)∩Ω(Y2), then U = int(U ∪Yc
1 ) = int(U ∪Yc

2 ). By Lemma
2.4, we then have U = int(U ∪ Yc

1 ∪ Yc
2), hence U ∈ Ω(Y1 ∩ Y2), so Ω(Y1) ∩

Ω(Y2) ⊆ Ω(Y1 ∩ Y2).

Corollary 2.2. Let X be a topological space. If X satisfies the condition of Corollary 2.1,
then Ω(Y1 ∩ Y2) ∼= Ω(Y1) ∩ Ω(Y2) for any two subspaces Y1, Y2 of X .
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It is well known that a complemented sublocale of a spatial locale is spatial
(see [2]). However, not every spatial sublocale of a spatial locale is comple-
mented.

Example 2.3. Let X = R, S = Q, then S and X \ S are dense in X, so any sublocale T
of X satisfying S ∪ T = X must contain all the points of X \ S, then both S and T are
dense and thus Xb ⊆ S ∩ T. Hence S does not have a complement in Sub(X).

Now, we give a sufficient condition for a spatial sublocale of a spatial locale
to be complemented.

Proposition 2.1. Let X be a spatial locale and Y a sublocale of X. If X satisfies the
equivalent conditions of Lemma 2.4, then Y is complemented if and only if Y is spatial.

Proof. We only need to show the sufficiency.
(⇐): Since X is a spatial locale, then X ∼= ΩPt(X). Denote the complement

subspace of Pt(Y) as Y′, so
Pt(Y) ∪ Y′ = Pt(X), Pt(Y) ∩ Y′ = ∅

In categorical sense, the unions of subspaces can be considered as coproducts,
and the left adjoint Ω preserves colimits, so

Ω(Pt(Y) ∪ Y′) = Ω(Pt(Y)) ∪ Ω(Y′) = Y ∪ Ω(Y′) = Ω(Pt(X)) = X.
By Theorem 2.1, Ω(Pt(Y) ∩ Y′) = Ω(Pt(Y)) ∩ Ω(Y′) = Y ∩ Ω(Y′) = Ω(∅) is

the least sublocale of X.
Thus Y is a complemented sublocale of X, with complement Ω(Y′).

The binary case can be generalized to the case of an arbitrary family of sub-
spaces of X.

Lemma 2.5. Let X be a topological space. Then the following conditions are equivalent:
(1) U = int(U ∪ Ai), i ∈ I implies U = int(U ∪

⋃

i∈I
Ai) for any U ∈ Ω(X) and

any family {Ai|i ∈ I} of subspaces of X.
(2) The intersection of any family of dense subspaces of X is dense in X, and for each

open set V, either V is regular open or every intersection of any family of dense subspaces
of int(cl(V)) \ V is dense in int(cl(V)) \ V.

Corollary 2.3. Let X be a topological space. If X satisfies
(1) the intersection of any family of dense subspaces of X is dense in X and
(2) every open set is closed,
then U = int(U ∪ Ai), i ∈ I implies U = int(U ∪

⋃

i∈I
Ai) for any U ∈ Ω(X) and

any family {Ai|i ∈ I} of subspaces of X.

Theorem 2.2. Let X be a topological space. Then Ω(
⋂

i∈I
Yi) ∼=

⋂

i∈I
Ω(Yi) for any family

{Yi|i ∈ I} of subspaces of X if and only if X satisfies the equivalent conditions of Lemma
2.5. Therefore if X satisfies the conditions of Lemma 2.5, then

⋂

i∈I
Ω(Yi) is spatial for any

family {Yi|i ∈ I} of subspaces of X.

Corollary 2.4. Let X be a topological space. Then Ω(
⋂

i∈I
Yi) ∼=

⋂

i∈I
Ω(Yi) for any family

{Yi|i ∈ I} of subspaces of X if X satisfies the conditions of Corollary 2.3.
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3 Some special cases

In this section, we consider the case whether for some special given subspaces Yi,
i ∈ I, of X, Ω(

⋂

i∈I
Yi) =

⋂

i∈I
Ω(Yi) holds.

We first consider the case for Yi to be open subspaces.

Lemma 3.1. Let X be a topological space. If A, B ⊆ X are two closed subsets, then
U = int(U ∪ A) and U = int(U ∪ B) imply U = int(U ∪ A ∪ B) for any open set U.

Proof. Let A1 = A ∩ int(cl(U)), A2 = A \ int(cl(U)), A3 = A ∩ (int(cl(U)) \U).
and B1 = B ∩ int(cl(U)), B2 = B \ int(cl(U)), B3 = B ∩ (int(cl(U)) \U). Clearly,
A2, B2 are closed and int(U ∪ A1) = int(U ∪ A3) = U, int(U ∪ B1) = int(U ∪
B3) = U, int(A2) = int(B2) = ∅.

We first prove that int(A2 ∪ B2) = ∅. Suppose int(A2 ∪ B2) 6= ∅. Then there
exists a point x and an open set V such that x ∈ V ⊆ int(A2 ∪ B2). We then have
the following:

If V ⊆ A2, then int(A2) 6= ∅, which is a contradiction.
So, (X \ A2) ∩ V 6= ∅, and(X \ A2) ∩ V ⊆ int(B2), then int(B2) 6= ∅, which is

a contradiction also.
Now we show int(U ∪ A1 ∪ B1) = U.
Let T = int(cl(U)) \U. Suppose int(U ∪ A1 ∪ B1) \U 6= ∅. Then int(U ∪ A1 ∪

B1) ∩ T is a non-empty open subset in the subspace T. Clearly, A1 ∩ T = A ∩ T
and B1 ∩ T = B ∩ T. So, A1 ∩ T and B1 ∩ T are two closed subsets in the subspace
T.

Note that int(U ∪ A1 ∪ B1) ∩ T is a non-empty open set in the subspace T.
If int(U ∪ A1 ∪ B1) ∩ T ⊆ A1 ∩ T, then int(A1) ∩ T is a non-empty open set in

the subspace T and int(A1) ∩ T ⊆ A3, so T \ A3 is not dense in T. Then we have
int(U ∪ A3) 6= U by Lemma 2.3, which leads to a contradiction.

So, (int(U ∪ A1 ∪ B1) ∩ T) ∩ (X \ (A1 ∩ T)) = (int(U ∪ A1 ∪ B1) ∩ T) ∩
(T \ A1) 6= ∅, then (int(U ∪ A1 ∪ B1)∩ T)∩ (T \ A1) is a non-empty open subset
in the subspace T, which also leads to a contradiction by Lemma 2.3.

It suffices to prove U = int(U ∪ A ∪ B). Suppose int(U ∪ A1 ∪ B1 ∪ A2 ∪ B2) \
U 6= ∅, then there exists a point x ∈ A2 ∪ B2 and x ∈ int(U ∪ A1 ∪ B1 ∪ A2 ∪ B2),
thus there exists an open set O such that x ∈ O ⊆ U ∪ A1 ∪ B1 ∪ A2 ∪ B2, then
O ∩ (A3 ∪ B3) is a non-empty open set in the subspace T. Similar to the proof of
the necessity part of Lemma 2.3, we have U ∪ (O ∩ (A3 ∪ B3)) is open in X. So
U ⊂ U ∪ (O ∩ (A3 ∪ B3)) = int(U ∪ (O ∩ (A3 ∪ B3))) ⊆ int(U ∪ A1 ∪ B1), this
implies U 6= int(U ∪ A1 ∪ B1), and we have a contradiction.

Proposition 3.1. Let X be a topological space and Y1, Y2 be two open subspaces of X.
Then Ω(Y1 ∩ Y2) ∼= Ω(Y1) ∩ Ω(Y2).

Corollary 3.1. Let X be a locale and Y1, Y2 be two open spatial sublocales of X. Then
Y1 ∩ Y2 is spatial.

Lemma 3.1 cannot be generalized to an arbitrary family of closed sets as the
following example shows.
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Example 3.1. Let R be the set of real numbers endowed with the usual topology. Then
all single point sets {x}, are closed. Let U = ∅. Then U = int(U ∪ {x}), x ∈ R. But
∅ = U 6= int(U ∪

⋃

x∈R

{x}) = R.

But for a family of locally finite closed sets, we have the following:

Lemma 3.2. Let X be a topological space. If {Ai|i ∈ I} is a family of locally finite closed
sets, then U = int(U ∪ Ai), i ∈ I implies U = int(U ∪

⋃

i∈I
Ai) for any open set U.

Proof. Let T = int(cl(U)) \ U, A1
i = Ai ∩ (X \ int(cl(U))), A2

i = Ai ∩ T, i ∈ I.

Then {A1
i |i ∈ I} is a family of locally finite closed sets. Since U = int(U ∪ Ai), i ∈

I, then int(A1
i ) = ∅ for each i ∈ I.

We first prove int(
⋃

i∈I
A1

i ) = ∅. Suppose int(
⋃

i∈I
A1

i ) 6= ∅, then there exists a

point x ∈ int(
⋃

i∈I
A1

i ). Since {A1
i |i ∈ I} is a family of locally finite closed sets,

then exists an open set Ux, such that x ∈ Ux and Ux intersects with finitely many
members of {A1

i |i ∈ I}. We denote these members by Aj, j = 1, 2, . . . , k. Let

U
′

x = Ux ∩ int(
⋃

i∈I
A1

i ), then, clearly, x ∈ U
′

x and U
′

x ⊆
k⋃

j=1
Aj. Thus int(

k⋃

j=1
Aj) 6= ∅.

But from the proof of Lemma 3.1 and using induction, we have int(
k⋃

j=1
Aj) = ∅,

which leads to a contradiction. So, we have int(
⋃

i∈I
A1

i ) = ∅.

Since locally finiteness is a hereditary property, similar to the above proof,
we then have intT(

⋃

i∈I
A2

i ) = ∅, where intT denotes the interior operation in the

subspace T.
The rest is similar to the proof of the sufficiency part of Lemma 2.4.

Proposition 3.2. Let X be a topological space and {Yi|i ∈ I} be a family of open sub-
spaces. If {Yc

i |i ∈ I} is locally finite, then Ω(
⋂

i∈I
Yi) ∼=

⋂

i∈I
Ω(Yi).

Corollary 3.2. Let X be a locale and {Yi|i ∈ I} be a family of open spatial sublocales
such that {Yc

i |i ∈ I} is locally finite. Then
⋂

i∈I
Yi is spatial.

Now we consider the case for closed subspaces.

Proposition 3.3. Let X be a topological space. Then Ω(
⋂

i∈I
Yi) ∼=

⋂

i∈I
Ω(Yi) for any family

{Yi|i ∈ I} of closed subspaces of X.

Proof. Let {Yi|i ∈ I} be any family of closed subspaces of X. If U ∈
⋂

i∈I
Ω(Yi),

then U = int(U ∪ Yc
i ), i ∈ I, we have Yc

i ⊆ U, i ∈ I since Yc
i is open for each

i ∈ I. So
⋃

i∈I
Yc

i ⊆ U, thus U = int(U ∪
⋃

i∈I
Yc

i ), then we have U ∈ Ω(
⋂

i∈I
Yi), hence

⋂

i∈I
Ω(Yi) ⊆ Ω(

⋂

i∈I
Yi). The rest is obvious.
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Corollary 3.3. Let X be a locale and {Yi |i ∈ I} be any family of closed spatial sublocales.
Then

⋂

i∈I
Yi is spatial.

Proposition 3.4. Let X be a topological space. Then Ω(Y ∩
⋂

i∈I
Yi) ∼= Ω(Y) ∩

⋂

i∈I
Ω(Yi)

for any family {Yi|i ∈ I} of closed subspaces of X and any open subspace Y of X.

Corollary 3.4. Let X be a locale. Then Y ∩
⋂

i∈I
Yi is spatial for any family {Yi|i ∈ I} of

closed spatial sublocales of X and any open spatial sublocale Y of X.
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