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Abstract

In this paper, we study the existence of periodic solutions for n'" order
-1 ]
functional differential equations x(")(t) + nZ bilxD(O]F + f(t,x(t — 1)) =
i=0

p(t). Some new results on the existence of periodic solutions of the equations
are obtained. Our approach is based on the coincidence degree theory of
Mawhin.

1 Introduction

In this paper, we are concerned with the existence of periodic solutions of the n
th order functional differential equations

n—1 .
x(8) + b DO + f(tx(t = 1)) = p(t) (1.1)

where b;(i = 0,1,---,n — 1) are constants, k is a integer, f € C(R% R) and
f(t+T,x) = f(t,x) forVx € R, p € C(R,R) with p(t + T) = p(t).

In recent years, there are many papers studying the existence of periodic so-
lutions of first, second or third order differential equations|1, 3-4, 10-11, 13-16, 18,
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20-21, 23]. For example, in [11], Zhang and Wang studied the following differen-
tial equations

X () 4 ax"Z1(E) 4 b E () 4+ ex () + gt x(E— 1, X (F— ) = p(b)
(1.2)
The authors established the existence of periodic solutions of Eq. (1.2) under
some conditions on a,b, c and 2k — 1.
In [5-9, 12, 17, 19, 22], n, 2n and 2n + 1 th order differential equations of the
form

-1 ,
K20 (1) +E ax ) () + (1) * gt x) = 0 (13)
]:
n—1 .
X (1) + ]-‘El ajx(2]+1)(t) +¢(t,x) =0 (1.4)

were discussed. The authors obtained the results based on the damping terms
xD(t)(i=1,---,n—1). But few of them studied the differential equations with
the damping terms [x()(£)]¥(i =1,--- ,n — 1), where k > 1.

In present paper, by using Mawhin’s continuation theorem, we will establish
some theorems on the existence of periodic solutions of Eq. (1.1). The results are
related to not only b; and f(t, x) but also the positive integer k. In addition, we
give an example to illustrate our new results.

2 Some lemmas

We investigate the theorems based on the following Lemmas.

Lemma 2.1 If k > 1is an integer, x € C"(R,R), and x(t + T) = x(¢), then

i

T T T
([ I @lant <T@kt << RO@FanE @21

The proof of Lemma 2.1 is easy, here we omit it.

We first introduce Mawhin's continuation theorem.

Let X and Y be Banach spaces, L : D(L) C X — Y be a Fredholm operator
of index zero, here D(L) denotes the domainof L. P : X — X,Q : Y — Y be
projectors such that

ImP = KerL,KerQ = ImL, X = KerL & KerP,Y = ImL & ImQ.

It follows that
L’D(L)QKET’P . D(L) N KerP — ImL

is invertible, we denote the inverse of that map by K. Let () be an open bounded

subset of X, D(L) N Q # O, themap N I : X — Y will be called L-compact in Q, if
QN(Q) is bounded and K,(I — Q)N : 3 — X is compact.
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Lemma 2.2 [2] Let L be a Fredholm operator of index zero and let N be L-
compact on (). Assume that the following conditions are satisfied:

(i) Lx # ANx,Vx € 0O ND(L),A € (0,1).

(ii) QNx #0,Vx € 0O N KerL,

(iii) deg{QNx, QN KerL,0} # 0, o
Then the equation Lx = Nx has at least one solution in Q" D(L).

Now, we define Y = {x € C(R,R) | x(t + T) = x(t)} with the norm |x|e =
max;epo,r{[x(£)|} and X = {x € C""Y(R,R) | x(t+T) = x(t)} with norm
x|l = max{|x|eo, |x oo - - -, |x" V| }, we can easily see that X, Y are two Banach
spaces. We also define the operators L and N as follows:

L:D(L)c X =Y, Lx=x",D(L) = {x|x € C"(R,R), x(t + T) = x(¢t)

¥
(2.2)
2

N:X—Y,Nx=— 7‘1):1 bi[xO(D]F = F(t,x(t — 1)) + p(t).

_ 3)
i=1

It is easy to see that Eq. (1.1) can be converted to the abstract equation Lx =
Nx. Moreover, from the definition of L, we see that kerL = R, dim(kerL) = 1,

ImL = {yly €Y, fOTy(s)ds = 0} is closed, and dim(Y \ ImL) = 1, we have
codim(ImL) = dim(kerL), so L is a Fredholm operator with index zero. Let

P:X — KerL, Px = x(0),Q: Y — Y\ ImL,Qy = + [ y(t)dt

and let
L|D(L)OK€1’P . D(L) N KerP — ImL.

Then L|p(1)nkerp has a unique continuous inverse Kj,. One can easily find that N
is L-compact in (), where () is an open bounded subset of X.

3 Main result

Theorem 3.1 Suppose n = 2m + 1, m > 0 an integer, k is odd, and the following
conditions hold
(H;p) the function f satisfies

lim [{50] <, (3.1)

X—00

where v > 0.
(H2)
|bo| >y (3.2)

(H3) there is a positive integer 0 < s < m such that

bys #0, if s=m (3.3)
bys #0,bp5+;=0,i=1,2,--- ,2m—2s, if 0<s<m '
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(Ha)
Aq1(2s,k Aq1(2s,k) k-1 .
A2(25,k)+%+k|boﬁzs[ﬁ]klfl <|bal, if 1<s<m
ol — 0l —
'yAl(Z,k) 2 Al(z,k) k=1 .
= 4 k|b| T[] F < |bp|, if s=1
|b0|—’}’ | 0| [|b0|—’)/] |2| f

(34)
where Aj(s, k) = Z |b;| TG0k, Ay(s, k) = Z |b;| T~k Then Eq. (1.1) has at

least one T- perlodlc solutlon
Proof. Consider the equation

Lx = ANx,A € (0,1)
where L and N are defined by (2.2) and (2.3) . Let
O ={x € D(L)/KerL,Lx = ANx for some A€ (0,1)}

for x € ()1, We have

2s .
xXW(t) = A ¥ bi[xO () = Af(t, x(t — 1)) + Ap(t), A € (0,1) (3.5)

i=0

Multiplying both sides of (3.5) by x(t), and integrating them on [0, T|, we have
for A € (0,1)

/OTx(”)(t)xt dt :—AZb/ [x @ (0)]Fx(t)dt—

(3.6)
A/ftxt—r dt+/\/
It is easy to see that, for any positive integer i,
T .
/ ¥V (1) x(£)dt = 0. (3.7)
0

In view of n = 2m + 1 and k is odd, it follows from (3.3) and (3.7) that

ho /0 U () = —izslb,- /O " () (b)dt — /O " x(t — 1) x(B)dt+
/0 L oBx(t)dr. 38)

From which it follows that

ol [ s [ Zrbux () + £t x(t = 0)| + [p()])de
(3.9)
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By using Hélder inequality and Lemma 2.1, from (3.9) , we obtain

T T
ool [ e ar < (f |x<t>|k+1dt% Il RO @

/|ftxt—r>>|“dt>% (f 0]
(3.10)
< / |xt|k+1dt%2|b|T25 1) / |x25 |k+1dt)k—k1
/|ftxt—r>>|“dt>% + POl TR,

So

ol [ ()4 e < Ay(as k)[R o)
T k+1 k
(U= o) Fan . (311)

where 1, is a positive constant. Choose a constant ¢ > 0 such that

v+ < |b
and
(v +€)A1(2s,k) 25 A1(25,k) e ,
<
?2(25'>k>+< o=+ "lb"'kf Tl -G <l Frsesm
+¢e)A1(2, Aq(2, k=1
=i AP ) T <kl i s =1

For the above constant ¢ > 0, we see from (3.1) that there is a constant § > 0 such that
If(t,x(t —1))| < (v +e)|x(t — 1)k, for |x(t—7T)| >6,t €[0,T] (3.12)
Denote
A =1{te[0,T]: |x(t—1)| <3}, A0 = {t € [0,T]: |x(t—7)| >6}.  (3.13)
Since

k+1

/0T|f(t,x(t—r))|’%dt </ £t x(t— 1) ]IikldtJr/ £t x(t — 1)) Fdt
<) FT+(y+e)+ / |x(t — 7)|F+1dt

= (T4 (49 [ (o) e

(3.14)
where fs = max;c(o 1),x|<s | f (£ x)|. Using inequality

(a+0b) <ad +0 for a>0,b>0and 0<I1<1 (3.15)
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it follows from (3.14) that
T kel ok ke T Kl g0 ok
([ 1fxt—0)Tands < (TR + (r+e)([ Ix(lan (316)
0 0
Substituting the above formula into (3.11) , we have

ool —Cr+0l( [ O < ans, B[ 1O 4

3.17)
where 13 is a positive constant.
That is
& < A1(2s,k) £
/ (B < G / XA £y (3.18)

where u3 is a positive constant.
On the other hand, multiplying both sides of (3.5) by x(%*)(t), and integrating
on [0, T|, we have

Jo XU (Hx®) (Bt = — Zb T[x ()] (25)(t)dt

(3.19)
/ F(tx(t —1))x?) dt+/
If1 <s <m,since
@m0 @) (0 — 0. [ @D (1)K (P dp —
/0 2m41) (1) (2 (t)dt_o'/o @D (1)Ex ) (1)t = 0, (3.20)
and ;
X = — =1 (#)x )

/0 (1)) x k/ 2D (1)x (b)dt (3.21)

by using Holder inequality and Lemma 2.1, from (3.19) , we have

|bas| /oT |x(29) (1) [+ g
T 25—2 )
S/O PV OIL Y Bil D (O + £t x(t = )| + [p(1)|Jat
i=1
+Hhﬂ/TMUH“4MQ“”UHMKOMt
/ ’x (2s) )’k—Hdt)kH[Z ]b]T2S i) / |x (2s) )|k—i—1dt)kL
i=1
([ 170 = ) F ) + p(o) TR+

klbo||X(t)|oo/0 [x(B)[Hx® () dr (3.22)
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x(T), there exists & € [0, T] such that x' () = 0. Hence for t € [0, T}

=x C)—t—/gtx

Using Holder inequality and Lemma 2.1, we have

T " k- T " k+1 1
Dlw < [ 1% ()l < TET([ 1 (1) 1ar)
0 0
T

STzs_l—,;l(/ 1x@) () [FldE) e () 3.23)
0

Since x(0) =

Using inequality
T/ x(H)['F < T/ ()Nt for 0<r<Iand VxeR.  (3.24)

and applying Holder inequality, we obtain from Lemma 2.1
/ ()Y @D (1) |dE < ( / x(#)[Fdt) T / =1 (1) kdp)t
< Tk+1 / |x |k+1dt)%(/ | (2s—1) ( )|k+1dt)ﬁ

T1+k+1/ ’x |k+1dt / ’k+1dt)k+1
(3.25)

Substituting the above formula, (3.16) and (3.23) into (3.22) , we have

’b2s fO ’x 25 ’k—Hdt
T
<([ rxzs ()1 TT Az (25, K)( [ 1) (1) de)
T ke n (326)
+(r+o)([ O T+ (p(O)]eo + f5)TF]
—|—k|b0’T2S/ |x25 )’k—Hdt k+1/ |x ’k+1|dt)],§—
Then, we have
T
(o] —Aa(2s, ) ([ 132 (0] 1ar)
(3.27)

<k’b0|T25/ ’x2s ’k+1dtk1/ ’x |k+1’dt
Hr+ ([ a4

where 14 is a positive constant.
Using inequality
(a+0b) <a +0 for a>0,b>0and 0<I1<1 (3.28)

it follows from (3.18) that
k_ A1 2s, k k 1 k_
[ wortant < (AEE g Mgkt e @29)
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where 15 is a positive constant.
Substituting the above formula and (3.18) into (3.27) , we have

_ ~ (r+eAi(2s,k) 261 A1(2s/k) ! / (29) () o+ g o
(sl ~Aa(as ) = ST KT ) x2)(1) [ p) it

<u5k|bOyT25/ 1) (1) 1) BT 4 g

(3.30)
where ug is a positive constant.

Ifs=1,since/ I (1)] dt—O/ X" (£)dt = —k/ (1)]2dt,

from (3.19) , we have
b [ (0}t = kb [ (el ()P

0
/ftxt—r dt+/ Hdt ()3.31)
Applying the above method, we have

(r+eA(2k) 2 A1 2 k) 154 / )L p)y s

< u7k|boyT2(/ |x//(t)|k+1dt)k+1 + g
0

(3.32)
where u7, ug is a positive constant.
Hence there is a constant M7, M, > 0 such that
T
/ 129 (1) [FHla < My (333)
0
and .
/ x(£)[FHldt < My (3.34)
0

From (3.5), using Holder inequality and Lemma 2.1, we have

/yx |dt<2]b|/ () kdt+|bo|/ 1x(#)[Fdi+
[ 15— oplar+ [ pcolar
2s ) 1 T K
< 3 B TER R ([ ) ()
i=1 0
1 T k
bl TFT( [ x(p] a7
0
a7 s
F(r+OTH([ O + (p(0)]eo + )T
25 - 1 k 1 k
< Y I | TV ET (M) BT o || TFT (M) F1

i=1
+ (7 +THI (M) BT + (|p()|e + f5)T = M ()3.35)
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where M is a positive constant. We claim that
x( |<T’“1/ D (D)dt, (= 1,2, n—1) (3.36)

In fact, noting that x("=2)(0) = x("~2)(T), there must be a constant & € [0, T]
such that x("~1 (&) = 0, we obtain

D] = @) + [ eS| < D)
+/ X0 (#)|dt = /]x Bldt. ()3.37)

Similarly, since x("=3)(0) = x(*=3)(T), there must be a constant & € [0, T] such
that x("~2)(&) = 0, from (3.37) we get

I”Z(H—M”2€z+/ (1) dﬂ</|x”1|ﬂ<T/|x pdt.

(3.38)
By induction, we have

x( |<T’“1/ D (D)dt, (= 1,2, n—1) (3.39)
Furthermore, we have

| ()|ng"11/ W)t < TIM, (1 =1,2,-,n—1)  (3.40)

1
From (3.34) it follows that there exists a ¢ € [0, T] such that |x(§)| < M;*".
Applying Lemma 2.1, we get
(Ol < x() + / fdt < MET 4 TF( / X (1)
< M% +T25 1+k+1 / ’x (2s) (t)]kﬂdt)k%l — MSL +T25—1+W’;1M{<%
0
(3.41)
It follows that there is a constant A > 0 such that ||x|| < A, Thus Q) is bounded.
Let )y = {x € KerL, QNx = 0}. Suppose x € (), then x(t) = d € R and
satisfies

QNx = %/OT[—bodk — f(t,d) + p(t)]dt = 0, (3.42)

We will prove that there exists a constant B > 0 such that |d| < B. If |[d| < §,
taking 0 = B, we get |d| < B. If |d| > ¢, from (3.42) , we have

bolld[ = t/ £t,d) + p(D)dt

(3.43)
—/ [t d)|dt+ [p(£)]eo < (v +€)|d* + [p(t)|oo

| /\
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Thus
| < [—’p(m‘” Jk (3.44)
= ool = (7 +¢)
Taking [‘b()'f_(t%]% = B, we have |d| < B, which implies (), is bounded. Let Q)

be a non-empty open bounded subset of X such that Q D Oy U Q,. We can easily
see that L is a Fredholm operator of index zero and N is L-compact on Q). Then
by the above argument we have
(i) Lx # ANx,Vx € 90QND(L),A € (0,1).
(i) QNx # 0,Vx € 92 N KerL.

At last we will prove that condition (iii) of Lemma 2.2 is satisfied. We take

H: (QNKerL) x [0,1] — KerL

1-— T 3.45
H(d 1) = sgn(—boyd + 222 [ o~ pa,a) 4 par O
From assumptions (H;) and (H;), we can easily obtain H(d, u) # 0,Y(d, u) €
0O N KerL x [0,1], which results in

deg{QN,QNKerL,0} = deg{H(-,0),QNKerL,0} = deg{H(-,1),QQNKerL,0} #0
(3.46)
Hence, by using Lemma 2.2, we know that Eq. (1.1) has at least one T-periodic
solution.

Theorem 3.2 Suppose n = 4m + 1, m > 0 an integer, k is odd, conditions (Hj ), (H2)
hold. If
(Hs) there is a positive integer 0 < s < m such that

b45_3 ?é 0, b4s—3—|—i = O,Z =1,2,---,4m —4s+ 3, (347)

(He)

Az(“””‘”% W]%<%3, if 1<s<m
ol — ol —

’)/A1<1/k) :

<y, if s=1

bo| — v i

+k[bo| T

(3.48)
Then Eq. (1.1) has at least one T-periodic solution.
Proof From the proof of Theorem 3.1, we have

T kL A1(4S—3,k)
(f, oFans < =

where u9 is a positive constant.
Multiplying both sides of (3.5) by x(4=3)(¢), and integrating on [0, T], we have

T k
( /0 =3 (DA FT g, (3.49)

45—3

T .
/ xX(H)x@=3) (Hdt = —A Z b/ [x@ (£)]Fx 453 (1)t
0

(3.50)
—/\/ F(t x(t—1))x=3)( dt+A/ xW=3) (1)dt
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Since
T T
/ x(4m+1)(t)x(4s—3)(t)dt _ (_1)2m—25+2/ [x(2m+2s_1)(t)]2dt (3'51)
0 0
Then from (3.50) (3.51) it follows that
T
bas-s [ x50 ()
0
45—4
<_ Zb/ Kx(s=3) (1) gy — / F(t, x(t — 1)) x® = (1)dt

+ / x®=3)(1dt ()3.52)

By using the same way as in the proof of Theorem 3.1, the following theorems
can be proved incasel <s <mors = 1.

Theorem 3.3 Suppose n = 4m + 1, m > 0 for a positive integer, k is odd, condi-
tions (Hl)/ (Hz) hold. If
(Hy) there is a positive integer 0 < s < m such that

bas 1 # 0,bgs 10;=0,i=1,2,--,4m —4s+1 (3.53)
(Hs)
Ap(as —1,k) + YAES ZLE) |y sl LR g5
bo| — |bo| — v

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.4 Suppose n = 4m + 3, m > 0 an integer, k is odd, conditions (H;) —
(Hp) hold. If
(Hy) there is a positive integer 0 < s < m such that

b45+1 ?é 0, b4s+1+i = 0,1 =1,2,---,4m —4s+1 (355)

(Hio)

’)/A1(4S + 1,k)
|bo| —

<—b1, Zf s=0

A1(4S + 1, k) -

Ax(4s +1,k) + + klbo| T4+ [ < —bygyr, if 0<s<m
.

(3.56)
Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.5 Suppose n = 4m + 3, m > 0 an integer, k is odd, conditions (Hy), (Hz)
hold If
(Hj1) there is a positive integer 0 < s < m such that

b45_1 75 0, b4s—1+i = 0,1 =12,---,4m —4s+3 (357)
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(Hi2)

Ao(4s —1,k) + (

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.6 Suppose n = 4m, m > 0 an integer, k is odd, conditions (Hj) hold.
If

(Hiz)
bo > (3.59)

(Hy4) there is a positive integer 0 < s < 2m such that

bys—1#0, if s=2m (3.60)
bzs_l#0,b25_1+i=0,i=1,2,"',4m—25, Zf 0<s<2m ’

(His)

vA1(2s — 1,k)
|bo| —

A1(2s —1,k)

k=1
N bys_1],
|b0|_')/ ] <’ 2s 1’

if 1<s<2m  (3.61)

A(25 —1,k) + + k|bg|T? 71|
’YAl (1/ k)

< |by|, if s=1
bo| — oal,if

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.7 Suppose n = 4m + 2, m > 0 an integer, k is odd, conditions (Hj)
hold. If

(His)
—bo >y (3.62)

(Hj7) thereis a positive integer 0 < s < 2m + 1 such that

bys—17#0, if s=2m+1 (3.63)
bys—1 #0,bps_1,;=0,i=1,2,---,4m —2s, lf 0<s<2m—+1 '

(Hig)

Aq(2s—1k —17A1(25—1,k) k-1
Az(25 =1 k) + |1b(0|s—7 L+ kfbo| T 1[15,057_7).] £ < |bos—1l,
if 1<s<2m+1
Aq(Lk .
7‘173‘7(_7)< b1, if s=1
(3.64)
Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.8 Suppose n = 4m, m > 0 an integer, k is odd, conditions (H7), (H13)
hold. If
(Hy9) there is a positive integer 0 < s < m such that

b45_2 75 0, b4s—2+i = O,Z =12,---,4m —4s+1 (365)
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(Hzo)
Ap(ds — 2, k) + LAEZH | a2 [AEE201RE < py o if 1<s <m
Aq(2,k) Aq(2,k) k=L
220 ko | T2 )T < o, i s =1

(3.66)
Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.9 Suppose n = 4m, m > 1 an integer, k is odd, conditions (Hy), (Hi3)
hold. If
(Hp1) there is a positive integer 1 < s < m such that

b4s_4 7§ 0, b4s—4+1' =0,1=1,2,---,4m—4s+3 (367)
(H22)
As(4s — 4,k) + % + k|bo|T4s—4[%]"T < —byss (3.68)

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.10 Suppose n = 4m +2, m > 1 an integer, k is odd, conditions
(H1), (H16) hold, and the following conditions hold
(Hp3) there is a positive integer 1 < s < m such that

bys # 0,bysi =0,i =1,2,--- ,4m —4s+1 (3.69)
(Hos) )
As(4s,k) + 7@1‘(457" + k|bg |T45[‘L“l§ = DT < by, (3.70)

Then Eq. (1.1) has at least one T-periodic solution.

Theorem 3.11 Suppose n = 4m +2, m > 1 an integer, k is odd, conditions
(Hl), (H16) hold. If
(Hps) there is a positive integer 1 < s < m such that

b45_2 75 0, b4s—2+i = 0,1 =1,2,---,4m —4s+3 (371)
(Hos)
Ap(4s —2,k) + ZAEZH oy | o2 (AT gy 1 <s <m
TIEE 4 kb | TGN T < by, if s =1
(3.72)

Then Eq. (1.1) has at least one T-periodic solution.
The proofs of Theorem 3.3-) 3.11 are similar to that of Theorem 3.1.

Theorem 3.12 Suppose k is even, conditions (H; ) hold. If

(Hyy) there is an constant ¢ > 0 such that f(t,y) + box* < —|p(t)|e ¥t € R;
x|, ly| > cand f(t,0) > |p(t)|e Yt € R.

(Hpg) there is a positive integer 0 < s < n — 1 such that

bS<O/ lf S:n—l
{ bs<O’b5+i:01i:1/2/"',n—l—S, lf O<s<n—1 (373)
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(H29)
As(s, k) + Tk < |bs] (3.74)

s—1 .
where A3(s, k) = ¥ TG~Dk|p,|. Then Eq. (1.1) has at least one T-periodic positive
i=0

solution.
Proof. For x(t) > 0,x € Oy, we have

= —AZb —Af(t,x(t —71)) + Ap(t), A€ (0,1).
Integrating the above formula on [0, T], we have
Jo LF(ex(e =) + bolx() [l = — X b i 1O 0)at + ) ployat - (375)
If s > 1, since

— Z b; fo X (£)|kdt > —b; fo |x) () [*dt — Z |b|f0 |x() (1) |kdt

(3.76)
> [—bs — ):TS Db )] [ %) |kdt>0
it follows from (3.75) and (3.76) that we have
fOT [f(t, x(t — T)) + bo|x(t)[¥]dt > fOTp(t)dt. (3.77)

If s = 1, it is easy to see that the above inequality holds.
We can prove that there is a t; € [0, T| such that |x(#;)| < c¢. Indeed, from
(3.77) , there is a ty € [0, T] such that

f(to, x(to — 7)) + bolx(to) [ = —[p() oo (3.78)

If 0 < x(tg) < ¢, then take t; = tg so that 0 < x(t1) < c.

If x(ty) > c, it follows from assumption (Hpy) that 0 < x(tp — 7) < c. Since x(t)
is continuous for t € R and x(t + T) = x(t), so there must be an integer k and a
point t; € [0, T] such that tg — T = kT + t1. so |x(t1)| = |x(to — T)| < ¢, which
implies

(D)oo < c+ [T X (B)|dt < c+TF ([T ¥ (B)|kd)E < c+ T k([ |x)(£) k)
(3.79)
On the other hand, from (3.75) , if s > 1, we have
bs fo |x (t)|kdt
zbfo O (#)kdt —bo [ [x(t)[Fdt — [ F(t,x(t —T))dt+ [ p
(3.80)
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Thus, applying Lemma 2.1, we get

1bs| [, |0 (1) Fdt < z 1bi] Ji 1O () [Fdt+
|bo|fo |x (¢ |"dt+fo F(tx(t—)|dt + [ |p(t)|dt
z |b|f0 |x () |kdt—|—|bo|f0 lx(t)[kdt + (7 +¢) fo |x(t — T)|kdt

- s+ DT
sLT Tk b [ [ ()t + [Jbol + (7 + ITIx(8)[ + (5 + [p())T
(3.81)
We can prove that there is a constant M3 > 0 such that
fo 1x) (1) [*kdt < M3 (3.82)
For some nonnegative integer [, there is a constant 0 < & < 1 such that
(1+x) <14+ ({+1)xx€(0,h) (3.83)
Now we consider two cases to finish our proof.
Case 11f (fOT |x(5)( )|kdt)k < - }ch, then
[x(t)]eo < €+ TS—%(/OT %) (1) [Fd)F < ¢ +% (3.84)

So substituting the above formula into (3.81) , we have

[1bs] - ZTS D[] / [ (1)]*dt < Hbo!+(7+€)]T((C+%))k+(ﬁs+!P(f)I)T

(3.85)
Hence there is a constant M3 > 0 such that
/ 1xO) (£)[Fds < Ms (3.86)
Case 21f (fy| [x()(#)[Fdt)k > —<—.
T kh
x(Ol% < [e+ Tk fo %) (8) [Fat) F]
t

|
_TSk 1(f |x (t)|kd)[1+Ts‘%f |x()(t) Ikdt%]k
< T3 12O (1) Fd) 1+
(t)[*dt)

c(k+1)
Tk (T 16O (1) Fat) &
= T [xO () [Fde) + c(k + 1T EDH T 20 (1) Fan) T
(3.87)

Substituting the above formula into (3.81) , we have
|bs | fo |x (t)|kdt
< Z TEDK by [y ) (1) [Fde + [[bo| + (v + &) [T*(fy |x)(¢)[*dt)

+C(k+1)TS(k ”*k(foT! J(B)[5d) T+ (fs+ [p(HNT
(3.88)
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Then

b5 —As(s,k) — (7 + )T [T (D) dt y
< clk+ 1)[lbo] + (7 + )T ED ([T 50 (1) [Fat) T + (fs + |p())T

(3.89)
Hence there is a constant M4 > 0 such that
Jo 16O (1) Fdd < My (3.90)
If s = 1, similarly, we can prove that there is a constant M5 > 0 such that
1% (8)[Fdd < Ms (3.92)

The remainder can be proved in the same way as in the proof of Theorem 3.1.

Theorem 3.13 Suppose k is even, conditions (Hj) and (Hpyg) hold. If

(Hzg) there is an constant ¢ > 0 such that f(t,y) + box* > |p(t)|e ¥Vt € R;
x|, |y| > cand f(£,0) < —|p(t)|Vt € R.

(Hz1) there is a positive integer 0 < s < n — 1 such that

{ bs >0, if s=n—1

bS>0’b5+i:0/i:1/2/"'/n—l—S, lf O<s<n—1 (393)

Then Eq. (1.1) has at least one T-periodic positive solution.

Example 3.1 Consider the following equation

<0+ 1000 0P + Tl (O + splx()P + sl (sin) et = )P = cost
where n = 5,k = 3,by = b3 = 0,bp = 1000,b1 = 155,b0 = gayg, f(t,X) =
0 (sint)x3, p(t) = cost, T = 7. Thus, T = 271, 7 = g5055, A1(2, k) = [b1](27)% +
|ba| = 135 x (27r)® 4 1000. Obviously assumption (H;) — (H3) hold and

k k) k=1
18120 4 kfbo| 22 [T < [by (3.95)

By Theorem 3.1, we know that Eq. (3.94) has at least one 277-periodic solution.
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