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Abstract

Let f : X → Z and g : Y → Z be maps between connected pointed
CW-complexes. Recall the definition of pairing with axes f and g due to
N.Oda [16]. In this paper, we introduce (n)-pairing, which is a generalization
of H(n)-space due to Y.Félix and D.Tanré [5] and define a family of subsets
of the homotopy set of maps. We give some rational characterizations of it
and illustrate some examples in Sullivan models. Also we consider about
the G(n)-sequence of a fibration which is a generalization of G-sequence
[11],[13].

1 Introduction

Let f : X → Z and g : Y → Z be based maps between pointed connected CW-
complexes. Recall

Definition 1.1 ([16]). There is a pairing with axes f and g and denote as f ⊥ g if
there is a map F : X × Y → Z (called a pairing) with the commutative diagram:

(1) X × Y
F

##

Y
iYoo

g
��

X
f

//

iX

OO

Z.

Here iX and iY are the maps with iX(x) = (x, ∗) and iY(y) = (∗, y).
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This is a generalization of a cyclic map [18], i.e., a map f : X → Z is a cyclic
map when Y = Z and g = idZ. Also it a generalization of an H-space, i.e., a space
X is an H-space when X = Y = Z and f = g = idX and F is the multiplication.
For n > 0, put X(n) the n-th Ganea space for X for a positive integer n and
pX

n : X(n) → X the n-th Ganea fibration in the fiber-cofiber construction [6]([1,
Definition 1.59], [4, p.357]). Y.Félix and D.Tanré [5] relaxed the definition of ‘H-
space’ by using Ganea space and defined ‘H(n)-space’. In this paper, we will
relax Definition 1.1. By using the following Definition 1.2, we can define a family
(see Theorem 1.5 below) of subsets of the homotopy set of maps and also it is
possible to calculate the family by using the model of Ganea fibration in rational
homotopy.

Definition 1.2. We say there is an (n)-pairing with axes f and g and denote as
f ⊥

n
g if there is a map F(n) : (X × Y)(n) → Z (called an (n)-pairing) with the

commutative diagram:

(2) (X × Y)(n)
F(n)

&&

Y(n)
iY(n)oo

g◦pY
n

��
X(n)

f ◦pX
n

//

iX(n)

OO

Z.

Here iX(n) and iY(n) are canonical maps respectively obtained from maps iX and
iY in (1) [1, Proposition 1.60].

For n ≤ n′, we have f ⊥
n

g if f ⊥
n′

g since there is the map F(n) : (X ×Y)(n) →

Z by F(n) := F(n′) ◦ pX×Y
n,n′ in the commutative diagram:

X(n)

f ◦pX
n

��=
==

==
==

==
==

==
==

==
==

iX(n)//

pX
n,n′

��

(X × Y)(n)

pX×Y
n,n′

��

Y(n)

g◦pY
n

����
��

��
��

��
��

��
��

��
�

iY(n)oo

pY
n,n′

��
X(n′)

f ◦pX
n′ ''NNNNNNNNNNNNiX(n
′)
// (X × Y)(n′)

F(n′)

��

Y(n′).

g◦pY
n′wwppppppppppppiY(n
′)

oo

Z.

Since the direct limit X(∞) := lim
−→

n

X(n) of the maps pX
n,n′ : X(n) → X(n′) for

n ≤ n′ has the homotopy type of X [6], we see f ⊥ g if and only if f ⊥
∞

g. If

f ⊥
n

g and h : Z → U is a map, then h ◦ f ⊥
n

h ◦ g. If f ⊥
n

g and h : X′ → X is a

map, then f ◦ h ⊥
n

g. Recall that X is an H(n)-space [5] if and only if X = Y = Z

and f = g = idX in (2). For example, the complex projective space CP3 is an
H(2)-space but not CP2 [5, Ex.5].

Also denote the set of the homotopy classes of the axes of a map g : Y → Z
by g⊥(X, Z) := {[ f ] ∈ [X, Z]| f⊥g} [15]. This is a generalization of a generalized
Gottlieb set due to Varadarajan [18]. Especially, Gn(Z, X; f ) := f⊥(Sn, Z) is said
as the n-th evaluation subgroup of a map f [20]. We will relax the set g⊥(X, Z) as
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Definition 1.3. For a map g : Y → Z, the set of homotopy classes of axes of
(n)-pairing with g is denoted as

g
⊥
n (X, Z) := {[ f ] ∈ [X, Z] | f ⊥

n
g}.

Especially, denote G
(n)
m (Z, X; f ) := f

⊥
n (Sm, Z) as the m-th (n)-evaluation sub-

group of f : X → Z. Also G
(n)
m (Z) := id

⊥
n

X(S
m, Z) as the m-th (n)-Gottlieb

group of Z. An element a ∈ πm(Z) is in G
(n)
m (Z, X; f ) if there is a map F(n) :

(X × Sm)(n) → Z such that the following diagram commutes:

(3) (X × Sm)(n)
F(n)

&&

Sm(n)
iSm (n)
oo

a◦pSm
n

��

Smsoo

a
vv

X(n)
f ◦pX

n

//

iX(n)

OO

Z,

where s is a section [6] induced from the fact cat(Sm) = 1 (see below).

Here cat(X) is the L-S (Lusternik-Schnirelmann) category of X, that is the least
integer n such that X can be covered by n + 1 open subsets contractible in X [14].
Then cat(X) ≤ n if and only if the n-th Ganea fibration pX

n : X(n) → X has
a section [6]. Recall the product formula [9, §4] of Ganea space: the inclusion
(X × Y)(n) ⊂ (X × Y)(∞) = X(∞) × Y(∞) can be deformed into ∪i+j=nX(i) ×
Y(j) ⊂ X(∞) × Y(∞), which is induced by the universality of the canonical A∞-
structure of loop space due to Stasheff [17]. Thus there exists the commutative
diagram ([5, p.716])

(4) (X ×Y)(n)

pX×Y
n ''OOOOOOOOOOO

α ..
∪i+j=nX(i)× Y(j)

β

nn

∪i+j=npX
i ×pY

jvvnnnnnnnnnnnn

X ×Y,

in particular, (X × Sm)(n)

pX×Sm
n ((PPPPPPPPPPPP

α ..
X(n) ∪ X(n − 1)× Sm(1)

β

nn

pX
n ∪pX

n−1×pSm

1uukkkkkkkkkkkkkk

X × Sm

when Y = Sm. Especially note that there exists the commutative diagram for
maps α and β in (4)

(5) X(n) ∨ Y(n)
iX(n)∨iY(n)

vvmmmmmmmmmmmmm
incl.

))RRRRRRRRRRRRRR

(X × Y)(n)
α ..

∪i+j=nX(i)× Y(j)
β

nn

in this paper. Then we have



56 T. Yamaguchi

Proposition 1.4. In πm(Z),

G
(n)
m (Z, X; f ) = Gm(Z, X(n − 1); f ◦ pX

n−1).

In particular, G
(n)
m (X) = Gm(X, X(n − 1); pX

n−1).

Then we can calculate the (rational) (n)-evaluation subgroups. Especially

G
(n)
m (Z, X; f ) is a subgroup of πm(Z).

Theorem 1.5. There is a decreasing sequence of sets

[X, Z] = g
⊥
1 (X, Z) ⊃ · · · ⊃ g

⊥
n (X, Z) ⊃ g

⊥
n+1(X, Z) ⊃ · · · ⊃ g

⊥
(X, Z)

for a map g : Y → Z. Especially, there is a sequence of subgroups in the m-th homotopy
group πm(Z) :

πm(Z) = G
(1)
m (Z, X; f ) ⊃ · · · ⊃ G

(n)
m (Z, X; f ) ⊃ G

(n+1)
m (Z, X; f ) ⊃ · · · ⊃ Gm(Z, X; f )

for a map f : X → Z. In particular

πm(Z) = G
(1)
m (Z) ⊃ · · · ⊃ G

(n)
m (Z) ⊃ G

(n+1)
m (Z) ⊃ · · · ⊃ Gm(Z).

If cat(X) ≤ n and Z be an H(n)-space, then F∗(X, Z, ∗) is an H-space [5,
Proposition 1]. Here F∗(X, Z, ∗) is the function space of based maps in the com-
ponent of the trivial map. In this paper, we give

Corollary 1.6. If cat(X) < n, then G
(n)
m (Z, X; f ) = Gm(Z, X; f ) and G

(n)
m (X) =

Gm(X).

Finally define m⊥( f , g) as the greatest integer n such that f ⊥
n

g for maps

f : X → Z and g : Y → Z. Denote m⊥( f , g) = ∞ if f ⊥ g. It is equal to
mH(X) [5, §3] if X = Y = Z and f = g = idX. Recall that there is an useful
equation: mH(XQ) = dl(X)− 1 [5, Proposition 8], where dl(X) is the differential
length of the model of X [10]. We know that m⊥( f , g) ≥ n if Z is an H(n)-
space from the map F(n) ◦ ( f × g)(n) : (X × Y)(n) → (Z × Z)(n) → Z. Also
m⊥( f , g) ≤ m⊥( f ◦ h, g) for any map h : X′ → X. We propose a

Problem A. Estimate m⊥( f , g) for given maps f : X → Z and g : Y → Z.

In this paper, we consider in the homotopy category. So, for example, a
commutative diagram means a homotopy commutative diagram. In the follow-
ings, we suppose that spaces have the homotopy type of nilpotent CW com-
plexes when we rationalize them or consider the Sullivan models of them. Put
eZ : Z → ZQ and fQ = eZ ◦ f : X → ZQ the rationalizations of Z and f : X → Z,
respectively [8]. Then πn(ZQ) ∼= πn(Z)Q := πn(Z) ⊗ Q for n > 1. By the univer-

sality of localization, fQ equivalent to ˜fQ : XQ → ZQ, often we do not distinguish
from fQ. We prepare the Sullivan minimal model [4] in Section 2. Whether or not
there is a pairing with axes f and g, (i.e., f ⊥ g ), relates with the rational Toomer
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invariants [1] of f , g and Z as we can see in Section 2. We give some examples of
the sets of rational axes of (n)-pairing in Section 3. In the examples, we focus in
the cases that H∗(Z; Q) is monogenic for the target space Z in Definition 1.3. We
see, even in the cases, that it may not be easy to determine m⊥( fQ, gQ). Finally,
we consider about the (n)-version of Gottlieb group [7],[19],[20], G-sequence and
Gottlieb homology of a fibration [11], [13] in Section 4.

Acknowledgments. The author would like to express his gratitude to Nobuyuki
Oda who attracted attention to constructing a family of subsets of the homotopy
set of maps with his encouragements, Norio Iwase for his helpful comment on
(4) of above and the referee for pointing mistakes.

2 Sullivan model, Toomer invariant and LS-category

In the first half of this section, we use the Sullivan minimal model M(X) of a space
X. It is a free Q-commutative differential graded algebra (DGA) (ΛV, d) with a
Q-graded vector space V =

⊕

i≥1 Vi where dim Vi < ∞ and a decomposable dif-
ferential and d ◦ d = 0. Denote the degree of an element x of a graded algebra as
|x|, the Q-vector space of basis {vi}i as Q < vi >i and the ideal in ΛV generated
by V as Λ+V. Also ΛiV := Λ+V · ... · Λ+V (i-times). A map f : X → Z has a
minimal model which is a DGA-map M( f ) : M(Z) → M(X). Notice that M(X)
determines the rational homotopy type of X, especially H∗(X; Q) ∼= H∗(M(X))
and πi(X)⊗Q ∼= Hom(Vi, Q). See [4] for a general introduction and the standard
notations.

Definition 2.1 ([1]). The (rational) Toomer invariant of a space X is e0(X) :=
max{n| there is a non-exact cocycle α ∈ Λ≥nV such that 0 6= [α] ∈ H∗(X; Q)} for
M(X) = ΛV. The (rational) Toomer invariant of a map f : X → Z is e0( f ) :=
max{n| there is a non-exact cocycle α ∈ Λ≥nW such that 0 6= [M( f )(α)] ∈
H∗(X; Q)} for M(Z) = ΛW.

Then there are relations: e0(X ×Y) = e0(X)+ e0(Y), e0( f ) ≤ min(e0(X), e0(Z))
and e0(X) ≤ cat(XQ) ≤ cat(X) [1], [2], [4]. First we note that the Toomer invari-
ant of map plays a natural part for a necessary condition for the existence of a
pairing with axes as follows.

Lemma 2.2. If F is a pairing with axes f : X → Z and g : Y → Z, then e0( f ) ≤ e0(F)
and e0(g) ≤ e0(F).

Proof. Put e0(F) = m. Suppose that e0( f ) > e0(F) or e0(g) > e0(F). Put M(Z) =
(ΛW, d). Then M( f )(a) 6∼ 0 (not cohomologous to zero) or M(g)(a) 6∼ 0 for
some cocyle a ∈ Λ>mW. From the following commutative diagram:

(1)′ M(X × Y) = M(X) ⊗ M(Y)
proj.

//

proj.
��

M(Y)

M(X) M(Z),
M(F)

ii

M(g)

OO

M( f )
oo
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we have
0 ∼ M(F)(a) = M( f )(a) ⊗ 1 + 1 ⊗ M(g)(a) + b 6∼ 0

for some b ∈ Λ+V ⊗ Λ+U for M(X) = ΛV and M(Y) = ΛU. It is a contradic-
tion.

Recall from [3] that a model of the n-th Ganea fibration pX
n is given by the

composition

(ΛV, d)
pn
→ (ΛV/Λ>nV, d) →֒ (ΛV/Λ>nV, d)⊕ S

where pn is the natural projection and the second map is the canonical injec-
tion together with S · S = S · V = 0 and dS = 0. As pn is functorial and the
second map admits a left inverse over (ΛV, d), we may use the realization of

pn : (ΛV, d)→(ΛV/Λ>nV, d) as substitute for the Ganea fibration (see [5]).

Proposition 2.3. If F is an (n)-pairing with axes f : X → Z and g : Y → Z, then
min(n, e0( f )) ≤ e0(F) and min(n, e0(g)) ≤ e0(F).

Proof. We have the following commutative diagram:

(2)′ (Λ(V ⊕ U)/Λ>n(V ⊕ U), dX ⊗ 1 + 1 ⊗ dY)
proj.

//

proj.
��

(ΛU/Λ>nU, dY)

(ΛV/Λ>nV, dX) M(Z)
M(F)

kk

pn◦M(g)

OO

pn◦M( f )
oo

for M(X) = (ΛV, dX) and M(Y) = (ΛU, dY). Then the proof is similar to the
proof of Lemma 2.2.

Proposition 2.4. Suppose H∗(Z; Q) ∼= Q[z]/(zn). If e0( f ) + e0(g) < n or N < n,
then fQ ⊥

N
gQ.

Proof. Define the (N)-pairing map F(N) : (X ×Y)(N)Q → ZQ by M(F(N))(z) :=
M( f )(z) ⊗ 1 + 1 ⊗ M(g)(z). Then it is well defined since

M(F(N))(zn ) =
n

∑
i=0

(

n

i

)

(M( f )(z))i ⊗ (M(g)(z))n−i ∼ 0

from the assumption.

Example 2.5. Suppose X, Y and Z are simply connected rational spaces. Let
H∗(X; Q) = Q[x]/(xl), H∗(Y; Q) = Q[y]/(ym), H∗(Z; Q) = Q[z]/(zn) and
|x| = i, |y| = j, |z| = k all even with i|k and j|k. Then there is a non-trivial
(N)-pairing if and only if li + mj ≤ nk or N < n. Indeed, when li + mj ≤ nk or
N < n, we have the commutative diagram:

Q[x, y]/(xl , {xsyt}s+t=N+1, ym)
proj.

//

proj.
��

Q[y]/(ym, yN+1)

Q[x]/(xl , xN+1) Q[z]/(zn)

h

jj

g∗
OO

f ∗
oo
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where f ∗(z) := xk/i, g∗(z) := yk/j and h(z) := xk/i + yk/j. It is well defined, that
is, h(zn) = 0 = (xk/i + yk/j)n. Then there is an (N)-pairing map F : (X ×Y)(N) →
Z with F∗(z) = h. Conversely, if li + mj > nk and N ≥ n, there is no map h in the
above diagram.

Corollary 2.6. When Z is a simply connected rational space with πi(Z) = Q for i =
k, kn − 1 and zero for the other i > 0, there are the following two sequences:

(1) Q = πk(Z) = G
(1)
k (Z) = · · · = G

(n−1)
k (Z) ⊃ G

(n)
k (Z) = · · · = Gk(Z) = 0

(2) Q = πk(Z) = G
(1)
k (Z) = · · · = G

(n)
k (Z) = · · · = Gk(Z),

where Z satisfies (1) iff H∗(Z; Q) ∼= Q[z]/(zn) with |z| = k and Z satisfies (2) iff
Z ≃ K(Q, k)× K(Q, kn − 1).

Remark 2.7. (1) Recall that cat( f ) for f : X → Z is the least integer n such that
X can be covered by n + 1 open subsets whose images by f are contractible in Z
[1]. If F is a pairing with axes f : X → Z and g : Y → Z, then cat( f ) ≤ cat(F).
Indeed, from [6], cat(F) is the least n such that there is a lifting F̃ of F in the
following diagram:

Z(n)

pZ
n

��
X × Y

F̃
::

F
// Z.

Then we can put f̃ := F̃ ◦ iX : X → Z(n) which satisfies f ≃ pZ
n ◦ f̃ . Also we have

cat(g) ≤ cat(F).

(2) For maps f : X → Z and g : Y → Z, we have f ⊥ g if cat(X) + cat(Y) = n
and f ⊥

n
g. Indeed, there is a pairing with axes f and g: X ×Y →

s
(X ×Y)(n) →

Fn

Z

since there is a section s from cat(X × Y) ≤ cat(X) + cat(Y). See [5, Example 4]
as a special case.

Proof of Proposition 1.4. Recall the maps α and β in (4) of §1. For an element a of

G
(n)
m (Z, X; f ), there is a commutative diagram from (5):

SmiSm

rr

s

{{xxxxxxxx

a

tt

X(n − 1)× Sm
id×s

// X(n) ∪ X(n − 1)× Sm(1)
β // (X × Sm)(n)

F(n)

&&MMMMMMMMMMMM
Sm(n)

iSm (n)oo

a◦pSm
n

��
X(n − 1)

pX
n−1,n

//

iX(n−1)

OO

X(n)
pX

n

//

iX(n)
44jjjjjjjjjjjjjjjjj

X
f

// Z,

where F(n) is an (n)-pairing (see (3)). Then F(n) ◦ β ◦ (idX(n−1) × s) : X(n − 1)×

Sm → Z is a pairing with axes f ◦ pX
n−1 and a. Thus a ∈ Gm(Z, X(n− 1); f ◦ pX

n−1).
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Conversely, for an element a of Gm(Z, X(n − 1); f ◦ pX
n−1), there is a commu-

tative diagram:

X(n − 1)

push out

pX
n−1,n //

iX(n−1)
��

X(n)

i
��

f ◦pX
n

��

X(n − 1)× Sm(1)

idX(n)×pSm

1
��

// X(n) ∪ X(n − 1)× Sm(1)
γ

((
X(n − 1)× Sm Fa // Z,

where Fa is a pairing with axes a and f ◦ pX
n−1. Note that i ≃ α ◦ iX(n) : X(n) →

(X × Sm)(n) → X(n) ∪ X(n − 1) × Sm(1) from (5). Also γ ◦ α ◦ iSm(n) ≃ γ ◦
incl. ≃ a ◦ pSm

n : Sm(n) → Z from (5). Thus we see that γ ◦ α : (X × Sm)(n) → Z

is an (n)-pairing with axes f and a. Thus a ∈ G
(n)
m (Z, X; f ).

Proof of Theorem 1.5. It is sufficient to show that [X, Z] = g
⊥
1 (X, Z). It follows from

the commutative diagram:

(X × Y)(1)

α
��

X(1)

iX(1)
66mmmmmmmmmmmmm

((QQQQQQQQQQQQQ

f ◦pX
1

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
X(1)× ∗ ∪ ∗ × Y(1) Y(1)

iY(1)
hhQQQQQQQQQQQQQ

vvmmmmmmmmmmmmm

g◦pY
1

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{

X(1) ∨ Y(1)

��
Z

from (5).

Remark 2.8. Let j : Sm → Sm ∨ Sm denote the usual pinching comultiplication,
where the sum a + b is the composition (a|b) ◦ j := ▽ ◦ a ∨ b ◦ j for a, b ∈ πm(Z).

By using the maps α and β in (4), we can see directly that G
(n)
m (Z, X; f ) is a sub-

group of πm(Z) by the commutative diagram induced from (5):
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X(n) ∨ Sm(n)

id(n) ∨ id(n)
��

iX(n) ∨ iSm (n)
// (X × Sm)(n)

(idX×j)(n)
��

(X ∨ Sm)(n)

(idX∨j)(n)
��

(X × (Sm
a ∨ Sm

b ))(n)

α
��

(X ∨ Sm
a ∨ Sm

b )(n) X(n) ∪ X(n − 1)× (Sm
a ∨ Sm

b )(1)

idn∪idn−1×(pa(1)∨pb(1))
��

(Sm
a ∨ X ∨ Sm

b )(n)

pS∨X∨S
n

��

X(n) ∪ X(n − 1)× (Sm
a (1) ∨ Sm

b (1))

Sm
a ∨ X ∨ Sm

b

(a| f |b)

��

Sm
a (1)× X(n − 1) ∪ X(n) ∪ X(n − 1)× Sm

b (1)

βa∪βb
��

Z (Sm
a × X)(n) ∪X(n) (X × Sm

b )(n)Fa(n) ∪ Fb(n)
oo

for a, b ∈ G
(n)
m (Z, X; f ) and some (n)-pairings Fa(n) and Fb(n).

Definition 2.9. Define catX( f ) as the least n such that there is a map sn in the
following commutative diagram:

X(n)
f ◦pX

n

""EE
EE

EE
EE

X

sn

OO

f
// Z.

Then we have cat( f ) ≤ catX( f ) ≤ cat(X). Indeed, if catX( f ) ≤ n, there is a
map sn : X → X(n) with f ≃ f ◦ pX

n ◦ sn ≃ pZ
n ◦ f (n) ◦ sn for f (n) : X(n) → Z(n).

Then we have cat( f ) ≤ n since f (n) ◦ sn is a lifting of f :

Z(n)

pZ
n

��
X

f (n)◦sn
==

f
// Z.

Example 2.10. (1) Let f : S3 → S3 × S3 be the map with f (x) = (x, ∗). Then
cat( fQ) = catX( fQ) = cat(XQ) = 1.

(2) Let f : X = S3 × S3 → S3 be the map with f (x, y) = x. Then cat( fQ) =
catX( fQ) = 1 < cat(XQ) = 2.

(3) Let f : X = S3 × S3 × S3 → S9 be the map given by collapsing (S3 × S3 ×
S3)<9. Then cat( fQ) = 1 < catX( fQ) = cat(XQ) = 3.

(4) Let f = h ◦ g : X = S3 × S3 × S3 → S3 × S3 → S6 be the map with
g(x, y, z) = (x, y) and the collapsing map h(S3 ∨ S3) = ∗. Then cat( fQ) = 1 <
catX( fQ) = 2 < cat(XQ) = 3.
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From Proposition 1.4, we have

Proposition 2.11. If catX( f ) < n, then G
(n)
m (Z, X; f ) = Gm(Z, X; f ).

Proof. We have Gm(Z, X(n − 1); f ◦ pX
n−1) ⊂ Gm(Z, X; f ) from the commutative

diagram:

X

f

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC

iX //

sn−1
��

X × Sm

sn−1×idSm

��

Sm
iSmoo

X(n − 1)

f ◦pX
n−1 ((QQQQQQQQQQQQQQ

// X(n − 1)× Sm

Fa

��

Sm

a
xxpppppppppppppp

oo

Z

for a ∈ Gm(Z, X(n − 1); f ◦ pX
n−1).

Remark 2.12. For f , f ′ : X → Z, define f ∼
(n)

f ′ (say (n)-homotop) if there is a map

H(n) : X(n) × I → Z in the commutative diagram:

X(n)
i0 //

pX
n

��

X(n) × I

H(n)
��

X(n)
i1oo

pX
n

��
X

f
// Z X,

f ′
oo

where i0(x) = (x, 0) and i1(x) = (x, 1) for I = [0, 1]. If f ∼ f ′, then f ∼
(n)

f ′ for all

n. If f ⊥
n

g for a map g : Y → Z and f ∼
(n)

f ′, then f ′ ⊥
n

g.

3 Examples of the set of rational axes

We denote the set of the homotopy classes of rational axes of (N)-pairing of a map
g : Y → Z by

g
⊥
N (X, Z)Q := {[ fQ] ∈ [XQ, ZQ] | fQ ⊥

N
gQ}.

Example 3.1. Suppose X, Y and Z are simply connected rational spaces where
H∗(X; Q) = Q[x]/(xl), H∗(Y; Q) = Q[y]/(ym), H∗(Z; Q) = Q[z]/(zn) and
|x| = i, |y| = j, |z| = k with i|k and j|k. Put g∗(z) = yk/j. When li + mj ≤ nk,

g
⊥
(X, Z) = Q. When li + mj > nk, g

⊥
N (X, Z) = Q for N < n and g

⊥
N (X, Z) = ∗

for N ≥ n.

Example 3.2. Put X = S2 × (CP3 ∨S6) with H∗(X; Q) = Q[x1, x2, x3]/(x
2
1 , x4

2, x2x3,

x2
3); |x1| = |x2| = 2, and |x3| = 6, Y = CPn with H∗(Y; Q) = Q[y]/(yn+1);

|y| = 2, H∗(Z; Q) = Q[z]/(z3); |z| = 8 and g∗(z) = y4 (n < 12). Then the map

h : Q[z]/(z3) → Q[x1, x2, x3]/(x
2
1, x4

2, x2x3, x2
3)⊗ Q[y]/(yn+1)
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is given by

h(z) = a1x1x3 + a2x1x3
2 + b1x3y + b2x1x2y2 + b3x2

2y2 + b4x1y3 + b5x2y3+

b6x3
2y + b7x1x2

2y + y4

with ai, bi ∈ Q. Therefore g
⊥
N (X, Z)Q ⊂ Q < a1, a2 >. Since h is an algebra map,

we have

0 = h(z3)

= (3a1x1x3 + 3a2x1x3
2 + 6b2b3x1x3

2 + 6b1b4x1x3 + 6b4b6x1x3
2 + 6b5b7x1x3

2)y
8

+ (3b1x3 + 6b2b5x1x2
2 + 6b3b4x1x2

2 + 6b3b5x3
2 + 3b6x3

2 + 3b7x1x2
2)y

9

+ (3b2x1x2 + 3b3x2
2 + 6b4b5x1x2 + 3b2

5x2
2)y

10

+ 3(b4x1 + b5x2)y
11.

Then we have the following table of equations of the coefficients a1, a2, b1, .., b7:

g
⊥
N (X, Z)Q N ≤ 9 N = 10 N = 11 N = 12 · · · N = ∞

n ≤ 8 φ (1) (1) (1), (2) · · · (1), (2)
n = 9 φ (1), (3) (1), (3) (1) ∼ (4) · · · (1) ∼ (4)

n ≥ 10 φ (1), (3) (1), (3) (1) ∼ (6) · · · (1) ∼ (6)

where

(1) a1 + 2b1b4 = 0 (2) a2 + 2b2b3 + 2b4b6 + 2b5b7 = 0

(3) b1 = 0 (4) 2b2b5 + 2b3b4 + b7 = 0, 2b3b5 + b6 = 0

(5) b2 + 2b4b5 = 0, b3 + b2
5 = 0

(6) b4 = 0, b5 = 0.

Therefore we have g⊥(X, Z)Q
∼= Q < a1, a2 > if n ≤ 8 since the equation

(1), (2) does not restrict a1 and a2. Also g⊥(X, Z)Q
∼= Q < a2 > if n = 9 from

(1) ∼ (4) and g⊥(X, Z)Q = ∗ if n ≥ 10 from (1) ∼ (6). When n ≥ 9, for example,

we have g
⊥
N (X, Z)Q

∼= Q < a2 > for N = 10. In fact, we have a1 = 0 from the
equation (1), (3) of the coefficients of elements in (Q[x1, x2, x3]/(x

2
1 , x4

2, x2x3, x2
3)⊗

Q[y]/(yn+1))≤10 but a2 is free. Thus we have the following table:

g
⊥
N (X, Z)Q N ≤ 9 N = 10 N = 11 N = 12 · · · N = ∞

n ≤ 8 Q ⊕ Q Q ⊕ Q Q ⊕ Q Q ⊕ Q · · · Q ⊕ Q

n = 9 Q ⊕ Q Q Q Q · · · Q

n ≥ 10 Q ⊕ Q Q Q ∗ · · · ∗

where Q ⊕ Q = Q < a1, a2 > and Q = Q < a2 >.
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Example 3.3. Consider an 11-dimensional manifold X such that

M(X) = (Λ(x1, x2, x3), d); |x1| = |x2| = 3, |x3| = 5

with dx1 = dx2 = 0 and dx3 = x1x2. Note that X is realized as the total space of
the fibration S5 → X → S3 × S3 with classifying map the generator of H6(S3 ×
S3). Put Y = CPn with H∗(Y; Q) = Q[y]/(yn+1); |y| = 2, H∗(Z; Q) = Q[z]/(z3);
|z| = 8 and g∗(z) = y4 (n < 12). Here M(Z) = (Λ(z, z′), d) with dz = 0 and
dz′ = z3 and H∗(Λ(z, z′), d) ∼= Q[z]/(z3). Then the DGA-map

h : (Λ(z, z′), d) → (Λ(x1, x2, x3), d)⊗ (Q[y]/(yn+1), 0)

is given by

h(z) = a1x1x3 + a2x2x3 + y4 ai ∈ Q and h(z′) = 0

Then we have h(z3) = 3a1x1x3y8 + 3a2x2x3y8. For a1, a2 ∈ Q − {0}, we see fQ ⊥
gQ when n < 8 and fQ ⊥

N
gQ when N < 10 and 8 ≥ n. Here the model of a map

f is given by M( f )(z) = a1x1x3 + a2x2x3.
Next consider, for the above g : Y → Z, the connected sum of products of two

spheres
X′ = (S3 × S8)♯(S3 × S8)

with H∗(X′; Q) ∼= Λ(x1, x2, v1, v2)/(x1x2, x1v1 − x2v2, x1v2, x2v1, v2
1, v1v2, v2

2)
where |x1| = |x2| = 3 and |v1| = |v2| = 8. Note that X′ is formal [4] but X
is not formal, with same cohomologies; H∗(X; Q) ∼= H∗(X′ ; Q). Then the algebra
map

h′ : Q[z]/(z3) → Λ(x1, x2, v1, v2)/(x1x2, x1v1 − x2v2, x1v2, x2v1, v2
1, v1v2, v2

2)

⊗ Q[y]/(yn+1)

is given by

h′(z) = a1v1 + a2v2 + y4 ai ∈ Q.

Then we have h′(z3) = 3a1v1y8 + 3a2v2y8. For a1, a2 ∈ Q − {0}, we see fQ ⊥ gQ

when n < 8 and fQ ⊥
N

gQ when N < 9 and 8 ≥ n. Here the model of a map f is

given by M( f )(z) = a1v1 + a2v2.

Notice that g
⊥
9 (X, Z)Q = Q ⊕Q but g

⊥
9 (X′, Z)Q = ∗, when n ≥ 8. Thus the set

of the homotopy classes of axes of (N)-pairing is not determined by cohomology
in general.

4 rational G(n)-group and G(n)-sequence

Let A be a DGA A = (A∗, dA) with A∗ = ⊕i≥0Ai, A0 = Q, A1 = 0 and the
augmentation ǫ : A → Q. Define Deri A the vector space of Q-derivations of

A decreasing the degree by i > 0, where θ(xy) = θ(x)y + (−1)i|x|xθ(y) for
θ ∈ Deri A. We denote ⊕i>0Deri A by DerA. The boundary operator δ : Der∗A →
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Der∗−1A is defined by δ(σ) = dA ◦ σ − (−1)|σ|σ ◦ dA. For a DGA-map φ :
A → B, define a φ-derivation of degree n to be a linear map θ : A∗ → B∗−n

with θ(xy) = θ(x)φ(y) + (−1)n|x|φ(x)θ(y) and Der(A, B; φ) the vector space of
φ-derivations. The boundary operator δφ : Der∗(A, B; φ) → Der∗−1(A, B; φ) is

defined by δφ(σ) = dB ◦ σ − (−1)|σ|σ ◦ dA. Note Der∗(A, A; idA) = Der∗(A).
Recall the method of derivations in [12] and [13]. For φ : A = (ΛU, dA) → B,

the composition with the augmentation ǫ′ : B → Q induces a chain map ǫ′∗ :
Dern(A, B; φ) → Dern(A, Q; ǫ). Define

Gn(A, B; φ) := Im(Hn(ǫ
′
∗) : Hn(Der(A, B; φ)) → Homn(U, Q)).

Especially

Gn(ΛU, dA) := Im(Hn(ǫ∗) : Hn(Der(ΛU, dA)) → Homn(U, Q)),

that is, G∗(A, A; idA) = G∗(A). Note that z∗ ∈ Homn(U, Q) (z∗ is the dual of the
basis element z of Un) is in Gn(A, B; φ) if and only if z∗ extends to a φ-derivation

cycle θ of Dern(A, B; φ), i.e., δφ(θ) = 0 [4, Sec.29(d)]. Let ξ : X
j
→ E → B be

a fibration of simply connected CW complexes. Put the KS-extension of ξ [4] as
(ΛW, dB) → (ΛW ⊗ ΛV, D) →

J
(ΛV, d) ∼= M(X) in the followings.

Lemma 4.1. [13] Gm(EQ, XQ; jQ) ∼= Gm(ΛW ⊗ ΛV, ΛV; J).

From Proposition 1.4, we have

Proposition 4.2. Let ξ : X
j
→ E → B be a fibration of simply connected CW complexes.

Then
G
(n)
m (EQ, XQ; jQ) ∼= Gm(ΛW ⊗ ΛV, ΛV/Λ≥nV, δJ) and

G
(n)
m (XQ) ∼= Gm(ΛV, ΛV/Λ≥nV, δ)

for all m. Here δ = pn ◦ δ and δJ = pn ◦ δJ for the projection pn : ΛV → ΛV/Λ≥nV.

The Gottlieb sequence (simply G-sequence) [11],[13] of a fibration ξ : X
j
→

E
p
→ B is the restriction of the homotopy exact sequence of ξ:

· · · → Gm(X)
Jm
→ Gm(E, X; j)

Pm→ πm(B)
∂m→ Gm−1(X) → · · · .

The (n)-version:

· · · → G
(n)
m (X)

J
(n)
m→ G

(n)
m (E, X; j)

P
(n)
m→ πm(B)

∂m→ G
(n)
m−1(X) → · · ·

is called the G(n)-sequence of ξ . Then we can define the m-th (n)-Gottlieb homology

group of ξ as G(n)Hm(ξ) := Ker P
(n)
m /Im J

(n)
m .

Example 4.3. (Compare with [13, Ex.4.5]) Put M(X) = (Λ(v1, v2, · · · , vn+1, v), d)
(n > 1 is odd) with dv∗ = 0, dv = v1v2 · · · vn+1 of |v1| = · · · = |vn+1| = 3 and
M(B) = (Λw, 0). Consider the fibration ξQ : XQ → EQ → BQ where Dv =
v1v2 · · · vn+1 + wvn+1 and Dv∗ = 0. Then G3(XQ) = 0 and GH3(ξQ) = Q <

v∗1 , · · · , v∗n >. In fact, δJ(v
∗
i +(−1)iw∗⊗ v1 · · · v̌i · · · vn) = 0 for i ≤ n. On the other

hand, G
(n)
3 (XQ) = Q < v∗1 , · · · , v∗n+1 > since δ(v∗i ) = 0 in Der(ΛV, ΛV/Λ≥nV).

Therefore G(n)H3(ξQ) = 0.
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Recall that ξ is G-trivial if 0 → Gm(X)
Jm→ Gm(E, X; j)

Pm→ πm(B) → 0 is ex-

act for all m [13]. By analogy, we say that ξ is G(n)-trivial if 0 → G
(n)
m (X)

J
(n)
m→

G
(n)
m (E, X; j)

P
(n)
m→ πm(B) → 0 is exact for all m.

Corollary 4.4. If ξQ : XQ → EQ → BQ is G-trivial for a finite complex X, it is G(n)-
trivial.

Proof. Denote by hQ : BQ → Baut1XQ the classifying map of ξQ. From [13,
Thorem 4.2], we have π∗(hQ) = 0 under this condition. Then as the proof of [13,
Thorem 4.2 (1)⇒ (2)] we have

Hm(Der(ΛW ⊗ ΛV, ΛV/Λ≥nV)) ∼= Hm(Der(ΛV, ΛV/Λ≥nV))⊕ Homm(W, Q).

for all m. Thus we have the corollary from Proposition 4.2.

The converse is not true. For example, put M(X) = (Λ(v1, v2, · · · , vn+2, v), d)
(n is odd) with dv∗ = 0, dv = vn+1vn+2 and M(B) = (Λw, 0). Consider the fibra-
tion ξQ : XQ → EQ → BQ where Dv = vn+1vn+2 + wv1 · · · vn and Dv∗ = 0. Then

ξQ is G(n)-trivial from δJ(w
∗) = 0, but it is not G-trivial since π∗(hQ)(w

∗) 6= 0 for
the classifying map hQ [13, Theorem 3.2]. Note that ‘G-trivial’ and ‘G(n)-trivial’
are equivalent for a general fibration ξ when catX < n from Corollary 1.6.

Remark 4.5. For a fibration ξ : X → E → B, there is a decomposition of G(EQ) =
⊕mGm(EQ) as G(EQ) = S ⊕ T ⊕ U [21] induced from the G-sequence. From the
G(n)-sequence above, we have a similar decomposition

G(n)(EQ) = S(n) ⊕ T(n)⊕ U(n) ⊂ G(n)(XQ)⊕ G(n)H(ξQ)⊕ G(n)(BQ, EQ; pQ).
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Astérisque S.M.F.176 1989.

[3] Y.Félix and S.Halperin, Rational L.-S. category and its application,Trans.A.M.S.
273 (1982) 1-37.

[4] Y.Félix, S.Halperin and J.C.Thomas, Rational homotopy theory, Graduate Texts
in Mathematics 205, Springer-Verlag, 2001.
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