
Fixed point-free isometric actions of topological

groups on Banach spaces

Lionel Nguyen Van Thé∗ Vladimir G. Pestov†

Abstract

We show that every non-precompact topological group admits a fixed
point-free continuous action by affine isometries on a suitable Banach space.
Thus, precompact groups are defined by the fixed point property for affine
isometric actions on Banach spaces. For separable topological groups, in the
above statements it is enough to consider affine actions on one particular Ba-
nach space: the unique Banach space envelope 〈U〉 of the universal Urysohn
metric space U, known as the Holmes space. At the same time, we show that
Polish groups need not admit topologically proper (in particular, free) affine
isometric actions on Banach spaces (nor even on complete metric spaces):
this is the case for the unitary group U(ℓ2) with strong operator topology,
the infinite symmetric group S∞, etc.

1 Introduction

Kazhdan’s property (T) of locally compact, in particular discrete, groups has
found numerous uses, see [10] and especially [5]. At the same time, the concept
makes perfect sense for the most general Hausdorff topological groups, even if
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there are not many results known beyond the locally compact case, the interesting
paper [4] being among a few exceptions.

Let G be a topological group. Recall that a strongly continuous unitary repre-
sentation π of G in a Hilbert space H has almost invariant vectors if for every ε > 0
and each compact K ⊆ G there is a vector ξ ∈ H of norm one with the property∥∥ξ − πgξ

∥∥ < ε for all g ∈ K. Now G has Kazhdan’s property (T) if every con-
tinuous unitary representation that has almost invariant vectors has an invariant
vector of norm one.

For second countable locally compact groups G the property (T) is equiva-
lent to the following property known as (FH): every continuous action of G by
affine isometries on a Hilbert space has a fixed point. This result is known as
Delorme–Guichardet theorem, see Ch. 2 in [5]. While the implication (T) ⇒ (FH),
due to Delorme [11], holds for every topological group, the converse implication
(FH) ⇒ (T), established by Guichardet [19] for sigma-compact locally compact
groups, is in general invalid even for uncountable discrete groups. The follow-
ing observation was made in print by Cornulier [8], but noticed independently
by some others. Let a group G have Bergman’s property [6], that is, whenever
G is represented as a union of an increasing countable chain (Wi)

∞
i=1 of subsets,

a suitable finite power of some Wi equals G. (Such is, for instance, the group S∞

of all self-bijections of natural numbers [6]). Then G, viewed as a discrete group,
has property (FH). At the same time, every discrete group with property (T) is
finitely generated ([5], Th. 1.3.1.)

More generally, say, following Rosendal [44], that a topological group G has
property (OB) if for every continuous action of G on a metric space by isometries
all orbits are bounded. (Topological Bergman property is another natural name for
this property, suggested by the referee.) Such are discrete groups with Bergman’s
property, as well as topological groups G bounded in the sense of Hejcman [22]
and Atkin [2] (that is, for every neighbourhood of identity V in G, there are a
finite subset F ⊂ G and a natural n with FVn = G). The property (OB) im-
plies property (FH) ([44], Prop. 3.4), in direct consequence of the “Lemma of
the centre” ([5], Section 2.2). However, for many known groups with property
(OB) it remains unknown whether or not they have property (T). This is the case
e.g. for the unitary group U(ℓ2) with the uniform operator topology, the group
U(ℓ2(Γ)) with the strong operator topology where |Γ| > ℵ0, the group Aut (X, µ)
of measure-preserving transformations of a standard Lebesgue measure space
with the coarse topology, etc. At the same time, as shown recently by one of the
present authors (V.P.) [41], the properties (T) and (FH) are not equivalent even
in the class of Polish (not necessarily locally compact) topological groups. For
instance, the group UC(ℓ

2) of all unitary operators which are compact perturba-
tions of the identity, equipped with the uniform operator topology, has property
(OB) (hence (FH)), but is not a Kazhdan group (ibid.)

Recently there has been some interest towards stronger versions of property
(FH) obtained if one allows continuous affine isometric actions of G on Banach
spaces from more general classes, especially Lp spaces and other uniformly con-
vex spaces [3, 9]. In particular, some lattices in semisimple Lie groups have the
fixed point property in this stronger sense, while others do not.

How far can one go in this direction by allowing affine actions of a topological
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group by isometries on more and more general classes of Banach spaces? Of
course every affine action of a precompact group K by isometries on a Banach
space will always have a fixed point, obtained by integration on the completion
of K, so the question really is: for what classes of Banach spaces do there exist
non-precompact groups with the fixed point property for affine isometries?

Haagerup and Przybyszewska have shown [21] that every second countable
locally compact non-compact group admits a metrically proper (in particular,
fixed point-free) continuous affine action by isometries on a reflexive and strictly
convex Banach space. Thus, the class of all reflexive Banach spaces is already too
general: the corresponding notion for second countable locally compact groups
is too strong and is never satisfied, save in the trivial case of compact groups.

At the same time, one cannot hope to extend the result by Haagerup and
Przybyszewska to non locally compact Polish groups. Indeed, by force of a the-
orem due to Megrelishvili [32] stating that every weakly almost periodic func-
tion on the Polish group Homeo +[0, 1] is constant, this particular group admits
no nontrivial continuous affine actions by isometries on reflexive Banach spaces.
(Cf. Corollary 3.2 below.) The group Homeo +[0, 1] therefore has the fixed point
property for affine isometries on reflexive Banach spaces, but this in a sense hap-
pens for the wrong reason.

The main aim of this note is to “dilute” the property (FH) inasmuch as possi-
ble, by allowing affine actions of arbitrary topological groups on arbitrary Banach
spaces. In this context, we obtain an analogue of theorem of Haagerup and Przy-
byszewska, by observing that every topological group G that is not precompact
admits a continuous affine action by isometries on a Banach space without fixed
points (Theorem 5.8). In fact, this property characterizes precompactness. Notice
that the action thus constructed can be chosen with bounded orbits (in contrast
to actions on Hilbert spaces, for which a bounded orbit forces existence of a fixed
point).

Moreover, there exists a single separable Banach space upon which every sep-
arable and non-precompact group G acts continuously by affine isometries with-
out fixed points. This is the remarkable Holmes space 〈U〉 [24], the unique (up to
an isometric isomorphism) Banach space spanned by the universal Urysohn met-
ric space, U [50], and containing it isometrically. In particular, among separable
groups the precompact ones are characterized by the fixed point property with
respect to affine isometric actions on the Holmes space 〈U〉.

The proof uses a characterization of precompact groups obtained indepen-
dently by Uspenskij (unpublished, cf. a remark in [52]) and Solecki [49] as those
topological groups G in which every neighbourhood of the identity, U, admits a
finite set F ⊆ G with FUF = G. Another component of the proof is the follow-
ing observation of independent interest (Corollary 5.4): every continuous action
of a topological group G by isometries on a metric space X extends to an affine
isometric action of G on a suitable Banach space containing X as a subspace and
affinely spanned by it (the Lipschitz-free Banach space on X, cf. e.g. [17]). In or-
der to extend the result to the Holmes space, we use the technique of Katětov
functions [26].

Simple cardinality arguments show that not every non-precompact topolog-
ical group G admits a free continuous action by affine isometries on a suitable
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Banach space. However, it turns out that even a Polish group need not admit
a topologically proper (in particular, free) affine isometric action, moreover, this
behaviour appears to be typical: examples of such groups include the infinite
unitary group U(ℓ2), the infinite symmetric group S∞, and a number of others
(cf. the concluding Section 7). In this sense, the full power of the result of
Haagerup and Przybyszewska cannot be recovered for non locally compact Pol-
ish groups even if we allow actions on arbitrary Banach spaces.

2 Preliminaries on actions of topological groups by isometries

2.1 Groups of isometries

For a metric space, Iso(X) denotes the group of all surjective self-isometries of
X equipped with the topology of pointwise convergence, induced by the embed-
ding Iso(X) →֒ XX (or, which is the same, compact-open topology). This group
is second-countable if X is such.

2.2 Completeness

The left uniform structure on a topological group G is given by the basis of en-
tourages of the diagonal consisting of all sets of the form

VL =
{
(g, h) : g−1h ∈ V

}
, (2.1)

where V runs over a neighbourhood basis of the identity element in G. Similarly,
the right uniform structure is given by the basic entourages

VR =
{
(g, h) : gh−1 ∈ V

}
,

and the two-sided uniform structure is the supremum of the two, whose basis con-
sists of the entourages

V∨ = {(g, h) ∈ G : g−1h ∈ V and gh−1 ∈ V}.

A topological group G is said to be complete if it is complete with regard to the
two-sided uniformity.

Example 2.1. Let X be a complete metric space. Then the topological group Iso(X)
is complete.

Every topological group G is isomorphic to an everywhere dense topological
subgroup of a complete group Ĝ, the completion of G. It is easy to prove that ev-
ery locally compact, in particular every compact, group is complete with regard
to one-sided uniformities, but in general a topological group need not embed into
a group complete with regard to the one-sided uniformities. This phenomenon,
noticed in [12], will be discussed in some detail and used in Section 7.

A general reference to uniformities on groups is [43].
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2.3 Actions on metric spaces

Let a topological group G act by isometries on a metric space X. The following is
an easy but useful observation.

Lemma 2.2. The following conditions are equivalent.

1. The action G × X → X is jointly continuous.

2. Every orbit map

orb x : G ∋ g 7→ gx ∈ X, x ∈ X,

is continuous.

3. The orbit maps orb x : G → X are continuous for all x from an everywhere dense
subset of X.

4. The homomorphism G → Iso(X) associated to the action of G on X is continuous.

2.4 Transitive actions

The following construction is a useful source of transitive isometric continuous
actions of topological groups; moreover, every such action can be obtained in this
way.

Let d be a continuous left-invariant pseudometric on a topological group G.
(According to the well-known Kakutani lemma, such pseudometrics determine
the topology of G.) Set H = {g ∈ G : d(g, e) = 0}. This H is a closed subgroup
of G. Denote by X = G/H the quotient space equipped with the left action by G.
The rule

dX(gH, kH) = d(g, k)

defines a metric on the quotient space G/H, because for every g, k ∈ G and h, h1 ∈
H

d(gh, kh1) ≤ d(gh, g) + d(g, k) + d(k, kh1) = d(g, k),

and similarly for the other inequality. Clearly, dX is translation invariant, and the
action of G on X is continuous and transitive. We will denote X = G/d.

Now suppose G acts continuously and transitively by isometries on a metric
space X = (X, dX). Select any point ξ ∈ X and define for all g, h ∈ G

dξ(g, h) = dX(gξ, hξ).

This dξ is a continuous left-invariant pseudometric on G, and one can easily ver-
ify that the metric G-spaces X and G/dξ are isometrically isomorphic between
themselves.
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2.5 Affine isometries

The Mazur–Ulam theorem [30] says that every surjective isometry between two
real Banach spaces is an affine map. In particular, every self-isometry of a Banach
space E is an affine isometry. To avoid confusion, we will not be using the symbol
Iso(E) in case where E is a Banach space, using Isoaff(E) instead for the group of
all (affine) isometries of E. This way, continuous affine actions of G on E are
in a one-to-one correspondence with continuous group homomorphisms G →
Isoaff(E). The symbol Iso0(E) will stand for the group of all linear isometries of E
or, which is the same, all isometries of E fixing the origin 0.

The following is well-known (in the case of the Hilbert space, cf. Section 2.1
in [5]).

Proposition 2.3. As a topological group, Isoaff(E) is isomorphic to the semidirect prod-
uct Iso0(E)⋉ E, where E is viewed as an additive topological group with its norm topol-
ogy, and the action of Iso0(E) on E is a tautological, or standard, one.

Proof. After the origin 0 is chosen (and thus E is made into a linear space), an
explicit isomorphism of topological groups Isoaff(E) ∼= Iso0(E)⋉ E is given by

θ : Isoaff(E) ∋ g 7→ (T−g(0) ◦ g, g(0)) ∈ Iso(E)⋉ E,

where Ta(x) = a + x.

2.6 Precompact groups

Recall that a topological group is precompact if it can be covered by finitely many
left translates of every non-empty open subset. In other words, if V is a neigh-
bourhood of identity, there is a finite F with FV = G. (For a treatment of uniform
structures in topological groups, completions, precompactness etc., we recom-
mend the book [43].)

The following is essentially a well-known fact, although normally stated for
compact groups only (cf. Lemma 2.3 in [9]).

Proposition 2.4. Let G be a precompact topological group acting continuously by affine
isometries on a Banach space E. Then G admits a fixed point: for some ξ ∈ E and all
g ∈ G, one has

gξ = ξ.

Proof. By an equivalent definition, a topological group G is precompact if and
only if its completion Ĝ is compact. The continuous action G → Isoaff(E) extends
to a continuous homomorphism from Ĝ to Isoaff(E) (a complete group), that is,
a continuous action by affine isometries of the compact group Ĝ. Choose any
point ξ ∈ E. The orbit Ĝξ is a compact metric space, and so is the convex hull
C = conv Ĝξ. (The convex hull only depends on the affine structure of E, so
one can turn E into a Banach space in an arbitrary way and use a well-known
result valid for all complete locally convex spaces, see e.g. [46], Corollary on
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p.50.) Moreover, C is invariant under the action of Ĝ by affine maps. But every
compact group admits a fixed point in every convex compact set upon which it
acts by affine homeomorphisms (this is a reformulation of a statement that every
compact group is amenable).

3 Affine isometric actions on reflexive Banach spaces

Recall that a bounded continuous scalar-valued function f on a topological group
G is weakly almost periodic [45] if the orbit of f with regard to the left regular
representation of G is weakly relatively compact in the Banach space CB(G) of
all bounded continuous functions, equipped with the supremum norm.

Weakly almost periodic functions on a topological group G are closely related
to strongly continuous representations of G by isometries in reflexive Banach
spaces. Let π : G → Iso0(E) be such a representation. Fix an element ξ ∈ E
and a bounded linear functional φ ∈ E′. Then the function

G ∋ g 7→ φ(πgξ)

(a matrix coefficient of π) is weakly almost periodic. This follows easily from the
fact that the unit ball of a reflexive Banach space is weakly compact. A consid-
erably less trivial observation is that all weakly almost periodic functions on G
arise this way [48, 31].

Every locally compact group G admits a rich collection of weakly almost peri-
odic functions: they separate points and closed subsets of G. (Indeed, this is true
even of elements of the Fourier-Stieltjes algebra on G, that is, coefficients of uni-
tary representations, cf. e.g. [15].) However, for more general Polish groups this
is no longer the case. Denote by Homeo +[0, 1] the group of endpoint-preserving
homeomorphisms of the closed unit interval, equipped with the compact-open
topology. This is one of the best studied examples of Polish groups. As shown by
Megrelishvili [32], this group admits no non-constant continuous weakly almost
periodic functions. (Another such example [40], which is really a consequence
of the above one, is the group Iso(U1) of isometries of a sphere in the universal
Urysohn metric space U, an object which will be defined later in our paper.)

Thus, there exist Polish groups (such as Homeo +[0, 1] or Iso(U1)) that ad-
mit no nontrivial strongly continuous representations by isometries in reflexive
Banach spaces [32]. We are going to strengthen this observation a little bit.

Proposition 3.1. Suppose a topological group G admits no non-constant continuous
weakly almost periodic functions. Then the only continuous action of G by affine isome-
tries on a reflexive Banach space E is the trivial (constant) action.

Proof. Let π : G → Isoaff(E) be a continuous homomorphism corresponding to
an affine isometric action. Denote by q : Isoaff(E) ∼= Iso0(E) ⋉ E → Iso0(E) the
quotient map (the first coordinate projection). The composition q ◦ π is a con-
tinuous representation of G by linear isometries of E and so is trivial, meaning
that π maps G into the kernel of q, that is, π(G) ⊆ E. However, continuous one-
dimensional unitary representations separate points of E, as is seen by associating
to every φ ∈ E′ a character e2πiφ. This allows to conclude: π(G) is the identity.
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Corollary 3.2. The Polish topological groups Homeo +[0, 1] and Iso(U1) cannot act by
affine isometries on a reflexive Banach space in a non-trivial way.

In particular, a result of Haagerup and Przybyszewska [21] cited in the Intro-
duction does not extend to non locally compact, non precompact Polish groups.

4 Fixed point-free actions on metric spaces

Theorem 4.1 (Uspenskij (unpublished, cf. [52]); Solecki [49], Lemma 1.2). A topo-
logical group G is precompact if and only if for every non-empty open subset V of G there
is a finite set F with the property

FVF = G.

Notice that the condition is formally weaker than the usual definition of pre-
compactness. For a simple proof of the above criterion, see [7], Proposition 4.3.

Definition 4.2. Say that an action of a group G by isometries on a metric space X
is strongly moving with constant ε0 > 0 if for every finite subset F ⊆ X there is a
g ∈ G with the property

dX(F, gF) ≥ ε0. (4.1)

(Here the distance is understood as a distance between two sets.)

Remark 4.3. In the above definition, one can replace “every finite subset F ⊆ G”
with “every compact subset K ⊆ G” by approximating K with finite nets.

Corollary 4.4. For a topological group G, the following conditions are equivalent.

1. G is non-precompact.

2. G admits a continuous transitive action by isometries on a non empty metric space
X that is strongly moving.

3. G admits a continuous strongly moving action by isometries on a non empty metric
space X.

Proof. (1)⇒(2). Suppose that G is not precompact. According to the Solecki–
Uspenskij criterion, there exists an open neighbourhood V of the identity with the
property that for every finite set F ⊆ G, one has FVF 6= G. Choose a continuous
left-invariant pseudometric d on G whose open unit ball around identity, Od

1(e),
is contained in V. Form a metric space X = G/d = G/H equipped with an action
of G by isometries as in Paragraph 2.4.

Given a finite set F ⊆ X, choose a finite symmetric Φ ⊆ G so that the image of
Φ under the quotient map G → G/H contains F. Choose g ∈ G \ΦVΦ. We claim
that Eq. (4.1) holds with ε0 = 1. Indeed, assuming that for some x, y ∈ Φ one has
dX(xH, gyH) < 1, one concludes: d(x−1gy, e) = d(x, gy) < 1 and so x−1gy ∈ V,
that is, g ∈ xVy−1 ⊆ ΦVΦ, a contradiction.

(2)⇒(3). Trivial.
(3)⇒(1). If G is precompact, then so is every orbit of X. Denoting for every

ε > 0 by Fε a finite ε-net in any chosen G-orbit, one has dX(Fε, gFε) < ε for all
g ∈ G, meaning the action is not strongly moving.
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5 Lipschitz-free Banach spaces

It is well known that every metric space embeds isometrically into a normed
space. Moreover, such an embedding can be performed in a universal way. We
want to revise details of this construction.

Let X = (X, d) be a metric space and ∗ a point in X. We will refer to the triple
(X, d, ∗) as a pointed metric space. Denote by L(X, ∗), or simply by L(X), a real
vector space having X \ {∗} as its Hamel basis and ∗ as zero. Equip L(X) with
the largest prenorm p whose restriction to X is bounded by the distance d: for all
x, y ∈ X, one has p(x − y) ≤ d(x, y). Then it is easy to show that p is a norm,
inducing the distance d on X [25, 1, 35, 13, 14, 17].

Denote by Lip (X, ∗) the linear space of all Lipschitz functions f : X → R

with the property f (∗) = 0, equipped with the norm ‖ f‖ equal to the infimum
of all Lipschitz constants for f . For an x ∈ X, denote by x̂ the usual evaluation
functional Lip (X, ∗) ∋ f 7→ f (x) ∈ R. The mapping

X ∋ x 7→ x̂ ∈ Lip (X, ∗)′

is an isometric embedding of X into the dual Banach space of Lip (X, ∗), and the
image of X \ {∗} is linearly independent.

To every element of L(X, ∗), viewed as a finitely-supported measure on
X \ {∗}, one can associate a bounded linear functional on Lip (X, ∗), and this
determines an embedding of L(X, ∗) into the dual space Lip (X, ∗)′ as a normed
subspace. It is an easy exercise to show that the norm induced on L(X) from
Lip (X, ∗)′ is the maximal prenorm that we are after. Notice also that X is closed
in L(X).

Another way to define L(X) is through the following universal property.

Theorem 5.1. Let (X, ∗) be a pointed metric space, let E be a normed space, and let
f : X → E be a 1-Lipschitz map with the property f (∗) = 0. Then there is a unique
linear operator f̄ : L(X) → E of norm 1 extending f .

Proof. There is a unique linear mapping f̄ : L(X) → E extending f , and it only
remains to notice that the prenorm N(x) =

∥∥ f̄ (x)
∥∥

E
has the property that its

restriction to X is bounded by d.

The Banach space completion of L(X) is denoted by B(X) and called the (Lips-
chitz) free Banach space on (X, d, ∗). It has a universal property similar to Theorem
5.1, but with respect to all Banach spaces E.

For instance, in the case where X = Γ ∪ {∗} is a set equipped with a {0, 1}-
valued metric, the free Banach space B(Γ ∪ {∗}) is just ℓ1(Γ).

For various choices of distinguished point ∗ ∈ X, the resulting free normed
(Banach) spaces L(X, ∗) (resp., B(X, ∗)) are isometrically isomorphic between
themselves. This is seen by applying the universality property to the 1-Lipschitz
mapping

B(X, ∗) ⊃ X ∋ x 7→ x − ∗+ ⋆ ∈ B(X, ⋆).

All of the above facts are very well-known, and in addition to the references
given above a useful summary can be found in [16].
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Here we observe that a similar universal property holds with regard to all
isometries (not necessarily preserving the distinguished point) and affine isomet-
ric mappings.

Proposition 5.2. Let (X, ∗) be a pointed metric space, let E be a normed space, and let
f : X → E be a 1-Lipschitz mapping. There exists a unique affine 1-Lipschitz mapping
f̃ : L(X, ∗) → E whose restriction to X is f .

Proof. The mapping g(x) = f (x) − f (∗) is a 1-Lipschitz mapping from X into
E sending the distinguished point ∗ to zero, and so g extends to a 1-Lipschitz
linear mapping ḡ : L(X, ∗) → E. For all x ∈ L(X, ∗), define f̃ (x) = ḡ(x) + f (∗).
If x ∈ X, one has f̃ (x) = f (x) − f (∗) + f (∗) = f (x), and this f̃ is affine and
1-Lipschitz. If h is another affine 1-Lipschitz mapping from L(X, ∗) to E with

h|X = f , the formula ĥ(x) = h(x)− h(∗) defines a linear 1-Lipschitz map whose
restriction to X equals g, meaning that h(x) = f̃ (x).

By proceeding to completions, we obtain:

Corollary 5.3. Let (X, ∗) be a pointed metric space, let E be a Banach space, and let
f : X → E be a 1-Lipschitz mapping. There exists a unique affine 1-Lipschitz mapping
f̃ : B(X, ∗) → E whose restriction to X is f .

Corollary 5.4. Let (X, ∗) be a pointed metric space. Then every surjective self-isometry
of X extends in a unique way to a surjective affine self-isometry of L(X, ∗) (and of
B(X, ∗)).

Proof. Both f and f−1 extend in a unique fashion to affine 1-Lipschitz self-maps

of L(X) (respectively, of B(X)). Denote them by f̃ and f̂ . Because of uniqueness,
these two maps should be mutually inverse and so are surjective affine isome-
tries.

Now let G be a group acting by isometries on a metric space X. Denote the
action by τ. Choose a distinguished point ∗ ∈ X. For every g ∈ G, the self-
isometry τg of X extends to a unique affine self-isometry τ̃g of the free Banach
space B(X, ∗). This defines an action of G by affine isometries on B(X, ∗), because
of the same uniqueness consideration: τ̃f g must coincide with τ̃f ◦ τ̃g.

Proposition 5.5. Let G be a topological group acting on a metric space X continuously
by isometries. Then the affine extension of the action over B(X, ∗) is continuous as well.

Proof. According to Lemma 2.2, it is enough to verify that every orbit map

orb x : G ∋ g 7→ τ̃g(x) ∈ B(X, ∗)

is continuous, where x ∈ L(X, ∗). This in its turn follows easily from the (pre-
sumed) continuity in the case where x ∈ X because B(X) is the affine subspace
spanned by X.

Remark 5.6. To see why the above result is interesting, notice that in the linear
case an action of a group G on a metric space by isometries can be extended to
an action of G on B(X) the way it was done in [38] if and only if G possesses
bounded orbits in X, cf. [47]. No such restriction is necessary in the affine case.
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Theorem 5.7. Let a group G act on a metric space X by isometries. Suppose that the
action is strongly moving. Then the extension of the action to an affine action on B(X, ∗)
is strongly moving with the same constant.

Proof. It is enough to verify that the action of G on L(X, ∗) is strongly moving
with the same constant ε0 as the constant of the action on X, because L(X, ∗) is
dense in B(X, ∗). Let F ⊆ L(X, ∗) be a finite subset of vectors. Denote

Φ = {∗} ∪
⋃

v∈F

supp v

and choose a g ∈ G with the property

dX(Φ, gΦ) ≥ ε0.

Let v, w ∈ F. Write
v = ∑

i

λixi, w = ∑
i

µixi,

where xi ∈ Φ and the sums are finite. According to the way the affine mapping
g̃, extending g, was defined in Proposition 5.2,

g̃(v) = ∑
i

λi(g(xi)− g(∗)) + g(∗)

= ∑
i

λig(xi) +

(
1 −∑

i

λi

)
g(∗).

There is a 1-Lipschitz real function h on X taking value 0 at Φ (in particular, van-
ishing at ∗) and the value ε0 on gΦ, for example,

h(x) = min {ε0, d(x, Φ)} .

Looking at w and g̃v as linear functionals on the space Lip (X, ∗), one observes
that

w(h) = ∑
i

µih(xi) = 0,

while

g̃(v)(h) = ∑
i

λih(gxi) +

(
1 −∑

i

λi

)
h(g(∗)) = ε0,

meaning that ‖w − g̃v‖ ≥ ε0.

By combining Theorem 5.7 with Corollary 4.4 and Proposition 2.4, we obtain
the first main result of this article:

Theorem 5.8. For a topological group G, the following conditions are equivalent.

1. G is non-precompact.

2. G admits a fixed point-free continuous action by affine isometries on a Banach
space.
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3. G admits a strongly moving continuous action by affine isometries on some Banach
space.

Remark 5.9. The action as above can be always chosen with bounded orbits (in
contrast to actions on Hilbert spaces, for which a bounded orbit forces existence
of a fixed point). This follows from the proof of Corollary 4.4, because d can be
chosen bounded. Moreover, one cannot expect in general an unbounded action,
as the non-precompact group may satisfy Bergman’s property, e.g. S∞ with its
standard Polish topology.

6 Urysohn space and Holmes space

The purpose of this section is to prove that when G is separable (or, more gener-
ally, ω-bounded in the sense of [20]), Theorem 5.8 can actually be strengthened
by considering actions of G on one single particular Banach space. Using the ter-
minology of the previous section, this space is obtained by taking the free Banach
space over a particular complete separable metric space known as the Urysohn
space.

The Urysohn space was constructed as a response to the question posed by
Fréchet: is there a separable metric space X universal for the class of all sepa-
rable metric spaces (that is, into which any separable metric space embeds iso-
metrically)? The answer came in 1925 with the construction by Urysohn [50] of a
complete separable metric space U with the required property, as well as the fol-
lowing ultrahomogeneity property: every isometry f between finite isometric sub-

spaces X and Y of U can be extended to an isometry f̂ of U onto itself. Moreover,
Urysohn also showed that U is the unique complete separable metric space that
is both universal and ultrahomogeneous. For an introduction to the theory of the
Urysohn space, see e.g. [33], or Chapter 5 in [39], or [36].

Much later, when studying how U may be embedded into the Banach space
C[0, 1] of all continuous functions from [0, 1] to R equipped with the sup norm
[24], Holmes discovered that U has the following remarkable property: for every
isometric embedding i (resp. j) of U into a Banach space Y (resp. Z) such that
the element 0X (resp. 0Y) is in the range of i (resp. j), the closed linear span
of i(U) in Y is linearly isometric to the closed linear span of j(U) in Z. In other
words, up to linear isometry, the space U generates a unique Banach space, today
called Holmes space and denoted 〈U〉. Now, the free Banach space B(U) also
being generated by U, the space B(U) actually is 〈U〉. Note that several very
elementary questions are still open concerning 〈U〉. For example, does it have
a basis? On the other hand, what is now well understood, is the property that
allows U to generate a unique Banach space (see the recent paper by Melleray,
Petrov and Vershik [34], or else [39], p. 113).

For our purposes, the space 〈U〉 is relevant because of the following special-
ized version of Theorem 5.8.

Recall that a topological group G is ω-bounded if it can be covered by countably
many translates of every non-empty open subset. This condition is equivalent to
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the following: G embeds as a topological subgroup into the direct product of a
family of second-countable groups with the standard product topology. See [20].

Theorem 6.1. For a separable (more generally, ω-bounded) topological group G, the
following conditions are equivalent.

1. G is non-precompact.

2. G admits a fixed point-free continuous action by affine isometries on the Holmes
space.

3. G admits a strongly moving continuous action by isometries on the Holmes space.

Corollary 6.2. For a separable (more generally, ω-bounded) topological group G, the
following conditions are equivalent:

1. G is precompact.

2. Every continuous affine action of G on the Holmes space 〈U〉 by isometries has a
fixed point.

The implication (3) ⇒ (2) in Theorem 6.1 is trivial, while (2) ⇒ (1) comes
from the easy (sufficiency) part of Corollary 4.4. In order to establish (1) ⇒ (3),
we are going to prove that if G is not precompact, then it admits a strongly mov-
ing action on U, and hence on 〈U〉 = B(U) by virtue of Theorem 5.7.

The required action on U is obtained thanks to the construction of U by
Katětov in [26]. The main concept of this construction is the concept of Katětov
function (which functions were introduced and used earlier by Flood in [13], [14],
although in a somewhat different context).

Definition 6.3. Let X = (X, d) be a metric space and f : X → [0,+∞). Say that f
is Katětov over X when for every x, y ∈ X,

| f (x)− f (y)| ≤ d(x, y) ≤ f (x) + f (y).

Equivalently, f is Katětov over X when it can be used to define a 1-point metric
extension X ∪ {p} of X by setting for every x in X, d(x, p) = f (x). In the sequel,
the set of all Katětov maps over X is written E(X).

With respect to the Urysohn space, the crucial fact is that those functions pro-
vide another characterization of U: up to isometry, the space U is the unique
complete separable metric space such that for every finite F ⊆ U and f ∈ E(F),
there is y ∈ U such that for every x ∈ F, d(x, y) = f (x).

The following method (due to Katětov) allows to construct a space where that
condition holds. Starting from any separable metric space X, construct first a
metric space X∗ containing X as a subspace (or, more exactly, into which X em-
beds isometrically) and where for every finite F ⊆ X and every f ∈ E(X), there
is y ∈ X∗ such that for every x ∈ F, d(x, y) = f (x). Next, set X0 = X and define
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inductively Xn+1 = X∗
n. The completion

⋃∞
n=0 Xn of the union

⋃∞
n=0 Xn is then

separable and satisfies the required condition.
As for X∗, a possible way to construct it from X is as follows: for Y ⊆ X finite

and f ∈ E(Y), f can be used to define a 1-point metric extension f̂ of X by setting

f̂ (x) = min
y∈Y

f (y) + d(y, x).

Now, set

X∗ =
⋃
{ f̂ : Y ⊆ X finite, f ∈ E(Y)}.

Then X∗ equipped with the sup metric is as required: first, it embeds X iso-

metrically because every x may be identified with the function f̂x where fx is the
unique Katětov function on {x} with value 0. Next, given any finite F ⊆ X∗ and
f ∈ E(F), there is indeed y ∈ X∗ such that d(x, y) = f (x) for every x ∈ F: simply

take y = f̂ .
Katětov method is not only relevant for the previous construction of U. As

noted by Uspenskij in [52], it also allows to prove that any separable metric space
X embeds into U in such a way that every g ∈ Iso(X) extends to ĝ ∈ Iso(U)
with the map Iso(X) ∋ g 7→ ĝ ∈ Iso(U) being a topological group embedding.
Indeed, consider the chain

X ⊆ X∗ = X1 ⊆ X∗
1 = X2 ⊆ . . . ⊆ U.

Notice that the inclusion X ⊆ X∗ is such that every g ∈ Iso(X) extends to
an embedding g∗ ∈ Iso(X∗) in such a way that Iso(X) ∋ g 7→ g∗ ∈ Iso(X∗)
is a topological group embedding: if g ∈ Iso(X) and f ∈ X∗, set g∗( f ) = f ◦

g−1. Iterating this process, Iso(X) embeds into Iso(
⋃∞

n=0 Xn) = Iso(U). For g ∈
Iso(U), the image via this embedding is obtained by extending g to an element
gn of Iso(Xn) so that gn+1|Xn = gn for every n and by considering the isometry ĝ

induced on
⋃∞

n=0 Xn = U by the sequence (gn)n.
For our purposes, Katětov’s construction is important because given a topo-

logical group G, it allows to make a strongly moving action of G on U out of any
strongly moving action of G by isometries on an arbitrary separable metric space
X. This is how we proceed:

Proposition 6.4. Let Y be a metric space, A, B ⊆ Y finite with d(A, B) ≥ ε, ϕ ∈ E(A)
and ψ ∈ E(B). Then ‖ϕ̂ − ψ̂‖ ≥ ε.

Proof. If |ϕ̂ − ψ̂| takes a value larger than ε on A, we are done. Otherwise, for
every a ∈ A

|ϕ̂(a)− ψ̂(a)| < ε

and so

ψ̂(a)− ε < ϕ̂(a).

But by definition of ψ̂,

ψ̂(a) = min
b∈B

ψ(b) + d(b, a) ≥ min
B

ψ + ε.
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So for every a ∈ A
min

B
ψ < ϕ̂(a)(= ϕ(a)).

Choose now b0 ∈ B where ψ reaches its minimum. Then

ϕ̂(b0) = min
a∈A

ϕ(a) + d(a, b0) > min
B

ψ + ε = ψ̂(b0) + ε.

So
|ϕ̂(b0)− ψ̂(b0)| > ε.

We saw above that we could embed Iso(X) into Iso(X∗) by setting, for

g ∈ Iso(X) and f̂ ∈ X∗, g∗( f̂ ) = f̂ ◦ g−1. Therefore, if a topological group G
acts on a metric space X, then we can extend the action of G to an isometric ac-

tion on X∗ by setting, for g ∈ G and f̂ ∈ X∗, g f̂ = f̂ ◦ g−1.

Proposition 6.5. Let G be a topological group acting on a metric space X. Suppose that
the action is strongly moving with constant ε. Then the extension of the action of G to an
isometric action on X∗ is strongly moving with constant ε.

Proof. Fix H ⊆ X∗ finite. We need to find g ∈ G such that d(H, gH) ≥ ε. To
achieve that, fix F ⊆ X finite but large enough such that every element of H is of

the form f̂ for some f ∈ E(F). Observe that for every f ∈ E(F), g f ∈ E(gF) and

that g f̂ = ĝ f . Indeed, for x ∈ X,

g f̂ (x) = f̂ (g−1x)

= min
y∈F

f (y) + d(y, g−1x)

= min
y∈gF

f (g−1y) + d(g−1y, g−1x)

= min
y∈gF

g f (y) + d(y, x)

= ĝ f (x).

It follows that every element of gH is of the form f̂ for some f ∈ E(gF), while

every element of H is of the form f̂ for some f ∈ E(F). Therefore, in virtue of
Proposition 6.4, it is enough to choose g ∈ G such that d(F, gF) ≥ ε.

Iterating the previous proposition, we obtain:

Proposition 6.6. Let G be a topological group acting on a metric space X. Suppose that
the action is strongly moving with constant ε. Then the extension of the action of G to an
isometric action on Xn is strongly moving with constant ε.

In the case where X is separable, the fact that U may be seen as the completion
of
⋃∞

n=0 Xn consequently allows to prove:

Proposition 6.7. Let G be a topological group acting on a metric space X. Suppose that
the action is strongly moving with constant ε. Suppose also that X is separable. Then the
extension of the action of G to an isometric action on U is strongly moving with constant
ε.
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Proof. Fix H ⊆ U finite. Then there is n ∈ N such that H ⊆ Xn and by the
previous proposition, we can find g ∈ G such that d(H, gH) ≥ ε.

To finish the proof of Theorem 6.1, it remains to show that if G is separable
and not precompact, then it admits a strongly moving action by isometries on
a separable metric space. This is done by observing that the space X provided
by Corollary 4.4 is separable in the case where G is. Note that if more generally,
G is ω-bounded, then the space X constructed in Corollary 4.4 is also separable.
Therefore, Theorem 6.1 also holds in that case.

7 Nonexistence of proper affine isometric actions

It is easy to see that not every topological group G admits a free continuous action
by affine isometries on a Banach space E. For let π be such an action, and let ξ ∈ E
be an arbitrary vector. The formula

d(g, h) =
∥∥πg(ξ)− πh(ξ)

∥∥
E

(7.1)

determines a left-invariant continuous metric on G. As a consequence, every
point of G has type Gδ (is an intersection of countably many open sets). Not
every topological group has this property, and the easiest example would be a
direct product, with Tychonoff product topology, of uncountably many copies of
any non-trivial topological group, such as Z2 or the circle group T. (Note that the
group T

c is even separable, by a famous theorem of Pondiczery [42] and Hewitt
[23].)

What about metrizable groups? Even in this case, the answer is in the neg-
ative. In fact, a typical sort of behaviour for a Polish group G is to have non-
compact stabilizers for actions by isometries on any complete metric space.

Here we are going to explain this phenomenon. Given a topological group G,
denote by ĜL the completion of G with regard to the left uniform structure (Eq.
(2.1)). If G is metrizable (which is the case we are interested in), then ĜL is just
the completion of G equipped with any compatible left-invariant metric.

It was noted early on by Dieudonné [12] that, while being a topological semi-
group with jointly continuous multiplication (cf. [43], Prop. 10.12(a)), the left
completion ĜL need not be a topological group. Among Dieudonné’s examples
was the familiar group of homeomorphisms Homeo +[0, 1].

Example 7.1 (Dieudonné [12]). The right completion of Homeo +[0, 1] is the semi-
group of all continuous order-preserving surjections from [0, 1] to itself (see also
[43], Exercise 1, p. 191), and so the left completion is formed by all relations on
[0, 1] whose inverse relations are such surjections.

Example 7.2. The left completion of U(ℓ2) is the semigroup of all linear isometric
embeddings ℓ2 →֒ ℓ2 (not necessarily onto) with the strong topology.

Example 7.3. The infinite symmetric group S∞ consists of all self-bijections of a
countably infinite set ω and is equipped with the Polish topology of pointwise
convergence on ω with a discrete topology. The left completion of S∞ is the semi-
group of all injections ω →֒ ω, with the pointwise convergence topology.
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Example 7.4. The left completion of the group Iso(U) of isometries of the Urysohn
space is the semigroup of all isometric embeddings of U into itself, with the point-
wise topology.

This list can go on and on. Only in some special cases (e.g. where G is lo-
cally compact, or abelian, or a Banach-Lie group) the one-sided completion of
G is a topological group again. However, the above sort of behaviour should
not be regarded as “pathological”. For instance, it serves as a basis for study-
ing the famous distortion property / oscillation stability of the space ℓ2, as well
as a number of other infinite Ramsey-type properties, in the context of topologi-
cal transformation groups [27]. (See also Chapter 8 in [39], as well as the recent
solution of the distortion problem for Urysohn sphere [37].)

For a metric space X, denote by Emb(X) the semigroup consisting of all iso-
metric embeddings of X into itself (possibly proper ones), equipped with compo-
sition of maps as the binary operation and the topology of simple convergence on
X (induced by the embedding Emb(X) →֒ XX). A standard basic neighbourhood
of an element τ ∈ Emb(X) is of the form

V = V[τ; ε; x1, . . . , xn] = {τ′ ∈ Emb(X) : dX(τ(xi), τ′(xi)) < ε, i = 1, 2, . . . , n}.

Lemma 7.5. The semigroup Emb(X) with the topology of simple convergence is a topo-
logical semigroup (with a jointly continuous multiplication). If the metric space X is
complete, then the semigroup Emb(X) is complete with regard to the left uniformity
defined by the entourages of the diagonal

V[ε; x1, . . . , xn]L = {(τ, σ) ∈ Emb(X)2 : ∀i, dX(τ(xi), σ(xi)) < ε}. (7.2)

Proof. The first claim follows from the observation that, given σ, τ ∈ Emb(X),
ε > 0 and x1, x2, . . . , xn ∈ X, one has

V
[
σ;

ε

2
; τ(x1), . . . , τ(xn)

]
◦ V

[
τ;

ε

2
; x1, x2, . . . , xn

]
⊆ V[στ; ε; x1, x2, . . . , xn].

The verification of the fact that the entourages in Eq. (7.2) form a basis for a
uniform structure is pretty straightforward. Now let (σα) be a Cauchy net with
regard to the left uniformity. As an index, one can use a collection of the pairs of
the form (ε; F), where ε > 0 and F ⊆ X finite, partially ordered in an obvious way.
For every x ∈ X the net (σα(x)) is Cauchy in the metric space X and so converges
to a limit, which we denote σ(x). For every x, y ∈ X one has d(σα(x), σα(y)) =
d(x, y), and the triangle inequality assures that d(σ(x), σ(y)) = d(x, y), that is, σ
as a map from X to itself is an isometry and so σ ∈ Emb(X). It remains to verify
that σα → σ, which is pretty much obvious.

Notice that the restriction of left uniformity from the semigroup Emb(X) to
the subgroup Iso(X) coincides with the left uniformity of the latter group. The
left uniformity on Emb(X) is the only compatible uniformity admitting a basis
consisting of entourages invariant under left translations. Defining in a similar
way the right uniformity on Emb(X) is impossible.
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Lemma 7.6. The tautological action Emb(X)× X → X is jointly continuous.

Proof. Let σ ∈ Emb(X) and x ∈ X, and let ε > 0. If now τ and y are such that
d(σ(x), τ(x)) < ε/2 and d(x, y) < ε/2, then

d(τ(y), σ(x)) ≤ d(τ(y), τ(x)) + d(τ(x), σ(x))

= d(y, x) + d(τ(x), σ(x))

<
ε

2
+

ε

2
= ε.

Lemma 7.7. Let a topological group G act continuously by isometries on a metric space
X. This action extends to a unique continuous action of the left completion ĜL on X by
isometric embeddings.

Proof. Consider a continuous homomorphism f : G → Iso(X) →֒ Emb(X) de-
termined by the action. The map f is uniformly continuous with regard to the
left uniformities, and since Emb(X) is a complete uniform space, f extends to

a unique uniformly continuous map f̂ : ĜL → Emb(X). The continuity of the
resulting map G × X → X follows from Lemma 7.6. It remains to verify that

f̂ (gh)(x) = f̂ (h) f̂ (g)(x). Choose left Cauchy nets (gα), (hα) in G converging to
g and h, respectively. Then gαhα → gh because the multiplication in ĜL is jointly

continuous, and as f̂ (gαhα) = f̂ (gα) f̂ (hα), the result follows.

An element z of a semigroup S is right cancellative with regard to a subset
A ⊆ S if, whenever x, y ∈ A and xz = yz, one has x = y. An action of a
topological group G on a space X is (topologically) proper if the inverses of compact
sets under the map G × X → X are compact. In particular, stabilizers of all points
under a proper action are compact.

Theorem 7.8. Let G be a topological group such that not every element of the semigroup
ĜL is right cancellative with regard to G. Then G admits no free continuous action
by isometries on a complete metric space. If moreover the stabilizer subgroup in G of
some element z ∈ ĜL (under left multiplication) is non-compact, then every continuous
action of G by isometries on a complete metric space has non-compact stabilizers and in
particular is not proper.

Proof. Let G act continuously by isometries on a complete metric space X. This
action extends to a continuous action of the semigroup ĜL on X by isometric
embeddings by Lemma 7.7 (cf. also Prop. 8.2.6 in [39]). Choose x, y ∈ G and
z ∈ ĜL with the properties x 6= y and xz = yz. One has for an arbitrary ξ ∈ X:

x(z(ξ)) = (xz)(ξ) = (yz)(ξ) = y(z(ξ)),

meaning the action of G on X is not free. Under the additional assumption that
the stabilizer of z in G is non-compact, we conclude that the stabilizer of z(ξ) in
G is non-compact either, and so the action is not proper.

Numerous topological groups of importance have the properties listed in The-
orem 7.8.
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Theorem 7.9. Each of the following Polish groups possesses a non-compact stabilizer of
some element of the left completion, and therefore admits neither proper nor free contin-
uous isometric actions on a complete metric space (in particular, neither proper nor free
affine isometric actions on a Banach space):

• U(ℓ2) with the strong operator topology,

• S∞, with its standard Polish topology,

• Iso(U1), with the topology of pointwise convergence,

• Homeo +[0, 1], with the compact-open topology.

Proof. G = U(ℓ2): let v ∈ ĜL be a partial isometry whose image H = v(ℓ2) ( ℓ2

has infinite codimension. The subgroup of U(ℓ2) consisting of all block-diagonal
operators of the form (

IdH 0
0 u

)
,

where u is a unitary operator on H ⊥, stabilizes v ∈ Û(ℓ2)
L

(when acting by
multiplication on the left) and is isomorphic, as a topological group, to U(ℓ2),
hence non-compact.

For S∞, let i be an injection ω →֒ ω with infinite complement ω \ i(ω), then
i is stabilized by a non-compact subgroup of S∞ consisting of all permutations
whose restriction to i(ω) is identity.

For Iso(U), it is enough to isolate two copies of U1 and embed them isomet-
rically into U1 in such a way that they lie at a constant distance 1 from each other
and every self-isometry of the union extends to a global self-isometry of U1. Now
an argument along the same lines applies.

In the case of the group G = Homeo +[0, 1], it is more convenient to consider
the action of G on the right performed on the right completion ĜR which consists,
as we have seen, of all continuous order-preserving surjections of the interval
to itself. Let f be such a surjection which is not a homeomorphism. There is a
x ∈ [0, 1] whose inverse image f−1(x) is a non-trivial interval. The right stabilizer
of f in Homeo +[0, 1] contains a subgroup isomorphic to Homeo +[0, 1], namely,
a subgroup of self-homeomorphisms of the little interval f−1(x) preserving the
endpoints and extended by the identity on the outside of f−1(x).

The above observation is in sharp contrast with Haagerup and Przybyszew-
ska’s result [21] about locally compact groups admitting (metrically) proper affine
isometric actions. (Recall that an action of G on X is metrically proper if, whenever
B is a bounded subset of X, the closure of the set {g ∈ G : gB∩ B 6= ∅} is compact.
This is an even stronger property than a topologically proper action.) It is one of
those strange-looking yet typical properties of “infinite-dimensional” topological
groups, such as extreme amenability [39, 27, 36], Property (OB) and its variations
[44, 2, 22, 6], ample generics and its various consequences [28], etc.

In conclusion, we would like to correct a statement appearing in Gromov’s
book [18]. Exercise (c) on p. 83 asks the reader to prove that every second count-
able group G admits a free isometric action on the Urysohn space (U, in our
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notation). As we have seen above (Theorem 7.9), many concrete Polish groups
would not admit such an action. The exercise should ask the reader instead to
prove that every second countable group G admits an effective isometric action on
the Urysohn space U. This result belongs to Uspenskij [51, 52].
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[30] S. Mazur and S. Ulam, Sur les transformations isométriques d’espaces vectoriels
normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.

[31] M.G. Megrelishvili, Operator topologies and reflexive representability, in: Nu-
clear groups and Lie groups (Madrid, 1999), Res. Exp. Math., 24, Helder-
mann, Lemgo, 2001, 197–208.

[32] M.G. Megrelishvili, Every semitopological semigroup compactification of the
group H+[0, 1] is trivial, Semigroup Forum 63 (2001), 357–370.

[33] J. Melleray, Some geometric and dynamical properties of the Urysohn space,
Topology Appl. 155 (2008), 1531–1560.

[34] J. Melleray, F.V. Petrov, A.M. Vershik, Linearly rigid metric spaces and the em-
bedding problem, Fund. Math. 199 (2008), 177–194.

[35] E. Michael, A short proof of the Arens–Eells embedding theorem, Proc. Amer.
Math. Soc. 15 (1964), 415–416.
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