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Abstract

A parabolic surface in hyperbolic space H
3 is a surface invariant by a

group of parabolic isometries. In this paper we describe all parabolic surfaces
with constant Gaussian curvature. We study the qualitative properties such
as completeness and embeddedness.

1 Introduction

The aim of this paper is to provide new examples of surfaces in three-dimensional
hyperbolic space H

3 with constant Gaussian curvature K. We abbreviate by
saying K-surface. By the Gaussian curvature K of a surface in H

3 we mean
K = Kext − 1, where Kext is the extrinsic curvature of the surface, i.e., the determi-
nant of the second fundamental form. For this purpose, we restrict to the family
of rotation surfaces because the constant Gauss curvature equation reduces into
an ordinary differential equation. In hyperbolic space, there exist three types of
rotational surfaces depending of the group of isometries by which they are in-
variant: spherical, hyperbolic and parabolic. A group of isometries leaves fixed a

set {p, q} of two points of the ideal boundary S
2
∞ of H

3. The group is of spherical
(resp. hyperbolic, parabolic) type if p and q are fixed (resp. p is carried to q and
vice-versa, p = q).

We are interested in parabolic isometries. A group of parabolic isometries

leaves fixed one point of S
2
∞ and so, it leaves globally fixed the horocycles passing
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through this point. We say that a surface S is a parabolic surface if it is invariant
by a group of parabolic isometries. Parabolic surfaces in H

3 were introduced by
Do Carmo and Dajczer in [1] for studying surfaces with constant mean curvature
(see also the PhD. thesis of Gomes, [2]).

Leite classified complete rotational spherical hypersurfaces in hyperbolic
n-space H

n with constant scalar curvature [3]. Mori studied in [4] complete ro-
tational hypersurfaces in H

n with constant scalar curvature and of hyperbolic
and parabolic type. In this paper, and for the 3-dimensional space H

3, we give
a full description of (complete and not complete) parabolic K-surfaces. A first
matter of interest is about the completeness, and more general, if such surfaces
can be extended to be complete. In this sense, part of our results coincide with
the ones in [4]. Furthermore, we will give a special emphasis on the behaviour
of the asymptotic boundary of such surfaces. Let us recall that the asymptotic
boundary of a surface is the intersection of its closure with the sphere at infinity

S
2
∞ of H

3. Although the parabolic K-surfaces will be described in the next sec-
tions, we can state some facts of their qualitative properties. The first one is about
embeddedness (see Theorem 2.3).

Any parabolic K-surface immersed in hyperbolic space H
3 is embedded.

In contrast to this, we point out that this does not occur if we replace K by the
mean curvature. Gomes proved the existence of a family of complete parabolic
surfaces with constant mean curvature that auto-intersect along horocycles [2]
(see also [1]). We also show:

Any non-umbilical parabolic K-surface in H
3, with K < −1 or K ≥ 0, is

not complete. Moreover, its asymptotic boundary is the point fixed by the
group of parabolic isometries.

When the value of the Gaussian curvature lies in the interval [−1, 0), we ob-
tain:

For each number K with −1 ≤ K < 0, there exists a non-umbilical complete
parabolic K-surface in H

3. For such surface, the asymptotic boundary is
formed by two circles tangent at the point fixed by the group of parabolic
isometries.

The range of real numbers [−1, 0] of values of K is specially interesting. In this
interval of numbers for K, there are umbilical K-surfaces: horospheres (K = 0),
equidistant surfaces (−1 < K < 0) and geodesic planes (K = −1). On the other
hand, it has been proved that for a closed embedded curve Γ in a horosphere Q

(resp. in S
2
∞), and K ∈ (−1, 0), there exists a K-surface S with boundary ∂S = Γ

([5]). For this, the authors search graphs on bounded domains in Q (resp. S
2
∞).

Then the function that defines the graph satisfies an elliptic equation of Monge-
Ampère type which can be solved by using the continuity method and the deriva-
tion of a priori C2+α estimates of the solutions.

This paper is organized as follows. In Section 2 we derive the equation for the
Gauss curvature of a parabolic surface and we give some qualitative properties of
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their solutions. In Section 3 we solve this equation in all its generality whereas in
Section 4 we restrict the study to those solutions that are symmetric by reflections
with respect to geodesic planes invariant under the group of parabolic isometries.

2 The equation of constant Gauss curvature

In this section we obtain the differential equations that govern the surfaces of our
study. In order to have a simple visualization of these surfaces, we consider the
half-space model of the hyperbolic H

3, i.e.,

H
3 =: R

3
+ = {(x, y, z) ∈ R

3; z > 0}

equipped with the hyperbolic metric

〈, 〉 =
dx2 + dy2 + dz2

z2
.

In what follows, we will use the words ”vertical” or ”horizontal” in the usual
affine sense of R

3
+. The ideal boundary S

2
∞ of H

3 is identified with the one point

compactification of the plane Π ≡ {z = 0}, that is, S
2
∞ = Π ∪ {∞} and it cor-

responds with the asymptotic classes of geodesics rays of H
3. The asymptotic

boundary of a set Σ ⊂ H
3 is defined as ∂∞Σ = Σ ∩ S

2
∞, where Σ is the closure of

Σ in {z ≥ 0} ∪ {∞}.

A parabolic group of isometries G of H
3 is a group of isometries that admits

a fixed double point at S
2
∞. These isometries leave globally fixed each horocycle

tangent to the fixed point. In our model, we take the point {∞} of S
2
∞ as the point

that fixes G. Then the group G is defined by the horizontal (Euclidean) transla-
tions in the direction of a horizontal vector ξ, ξ ∈ Π: G = {Ta; a ∈ R, Ta(p) =
p + aξ}. The orbits are horizontal straight lines parallel to ξ. We can also view
this group as the set of reflections with respect to any geodesic plane orthogonal
to ξ. Actually, the parabolic group G is generated by all reflections with respect
to the geodesic planes orthogonal to ξ. The space of orbits is then represented in
any geodesic plane of this family. This will be done in our study.

Let G be a group of parabolic isometries. Without loss of generality, we as-
sume that the horizontal vector ξ that defines the group of is the vector
ξ = (0, 1, 0). Let P = {(x, 0, z); z > 0}, which it is a vertical geodesic plane
orthogonal to ξ. Then a surface S invariant by G intersects P in a curve α called
the generating curve of S. If S has constant Gaussian curvature, we shall ob-
tain an ordinary differential equation for the curve α (Equation (3) below). Let
L = {(x, 0, 0), x ∈ R}. If we assume that S is a complete surface, the possibilities
about its asymptotic boundary ∂∞S are: a circle (∂∞α is a point of L or one point
of L together ∞), two tangent circles (∂∞α are two different points of L) or it is
one point (∂∞α = ∅ or ∞).

Remark 2.1. Throughout this work, we assume that a parabolic surface is invariant
under the group of parabolic isometries defined by the vector ξ = (0, 1, 0).
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We derive the equation for the curvature of a parabolic surface. We assume
that α is parameterized by arc length with respect to the Euclidean metric and
whose domain of definition I is an open interval of real numbers including zero.
A parametrization of S is X(s, y) = (x(s), y, z(s)), s ∈ I, y ∈ R. Let us intro-
duce the function θ(s), which measures the angle between the tangent vector of
α, α′(s), and the x-axis, that is, x′(s) = cos(θ(s)) and z′(s) = sin(θ(s)) for a certain
differentiable function θ. Exactly, the derivative θ′(s) is the (Euclidean) curvature
of α. Since in this model of H

3, the hyperbolic and Euclidean metrics are confor-
mal, the Gauss maps of S with each one of the induced metric from H

3 and R
3
+

are parallel. In particular, ∂X/∂s and ∂X/∂y are the principal directions at each
point of S. If κ and κE denote a principal curvature with the induced hyperbolic
and Euclidean metric on S respectively, then κ and κE are related as

κ(s, y) = z(s)κE(s, y) + z ◦ NE(s, y),

where NE is the Gauss map of S for the Euclidean metric. Since NE(s, y) =
(− sin(θ(s)), 0, cos(θ(s))) and the two principal (Euclidean) curvatures are
κ1(s, y) = θ′(s) and κ2(s, y) = 0, we deduce that the principal curvatures of S
are

κ1(s, y) = z(s)θ′(s) + cos(θ(s)), κ2 = cos(θ(s)). (1)

The term z(s)θ′(s) coincides with the hyperbolic curvature of α at s. Therefore the
Gaussian curvature K = Kext − 1 = κ1κ2 − 1 at each point X(s, y) of S is

K(s, y) = z(s)θ′(s) cos(θ(s)) − sin(θ(s))2 . (2)

Hence, it follows that the coordinates of the generating curve α of a parabolic
K-surface S in H

3 are governed by the next differential equations system:







x′(s) = cos(θ(s))
z′(s) = sin(θ(s))
θ′(s)z(s) cos(θ(s)) = K + sin2(θ(s))

(3)

In order to define the initial conditions, we consider isometries h : H
3 → H

3 that
keeps unchanged the parabolic group G by conjugations, that is, h−1Gh = G. In
such case, if S is a parabolic surface invariant by the group G, then h(S) is a sur-
face invariant by the same group G. First, we take a translation in the x-direction.
This allows to assume that x(0) = 0. On the other hand, we consider the hyper-

bolic isometries that fix the origin O = (0, 0, 0) ∈ S
2
∞, that is, homotheties from O.

The group G is invariant under conjugation by any such homotheties. With an
appropriate homothety, we can assume that z(0) = 1. As conclusion and without
loss of generality, we suppose that the functions x(s), z(s) and θ(s) satisfy the
initial conditions:

x(0) = 0, z(0) = 1, θ(0) = θ0. (4)

In our family of parabolic K-surfaces, there are umbilical surfaces. If we re-
quire that κ1 = κ2 at every point of the surface, it means that θ is a constant func-
tion θ0 and that α parameterizes an open set of a straight line. With our notation,
and from (2), these umbilical surfaces are the following:
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1. A horosphere and K = 0, if sin(θ0) = 0.

2. An equidistant surface and −1 < K < 0, if 0 < | sin(θ0)| < 1.

3. A (vertical) geodesic plane and K = −1, if sin(θ0) = ±1.

We return to the solutions of (3). We show that if K is constant, then do not
exist points on the surface with vertical tangent plane, unless that the surface is a
vertical geodesic plane. A vertical tangent plane occurs if ∂X/∂s is vertical, that
is, cos(θ(s)) = 0.

Lemma 2.2. Let α be the generating curve of a parabolic K-surface S in H
3. With the

above notation, if there exists s ∈ I such that cos(θ(s)) = 0, then S is a vertical geodesic
plane.

Proof. It suffices in showing that A = {s ∈ I; cos(θ(s)) = 0} is an open set. In
such case, the hypothesis of Lemma says that A 6= ∅ and thus, A = I, proving
the Lemma. We assume that A is not an open set and we will arrive to a contra-
diction. Let s0 ∈ I such that cos(θ(s0)) = 0 and assume that s0 is a limit point of
numbers s with cos(θ(s)) 6= 0. From (2) and since cos(θ(s0)) = 0, the value of the
Gauss curvature K is −1. Then z(s)θ′(s) = − cos(θ(s)). By differentiation this
expression, we conclude that θ′′(s) = 0. This means that θ(s) = rs + a for some
constants r, a. If r = 0, θ′ = 0, which means that cos(θ(s)) = 0: contradiction.
Thus, r 6= 0. But then (2) writes as rz(s) = − cos(θ(s)) and by letting s → s0, we
conclude that z(s0) = 0, a contradiction again.

As a consequence, we have

Theorem 2.3. Any parabolic K-surface in H
3 is a vertical geodesic plane parallel to ξ or

its a graph on a strip of Π. In particular, it is embedded.

Proof. From Lemma 2.2 and excluding the case that S is a geodesic plane, the
planar curve α has not points with vertical tangent line, which it shows that α is
a graph on some interval of the line L. Thus S is a graph on a domain D of Π and
the parabolicity property of S implies that D is a strip.

The above theorem informs us about the completeness of a parabolic K-surface.
We point out that the very curve α ⊂ S is a geodesic of S. Thus S is complete if and
only if the length of α is infinite. Consider α = α(x) = (x, 0, z(x)), x ∈ (x1, x2),
with −∞ ≤ x1 < x2 ≤ ∞. Then the length is infinite if ∂∞α = {α(x1), α(x2)}.

We now establish a result concerning the Euclidean curvature θ′ of α, which
says that θ′ can not vanish unless that α is a straight line.

Lemma 2.4. Let α be the generating curve of a parabolic K-surface S. If the curvature of
α vanishes at some point, then α is a straight line and S is an umbilical surface.

Proof. Assume that θ′(s0) = 0 for a real number s0 ∈ I. Then the functions

x̄(s) = cos(θ(s0))(s − s0) + x(s0)

z̄(s) = sin(θ(s0))(s − s0) + z(s0)

ϕ(s) = θ(s0)
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are solutions of (3) with the same initial conditions as α at s = s0. Then the
uniqueness of solutions implies that α(s) = (x̄(s), 0, z̄(s)). This says that α pa-
rameterizes a straight line and that S is an umbilical surface.

As a consequence of Lemma 2.4, if we view α as the graph of z = z(x), we
conclude that either z is a linear function or z is convex (or concave) in all its
domain. By analogy, we will say that α is convex (or concave) respectively if z
does.

We also obtain a result of symmetry of a parabolic K-surface provided that
z(s) has a critical point. If z′(s) = 0, the tangent vector ∂X/∂s is horizontal, and
geometrically, it says that the tangent plane to S at α(s) is horizontal. The surfaces
described in the next Lemma will be studied in Section 4.

Lemma 2.5 (Symmetry). Let α be the generating curve of a parabolic K-surface S. As-
sume that at s = s0, z′(s0) = 0. Then α is symmetric with respect to the vertical line
x = x(s0) and S is symmetric with respect to the geodesic plane {x = x(s0)}.

Proof. Without loss of generality, we assume that s0 = 0. As θ(0) = 0, then
sin(θ(0)) = 0. Thus the functions

x̄(s) = x(−s), z̄(s) = z(−s), ϕ(s) = θ(−s)

satisfy the differential equations system (3) with the same initial conditions as α.
By uniqueness, α(s) = α(−s) and this concludes the proof.

3 The solutions of the constant Gauss curvature equation

In this section we study the solutions of (3) in all its generality without restrictions
on the initial conditions (4). Recall that the assumption θ(0) = 0 on the starting
angle implies by Lemma 2.5 some properties of symmetry of the solutions. As
we will see in the description below, it is possible that the angle θ does not reach
the value θ0 = 0 and the surface would be not symmetric with respect to vertical
geodesic planes parallel to the ξ-direction.

In the above system of equations (3), we have been successful in finding exact
solutions of the function z(s), which will be presented below. The third equation
in (3) writes as z(s)z′′(s) = K + z′(s)2. Consider z′(s) as a function of the next
variable z(s). If we put p = z′ and x = z, we have xp(x)p′(x) = K + p(x)2.
Setting y = p2, we write

xy′(x) = 2K + 2y(x).

The solutions of this equation are y(x) = λx2 − K, that is,

z′(s)2 = λz(s)2 − K. (5)

At s = 0, we have λ = K + sin2(θ0). A new differentiation in (5) gives

z′′(s) = (K + sin2(θ0))z(s). (6)

It is well known that the solutions of (6) depends on the sign of the constant
K + sin2(θ0). We then analyze them according to this sign.
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3.1 Case K + sin2(θ0) > 0

The solution of (6) with the initial condition (4) is

z(s) = cosh

(

√

K + sin2(θ0) s

)

+
sin(θ0)

√

K + sin2(θ0)
sinh

(

√

K + sin2(θ0) s

)

.

We can also write the solutions according to the sign of K. Put R = K + sin2(θ0).
Then we have:

z(s) =























√

K

R
cosh

(√
R s + ǫa

)

, with cosh(a) =

√

R

K
, K > 0

exp(sin(θ0) s), K = 0
√

−K

R
sinh

(

ǫ
√

R s + a
)

, with sinh(a) =

√

R

−K
, K < 0

Here a is a non-negative number with ǫ = 1 if sin(θ0) > 0 and ǫ = −1 if
sin(θ0) < 0. If sin(θ0) = 0, the value of a is a = 0 (only possible if K > 0).

We compute the domains of α. In order to simplify notations, we assume that
sin(θ0) ≥ 0. We have to impose that z′(s)2

< 1, which imposes conditions on the
parameter s. We point out a remark in the case K < 0. In such setting, we know

that |
√

Rs + a| < arc cosh(1/
√
−K). However we have an extra condition, since

z(s) could vanish. This implies that s > −a/
√

R and this condition is stronger
than s > − 1√

R
(arc cosh(1/

√
−K) + a). Moreover, this proves that one branch of

α meets the asymptotic boundary S
2
∞. Depending on the sign of K, the interval I

of definition of the solution α is:






























(

− 1√
R

(arc sinh(
1√
K

) + a),
1√
R

(arc sinh(
1√
K

)− a)

)

, K > 0
(

−∞,− log(sin(θ0))

sin(θ0)

)

, K = 0
(

− a√
R

,
1√
R

(arc cosh(
1√
K

)− a)

)

, K < 0

Finally we study if the curve α has a horizontal tangent line, that is, if there
exist values s such that sin(θ(s)) = 0. It is immediate that it is not possible

if K ≤ 0 and that when K > 0 this occurs at s = −a/
√

R. In such point,
z′′(s) = θ′(s) cos(θ(s)) > 0, which says that it is minimum of the function z(s).

Theorem 3.1. Let α be the generating curve of a parabolic K-surface S in H
3. Assume

that the starting angle θ0 of α satisfies K + sin2(θ0) > 0. Then the surface is not com-
plete. Moreover

1. If K > 0, α is a convex curve with exactly one minimum and ∂∞S = {∞}. See
Fig. 1 (a).

2. If K = 0, α is a convex curve without minimum, one branch of α is asymptotic to
the line L and ∂∞S = {∞}. See Fig. 1 (b).

3. If K < 0, then α is a convex curve without minimum that meets Π at one point
and ∂∞S is a circle of S

2
∞. See Fig. 2 (a).
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Figure 1: The generating curves of parabolic K-surfaces. The initial angle is
θ(0) = π/4. Case (a): K = 1; Case (b): K = 0.

3.2 Case K + sin2(θ0) = 0

The solution is a linear function, namely,

z(s) = sin(θ0) s + 1.

Then x(s) = cos(θ0)s and the parabolic surface generated by α is a Euclidean
plane parallel to the ξ vector. Thus the surface is: a geodesic plane, an equidistant
surface or a horosphere. See also Lemma 2.4.

Theorem 3.2. Let α be the generating curve of a parabolic K-surface S in H
3. Assume

that the starting angle θ0 of α satisfies K + sin2(θ0) = 0. Then the surface is umbilical.
See Fig. 2 (b).
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Figure 2: The generating curves of parabolic K-surfaces. The initial angle is
θ(0) = π/4. Case (a): K = −1/4; Case (b): K = −1/2.

3.3 Case K + sin2(θ0) < 0

The solution z(s) is given by

z(s) = cos

(

√

−(K + sin2(θ0)) s

)

+
sin(θ0)

√

−(K + sin2(θ0))
sin

(

√

−(K + sin2(θ0)) s

)

.
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Again, putting R = K + sin2(θ0), we write z(s) as

z(s) =

√

K

R
sin

(

ǫ
√
−Rs + a

)

, with sin(a) =

√

R

K
,

where, as in the case R > 0, a is a non-negative number with ǫ = 1 if sin(θ0) ≥ 0
and ǫ = −1 if sin(θ0) < 0.

We study the domain of the solution α. Without loss of generality, we suppose
that sin(θ0) ≥ 0. Let us recall that the above expression of z can vanish. This im-
plies that s > −a/

√
−R. This condition, together the fact z′(s)2

< 1 determines
the interval of definition of α. We distinguish three cases.

1. Case −1 < K < 0. Here α intersects the line L at two different points making
an angle θ1 such that sin(θ1) =

√
−K. Then I is

(

− a√
−R

,
π − a√
−R

)

.

Moreover, in this interval, the function z′(s) vanishes, which says that α
presents a maximum at the point s1 = (π − 2a)/2

√
−R and α is symmetric

with respect to the line x = x(s1).

2. Case K = −1. Then α is a halfcircle that intersects orthogonally the line L.
This situation will be studied below.

3. Case K < −1. Here the domain is
(

1√
−R

(arc cos(
1√
−K

)− a),
1√
−R

(π − a − arc cos(
1√
−K

))

)

.

In particular, α does not meet the line L. Again, z′(s) vanishes at one maxi-
mum of the function z = z(s).

Theorem 3.3. Let α be the generating curve of a parabolic K-surface S in H
3. Assume

that the starting angle θ0 of α satisfies K + sin2(θ0) < 0. Then:

1. If −1 ≤ K < 0, α is a concave curve with exactly one maximum. The surface S is
complete and ∂∞S is formed by two circles tangent at ∞. See Fig. 3 (a). If K = −1,
α is a Euclidean halfcircle that meets orthogonally the line L.

2. If K < −1, then α is a concave curve with one maximum. The surface is not
complete and ∂∞S = {∞}. See Fig. 3 (b).

This concludes the discussion of the solutions of the differential equation (6)
according to the sign of the constant K + sin2(θ0).

In the results obtained, we were able to give explicitly the function z(s) of
the generating curve α. However, and with respect to the function x(s), we can
not determine it and we only express x(s) in terms of elliptic integral from the
equality

x(s) =
∫ s

0

√

1 − z′(t)2 dt. (7)

Now, we bring up two cases where one can completely solve (3), obtaining ex-
plicit parametrizations of the function x(s) and so, of α.
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Figure 3: The generating curves of parabolic K-surfaces. The initial angle is
θ(0) = π/4. Case (a): K = −3/4; Case (b): K = −2.

1. Case K = 0. Then K + sin2(θ0) = sin2(θ0) ≥ 0. If sin(θ0) = 0, we
know that the surface S is a horizontal plane, that is, a horosphere. Assume
sin(θ0) 6= 0. In the next reasoning, we assume that sin(θ0) > 0 (analogously
if sin(θ0) < 0). Then,

z(s) = esin(θ0) s, −∞ < s < − log(sin(θ0))

sin(θ0)
.

Since z → 0 as s → −∞, the curve α is asymptotic to the line L of the plane Π

as → −∞. See Fig. 1 (b). For the integration of x(s), we denote m = sin(θ0).
Then

x(s) =
1

m

(

√

1 − m2e2ms − cos(θ0)− arctanh(
√

1 − m2e2ms)

+arctanh(cos(θ0))) .

In view of Theorem 2.3, if we consider x = x(s) as independent variable
and α as the graph of z = z(x), the domain of z is a non-bounded interval
of type (−∞, x1), where

x1 =
arc tanh(cos(θ0)) − cos(θ0)

sin(θ0)
.

2. Case K = −1. Then K + sin2(θ0) ≤ 0. The case of equality means that S is a
vertical geodesic plane. We now assume that K + sin2(θ0) < 0. Then

z(s) =
1

cos(θ0)
sin(cos(θ0) s + a), sin(a) = cos(θ0)

and

x(s) = − 1

cos(θ0)
cos(cos(θ0) s + a) + tan(θ0).

As z(s) > 0, then −a < cos(θ0) s < π − a. Thus α is a halfcircle of ra-
dius 1/ cos(θ0) whose center is the point (tan(θ(0)), 0). The end points of

α are in the asymptotic boundary S
2
∞ and α meets orthogonally the line

L. See Figure 4. The function x(s) goes from (sin(θ0) − 1)/ cos(θ0) until
(sin(θ0) + 1)/ cos(θ0)
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Figure 4: The generating curve of a parabolic K-surfaces with K = −1. The initial
angle is θ(0) = π/4.

Let us return to the description of the generating curve α of S as the graph
of the function z = z(x). We focus to the study of the domain of the variable
x, x ∈ (x1, x2). From the expression (7) for x(s), |x(s)| < s. Hence we deduce
that if the interval I of definition of α is bounded, the same occurs for the interval
(x1, x2).

Theorem 3.4. Let α be the generating curve of a parabolic K-surface S in H
3. Assume

θ(0) = θ0.

1. If K + sin2(θ0) > 0 with K 6= 0, or , K + sin2(θ0) < 0, then x1 and x2 are real
numbers.

2. If K + sin2(θ0) > 0 and K = 0, then one of the values x1 or x2 is a real number
and the other one is ∞.

Remark 3.5. If we view α as the graph of z = z(x), the system (3)-(4) is equivalent to
the next initial value problem:

z(x)z′′(x) − (1 + z′(x)2)
(

(1 + K)z′(x)2 + K
)

= 0

z(0) = 1, z′(0) = 0.

A first integral concludes that

z′′(x) =
K

(1 + K(1 − z(x)2))2
z(x).

In the cases K = 0 and K = −1, it follows then

z(x) = 1 if K = 0

z(x) =
√

1 − x2 if K = −1

4 Parabolic surfaces with a horizontal tangent plane

The aim of this section is the study of parabolic K-surfaces whose generating
curve α presents a horizontal tangent line at some point. This means that the sur-

face S has points whose tangent plane is parallel to the infinity plane S
2
∞. More-

over, Lemma 2.4 says that the curve α is symmetric with respect to the vertical
line x = 0. Following the notation previously used, we assume θ0 = 0 in (4). The
value of R in Section 3 is now simply K, hence that, as in the above section, we
distinguish cases depending on the sign of K. Next, we summarize the results
obtained.
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1. Case K > 0. The solution z(s) is

z(s) = cosh (
√

Ks)

whose domain is the bounded interval (−s1, s1) with

s1 =
1√
K

arcsinh(
1√
K

).

If we study the behaviour of α near the end points of (−s1, s1), we get:

lim
s→s1

z(s1) =

√

K + 1

K
lim
s→s1

z′(s1) = 1.

We compute the height of S, that is, the hyperbolic distance between the
horospheres at the levels z(s1) and z = 1. It is not difficult to find that this
height coincides with

1

2
log

(

K + 1

K

)

.

2. Case K = 0. The solution is α(s) = (s, 0, 1). Thus, the curve α is a horizontal
straight line and the surface is a horosphere.

3. Case K < 0. The solution is

z(s) = cos
(√

−Ks
)

.

Depending on the value of K, the generating curve α meets S
2
∞. If −1 ≤ K <

0, α intersects S
2
∞ making an angle θ1 such that sin θ1 =

√
−K. The domain

of α is now (−π/2, π/2). In the particular case that K = −1, α is a halfcircle
that orthogonally meets L. If K < −1, S is not complete and the curve α
is a graph on a bounded domain of L. The parameter s goes in the range
(− 1√

−K
arcsin( 1√

−K
), 1√

−K
arcsin( 1√

−K
)).

Analogously as in the case K > 0, the height of the surface is

1

2
log

(

K − 1

K

)

.

Theorem 4.1. Let α be the generating curve of a parabolic K-surface S in H
3, where α is

the solution of (3). Assume that the initial velocity of α is horizontal. Then we distinguish
three possibilities:

1. Case K > 0. The curve α is convex with exactly one minimum and it is a graph on
L defined in some bounded interval I = (−x1, x1).

2. Case K = 0. The curve α is a horizontal straight line and S is a horosphere.

3. Case K < 0. The curve α is concave with exactly one maximum and it is a graph on
L defined in some bounded interval I = (−x1, x1). If K < −1, α does not intersect
the line L and at the end points, the curve is vertical. If −1 ≤ K < 0, the curve α
meets the line L making an angle θ1 with sin θ1 =

√
−K.

In the cases 1) and 3), the height of S is 1
2 log

(

K+1
K

)

and 1
2 log

(

K−1
K

)

respectively.
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